1
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Crudden C, Song D, Cismas S, Trocmé E, Pasca S, Calin GA, Girnita A, Girnita L. Below the Surface: IGF-1R Therapeutic Targeting and Its Endocytic Journey. Cells 2019; 8:cells8101223. [PMID: 31600876 PMCID: PMC6829878 DOI: 10.3390/cells8101223] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Ligand-activated plasma membrane receptors follow pathways of endocytosis through the endosomal sorting apparatus. Receptors cluster in clathrin-coated pits that bud inwards and enter the cell as clathrin-coated vesicles. These vesicles travel through the acidic endosome whereby receptors and ligands are sorted to be either recycled or degraded. The traditional paradigm postulated that the endocytosis role lay in signal termination through the removal of the receptor from the cell surface. It is now becoming clear that the internalization process governs more than receptor signal cessation and instead reigns over the entire spatial and temporal wiring of receptor signaling. Governing the localization, the post-translational modifications, and the scaffolding of receptors and downstream signal components established the endosomal platform as the master regulator of receptor function. Confinement of components within or between distinct organelles means that the endosome instructs the cell on how to interpret and translate the signal emanating from any given receptor complex into biological effects. This review explores this emerging paradigm with respect to the cancer-relevant insulin-like growth factor type 1 receptor (IGF-1R) and discusses how this perspective could inform future targeting strategies.
Collapse
Affiliation(s)
- Caitrin Crudden
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
- Department of Pathology, Cancer Centre Amsterdam, Amsterdam UMC, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands.
| | - Dawei Song
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| | - Sonia Cismas
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| | - Eric Trocmé
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
- St. Erik Eye Hospital, 11282 Stockholm, Sweden.
| | - Sylvya Pasca
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Ada Girnita
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
- Dermatology Department, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | - Leonard Girnita
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| |
Collapse
|
3
|
Talaei S, Mellatyar H, Asadi A, Akbarzadeh A, Sheervalilou R, Zarghami N. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chem Biol Drug Des 2019; 93:760-786. [PMID: 30697932 DOI: 10.1111/cbdd.13486] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Hsp90 is a ubiquitous chaperone with important roles in the organization and maturation of client proteins that are involved in the progression and survival of cancer cells. Multiple oncogenic pathways can be affected by inhibition of Hsp90 function through degradation of its client proteins. That makes Hsp90 a therapeutic target for cancer treatment. 17-allylamino-17-demethoxy-geldanamycin (17-AAG) is a potent Hsp90 inhibitor that binds to Hsp90 and inhibits its chaperoning function, which results in the degradation of Hsp90's client proteins. There have been several preclinical studies of 17-AAG as a single agent or in combination with other anticancer agents for a wide range of human cancers. Data from various phases of clinical trials show that 17-AAG can be given safely at biologically active dosages with mild toxicity. Even though 17-AAG has suitable pharmacological potency, its low water solubility and high hepatotoxicity could significantly restrict its clinical use. Nanomaterials-based drug delivery carriers may overcome these drawbacks. In this paper, we review preclinical and clinical research on 17-AAG as a single agent and in combination with other anticancer agents. In addition, we highlight the potential of using nanocarriers and nanocombination therapy to improve therapeutic effects of 17-AAG.
Collapse
Affiliation(s)
- Sona Talaei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Mellatyar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Abstract
Background Finding potential drug targets is a crucial step in drug discovery and development. Recently, resources such as the Library of Integrated Network-Based Cellular Signatures (LINCS) L1000 database provide gene expression profiles induced by various chemical and genetic perturbations and thereby make it possible to analyze the relationship between compounds and gene targets at a genome-wide scale. Current approaches for comparing the expression profiles are based on pairwise connectivity mapping analysis. However, this method makes the simple assumption that the effect of a drug treatment is similar to knocking down its single target gene. Since many compounds can bind multiple targets, the pairwise mapping ignores the combined effects of multiple targets, and therefore fails to detect many potential targets of the compounds. Results We propose an algorithm to find sets of gene knock-downs that induce gene expression changes similar to a drug treatment. Assuming that the effects of gene knock-downs are additive, we propose a novel bipartite block-wise sparse multi-task learning model with super-graph structure (BBSS-MTL) for multi-target drug repositioning that overcomes the restrictive assumptions of connectivity mapping analysis. Conclusions The proposed method BBSS-MTL is more accurate for predicting potential drug targets than the simple pairwise connectivity mapping analysis on five datasets generated from different cancer cell lines. Availability The code can be obtained at http://gr.xjtu.edu.cn/web/liminli/codes.
Collapse
|
5
|
Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, Barzegar A, Akbarzadeh A, Shahabi A, Barekati-Mowahed M, Zarghami N. Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: Overview and current state of the art. Biomed Pharmacother 2018; 102:608-617. [PMID: 29602128 DOI: 10.1016/j.biopha.2018.03.102] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 12/08/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an evolutionary preserved molecular chaperone which mediates many cellular processes such as cell transformation, proliferation, and survival in normal and stress conditions. Hsp90 plays an important role in folding, maturation, stabilization and activation of Hsp90 client proteins which all contribute to the development, and proliferation of cancer as well as other inflammatory diseases. Functional inhibition of Hsp90 can have a massive effect on various oncogenic and inflammatory pathways, and will result in the degradation of their client proteins. This turns it into an interesting target in the treatment of different malignancies. 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) as a semi-synthetic derivative of geldanamycin, has several advantages over 17-Allylamino-17-demethoxygeldanamycin (17-AAG) such as higher water solubility, good bioavailability, reduced metabolism, and greater anti-tumour capability. 17-DMAG binds to the Hsp90, and inhibits its function which eventually results in the degradation of Hsp90 client proteins. Here, we reviewed the pre-clinical data and clinical trial data on 17-DMAG as a single agent, in combination with other agents and loaded on nanomaterials in various cancers and inflammatory diseases.
Collapse
Affiliation(s)
- Hassan Mellatyar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sona Talaei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arman Shahabi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mazyar Barekati-Mowahed
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Joshi SS, Jiang S, Unni E, Goding SR, Fan T, Antony PA, Hornyak TJ. 17-AAG inhibits vemurafenib-associated MAP kinase activation and is synergistic with cellular immunotherapy in a murine melanoma model. PLoS One 2018; 13:e0191264. [PMID: 29481571 PMCID: PMC5826531 DOI: 10.1371/journal.pone.0191264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023] Open
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone which stabilizes client proteins with important roles in tumor growth. 17-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of HSP90 ATPase activity, occupies the ATP binding site of HSP90 causing a conformational change which destabilizes client proteins and directs them towards proteosomal degradation. Malignant melanomas have active RAF-MEK-ERK signaling which can occur either through an activating mutation in BRAF (BRAFV600E) or through activation of signal transduction upstream of BRAF. Prior work showed that 17-AAG inhibits cell growth in BRAFV600E and BRAF wildtype (BRAFWT) melanomas, although there were conflicting reports about the dependence of BRAFV600E and BRAFWT upon HSP90 activity for stability. Here, we demonstrate that BRAFWT and CRAF are bound by HSP90 in BRAFWT, NRAS mutant melanoma cells. HSP90 inhibition by 17-AAG inhibits ERK signaling and cell growth by destabilizing CRAF but not BRAFWT in the majority of NRAS mutant melanoma cells. The highly-selective BRAFV600E inhibitor, PLX4032 (vemurafenib), inhibits ERK signaling and cell growth in mutant BRAF melanoma cells, but paradoxically enhances signaling in cells with wild-type BRAF. In our study, we examined whether 17-AAG could inhibit PLX4032-enhanced ERK signaling in BRAFWT melanoma cells. As expected, PLX4032 alone enhanced ERK signaling in the BRAFWT melanoma cell lines Mel-Juso, SK-Mel-2, and SK-Mel-30, and inhibited signaling and cell growth in BRAFV600E A375 cells. However, HSP90 inhibition by 17-AAG inhibited PLX4032-enhanced ERK signaling and inhibited cell growth by destabilizing CRAF. Surprisingly, 17-AAG also stimulated melanin production in SK-Mel-30 cells and enhanced TYRP1 and DCT expression without stimulating TYR production in all three BRAFWT cell lines studied as well as in B16F10 mouse melanoma cells. In vivo, the combination of 17-AAG and cellular immunotherapy directed against Tyrp1 enhanced the inhibition of tumor growth compared to either therapy alone. Our studies support a role for 17-AAG and HSP90 inhibition in enhancing cellular immunotherapy for melanoma.
