1
|
Dandamudi A, Akbar H, Cancelas J, Zheng Y. Rho GTPase Signaling in Platelet Regulation and Implication for Antiplatelet Therapies. Int J Mol Sci 2023; 24:ijms24032519. [PMID: 36768837 PMCID: PMC9917354 DOI: 10.3390/ijms24032519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Platelets play a vital role in regulating hemostasis and thrombosis. Rho GTPases are well known as molecular switches that control various cellular functions via a balanced GTP-binding/GTP-hydrolysis cycle and signaling cascade through downstream effectors. In platelets, Rho GTPases function as critical regulators by mediating signal transduction that drives platelet activation and aggregation. Mostly by gene targeting and pharmacological inhibition approaches, Rho GTPase family members RhoA, Rac1, and Cdc42 have been shown to be indispensable in regulating the actin cytoskeleton dynamics in platelets, affecting platelet shape change, spreading, secretion, and aggregation, leading to thrombus formation. Additionally, studies of Rho GTPase function using platelets as a non-transformed model due to their anucleated nature have revealed valuable information on cell signaling principles. This review provides an updated summary of recent advances in Rho GTPase signaling in platelet regulation. We also highlight pharmacological approaches that effectively inhibited platelet activation to explore their possible development into future antiplatelet therapies.
Collapse
Affiliation(s)
- Akhila Dandamudi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Pathology, University of Cincinnati Graduate School, Cincinnati, OH 45267, USA
| | - Huzoor Akbar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Jose Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Pathology, University of Cincinnati Graduate School, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-513-636-0595
| |
Collapse
|
2
|
Abstract
Rho GTPases are critical for platelet function. Although the roles of RhoA, Rac and Cdc42 are characterized, platelets express other Rho GTPases, whose activities are less well understood. This review summarizes our understanding of the roles of platelet Rho GTPases and focuses particularly on the functions of Rif and RhoG. In human platelets, Rif interacts with cytoskeleton regulators including formins mDia1 and mDia3, whereas RhoG binds SNARE-complex proteins and cytoskeletal regulators ELMO and DOCK1. Knockout mouse studies suggest that Rif plays no critical functions in platelets, likely due to functional overlap with other Rho GTPases. In contrast, RhoG is essential for normal granule secretion downstream of the collagen receptor GPVI. The central defect in RhoG-/- platelets is reduced dense granule secretion, which impedes integrin activation and aggregation and limits platelet recruitment to growing thrombi under shear, translating into reduced thrombus formation in vivo. Potential avenues for future work on Rho GTPases in platelets are also highlighted, including identification of the key regulator for platelet filopodia formation and investigation of the role of the many Rho GTPase regulators in platelet function in both health and disease.
Collapse
|
3
|
Elvers M. RhoGAPs and Rho GTPases in platelets. Hamostaseologie 2015; 36:168-77. [PMID: 25639730 DOI: 10.5482/hamo-14-09-0046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/13/2015] [Indexed: 01/03/2023] Open
Abstract
Platelet cytoskeletal reorganization is essential for platelet adhesion and thrombus formation in hemostasis and thrombosis. The Rho GTPases RhoA, Rac1 and Cdc42 are the main players in cytoskeletal dynamics of platelets responsible for the formation of filopodia and lamellipodia to strongly increase the platelet surface upon activation. They are involved in platelet activation and aggregate formation including platelet secretion, integrin activation and arterial thrombus formation. The activity of Rho GTPases is tightly controlled by different proteins such as GTPase-activating proteins (GAPs). GAPs stimulate GTP hydrolysis to terminate Rho signaling. The role and impact of GAPs in platelets is not well-defined and many of the RhoGAPs identified are not known to be present in platelets or to have any function in platelets. The recently identified RhoGAPs Oligophrenin1 (OPHN1) and Nadrin regulate the activity of RhoA, Rac1 and Cdc42 and subsequent platelet cytoskeletal reorganization, platelet activation and thrombus formation. In the last years, the analysis of genetically modified mice helped to gain the understanding of Rho GTPases and their regulators in cytoskeletal rearrangements and other Rho mediated cellular processes in platelets.
Collapse
Affiliation(s)
- Margitta Elvers
- Margitta Elvers, Ph.D., Department of Clinical and Experimental Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany, Tel. +49/(0)211/81-08851, Fax -17498., E-mail:
| |
Collapse
|
4
|
Abstract
The Rho family of GTP binding proteins, also commonly referred to as the Rho GTPases, are master regulators of the platelet cytoskeleton and platelet function. These low-molecular-weight or 'small' GTPases act as signaling switches in the spatial and temporal transduction, and amplification of signals from platelet cell surface receptors to the intracellular signaling pathways that drive platelet function. The Rho GTPase family members RhoA, Cdc42 and Rac1 have emerged as key regulators in the dynamics of the actin cytoskeleton in platelets and play key roles in platelet aggregation, secretion, spreading and thrombus formation. Rho GTPase regulators, including GEFs and GAPs and downstream effectors, such as the WASPs, formins and PAKs, may also regulate platelet activation and function. In this review, we provide an overview of Rho GTPase signaling in platelet physiology. Previous studies of Rho GTPases and platelets have had a shared history, as platelets have served as an ideal, non-transformed cellular model to characterize Rho function. Likewise, recent studies of the cell biology of Rho GTPase family members have helped to build an understanding of the molecular regulation of platelet function and will continue to do so through the further characterization of Rho GTPases as well as Rho GAPs, GEFs, RhoGDIs and Rho effectors in actin reorganization and other Rho-driven cellular processes.
Collapse
Affiliation(s)
- J E Aslan
- Department of Biomedical Engineering and Cell & Developmental Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
5
|
Akbar H, Shang X, Perveen R, Berryman M, Funk K, Johnson JF, Tandon NN, Zheng Y. Gene targeting implicates Cdc42 GTPase in GPVI and non-GPVI mediated platelet filopodia formation, secretion and aggregation. PLoS One 2011; 6:e22117. [PMID: 21789221 PMCID: PMC3138762 DOI: 10.1371/journal.pone.0022117] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/16/2011] [Indexed: 11/22/2022] Open
Abstract
Background Cdc42 and Rac1, members of the Rho family of small GTPases, play critical roles in actin cytoskeleton regulation. We have shown previously that Rac1 is involved in regulation of platelet secretion and aggregation. However, the role of Cdc42 in platelet activation remains controversial. This study was undertaken to better understand the role of Cdc42 in platelet activation. Methodology/Principal Findings We utilized the Mx-cre;Cdc42lox/lox inducible mice with transient Cdc42 deletion to investigate the involvement of Cdc42 in platelet function. The Cdc42-deficient mice exhibited a significantly reduced platelet count than the matching Cdc42+/+ mice. Platelets isolated from Cdc42−/−, as compared to Cdc42+/+, mice exhibited (a) diminished phosphorylation of PAK1/2, an effector molecule of Cdc42, (b) inhibition of filopodia formation on immobilized CRP or fibrinogen, (c) inhibition of CRP- or thrombin-induced secretion of ATP and release of P-selectin, (d) inhibition of CRP, collagen or thrombin induced platelet aggregation, and (e) minimal phosphorylation of Akt upon stimulation with CRP or thrombin. The bleeding times were significantly prolonged in Cdc42−/− mice compared with Cdc42+/+ mice. Conclusion/Significance Our data demonstrate that Cdc42 is required for platelet filopodia formation, secretion and aggregation and therefore plays a critical role in platelet mediated hemostasis and thrombosis.
Collapse
Affiliation(s)
- Huzoor Akbar
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Xu B, Bhullar RP. Regulation of Rac1 and Cdc42 activation in thrombin- and collagen-stimulated CHRF-288-11 cells. Mol Cell Biochem 2011; 353:73-9. [DOI: 10.1007/s11010-011-0776-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/07/2011] [Indexed: 11/30/2022]
|
7
|
Lutskiy MI, Shcherbina A, Bachli ET, Cooley J, Remold-O'Donnell E. WASP localizes to the membrane skeleton of platelets. Br J Haematol 2007; 139:98-105. [PMID: 17854313 DOI: 10.1111/j.1365-2141.2007.06745.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Patients with Wiskott-Aldrich syndrome (WAS), an X-linked blood cell disease, suffer from severe thrombocytopenia due to accelerated loss of defective platelets. The affected gene encodes WASP, an actin regulatory protein thought to reside in the cytoplasm of resting leucocytes. In contrast, this study showed that, for platelets, one-quarter of WASP molecules fractionate in the detergent-insoluble high speed pellet characterized as the membrane skeleton, the scaffold structure that underlies the lipid bilayer and stabilizes the surface membrane. Following treatment of platelets with thrombin and stirring, which induces cytoarchitectural remodelling, WASP and other membrane skeletal components sedimented at lower g force and partitioned in the low-speed pellet. Thrombin and stirring also induced WASP tyrosine phosphorylation, a rapid activating reaction, and proteolytic inactivation by cysteine protease calpain. Both the alteration of the sedimentation profile and the proteolytic inactivation were specific for the membrane skeletal pool of WASP and were abrogated in alphaIIb beta3 integrin-deficient platelets and in normal platelets treated with an integrin antagonist. The findings demonstrate that WASP is a component of the resting platelet membrane skeleton and participates in membrane skeletal rearrangements downstream of integrin outside-in signalling. The possible implications for the platelet defect in WAS are discussed.