Collapse
Affiliation(s)
- Sandeep S. Joshi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shunlin Jiang
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Emmanual Unni
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stephen R. Goding
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tao Fan
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Paul A. Antony
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas J. Hornyak
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Zhao Z, Zhu J, Quan H, Wang G, Li B, Zhu W, Xie C, Lou L. X66, a novel N-terminal heat shock protein 90 inhibitor, exerts antitumor effects without induction of heat shock response. Oncotarget 2018; 7:29648-63. [PMID: 27105490 PMCID: PMC5045423 DOI: 10.18632/oncotarget.8818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/28/2016] [Indexed: 01/16/2023] Open
Abstract
Heat shock protein 90 (HSP90) is essential for cancer cells to assist the function of various oncoproteins, and it has been recognized as a promising target in cancer therapy. Although the HSP90 inhibitors in clinical trials have shown encouraging clinical efficacy, these agents induce heat shock response (HSR), which undermines their therapeutic effects. In this report, we detailed the pharmacologic properties of 4-(2-((1H-indol-3-yl)methylene)hydrazinyl)-N-(4-bromophenyl)-6-(3,5- dimethyl-1H -pyrazol-1-yl)-1,3,5-triazin-2-amine (X66), a novel and potent HSP90 inhibitor. X66 binds to the N-terminal domain in a different manner from the classic HSP90 inhibitors. Cellular study showed that X66 depleted HSP90 client proteins, resulted in cell cycle arrest and apoptosis, and inhibition of proliferation in cancer cell lines. X66 did not activate heat shock factor-1 (HSF-1) or stimulate transcription of HSPs. Moreover, the combination of X66 with HSP90 and proteasome inhibitors yielded synergistic cytotoxicity which was involved in X66-mediated abrogation of HSR through inhibition of HSF-1 activity. The intraperitoneal administration of X66 alone depleted client protein and inhibited tumor growth, and led to enhanced activity when combined with celastrol as compared to either agent alone in BT-474 xenograft model. Collectively, the HSP90 inhibitory action and the potent antitumor activity, with the anti-HSR action, promise X66 a novel HSP90-targeted agent, which merits further research and development.
Collapse
Affiliation(s)
- Zhixin Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianming Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haitian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guimin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bo Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiliang Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
8
|
Blurring Boundaries: Receptor Tyrosine Kinases as functional G Protein-Coupled Receptors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:1-40. [DOI: 10.1016/bs.ircmb.2018.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Girnita L, Takahashi SI, Crudden C, Fukushima T, Worrall C, Furuta H, Yoshihara H, Hakuno F, Girnita A. Chapter Seven - When Phosphorylation Encounters Ubiquitination: A Balanced Perspective on IGF-1R Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:277-311. [PMID: 27378760 DOI: 10.1016/bs.pmbts.2016.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell-surface receptors govern the critical information passage from outside to inside the cell and hence control important cellular decisions such as survival, growth, and differentiation. These receptors, structurally grouped into different families, utilize common intracellular signaling-proteins and pathways, yet promote divergent biological consequences. In rapid processing of extracellular signals to biological outcomes, posttranslational modifications offer a repertoire of protein processing options. Protein ubiquitination was originally identified as a signal for protein degradation through the proteasome system. It is now becoming increasingly recognized that both ubiquitin and ubiquitin-like proteins, all evolved from a common ubiquitin structural superfold, are used extensively by the cell and encompass signal tags for many different cellular fates. In this chapter we examine the current understanding of the ubiquitin regulation surrounding the insulin-like growth factor and insulin signaling systems, major members of the larger family of receptor tyrosine kinases (RTKs) and key regulators of fundamental physiological and pathological states.
Collapse
Affiliation(s)
- L Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - S-I Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - C Crudden
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - T Fukushima
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - C Worrall
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - H Furuta
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - H Yoshihara
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - F Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - A Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Dermatology Department, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Nordin BE, Liu Y, Aban A, Brown HE, Wu J, Hainley AK, Rosenblum JS, Nomanbhoy TK, Kozarich JW. ATP Acyl Phosphate Reactivity Reveals Native Conformations of Hsp90 Paralogs and Inhibitor Target Engagement. Biochemistry 2015; 54:3024-36. [PMID: 25905789 DOI: 10.1021/acs.biochem.5b00148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hsp90 is an ATP-dependent chaperone of widespread interest as a drug target. Here, using an LC-MS/MS chemoproteomics platform based on a lysine-reactive ATP acyl phosphate probe, several Hsp90 inhibitors were profiled in native cell lysates. Inhibitor specificities for all four human paralogs of Hsp90 were simultaneously monitored at their endogenous relative abundances. Equipotent inhibition of probe labeling in each paralog occurred at sites both proximal to and distal from bound ATP observed in Hsp90 cocrystal structures, suggesting that the ATP probe is assaying a native conformation not predicted by available structures. Inhibitor profiling against a comprehensive panel of protein kinases and other ATP-binding proteins detected in native cell lysates identified PMS2, a member of the GHKL ATPase superfamily as an off-target of NVP-AUY922 and radicicol. Because of the endogenously high levels of Hsp90 paralogs in typical cell lysates, the measured potency of inhibitors was weaker than published IC₅₀ values. Significant inhibition of Hsp90 required inhibitor concentrations above a threshold where off-target activity was detectable. Direct on- and off-target engagement was measured by profiling lysates derived from cells treated with Hsp90 inhibitors. These studies also assessed the downstream cellular pathway effects of Hsp90 inhibition, including the down regulation of several known Hsp90 client proteins and some previously unknown client proteins. Overall, the ATP probe-based assay methodology enabled a broad characterization of Hsp90 inhibitor activity and specificity in native cell lysates.
Collapse
|
11
|
Kumalo HM, Bhakat S, Soliman ME. Heat-shock protein 90 (Hsp90) as anticancer target for drug discovery: an ample computational perspective. Chem Biol Drug Des 2015; 86:1131-60. [PMID: 25958815 DOI: 10.1111/cbdd.12582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are over 100 different types of cancer, and each is classified based on the type of cell that is initially affected. If left untreated, cancer can result in serious health problems and eventually death. Recently, the paradigm of cancer chemotherapy has evolved to use a combination approach, which involves the use of multiple drugs each of which targets an individual protein. Inhibition of heat-shock protein 90 (Hsp90) is one of the novel key cancer targets. Because of its ability to target several signaling pathways, Hsp90 inhibition emerged as a useful strategy to treat a wide variety of cancers. Molecular modeling approaches and methodologies have become 'close counterparts' to experiments in drug design and discovery workflows. A wide range of molecular modeling approaches have been developed, each of which has different objectives and outcomes. In this review, we provide an up-to-date systematic overview on the different computational models implemented toward the design of Hsp90 inhibitors as anticancer agents. Although this is the main emphasis of this review, different topics such as background and current statistics of cancer, different anticancer targets including Hsp90, and the structure and function of Hsp90 from an experimental perspective, for example, X-ray and NMR, are also addressed in this report. To the best of our knowledge, this review is the first account, which comprehensively outlines various molecular modeling efforts directed toward identification of anticancer drugs targeting Hsp90. We believe that the information, methods, and perspectives highlighted in this report would assist researchers in the discovery of potential anticancer agents.
Collapse
Affiliation(s)
- Hezekiel M Kumalo
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Soumendranath Bhakat
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,Division of Biophysical Chemistry, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Mahmoud E Soliman
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| |
Collapse
|
12
|
Sato A. The human immunodeficiency virus protease inhibitor ritonavir is potentially active against urological malignancies. Onco Targets Ther 2015; 8:761-8. [PMID: 25914545 PMCID: PMC4399512 DOI: 10.2147/ott.s79776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The human immunodeficiency virus protease inhibitor ritonavir has recently been shown to have antineoplastic activity, and its use in urological malignancies is under investigation with an eye toward drug repositioning. Ritonavir is thought to exert its antineoplastic activity by inhibiting multiple signaling pathways, including the Akt and nuclear factor-kappaB pathways. It can increase the amount of unfolded proteins in the cell by inhibiting both the proteasome and heat shock protein 90. Combinations of ritonavir with agents that increase the amount of unfolded proteins, such as proteasome inhibitors, histone deacetylase inhibitors, or heat shock protein 90 inhibitors, therefore, induce endoplasmic reticulum stress cooperatively and thereby kill cancer cells effectively. Ritonavir is also a potent cytochrome P450 3A4 and P-glycoprotein inhibitor, increasing the intracellular concentration of combined drugs by inhibiting their degradation and efflux from cancer cells and thereby enhancing their antineoplastic activity. Furthermore, riotnavir’s antineoplastic activity includes modulation of immune system activity. Therapies using ritonavir are thus an attractive new approach to cancer treatment and, due to their novel mechanisms of action, are expected to be effective against malignancies that are refractory to current treatment strategies. Further investigations using ritonavir are expected to find new uses for clinically available drugs in the treatment of urological malignancies as well as many other types of cancer.