Collapse
Affiliation(s)
- Maxim I Lutskiy
- The CBR Institute for Biomedical Research and the Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Carneiro AMD, Blakely RD. Serotonin-, protein kinase C-, and Hic-5-associated redistribution of the platelet serotonin transporter. J Biol Chem 2006; 281:24769-80. [PMID: 16803896 PMCID: PMC3875312 DOI: 10.1074/jbc.m603877200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerging data indicate the existence of multiple regulatory processes supporting serotonin (5HT) transporter (SERT) capacity including regulated trafficking and catalytic activation, influenced by post-translational modifications and transporter-associated proteins. In the present study, using differential extraction and sedimentation procedures optimized for the purification of cytoskeletal and membrane-skeletal associated proteins, we analyze SERT localization in platelets. We find that most of the plasma membrane SERT is associated with the membrane skeleton. This association can be enhanced by both transporter activation and 5HT2A receptor activation. Inactivation of transport activity by phorbol ester treatment of intact platelets relocates SERT to the cytoskeleton fraction, consequently leading to transporter internalization. The translocation of SERT between these compartments is correlated with changes in the interaction with the LIM domain adaptor protein Hic-5. Co-immunoprecipitation and uptake activity studies suggest that Hic-5 is a determinant of transporter inactivation and relocation to a compartment subserving endocytic regulation. Associations of SERT with Hic-5 are evident in brain synaptosomes, suggesting the existence of parallel mechanisms operating to regulate SERT at serotonergic synapses.
Collapse
Affiliation(s)
- Ana Marin D. Carneiro
- Department of Pharmacology, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Randy D. Blakely
- Department of Pharmacology, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
- Department of Psychiatry, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
- To whom correspondence should be addressed: 7140 MRBIII, Vanderbilt School of Medicine, Nashville, TN 37232-8548. Tel.: 615-936-3705; Fax: 615-936-3040;
| |
Collapse
|
10
|
Sun DS, Lo SJ, Lin CH, Yu MS, Huang CY, Chen YF, Chang HH. Calcium oscillation and phosphatidylinositol 3-kinase positively regulate integrin alpha(IIb)beta3-mediated outside-in signaling. J Biomed Sci 2005; 12:321-33. [PMID: 15917997 DOI: 10.1007/s11373-005-0979-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2004] [Accepted: 12/21/2004] [Indexed: 10/25/2022] Open
Abstract
The frequency of calcium oscillation reveals the platelet activation status, however, the biological significance of the periodic calcium responses and methods of communication with other integrin-mediated signals are not clear. RGD-containing disintegrin rhodostomin coated substrates were employed to enhance platelet spreading and calcium oscillation through direct binding and clustering of the receptor integrin alpha(IIb)beta3. The results showed that the activation of phosphatidylinositol 3-kinase (PI3-K) and internal calcium pathways were crucial for alpha(IIb)beta3 outside-in signaling. PI3-K antagonists wortmannin and LY294002 inhibited disintegrin substrates and induced platelet spreading and calcium oscillation. At the same time, pretreatment of platelets with the microsomal calcium-ATPase inhibitor thapsigargin to deplete internal calcium stores severely impaired the calcium oscillation as well as PI3-K activation and spreading on disintegrin substrates. Because inhibition of one pathway could inhibit the other, our data indicates that PI3-K and calcium oscillation are synergistically operated and form a positive-feedback regulation in integrin alpha(IIb)beta3-mediated outside-in signaling.