Collapse
Affiliation(s)
- Akinori Sato
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
13
|
Cheng Y, Yang C, Zhao J, Tse HF, Rong J. Proteomic identification of calcium-binding chaperone calreticulin as a potential mediator for the neuroprotective and neuritogenic activities of fruit-derived glycoside amygdalin. J Nutr Biochem 2015; 26:146-54. [DOI: 10.1016/j.jnutbio.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/21/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|
14
|
Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2014; 55:353-71. [PMID: 25292434 PMCID: PMC4372135 DOI: 10.1146/annurev-pharmtox-010814-124332] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently available therapies for adult onset neurodegenerative diseases provide symptomatic relief but do not modify disease progression. Here we explore a new neuroprotective approach based on drugs targeting chaperone-directed protein quality control. Critical target proteins that unfold and aggregate in these diseases, such as the polyglutamine androgen receptor in spinal and bulbar muscular atrophy, huntingtin in Huntington's disease, α-synuclein in Parkinson's disease, and tau in Alzheimer's disease, are client proteins of heat shock protein 90 (Hsp90), and their turnover is regulated by the protein quality control function of the Hsp90/Hsp70-based chaperone machinery. Hsp90 and Hsp70 have opposing effects on client protein stability in protein quality control; Hsp90 stabilizes the clients and inhibits their ubiquitination, whereas Hsp70 promotes ubiquitination dependent on CHIP (C terminus of Hsc70-interacting protein) and proteasomal degradation. We discuss how drugs that modulate proteostasis by inhibiting Hsp90 function or promoting Hsp70 function enhance the degradation of the critical aggregating proteins and ameliorate toxic symptoms in cell and animal disease models.
Collapse
Affiliation(s)
- William B. Pratt
- Departments of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry and Institute for Neurodegenerative Disease, The University of California at San Franscisco, San Francisco, CA 94158
| | - Yoichi Osawa
- Departments of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Andrew P. Lieberman
- Departments of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
15
|
Mei J, Yan W, Fang J, Yuan G, Chen N, He Y. Identification of a gonad-expression differential gene insulin-like growth factor-1 receptor (Igf1r) in the swamp eel (Monopterus albus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1181-1190. [PMID: 24488410 DOI: 10.1007/s10695-014-9914-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
In vertebrate species, the biopotential embryonic gonad differentiation is affected by many key genes and key steroidogenic enzymes. Insulin-like growth factor-1 receptor (Igf1r) has been considered as an important sex-differentiation gene in mammals and could mediate the biological action of Igf1, an important regulator of key steroidogenic enzymes. However, Igf1r gene is still unknown in the swamp eel, an economically important fish. In our study, we identified Igf1r gene in the swamp eel, which was a 2,148-bp open-reading frame encoding a protein of 716 amino acids. The alignment and the phylogenetic tree showed that Igf1r of the swamp eel had a conservative sequence with other vertebrates, especial fishes. Western blotting of Igf1r showed that Igf1r expressed much more in ovotestis and testis than in ovary, indicating an important role of Igf1r during gonad differentiation. We analyzed ubiquitination of Igf1r by co-immunoprecipitation and found the amount of ubiquitinated Igf1r was increased from ovary, ovotestis to testis, which was reversely to the trend of Hsp10 expression during gonadal transformation. It was possible that Hsp10 could suppress Igf1r ubiquitination during gonadal development of the swamp eel.
Collapse
Affiliation(s)
- Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
E3 ubiquitin ligase Cullin-5 modulates multiple molecular and cellular responses to heat shock protein 90 inhibition in human cancer cells. Proc Natl Acad Sci U S A 2014; 111:6834-9. [PMID: 24760825 DOI: 10.1073/pnas.1322412111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (HSP90) is required for the activity and stability of its client proteins. Pharmacologic inhibition of HSP90 leads to the ubiquitin-mediated degradation of clients, particularly activated or mutant oncogenic protein kinases. Client ubiquitination occurs via the action of one or more E3 ubiquitin ligases. We sought to identify the role of Cullin-RING family E3 ubiquitin ligases in the cellular response to HSP90 inhibition. Through a focused siRNA screen of 28 Cullin-RING ligase family members, we found that CUL5 and RBX2 were required for degradation of several HSP90 clients upon treatment of human cancer cells with the clinical HSP90 inhibitor 17-AAG. Surprisingly, silencing Cullin-5 (CUL5) also delayed the earlier loss of HSP90 client protein activity at the same time as delaying cochaperone dissociation from inhibited HSP90-client complexes. Expression of a dominant-negative CUL5 showed that NEDD8 conjugation of CUL5 is required for client degradation but not for loss of client activity or recruitment of clients and HSP90 to CUL5. Silencing CUL5 reduced cellular sensitivity to three distinct HSP90 inhibitors, across four cancer types driven by different protein kinases. Our results reveal the importance of CUL5 in multiple aspects of the cellular response to HSP90 inhibition.
Collapse
|
17
|
Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation. Cell Mol Life Sci 2013; 71:2403-27. [PMID: 24276851 PMCID: PMC4055838 DOI: 10.1007/s00018-013-1514-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/17/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and progression of cancer; however, therapeutics targeting it have had disappointing results in the clinic. As a receptor tyrosine kinase (RTK), IGF-1R is traditionally described as an ON/OFF system, with ligand stabilizing the ON state and exclusive kinase-dependent signaling activation. Newly added to the traditional model, ubiquitin-mediated receptor downregulation and degradation was originally described as a response to ligand/receptor interaction and thus inseparable from kinase signaling activation. Yet, the classical model has proven over-simplified and insufficient to explain experimental evidence accumulated over the last decade, including kinase-independent signaling, unbalanced signaling, or dissociation between signaling and receptor downregulation. Based on the recent findings that IGF-1R “borrows” components of G-protein coupled receptor (GPCR) signaling, including β-arrestins and G-protein-related kinases, we discuss the emerging paradigm for the IGF-1R as a functional RTK/GPCR hybrid, which integrates the kinase signaling with the IGF-1R canonical GPCR characteristics. The contradictions to the classical IGF-1R signaling concept as well as the design of anti-IGF-1R therapeutics treatment are considered in the light of this paradigm shift and we advocate recognition of IGF-1R as a valid target for cancer treatment.
Collapse
|
18
|
Vigetti D, Viola M, Karousou E, De Luca G, Passi A. Metabolic control of hyaluronan synthases. Matrix Biol 2013; 35:8-13. [PMID: 24134926 DOI: 10.1016/j.matbio.2013.10.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022]
Abstract
Hyaluronan (HA) is a glycosaminoglycan composed by repeating units of D-glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) that is ubiquitously present in the extracellular matrix (ECM) where it has a critical role in the physiology and pathology of several mammalian tissues. HA represents a perfect environment in which cells can migrate and proliferate. Moreover, several receptors can interact with HA at cellular level triggering multiple signal transduction responses. The control of the HA synthesis is therefore critical in ECM assembly and cell biology; in this review we address the metabolic regulation of HA synthesis. In contrast with other glycosaminoglycans, which are synthesized in the Golgi apparatus, HA is produced at the plasma membrane by HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. UDP-GlcUA and UDP-hexosamine availability is critical for the synthesis of GAGs, which is an energy consuming process. AMP activated protein kinase (AMPK), which is considered a sensor of the energy status of the cell and is activated by low ATP:AMP ratio, leads to the inhibition of HA secretion by HAS2 phosphorylation at threonine 110. However, the most general sensor of cellular nutritional status is the hexosamine biosynthetic pathway that brings to the formation of UDP-GlcNAc and intracellular protein glycosylation by O-linked attachment of the monosaccharide β-N-acetylglucosamine (O-GlcNAcylation) to specific aminoacid residues. Such highly dynamic and ubiquitous protein modification affects serine 221 residue of HAS2 that lead to a dramatic stabilization of the enzyme in the membranes.
Collapse
Affiliation(s)
- Davide Vigetti
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Manuela Viola
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Evgenia Karousou
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Giancarlo De Luca
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Alberto Passi
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy.
| |
Collapse
|
19
|
Extracellular matrix degradation and tissue remodeling in periprosthetic loosening and osteolysis: focus on matrix metalloproteinases, their endogenous tissue inhibitors, and the proteasome. BIOMED RESEARCH INTERNATIONAL 2013; 2013:230805. [PMID: 23862137 PMCID: PMC3703793 DOI: 10.1155/2013/230805] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 12/18/2022]
Abstract
The leading complication of total joint replacement is periprosthetic osteolysis, which often results in aseptic loosening of the implant, leading to revision surgery. Extracellular matrix degradation and connective tissue remodeling around implants have been considered as major biological events in the periprosthetic loosening. Critical mediators of wear particle-induced inflammatory osteolysis released by periprosthetic synovial cells (mainly macrophages) are inflammatory cytokines, chemokines, and proteolytic enzymes, mainly matrix metalloproteinases (MMPs). Numerous studies reveal a strong interdependence of MMP expression and activity with the molecular mechanisms that control the composition and turnover of periprosthetic matrices. MMPs can either actively modulate or be modulated by the molecular mechanisms that determine the debris-induced remodeling of the periprosthetic microenvironment. In the present study, the molecular mechanisms that control the composition, turnover, and activity of matrix macromolecules within the periprosthetic microenvironment exposed to wear debris are summarized and presented. Special emphasis is given to MMPs and their endogenous tissue inhibitors (TIMPs), as well as to the proteasome pathway, which appears to be an elegant molecular regulator of specific matrix macromolecules (including specific MMPs and TIMPs). Furthermore, strong rationale for potential clinical applications of the described molecular mechanisms to the treatment of periprosthetic loosening and osteolysis is provided.
Collapse
|
20
|
Ballesta A, Lopez J, Popgeorgiev N, Gonzalo P, Doumic M, Gillet G. Data-driven modeling of SRC control on the mitochondrial pathway of apoptosis: implication for anticancer therapy optimization. PLoS Comput Biol 2013; 9:e1003011. [PMID: 23592961 PMCID: PMC3616992 DOI: 10.1371/journal.pcbi.1003011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/08/2013] [Indexed: 11/18/2022] Open
Abstract
Src tyrosine kinases are deregulated in numerous cancers and may favor tumorigenesis and tumor progression. We previously described that Src activation in NIH-3T3 mouse fibroblasts promoted cell resistance to apoptosis. Indeed, Src was found to accelerate the degradation of the pro-apoptotic BH3-only protein Bik and compromised Bax activation as well as subsequent mitochondrial outer membrane permeabilization. The present study undertook a systems biomedicine approach to design optimal anticancer therapeutic strategies using Src-transformed and parental fibroblasts as a biological model. First, a mathematical model of Bik kinetics was designed and fitted to biological data. It guided further experimental investigation that showed that Bik total amount remained constant during staurosporine exposure, and suggested that Bik protein might undergo activation to induce apoptosis. Then, a mathematical model of the mitochondrial pathway of apoptosis was designed and fitted to experimental results. It showed that Src inhibitors could circumvent resistance to apoptosis in Src-transformed cells but gave no specific advantage to parental cells. In addition, it predicted that inhibitors of Bcl-2 antiapoptotic proteins such as ABT-737 should not be used in this biological system in which apoptosis resistance relied on the deficiency of an apoptosis accelerator but not on the overexpression of an apoptosis inhibitor, which was experimentally verified. Finally, we designed theoretically optimal therapeutic strategies using the data-calibrated model. All of them relied on the observed Bax overexpression in Src-transformed cells compared to parental fibroblasts. Indeed, they all involved Bax downregulation such that Bax levels would still be high enough to induce apoptosis in Src-transformed cells but not in parental ones. Efficacy of this counterintuitive therapeutic strategy was further experimentally validated. Thus, the use of Bax inhibitors might be an unexpected way to specifically target cancer cells with deregulated Src tyrosine kinase activity.
Collapse
|
21
|
Sudo M, Chin TM, Mori S, Doan NB, Said JW, Akashi M, Koeffler HP. Inhibiting proliferation of gefitinib-resistant, non-small cell lung cancer. Cancer Chemother Pharmacol 2013; 71:1325-34. [PMID: 23515752 PMCID: PMC3636434 DOI: 10.1007/s00280-013-2132-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 02/25/2013] [Indexed: 02/06/2023]
Abstract
Purpose Sensitivity to a tyrosine kinase inhibitor (TKI) is correlated with the presence of somatic mutations that affect the kinase domain of epidermal growth factor receptor (EGFR). Development of resistance to TKI is a major therapeutic problem in non-small cell lung cancer (NSCLC). Aim of this study is to identify agents that can overcome TKI resistance in NSCLC. Methods We used a carefully selected panel of 12 NSCLC cell lines to address this clinical problem. Initially, the cell lines were treated with a variety of 10 compounds. Cellular proliferation was measured via MTT assay. We then focused on the gefitinib-resistant, EGFR mutant cell lines [H1650: exon 19 and PTEN mutations; and H1975: exons 20 (T790M) and 21 (L858R)] to identify agents that could overcome TKI resistance. Results Both 17-DMAG (Hsp90 inhibitor) and belinostat (histone deacetylase inhibitor, HDACi) effectively decreased the growth of almost all NSCLC lines. Also, belinostat markedly decreased the expression of EGFR and phospho-Akt in the cells. Combination of 17-DMAG and belinostat synergistically inhibited in vitro proliferation of these cells. Furthermore, both agents and their combination almost completely prevented TKI-resistant tumor formation (EGFR T790M mutation) in a xenograft model. Conclusion These results suggest that the combination of 17-DMAG and belinostat should be examined in a clinical trial for TKI-resistant NSCLC cell. Electronic supplementary material The online version of this article (doi:10.1007/s00280-013-2132-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Makoto Sudo
- Cancer Science Institute, National University of Singapore, Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone protein essential for cellular survival. Functionally, HSPs promote proper protein folding, prevent misfolding, and restore three-dimensional protein structure which is critical following toxic cellular stresses. Recently, targeting HSP90 pharmacologically has gained traction in cancer therapy. Oncogenic cells depend on their ability to withstand endogenous (anoxia, nutrient deprivation, pH changes, and deranged signaling pathways) and exogenous (chemotherapy and radiation therapy) stressors for survival. Pharmacological inhibition of HSP90 destabilizes proteins and leads to degradation through the proteasome. This article will review the utility of HSP90 inhibition, as well as the current adoption in clinical trials and practice.
Collapse
Affiliation(s)
- Robert B Den
- Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
24
|
Vigetti D, Deleonibus S, Moretto P, Karousou E, Viola M, Bartolini B, Hascall VC, Tammi M, De Luca G, Passi A. Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J Biol Chem 2012; 287:35544-35555. [PMID: 22887999 DOI: 10.1074/jbc.m112.402347] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t(½) >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies.
Collapse
Affiliation(s)
- Davide Vigetti
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Sara Deleonibus
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Paola Moretto
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Eugenia Karousou
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Manuela Viola
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Barbara Bartolini
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Vincent C Hascall
- Biomedical Engineering ND20, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Markku Tammi
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Giancarlo De Luca
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Alberto Passi
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy.
| |
Collapse
|
25
|
Newman B, Liu Y, Lee HF, Sun D, Wang Y. HSP90 inhibitor 17-AAG selectively eradicates lymphoma stem cells. Cancer Res 2012; 72:4551-61. [PMID: 22751135 DOI: 10.1158/0008-5472.can-11-3600] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cancer stem cells (CSC; also called tumor-initiating cells) comprise tumor cell subpopulations that preserve the properties of quiescence, self-renewal, and differentiation of normal stem cells. In addition, CSCs are therapeutically important because of their key contributions toward drug resistance. The hypoxia-inducible transcription factor HIF1α is critical for CSC maintenance in mouse lymphoma. In this study, we showed that low concentrations of the HSP90 inhibitor 17-AAG eliminate lymphoma CSCs in vitro and in vivo by disrupting the transcriptional function of HIF1α, a client protein of HSP90. 17-AAG preferentially induced apoptosis and eliminated the colony formation capacity of mouse lymphoma CSCs and human acute myeloid leukemia (AML) CSCs. However, low concentrations of 17-AAG failed to eliminate highly proliferative lymphoma and AML cells (non-CSCs), in which the AKT-GSK3 signaling pathway is constitutively active. The heat shock transcription factor HSF1 is highly expressed in non-CSCs, but it was weakly expressed in lymphoma CSCs. However, siRNA-mediated attenuation of HSF1 abrogated the colony formation ability of both lymphoma and AML CSCs. This study supports the use of 17-AAG as a CSC targeting agent and, in addition, shows that HSF1 is an important target for elimination of both CSCs and non-CSCs in cancer.
Collapse
Affiliation(s)
- Bryan Newman
- Section of General Surgery, Department of Surgery, Medical Center, University of Michigan, Ann Arbor, MI48109, USA
| | | | | | | | | |
Collapse
|
26
|
Wang T, Zhang M, Ma Z, Guo K, Tergaonkar V, Zeng Q, Hong W. A role of Rab7 in stabilizing EGFR-Her2 and in sustaining Akt survival signal. J Cell Physiol 2012; 227:2788-97. [PMID: 21928319 DOI: 10.1002/jcp.23023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rab7 plays an important role in regulating endocytic traffic. In view of an emerging role of membrane traffic in signaling and diseases, we have examined the possible role of Rab7 in oncogenesis. The role of Rab7 was investigated using shRNA-mediated knockdown in A431 and MCF7 cancer cells. To our surprise, Rab7 knockdown effectively suppressed anchorage-independent growth of cancer cells in soft agar. Anoikis (matrix-detachment triggered apoptosis) was enhanced, while the level of phosphorylated (active) Akt (which is a key survival factor) was significantly reduced. Also intriguing was the observation that EGFR and Her2 levels were significantly reduced when Rab7 was knocked-down. More robust reduction of EGFR and Her2 levels was observed when knocked-down cells were treated with HSP90 inhibitor geldanamycin (GA). Low concentration of GA (50-100 nm)-induced apoptosis of the Rab7 knocked-down cells but not control cells, suggesting that Rab7 and HSP90 together contribute to the optimal stability of EGFR and Her2 as well as to protect cancer cells from apoptosis. Rab7 seems to protect EGFR and Her2 from proteosome-mediated degradation. These results suggest that Rab7 is likely involved in protecting EGFR and Her2 from being degraded by the proteosome and in maintaining optimal Akt survival signal (especially during cell detachment or when HSP90 is inhibited). Rab7 is potentially a novel target for combinatory therapy with Hsp90 inhibitors.