Collapse
Affiliation(s)
- Der-Shan Sun
- Institute of Molecular and Cellular Biology, Tzu-Chi University, Hualien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
11
|
Kashiwagi H, Shiraga M, Kato H, Honda S, Sako M, Kurata Y, Kanakura Y, Tomiyama Y. Expression and subcellular localization of WAVE isoforms in the megakaryocyte/platelet lineage. J Thromb Haemost 2005; 3:361-8. [PMID: 15670045 DOI: 10.1111/j.1538-7836.2004.01082.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
WAVE isoforms, which consist of WAVE-1, WAVE-2 and WAVE-3, are members of the Wiskott-Aldrich syndrome protein (WASP) family. They are implicated in the regulation of actin-cytoskeletal reorganization downsteam of the small GTPase, Rac. Since platelet attachment to extracellular matrices leads to filopodial and lamellipodial extension, we examined the expression and subcellular localization of WAVEs in platelets. Employing primary megakaryocytic cells derived from cord blood as well as megakaryocytic cell lines, we also examined their expression during megakaryocytic differentiation. Immunoblotting and immunohistochemical analysis revealed that platelets expressed WAVE-1 and WAVE-2, whereas WAVE-3 expression was hardly to be detected. WAVE-1 expression was associated with megakaryocytic differentiation, whereas WAVE-2 and WAVE-3 expression was not changed by the differentiation. In adhered platelets both WAVE-1 and WAVE-2 were localized at the edge of the lamellipodia and at the tips of filopodia. In WASP-deficient platelets we found normal lamellipodial formation and localization of WAVE-1 and WAVE-2 at the edges of lamellipodia. Furthermore, we demonstrated that WAVE-1 and WAVE-2 moved from a detergent-soluble cytosolic fraction to insoluble cytoskeleton fraction after platelet aggregation. These results suggest that WAVE-1 and WAVE-2 regulate actin reorganization during platelet spreading and aggregate formation.
Collapse
Affiliation(s)
- H Kashiwagi
- Department of Hematology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wadhawan V, Karim ZA, Mukhopadhyay S, Gupta R, Dikshit M, Dash D. Platelet storage under in vitro condition is associated with calcium-dependent apoptosis-like lesions and novel reorganization in platelet cytoskeleton. Arch Biochem Biophys 2004; 422:183-90. [PMID: 14759606 DOI: 10.1016/j.abb.2003.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 12/15/2003] [Indexed: 11/28/2022]
Abstract
Platelets are cleared from circulation after a life span of 8-10 days. The molecular mechanisms underlying platelet senescence remain poorly characterized. Here we report that, progressive functional impairment in the platelets incubated in vitro in a plasma-free isotonic medium for up to 24 h at 37 degrees C is associated with release of cytochrome c from platelet mitochondria and cleavage of procaspase-9, but without evidence of caspase-3 activation. Concomitantly, there was proteolysis of survival proteins like focal adhesion kinase, Src, gelsolin, and specific cytoskeleton-associated peptides, in a manner regulated by extracellular calcium and calpain activity. Cytoskeleton played a critical role as evidenced from the association of these proteins and their degradation products, as well as procaspase-3 and the actin regulatory small GTPase, CDC42Hs, with the cytoskeleton of the stored platelets. The cytoskeletal enrichment with specific proteins was not associated with increase in the content of F-actin and was cytochalasin-resistant, thus signifying a novel mechanism of interaction of the translocating proteins with the pre-existing cytoskeleton. There was progressive exposure of phosphatidylserine on the outer leaflet of platelet membrane and specific electron microscopic changes suggestive of apoptotic lesions. Based on these observations we discuss the caspase-independent but calpain-mediated signaling events in the stored platelets resembling the features of apoptosis in the nucleated cells.
Collapse
Affiliation(s)
- Vinita Wadhawan
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | | | |
Collapse
|
13
|
Schmidt VA, Scudder L, Devoe CE, Bernards A, Cupit LD, Bahou WF. IQGAP2 functions as a GTP-dependent effector protein in thrombin-induced platelet cytoskeletal reorganization. Blood 2003; 101:3021-8. [PMID: 12515716 DOI: 10.1182/blood-2002-09-2807] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human blood platelets are anucleate cells whose response to extracellular stimuli results in actin cytoskeleton rearrangements, thereby providing the critical initial step in the regulation of hemostasis. The serine protease alpha-thrombin, known to activate platelets by cleavage of a family of protease-activated receptors (PARs), is the most potent physiologic activator of human platelets, though downstream effector proteins uniquely linked to platelet cytoskeletal actin polymerization remain largely uncharacterized. The gene encoding the putative rac1/cdc42 effector protein IQGAP2 was identified within the PAR gene cluster at 5q13, flanked telomeric by PAR1 and encompassing PAR3. Immunofluorescence microscopy demonstrated IQGAP2 expression in filopodial extensions of activated platelets and colocalized with F-actin in lamellipodia and filopodia of IQGAP2-transfected COS1 cells. Platelet activation by alpha-thrombin, but not saturating concentrations of fibrillar collagen or adenosine 5'-diphosphate, uniquely assemble an IQGAP2/arp2/3-actin cytoplasmic complex, an association regulated by guanosine triphosphate rac1 ([GTP]rac1) but not by [GTP]cdc42. Likewise, only thrombin-activated platelets resulted in rapid translocation of IQGAP2 to the platelet cytoskeleton. These observations identify a physiologic scaffolding function for IQGAP2 and establish the presence of a functional genomic unit in humans uniquely evolved to regulate thrombin-induced platelet cytoskeletal actin reorganization.
Collapse
Affiliation(s)
- Valentina A Schmidt
- Department of Medicine and the Program in Genetics, State University of New York, Stony Brook, 11794, USA
| | | | | | | | | | | |
Collapse
|
14
|
Chen NX, O'Neill KD, Niwa T, Moe SM. Signal transduction of beta2m-induced expression of VCAM-1 and COX-2 in synovial fibroblasts. Kidney Int 2002; 61:414-24. [PMID: 11849381 DOI: 10.1046/j.1523-1755.2002.00136.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND beta2 microglobulin (beta2m) amyloidosis is a destructive articular disease affecting dialysis patients. We have demonstrated that beta2m increases the expression of vascular cell adhesion molecule (VCAM-1) and cyclooxygenase-2 (COX-2) in human osteoarthritic synovial fibroblasts (SFLs). METHODS To determine the cell signaling pathways, SFLs were incubated with beta2m in the presence or absence of various inhibitors for 24 hours. Intracellular calcium ([Ca2+]i) was measured by fluorometric techniques and vascular cell adhesion molecule-1 (VCAM-1) and cyclooxygenase-2 (COX-2) expression was determined by immunohistochemistry and Western blotting. RESULTS beta2m increased [Ca2+]i levels in a dose dependent manner (P < 0.05) in SFLs. BAPTA-AM, a [Ca2+]i chelator, completely inhibited beta2m-induced expression of VCAM-1 and COX-2. U73122 [phospholipase C (PLC) inhibitor] or 2-APB [specific inhibitor of inositol 1,4,5-trisphosphate (IP3)-induced [Ca2+]i release] completely blocked the beta2m-induced increase in [Ca2+]i and the up-regulation of VCAM-1 and COX-2. However, pretreatment with staurosporin, a protein kinase C inhibitor, had no effect. Disruption of the actin cytoskeleton by treatment with cytochalasin D or latrunculin A blocked beta2m up-regulation of VCAM-1 and COX-2. Finally, cells treated with phosphatidylinositol-3 kinase (PI-3 kinase) inhibitors wortmannin or LY294002 also failed to express VCAM-1 and COX-2. CONCLUSIONS These results demonstrate that IP3-mediated [Ca2+]i release, PI-3 kinase, and actin cytoskeleton reorganization are involved in beta2m-induced expression of VCAM-1 and COX-2 in human SFLs. Understanding the potential pathways by which beta2m exerts its inflammatory-like effects may lead to the development of future therapies.