Collapse
Affiliation(s)
- Tuanlao Wang
- School of Pharmaceutical Sciences, Institute for Biomedical Research, Xiamen University, Fujian, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Iyer G, Morris MJ, Rathkopf D, Slovin SF, Steers M, Larson SM, Schwartz LH, Curley T, DeLaCruz A, Ye Q, Heller G, Egorin MJ, Ivy SP, Rosen N, Scher HI, Solit DB. A phase I trial of docetaxel and pulse-dose 17-allylamino-17-demethoxygeldanamycin in adult patients with solid tumors. Cancer Chemother Pharmacol 2012; 69:1089-97. [PMID: 22124669 PMCID: PMC3471133 DOI: 10.1007/s00280-011-1789-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/15/2011] [Indexed: 10/15/2022]
Abstract
PURPOSE To define maximum tolerated dose (MTD), clinical toxicities, and pharmacokinetics of 17-allylamino-17-demethoxygeldanamycin (17-AAG) when administered in combination with docetaxel once every 21 days in patients with advanced solid tumor malignancies. EXPERIMENTAL DESIGN Docetaxel was administered over 1 h at doses of 55, 70, and 75 mg/m(2). 17-AAG was administered over 1-2 h, following the completion of the docetaxel infusion, at escalating doses ranging from 80 to 650 mg/m(2) in 12 patient cohorts. Serum was collected for pharmacokinetic and pharmacodynamic studies during cycle 1. Docetaxel, 17-AAG, and 17-AG levels were determined by high-performance liquid chromatography. Biologic effects of 17-AAG were monitored in peripheral blood mononuclear cells by immunoblot. RESULTS Forty-nine patients received docetaxel and 17-AAG. The most common all-cause grade 3 and 4 toxicities were leukopenia, lymphopenia, and neutropenia. An MTD was not defined; however, three dose-limiting toxicities were observed, including 2 incidences of neutropenic fever and 1 of junctional bradycardia. Dose escalation was halted at docetaxel 75 mg/m(2)-17-AAG 650 mg/m(2) due to delayed toxicities attributed to patient intolerance of the DMSO-based 17-AAG formulation. Of 46 evaluable patients, 1 patient with lung cancer experienced a partial response. Minor responses were observed in patients with lung, prostate, melanoma, and bladder cancers. A correlation between reduced docetaxel clearance and 17-AAG dose level was observed. CONCLUSIONS The combination of docetaxel and 17-AAG was well tolerated in adult patients with solid tumors, although patient intolerance to the DMSO formulation precluded further dose escalation. The recommended phase II dose is docetaxel 70 mg/m(2) and 17-AAG 500 mg/m(2).
Collapse
Affiliation(s)
- Gopa Iyer
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Frankland-Searby S, Bhaumik SR. The 26S proteasome complex: an attractive target for cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1825:64-76. [PMID: 22037302 PMCID: PMC3242858 DOI: 10.1016/j.bbcan.2011.10.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 01/26/2023]
Abstract
The 26S proteasome complex engages in an ATP-dependent proteolytic degradation of a variety of oncoproteins, transcription factors, cell cycle specific cyclins, cyclin-dependent kinase inhibitors, ornithine decarboxylase, and other key regulatory cellular proteins. Thus, the proteasome regulates either directly or indirectly many important cellular processes. Altered regulation of these cellular events is linked to the development of cancer. Therefore, the proteasome has become an attractive target for the treatment of numerous cancers. Several proteasome inhibitors that target the proteolytic active sites of the 26S proteasome complex have been developed and tested for anti-tumor activities. These proteasome inhibitors have displayed impressive anti-tumor functions by inducing apoptosis in different tumor types. Further, the proteasome inhibitors have been shown to induce cell cycle arrest, and inhibit angiogenesis, cell-cell adhesion, cell migration, immune and inflammatory responses, and DNA repair response. A number of proteasome inhibitors are now in clinical trials to treat multiple myeloma and solid tumors. Many other proteasome inhibitors with different efficiencies are being developed and tested for anti-tumor activities. Several proteasome inhibitors currently in clinical trials have shown significantly improved anti-tumor activities when combined with other drugs such as histone deacetylase (HDAC) inhibitors, Akt (protein kinase B) inhibitors, DNA damaging agents, Hsp90 (heat shock protein 90) inhibitors, and lenalidomide. The proteasome inhibitor bortezomib is now in the clinic to treat multiple myeloma and mantle cell lymphoma. Here, we discuss the 26S proteasome complex in carcinogenesis and different proteasome inhibitors with their potential therapeutic applications in treatment of numerous cancers.
Collapse
Affiliation(s)
- Sarah Frankland-Searby
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R. Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
29
|
Sharma K, Vabulas RM, Macek B, Pinkert S, Cox J, Mann M, Hartl FU. Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response. Mol Cell Proteomics 2011; 11:M111.014654. [PMID: 22167270 PMCID: PMC3316734 DOI: 10.1074/mcp.m111.014654] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite the increasing importance of heat shock protein 90 (Hsp90) inhibitors as chemotherapeutic agents in diseases such as cancer, their global effects on the proteome remain largely unknown. Here we use high resolution, quantitative mass spectrometry to map protein expression changes associated with the application of the Hsp90 inhibitor, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG). In depth data obtained from five replicate SILAC experiments enabled accurate quantification of about 6,000 proteins in HeLa cells. As expected, we observed activation of a heat shock response with induced expression of molecular chaperones, which refold misfolded proteins, and proteases, which degrade irreparably damaged polypeptides. Despite the broad range of known Hsp90 substrates, bioinformatics analysis revealed that particular protein classes were preferentially affected. These prominently included proteins involved in the DNA damage response, as well as protein kinases and especially tyrosine kinases. We followed up on this observation with a quantitative phosphoproteomic analysis of about 4,000 sites, which revealed that Hsp90 inhibition leads to much more down- than up-regulation of the phosphoproteome (34% down versus 6% up). This study defines the cellular response to Hsp90 inhibition at the proteome level and sheds light on the mechanisms by which it can be used to target cancer cells.
Collapse
Affiliation(s)
- Kirti Sharma
- Departments of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Liu H, Zhang T, Chen R, McConkey DJ, Ward JF, Curley SA. Multiple kinase pathways involved in the different de novo sensitivity of pancreatic cancer cell lines to 17-AAG. J Surg Res 2011; 176:147-53. [PMID: 22099584 DOI: 10.1016/j.jss.2011.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/25/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND 17-Allylamino-17-demethoxygeldanamycin (17-AAG) specifically targets heat shock protein (HSP)90 and inhibits its chaperoning functions for multiple kinases involved in cancer cell growth and survival. To select responsive patients, the molecular mechanisms underlying the sensitivity of cancer cells to 17-AAG must be elucidated. MATERIALS AND METHODS We used cytotoxicity assays and Western blotting to explore the effects of 17-AAG and sorafenib on cell survival and expression of multiple kinases in the pancreatic cancer cell lines AsPC-1 and Panc-1. Gene cloning and transfection, siRNA silencing, and immunohistochemistry were used to evaluate the effects of mutant p53 protein on 17-AAG sensitivity. RESULTS AsPC-1 and Panc-1 responded differently to 17-AAG, with half maximal inhibitory concentration (IC(50)) values of 0.12 and 3.18 μM, respectively. Comparable expression of HSP90, HSP70, and HSP27 was induced by 17-AAG in AsPC-1 and Panc-1 cells. P-glycoprotein and mutant p53 did not affect 17-AAG sensitivity in these cell lines. Multiple kinases are more sensitive to HSP90 inhibition in AsPC-1 than in Panc-1 cells. After 17-AAG treatment, p-Bad (S112) decreased in AsPC-1 cells and increased in Panc-1 cells. Sorafenib markedly increased p-Akt, p-ERK1/2, p-GSK-3β, and p-S6 in both cell lines. Accordingly, 17-AAG and sorafenib acted antagonistically in AsPC-1 and Panc-1 cells, except at high concentrations in AsPC-1 cells. CONCLUSIONS Differential inhibition of multiple kinases is responsible for the different de novo sensitivity of AsPC-1 and Panc-1 cells to HSP90 inhibition. P-glycoprotein and mutant p53 protein did not play a role in the sensitivity of pancreatic cancer cells to 17-AAG.