Collapse
Affiliation(s)
- Neal X Chen
- Indiana University School of Medicine and Richard L. Roudebush VAMC, Indianapolis, Indiana, USA.
| | | | | | | |
Collapse
|
15
|
Soulet C, Gendreau S, Missy K, Benard V, Plantavid M, Payrastre B. Characterisation of Rac activation in thrombin- and collagen-stimulated human blood platelets. FEBS Lett 2001; 507:253-8. [PMID: 11696351 DOI: 10.1016/s0014-5793(01)02984-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, we characterised the mechanisms of Rac GTPase activation in human platelets stimulated by two physiological agonists, either thrombin, acting through membrane receptors coupled to heterotrimeric G-proteins, or collagen which is known to mobilise a tyrosine kinase-dependent pathway. Both agonists induced a rapid activation of Rac that was not significantly affected by the inhibition of integrin alpha(IIb)beta(3) engagement. Using pharmacological inhibitors, we found that phospholipase C activation and calcium mobilisation were essential for platelet Rac activation by either thrombin or collagen whereas protein kinase C inhibition was without effect. In contrast to Rac, Cdc42 activation was independent of phospholipase C activation, indicating that the two GTPases are differently regulated. We also found that phosphoinositide 3-kinase was not required for Rac activation in response to thrombin but was involved in its activation by collagen.
Collapse
Affiliation(s)
- C Soulet
- Institut Fédératif de Recherche Claude de Préval, INSERM Unité 326, Hôpital Purpan, Toulouse, France
| | | | | | | | | | | |
Collapse
|
16
|
Gibson RM, Wilson-Delfosse AL. RhoGDI-binding-defective mutant of Cdc42Hs targets to membranes and activates filopodia formation but does not cycle with the cytosol of mammalian cells. Biochem J 2001; 359:285-94. [PMID: 11583574 PMCID: PMC1222146 DOI: 10.1042/0264-6021:3590285] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have identified a mutant of the human G-protein Cdc42Hs, R66E, that fails to form a detectable complex with the GDP-dissociation inhibitor RhoGDI in cell-free systems or in intact cells. This point mutant is prenylated, binds guanine nucleotide and interacts with GTPase-activating protein in a manner indistinguishable from wild-type Cdc42Hs. Immunofluorescence localization studies revealed that this RhoGDI-binding-defective mutant is found predominantly in the Golgi apparatus, with a staining pattern similar to that of the wild-type protein. However, unlike wild-type Cdc42Hs, which is distributed in both the microsomal membrane and cytosolic fractions, studies using differential centrifugation show that prenylated R66E Cdc42Hs is found exclusively in association with lipid bilayers. Additionally, whereas the overexpression of RhoGDI results in an apparent translocation of wild-type Cdc42Hs from the Golgi apparatus into the cytosol, identical RhoGDI-overexpression conditions do not alter the Golgi localization of the R66E mutant. Furthermore, overexpression of this RhoGDI-binding-defective mutant of Cdc42Hs seems to activate redistribution of the actin cytoskeleton and filopodia formation in fibroblasts in a manner indistinguishable from the wild-type protein. Taken together, these results suggest that the interaction of Cdc42Hs with RhoGDI is not essential for proper membrane targeting of nascent prenylated Cdc42Hs in mammalian cells; neither is this interaction an essential part of the mechanism by which Cdc42Hs activates filopodia formation. However, it does seem that redistribution of Cdc42Hs to the cytosolic compartment is absolutely dependent on RhoGDI interaction.
Collapse
Affiliation(s)
- R M Gibson
- Department of Pharmacology, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4965, USA
| | | |
Collapse
|
17
|
Mukhopadhyay S, Ramars AS, Dash D. Bruton's tyrosine kinase associates with the actin-based cytoskeleton in activated platelets. J Cell Biochem 2001; 81:659-65. [PMID: 11329620 DOI: 10.1002/jcb.1088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bruton's tyrosine kinase (Btk) plays a crucial role in the maturation and differentiation of B-lymphocytes and immunoglobulin synthesis. Recently Btk has been described to be present in significant amount in human platelets. To investigate the regulation of this kinase in the platelets we studied its subcellular redistribution in the resting and activated cells. In the resting platelets Btk was almost absent from the actin-based cytoskeleton. Upon challenge of the platelet thrombin receptor upto 30% of total Btk appeared in the cytoskeleton and the protein underwent phosphorylation on tyrosine. Translocation of Btk to the cytoskeleton but not aggregation was prevented by cytochalasin B, which inhibits actin polymerization. Wortmannin and genistein (inhibitors of phosphoinositide 3-kinase and protein tyrosine kinase, respectively) decreased while phenylarsine oxide (a tyrosine phosphatase inhibitor) increased the cytoskeletal content of Btk. The association of Btk with the cytoskeleton was regulated by integrin alpha(IIb)beta(3) and partly reversible. Taken together, these data suggest that Btk might be a component of a signaling complex containing specific cytoskeletal proteins in the activated platelets.
Collapse
Affiliation(s)
- S Mukhopadhyay
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, India
| | | | | |
Collapse
|
18
|
Human CLP36, a PDZ-domain and LIM-domain protein, binds to α-actinin-1 and associates with actin filaments and stress fibers in activated platelets and endothelial cells. Blood 2000. [DOI: 10.1182/blood.v96.13.4236] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractA 38-kd protein that associates with F-actin structures in activated platelets and endothelial cells was purified, cloned, and characterized. The protein contains an N-terminal PDZ motif, a large intervening sequence, and a C-terminal LIM domain and was identified as the human homolog of rat CLP36. The study showed that CLP36 associates with actin filaments and stress fibers that are formed during shape change and spreading of platelets and during migration and contraction of endothelial cells. CLP36 binds to α-actinin-1 as shown by coimmunoprecipitation, pull-down experiments, yeast 2-hybrid analysis, and blot overlay assays and colocalizes with α-actinin-1 along endothelial actin stress fibers. In contrast to α-actinin-1, CLP36 was absent from focal adhesions in both activated platelets and endothelial cells. The N-terminal part of CLP36 containing the PDZ domain and the intervening region, but not the LIM domain, targeted enhanced green fluorescent protein fusion proteins to stress fibers in endothelial cells. Yeast 2-hybrid analysis demonstrated that the intervening sequence, but not the PDZ or the LIM domain of CLP36, binds to the spectrinlike repeats 2 and 3 of α-actinin-1. The study further shows that CLP36 binds to α-actinin in resting platelets and translocates as a CLP36/α-actinin complex to the newly formed actin cytoskeleton in activated platelets. The results indicate that CLP36 binds via α-actinin-1 to actin filaments and stress fibers in activated human platelets and endothelial cells. The study suggests that CLP36 may direct α-actinin-1 to specific actin structures and at this position might modulate the function of α-actinin-1.
Collapse
|
19
|
Human CLP36, a PDZ-domain and LIM-domain protein, binds to α-actinin-1 and associates with actin filaments and stress fibers in activated platelets and endothelial cells. Blood 2000. [DOI: 10.1182/blood.v96.13.4236.h8004236_4236_4245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 38-kd protein that associates with F-actin structures in activated platelets and endothelial cells was purified, cloned, and characterized. The protein contains an N-terminal PDZ motif, a large intervening sequence, and a C-terminal LIM domain and was identified as the human homolog of rat CLP36. The study showed that CLP36 associates with actin filaments and stress fibers that are formed during shape change and spreading of platelets and during migration and contraction of endothelial cells. CLP36 binds to α-actinin-1 as shown by coimmunoprecipitation, pull-down experiments, yeast 2-hybrid analysis, and blot overlay assays and colocalizes with α-actinin-1 along endothelial actin stress fibers. In contrast to α-actinin-1, CLP36 was absent from focal adhesions in both activated platelets and endothelial cells. The N-terminal part of CLP36 containing the PDZ domain and the intervening region, but not the LIM domain, targeted enhanced green fluorescent protein fusion proteins to stress fibers in endothelial cells. Yeast 2-hybrid analysis demonstrated that the intervening sequence, but not the PDZ or the LIM domain of CLP36, binds to the spectrinlike repeats 2 and 3 of α-actinin-1. The study further shows that CLP36 binds to α-actinin in resting platelets and translocates as a CLP36/α-actinin complex to the newly formed actin cytoskeleton in activated platelets. The results indicate that CLP36 binds via α-actinin-1 to actin filaments and stress fibers in activated human platelets and endothelial cells. The study suggests that CLP36 may direct α-actinin-1 to specific actin structures and at this position might modulate the function of α-actinin-1.