Collapse
Affiliation(s)
- Heping Liu
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
31
|
Berenguer M, Martinez L, Giorgetti-Peraldi S, Le Marchand-Brustel Y, Govers R. A serum factor induces insulin-independent translocation of GLUT4 to the cell surface which is maintained in insulin resistance. PLoS One 2010; 5:e15560. [PMID: 21187969 PMCID: PMC3004919 DOI: 10.1371/journal.pone.0015560] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/12/2010] [Indexed: 01/24/2023] Open
Abstract
In response to insulin, glucose transporter GLUT4 translocates from intracellular compartments towards the plasma membrane where it enhances cellular glucose uptake. Here, we show that sera from various species contain a factor that dose-dependently induces GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes, human adipocytes, myoblasts and myotubes. Notably, the effect of this factor on GLUT4 is fully maintained in insulin-resistant cells. Our studies demonstrate that the serum-induced increase in cell surface GLUT4 levels is not due to inhibition of its internalization and is not mediated by insulin, PDGF, IGF-1, or HGF. Similarly to insulin, serum also augments cell surface levels of GLUT1 and TfR. Remarkably, the acute effect of serum on GLUT4 is largely additive to that of insulin, while it also sensitizes the cells to insulin. In accordance with these findings, serum does not appear to activate the same repertoire of downstream signaling molecules that are implicated in insulin-induced GLUT4 translocation. We conclude that in addition to insulin, at least one other biological proteinaceous factor exists that contributes to GLUT4 regulation and still functions in insulin resistance. The challenge now is to identify this factor.
Collapse
Affiliation(s)
- Marion Berenguer
- INSERM, U895, Mediterranean Research Center for Molecular Medicine (C3M), Avenir Team 9, Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Signaling and pathologies (IFR50), Nice, France
| | - Laurène Martinez
- INSERM, U895, Mediterranean Research Center for Molecular Medicine (C3M), Avenir Team 9, Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Signaling and pathologies (IFR50), Nice, France
| | - Sophie Giorgetti-Peraldi
- INSERM, U895, Mediterranean Research Center for Molecular Medicine (C3M), Team 7, Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Signaling and pathologies (IFR50), Nice, France
| | - Yannick Le Marchand-Brustel
- INSERM, U895, Mediterranean Research Center for Molecular Medicine (C3M), Avenir Team 9, Nice, France
- INSERM, U895, Mediterranean Research Center for Molecular Medicine (C3M), Team 7, Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Signaling and pathologies (IFR50), Nice, France
| | - Roland Govers
- INSERM, U895, Mediterranean Research Center for Molecular Medicine (C3M), Avenir Team 9, Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Signaling and pathologies (IFR50), Nice, France
- * E-mail:
| |
Collapse
|
32
|
Zuo KQ, Zhang XP, Zou J, Li D, Lv ZW. Establishment of a paclitaxel resistant human breast cancer cell strain (MCF-7/Taxol) and intracellular paclitaxel binding protein analysis. J Int Med Res 2010; 38:1428-35. [PMID: 20926015 DOI: 10.1177/147323001003800424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Multidrug resistance of tumours is one of the most important factors that leads to chemotherapy failure. A multidrug-resistant breast cancer cell line, MCF-7/Taxol, was established from the drug-sensitive parent cell line MCF-7. The biological properties of MCF-7/Taxol, including its drug resistance profile and profile of paclitaxel binding proteins, were analysed and compared with the parent cell line. A number of paclitaxel binding proteins were present in MCF-7 cells but absent from MCF-7/Taxol cells, namely heat shock protein 90, actinin and dermcidin precursor. The identification of differential paclitaxel binding proteins between the multidrug-resistant MCF-7/Taxol cell line and the parent drug-sensitive cell line MCF-7 provides insight into possible mechanisms involved in resistance to these chemotherapy drugs.
Collapse
Affiliation(s)
- K-Q Zuo
- Department of General Surgery, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
33
|
Pratt WB, Morishima Y, Peng HM, Osawa Y. Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp Biol Med (Maywood) 2010; 235:278-89. [PMID: 20404045 DOI: 10.1258/ebm.2009.009250] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Hsp90/Hsp70-based chaperone machinery plays a well-established role in signaling protein function, trafficking and turnover. A number of recent observations also support the notion that Hsp90 and Hsp70 play key roles in the triage of damaged and aberrant proteins for degradation via the ubiquitin-proteasome pathway. In the mid-1990s, it was discovered that Hsp70 is required for ubiquitin-dependent degradation of short-lived and abnormal proteins, and it became clear that inhibition of Hsp90 uniformly leads to the proteasomal degradation of Hsp90 client proteins. Subsequently, CHIP and parkin were shown to be Hsp70-binding ubiquitin E3 ligases that direct ubiquitin-charged E2 enzymes to the Hsp70-bound client protein. Stabilization by Hsp90 reflects the interaction of the chaperone with the ligand binding cleft of the client protein. These hydrophobic clefts must be open to allow passage of ligands to binding sites in the protein interior, and they are inherent sites of conformational instability. Hsp90 stabilizes the open state of the cleft and prevents Hsp70-dependent ubiquitination. In the model we propose here, progressive oxidative events result in cleft opening as the initial step in protein unfolding, and as long as Hsp90 can interact to stabilize the cleft, it will buffer the effect of oxidative damage. When cleft opening is such that Hsp90 can no longer interact, Hsp70-dependent ubiquitination occurs. We summarize evidence that Hsp90 interacts very dynamically with a variety of proteins that are not classic Hsp90 clients, and we show that this dynamic cycling of Hsp90 with nitric oxide synthase protects against CHIP-mediated ubiquitination. Scientific interest to date has focused on stringent regulation of the classic client proteins, which have metastable clefts and are inherently short lived. But, the recognition that Hsp90 cycles dynamically with longer lived proteins with more stable clefts may permit extension of the triage model to the quality control of damaged proteins in general.
Collapse
Affiliation(s)
- William B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, 48109, USA
| | | | | | | |
Collapse
|
34
|
Hong M, Li S, Zhou F, Thomas PE, You G. Putative transmembrane domain 12 of the human organic anion transporter hOAT1 determines transporter stability and maturation efficiency. J Pharmacol Exp Ther 2010; 332:650-8. [PMID: 19892921 PMCID: PMC2812107 DOI: 10.1124/jpet.109.160515] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 10/16/2009] [Indexed: 11/22/2022] Open
Abstract
Human organic anion transporter hOAT1 plays a critical role in the body disposition of clinically important drugs. In transmembrane segment (TM) 12, residues Tyr-490 and dileucine Leu-503/Leu-504 were identified to be critical for hOAT1 function. Substitution of Tyr-490 with alanine led to a dramatic reduction in protein expression of hOAT1 and its transport activity. The contribution of the side chain of Tyr-490 to transport activity was then evaluated by replacing this residue with Trp or Phe. Substitution of Tyr-490 with Trp or Phe partially or fully recovered the protein expression of hOAT1 and its transport activity, respectively, that were lost by substitution of Tyr-490 with alanine, suggesting that the aromatic ring and the size of the side chain of Tyr-490 are critical for hOAT1 expression and function. Studies with protease inhibitors and pulse-chase labeling further showed that the loss of expression of hOAT1 and its transport activity by replacing Tyr-490 with alanine resulted from accelerated degradation of the transporter, whereas its maturation efficiency was not affected. In contrast to Tyr-490, substitution of Leu-503/Leu-504 with alanine also resulted in complete loss of protein expression of hOAT1 and its transport activity. However, such loss of protein expression could not be prevented by treating mutant-expressing cells with protease inhibitors. Pulse-chase experiments showed that the mutant transporter (L503/L504A) was trapped in the endoplasmic reticulum without conversion into mature form of the transporter. Our results are the first to highlight the central role of TM 12 in maintaining the stability and in promoting the maturation efficiency of hOAT1.
Collapse
Affiliation(s)
- Mei Hong
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
35
|
Noguchi M, Hirayama R, Druzhinin S, Okayasu R. Enhanced radiation-induced cell killing by Herbimycin A pre-treatment. Radiat Phys Chem Oxf Engl 1993 2009. [DOI: 10.1016/j.radphyschem.2009.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Sánchez Y, Calle C, de Blas E, Aller P. Modulation of arsenic trioxide-induced apoptosis by genistein and functionally related agents in U937 human leukaemia cells. Regulation by ROS and mitogen-activated protein kinases. Chem Biol Interact 2009; 182:37-44. [DOI: 10.1016/j.cbi.2009.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 01/04/2023]
|
37
|
Banz VM, Medová M, Keogh A, Furer C, Zimmer Y, Candinas D, Stroka D. Hsp90 transcriptionally and post-translationally regulates the expression of NDRG1 and maintains the stability of its modifying kinase GSK3beta. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1597-603. [PMID: 19682504 DOI: 10.1016/j.bbamcr.2009.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/16/2009] [Accepted: 08/03/2009] [Indexed: 01/20/2023]
Abstract
N-myc downstream-regulated gene 1 (NRDG1) is a stress-induced protein whose putative function is suppression of tumor metastasis. A recent proteonomic study showed NDRG1 interacts with the molecular chaperone heat shock protein 90 (Hsp90). From their reported association, we investigated if NDRG1 is dependent on Hsp90 for its stability and is therefore a yet unidentified Hsp90 client protein. Here, we demonstrate that endogenous NDRG1 and Hsp90 physically associate in hepatocellular cancer cell lines. However, geldanamycin (GA)-mediated inhibition of Hsp90 did not disrupt their interaction or result in NDRG1 protein destabilization. On the contrary, inhibition of Hsp90 led to a transcriptional increase of NDRG1 protein which was associated with cell growth arrest. We also observed that GA inhibited the phosphorylation of NDRG1 by targeting its regulating kinases, serum- and glucocorticoid-induced kinase 1 (SGK1) and glycogen synthase kinase 3 beta (GSK3beta). We demonstrate that in the presence of GA, GSK3beta protein and activity were decreased thus indicating that Hsp90 is necessary for GSK3beta stability. Taken together, our data demonstrate that NDRG1 is not a classic client protein but interacts with Hsp90 and is still dually regulated by Hsp90 at a transcriptional and post-translational level. Finally, we suggest for the first time GSK3beta as a new client protein of Hsp90.
Collapse
Affiliation(s)
- Vanessa M Banz
- Department of Visceral Surgery, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
38
|
Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 2008; 33:341-65. [PMID: 11101008 PMCID: PMC6496586 DOI: 10.1046/j.1365-2184.2000.00189.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chaperones/heat shock proteins (HSPs) of the HSP90 and HSP70 families show elevated levels in proliferating mammalian cells and a cell cycle-dependent expression. They transiently associate with key molecules of the cell cycle control system such as Cdk4, Wee-1, pRb, p53, p27/Kip1 and are involved in the nuclear localization of regulatory proteins. They also associate with viral oncoproteins such as SV40 super T, large T and small t antigen, polyoma large and middle S antigen and EpsteinBarr virus nuclear antigen. This association is based on a J-domain in the viral proteins and may assist their targeting to the pRb/E2F complex. Small HSPs and their state of phosphorylation and oligomerization also seem to be involved in proliferation and differentiation. Chaperones/HSPs thus play important roles within cell cycle processes. Their exact functioning, however, is still a matter of discussion. HSP90 in particular, but also HSP70 and other chaperones associate with proteins of the mitogen-activated signal cascade, particularly with the Src kinase, with tyrosine receptor kinases, with Raf and the MAP-kinase activating kinase (MEK). This apparently serves the folding and translocation of these proteins, but possibly also the formation of large immobilized complexes of signal transducing molecules (scaffolding function).
Collapse
Affiliation(s)
- K Helmbrecht
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, Germany
| | | | | |
Collapse
|
39
|
Abstract
The heat shock protein 90 (Hsp90) chaperone is required for the conformational maturation and stability of multiple oncogenic kinases that drive signal transduction and proliferation of lung cancer cells. The recent demonstration that mutant epidermal growth factor receptor is an Hsp90 client, irrespective of the presence of the secondary threonine-to-methionine amino acid substitution mutation at position 790 mediating anilinoquinazoline resistance, suggests Hsp90 inhibition as a novel strategy against this group of lung cancers. The rarer epidermal growth factor receptors harboring exon 20 insertions and vIII mutations are also Hsp90 clients. Lung cancers may also be driven by mutant ErbB2, mutant B-Raf, or mutant or overexpressed c-Met, all of which are also degraded on Hsp90 inhibition. Hsp90 inhibitors may be synergistic with other drugs that disrupt chaperone function, including inhibitors of histone deacetylase 6 and the proteasome and agents that inhibit Hsp70 function. Hsp90 plays a unique antiapoptotic role in small cell lung cancer cells, so that Hsp90 inhibition results in substantial cell death in both chemosensitive and chemoresistant small cell lung cancer cell lines. Clinically, the geldanamycin compounds are the most mature, with manageable toxic effects. Several new classes of Hsp90 inhibitors are emerging, including purines and pyrazoles that have entered phase 1 trials. The available data suggest that Hsp90 inhibitors should be evaluated in multiple lung cancer subsets.
Collapse
|
40
|
Higashi Y, Sukhanov S, Parthasarathy S, Delafontaine P. The ubiquitin ligase Nedd4 mediates oxidized low-density lipoprotein-induced downregulation of insulin-like growth factor-1 receptor. Am J Physiol Heart Circ Physiol 2008; 295:H1684-9. [PMID: 18723765 DOI: 10.1152/ajpheart.00548.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 mug/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2+/-1.7 h from 24.4+/-4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events.
Collapse
Affiliation(s)
- Yusuke Higashi
- Section of Cardiology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
41
|
Synthesis and SAR study of N-(4-hydroxy-3-(2-hydroxynaphthalene-1-yl)phenyl)-arylsulfonamides: heat shock protein 90 (Hsp90) inhibitors with submicromolar activity in an in vitro assay. Bioorg Med Chem Lett 2008; 18:4982-7. [PMID: 18762423 DOI: 10.1016/j.bmcl.2008.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/06/2008] [Accepted: 08/08/2008] [Indexed: 01/15/2023]
Abstract
Heat shock protein 90 is emerging as an important target in cancer chemotherapy. In a program directed toward identifying novel chemical probes for Hsp90, we found N-(4-hydroxy-3-(2-hydroxynaphthalene-1-yl)phenyl)benzene sulfonamide as an Hsp90 inhibitor with very weak activity. In this report, we present a new and general method for the synthesis of a variety of analogs around this scaffold, and discuss their structure-activity relationships.
Collapse
|
42
|
Taldone T, Gozman A, Maharaj R, Chiosis G. Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 2008; 8:370-4. [PMID: 18644253 DOI: 10.1016/j.coph.2008.06.015] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 06/20/2008] [Accepted: 06/20/2008] [Indexed: 01/09/2023]
Abstract
The Hsp90 multichaperone complex has important roles in the development and progression of malignant transformation. Several small-molecule inhibitors of Hsp90 of diverse chemotypes have shown potent antitumor activity in a wide-range of malignancies, and are currently in clinical or late-stage preclinical investigation. This review intends to update the reader on advances made over the past two years in the clinical development of Hsp90 inhibitors in advanced cancers. It will refer to the two 17-AAG formulations, tanespimycin and IPI-504, and to synthetic small molecules, among which are the purine-scaffold Hsp90 inhibitor CNF2024/BIIB021, the isoxazole derivative VER-52296/NVP-AUY922, and the carbazol-4-one benzamide derivative SNX-5422, and will present our current knowledge on their clinical performance.
Collapse
Affiliation(s)
- Tony Taldone
- Department of Medicine and Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
43
|
Bridges AJ. Editorial Oncologic, Endocrine & Metabolic: The current status of tyrosine kinase inhibitors: Do the diarylamine inhibitors of the EGF receptor represent a new beginning? Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.5.12.1245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Holmes JL, Sharp SY, Hobbs S, Workman P. Silencing of HSP90 Cochaperone AHA1 Expression Decreases Client Protein Activation and Increases Cellular Sensitivity to the HSP90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin. Cancer Res 2008; 68:1188-97. [DOI: 10.1158/0008-5472.can-07-3268] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Sawai A, Chandarlapaty S, Greulich H, Gonen M, Ye Q, Arteaga CL, Sellers W, Rosen N, Solit DB. Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel. Cancer Res 2008; 68:589-96. [PMID: 18199556 DOI: 10.1158/0008-5472.can-07-1570] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in the kinase domain of the epidermal growth factor receptor (EGFR) are found in a subset of patients with lung cancer and correlate with response to EGFR tyrosine kinase inhibitors (TKI). Resistance to these agents invariably develops, and current treatment strategies have limited efficacy in this setting. Hsp90 inhibitors, such as 17-allylamino-17-demethoxygeldanamycin (17-AAG), induce the degradation of EGFR and other Hsp90 interacting proteins and may thus have utility in tumors dependent upon sensitive Hsp90 clients. We find that the EGFR mutations found most commonly in patients with lung adenocarcinoma who respond to EGFR TKIs are potently degraded by 17-AAG. Although the expression of wild-type EGFR was also down-regulated by 17-AAG, its degradation required higher concentrations of drug and a longer duration of drug exposure. In animal models, a single dose of 17-AAG was sufficient to induce degradation of mutant EGFR and inhibit downstream signaling. 17-AAG treatment, at its maximal tolerated dose, caused a significant delay in H3255 (L858R EGFR) xenograft growth but was less effective than the EGFR TKI gefitinib. 17-AAG alone delayed, but did not completely inhibit, the growth of H1650 and H1975 xenografts, two EGFR mutant models which show intermediate and high levels of gefitinib resistance. 17-AAG could be safely coadministered with paclitaxel, and the combination was significantly more effective than either drug alone. These data suggest that Hsp90 inhibition in combination with chemotherapy may represent an effective treatment strategy for patients whose tumors express EGFR kinase domain mutations, including those with de novo and acquired resistance to EGFR TKIs.
Collapse
Affiliation(s)
- Ayana Sawai
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Non-invasive PET imaging of EGFR degradation induced by a heat shock protein 90 inhibitor. Mol Imaging Biol 2007; 10:99-106. [PMID: 18157579 DOI: 10.1007/s11307-007-0123-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 10/31/2007] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this study is to non-invasively monitor the epidermal growth factor receptor (EGFR) response to a Hsp90 inhibitor-17-AAG treatment in a PC-3 prostate cancer model. PROCEDURES Nude mice bearing PC-3 tumor were injected intraperitoneally with 17-AAG and then imaged with micro positron emission tomography (microPET) using (64)Cu-DOTA-cetuximab. Biodistribution studies, immunofluorescence staining, and Western blot were performed to validate the microPET results. RESULTS PC-3 cells are sensitive to 17-AAG treatment in a dose-dependent manner. Quantitative microPET showed that (64)Cu-DOTA-cetuximab has prominent tumor activity accumulation in untreated tumors (14.6 +/- 2.6%ID/g) but significantly lower uptake in 17-AAG-treated tumors (8.9 +/- 1.6% ID/g) at 24 h post-injection. Both immunofluorescence staining and Western blot confirmed the significantly lower EGFR expression level in the tumor tissue upon 17-AAG treatment. CONCLUSIONS The early response to anti-Hsp90 therapy was successfully monitored by quantitative PET using (64)Cu-DOTA-cetuximab, which indicates that this approach may be valuable in monitoring the therapeutic response to Hsp90 inhibitor 17-AAG in EGFR-positive cancer patients.
Collapse
|
47
|
Solit DB, Ivy SP, Kopil C, Sikorski R, Morris MJ, Slovin SF, Kelly WK, DeLaCruz A, Curley T, Heller G, Larson S, Schwartz L, Egorin MJ, Rosen N, Scher HI. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin Cancer Res 2007; 13:1775-82. [PMID: 17363532 PMCID: PMC3203693 DOI: 10.1158/1078-0432.ccr-06-1863] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To define the maximum tolerated dose (MTD), toxicities, and pharmacokinetics of 17-allylamino-17-demethoxygeldanamycin (17-AAG) when administered using continuous and intermittent dosing schedules. EXPERIMENTAL DESIGN Patients with progressive solid tumor malignancies were treated with 17-AAG using an accelerated titration dose escalation schema. The starting dose and schedule were 5 mg/m(2) daily for 5 days with cycles repeated every 21 days. Dosing modifications based on safety, pharmacodynamic modeling, and clinical outcomes led to the evaluation of the following schedules: daily x 3 repeated every 14 days; twice weekly (days 1, 4, 8, and 11) for 2 weeks every 3 weeks; and twice weekly (days 1 and 4) without interruption. During cycle 1, blood was collected for pharmacokinetic and pharmacodynamic studies. RESULTS Fifty-four eligible patients were treated. The MTD was schedule dependent: 56 mg/m(2) on the daily x 5 schedule; 112 mg/m(2) on the daily x 3 schedule; and 220 mg/m(2) on the days 1, 4, 8, and 11 every-21-day schedule. Continuous twice-weekly dosing was deemed too toxic because of delayed hepatotoxicity. Hepatic toxicity was also dose limiting with the daily x 5 schedule. Other common toxicities encountered were fatigue, myalgias, and nausea. This latter adverse effect may have been attributable, in part, to the DMSO-based formulation. Concentrations of 17-AAG above those required for activity in preclinical models could be safely achieved in plasma. Induction of a heat shock response and down-regulation of Akt and Raf-1 were observed in biomarker studies. CONCLUSION The MTD and toxicity profile of 17-AAG were schedule dependent. Intermittent dosing schedules were less toxic and are recommended for future phase II studies.
Collapse
Affiliation(s)
- David B. Solit
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - S. Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Centers, National Cancer Institute, Bethesda, Maryland
| | - Catherine Kopil
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Rachel Sikorski
- Molecular Therapeutics/Drug Discovery Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael J. Morris
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Susan F. Slovin
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - W. Kevin Kelly
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Anthony DeLaCruz
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Tracy Curley
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Glenn Heller
- Department of Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Steven Larson
- Department of Nuclear Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lawrence Schwartz
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Merrill J. Egorin
- Molecular Therapeutics/Drug Discovery Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Neal Rosen
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Howard I. Scher
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
48
|
Hong M, Zhou F, Lee K, You G. The putative transmembrane segment 7 of human organic anion transporter hOAT1 dictates transporter substrate binding and stability. J Pharmacol Exp Ther 2007; 320:1209-15. [PMID: 17167169 DOI: 10.1124/jpet.106.117663] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human organic anion transporter hOAT1 plays a critical role in the body disposition of clinically important drugs. We examined the role of the putative transmembrane segment (TM) 7 in the function of hOAT1. Each residue within putative TM7 was replaced by alanine, and the uptake of para-aminohippurate was studied in cells expressing the mutants. We discovered four critical amino acid residues: Trp-346, Thr-349, Tyr-353, and Tyr-354. Substitution of Tyr-353 and Tyr-354 with alanine led to the loss of transport activity without affecting the surface expression of the transporter, whereas substitution of Trp-346 and Thr-349 with alanine lead to the loss of the total expression of the transporter. The effect of side chains of Tyr-353 and Tyr-354 on transporter functions were further evaluated by replacing these residues with Phe or Trp. Among all the mutants studied (Y353W, Y353F, Y354W, and Y354F), only mutant Y353F regained 30% transport activity, which was lost from replacement of Tyr-353 with alanine, suggesting that both the -OH group and the size of the side chain at positions 353 and 354 are critical for maintaining the full transport activity. To investigate the mechanisms underlying the loss of total protein expression when Trp-346 and Thr-349 were replaced with alanine, mutant-expressing cells were treated with lysosomal or proteasomal inhibitors. Our results showed that only proteasomal inhibitors resulted in the accumulation of mutant proteins, indicating that proteasome is involved in the degradation of the mutant transporters. Therefore, Trp-346 and Thr-349 are critically involved in the stability of the transporter.
Collapse
Affiliation(s)
- Mei Hong
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
49
|
He G, Qing H, Tong Y, Cai F, Ishiura S, Song W. Degradation of nicastrin involves both proteasome and lysosome. J Neurochem 2007; 101:982-92. [PMID: 17326768 DOI: 10.1111/j.1471-4159.2007.04449.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The glycoprotein nicastrin (NCT) is an essential component of the gamma-secretase complex, a high molecular weight complex which also contains the presenilin proteins, Aph-1 and Pen-2. The gamma-secretase complex is not only involved in APP processing but also in the processing of an increasing number of other type I integral membrane proteins. As the largest subunit of the gamma-secretase complex, NCT plays a crucial role in its activation. Considerable information exists on the distribution, structure and function of NCT; however, little is known of its proteolysis. The present study is aimed at exploring the molecular mechanism of NCT degradation. We found that either proteasomal or lysosomal inhibition can significantly increase the levels of both endogenous and exogenous NCT in various cell lines, and the effect of these inhibitions on NCT was time- and dose-dependent. Immunofluorescent microscopic analysis revealed that NCT accumulates in the ER and Golgi apparatus after proteasomal inhibition, while lysosomal inhibition leads to the accumulation of NCT in the lysosomal apparatus. Co-immunoprecipitation can pull down both NCT and ubiquitin. Taken together, our results demonstrate that NCT degradation involves both the proteasome and the lysosome.
Collapse
Affiliation(s)
- Guiqiong He
- Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Nomura N, Nomura M, Newcomb EW, Zagzag D. Geldanamycin induces G2 arrest in U87MG glioblastoma cells through downregulation of Cdc2 and cyclin B1. Biochem Pharmacol 2007; 73:1528-36. [PMID: 17324379 DOI: 10.1016/j.bcp.2007.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 01/15/2007] [Accepted: 01/16/2007] [Indexed: 11/19/2022]
Abstract
Cell cycle progression requires precise expression and activation of several cyclins and cyclin-dependent kinases. Geldanamycin (GA) affects cell cycle progression in various kinds of cells. We analyzed GA-induced cell cycle regulation in glioblastoma cells. GA-induced G2 or M arrest in glioblastoma cells in a cell line-dependent manner. GA decreased the expression of Cdc2 and cyclin B1 in U87MG cells. And phosphorylated Cdc2 decreased along with Cdc2 in the GA-treated cells. This cell line showed G2 arrest after GA treatment. In contrast, GA failed to down-regulate these cell cycle regulators in U251MG cells. In U251MG cells, the cell cycle was arrested at M phase in addition to G2 by GA. Next, we analyzed the mechanism of the GA-induced regulation of Cdc2 and cyclin B1 in U87MG cells. Cdc2 and cyclin B1 were ubiquitinated by GA. MG132 abrogated the GA-induced decrease of Cdc2 and cyclin B1 indicating that these proteins were degraded by proteasomes. In conclusion, GA controls the stability of Cdc2 and cyclin B1 in glioblastomas cell species-dependently. Cdc2 and cyclin B1 might be responsible for the different responses of glioblastoma cell lines to GA.
Collapse
Affiliation(s)
- Naoko Nomura
- Department of Ophthalmology, Kanazawa Social Insurance Hospital, Kanazawa, Japan.
| | | | | | | |
Collapse
|