Collapse
|
20
|
Böck BC, Vacratsis PO, Qamirani E, Gallo KA. Cdc42-induced activation of the mixed-lineage kinase SPRK in vivo. Requirement of the Cdc42/Rac interactive binding motif and changes in phosphorylation. J Biol Chem 2000; 275:14231-41. [PMID: 10799501 DOI: 10.1074/jbc.275.19.14231] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src homology 3 domain (SH3)-containing proline-rich protein kinase (SPRK)/mixed-lineage kinase (MLK)-3 is a serine/threonine kinase that upon overexpression in mammalian cells activates the c-Jun NH(2)-terminal kinase pathway. The mechanisms by which SPRK activity is regulated are not well understood. The small Rho family GTPases, Rac and Cdc42, have been shown to bind and modulate the activities of signaling proteins, including SPRK, which contain Cdc42/Rac interactive binding motifs. Coexpression of SPRK and activated Cdc42 increases SPRKs activity. SPRKs Cdc42/Rac interactive binding-like motif contains six of the eight consensus residues. Using a site-directed mutagenesis approach, we show that SPRK contains a functional Cdc42/Rac interactive binding motif that is required for SPRKs association with and activation by Cdc42. However, experiments using a SPRK variant that lacks the COOH-terminal zipper region/basic stretch suggest that this region may also contribute to Cdc42 binding. Unlike the PAK family of protein kinases, we find that the activation of SPRK by Cdc42 cannot be recapitulated in an in vitro system using purified, recombinant proteins. Comparative phosphopeptide mapping demonstrates that coexpression of activated Cdc42 with SPRK alters the in vivo serine/threonine phosphorylation pattern of SPRK suggesting that the mechanism by which Cdc42 increases SPRKs catalytic activity involves a change in the in vivo phosphorylation of SPRK. This is, to the best of our knowledge, the first demonstrated example of a Cdc42-mediated change in the in vivo phosphorylation of a protein kinase. These studies suggest an additional component or cellular environment is required for SPRK activation by Cdc42.
Collapse
Affiliation(s)
- B C Böck
- Departments of Physiology and Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Stimulation of platelet PAR-1 receptors results in the rapid (10 to 30 seconds) and extensive (30% to 40% of total) guanosine triphosphate (GTP) charging of endogenous platelet rac, previously identified as a possible key intermediate in the signal pathway between PAR-1 and actin filament barbed-end uncapping, leading to actin assembly. During PAR-1–mediated platelet activation, rac distributes from the cell interior to the cell periphery, and this reorganization is resistant to the inhibition of PI-3-kinase activity. Rac, in resting or activated platelets, is Triton X-100 soluble, suggesting that it does not form tight complexes with actin cytoskeletal proteins, though its retention in octyl-glucoside-treated platelets and ultrastructural observations of activated platelets implies that rac binds to plasma membranes, where it can interact with phosphoinositide kinases implicated in actin assembly reactions. PAR-1 stimulation also rapidly and extensively activates cdc42, though, in contrast to rac, some cdc42 associates with the actin cytoskeleton in resting platelets, and the bound fraction increases during stimulation. The differences in subcellular distribution and previous evidence showing quantitatively divergent effects of rac and cdc42 on actin nucleation in permeabilized platelets indicate different signaling roles for these GTPases.
Collapse
|
22
|
Torti M, Bertoni A, Canobbio I, Sinigaglia F, Lapetina EG, Balduini C. Interaction of the low-molecular-weight GTP-binding protein rap2 with the platelet cytoskeleton is mediated by direct binding to the actin filaments. J Cell Biochem 1999; 75:675-85. [PMID: 10572250 DOI: 10.1002/(sici)1097-4644(19991215)75:4<675::aid-jcb13>3.0.co;2-m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The interaction of the low-molecular-weight GTP-binding protein rap2 with the cytoskeleton from thrombin-aggregated platelets was investigated by inducing depolymerization of the actin filaments, followed by in vitro-promoted repolymerization. We found that the association of rap2 with the cytoskeleton was spontaneously restored after one cycle of actin depolymerization and repolymerization. Exogenous rap2, but not unrelated proteins, added to depolymerized actin and solubilized actin-binding proteins, was also specifically incorporated into the in vitro reconstituted cytoskeleton. The incorporation of exogenous rap2 was also observed when the cytoskeleton from resting or thrombin-activated platelets was subjected to actin depolymerization-repolymerization. Moreover, such interaction occurred equally well when exogenous rap2 was loaded with either GDP or GTPgammaS. We also found that polyhistidine-tagged rap2 immobilized on Ni(2+)-Sepharose and loaded with either GDP or GTPgammaS, could specifically bind to cytoskeletal actin. Moreover, when purified monomeric actin was induced to polymerize in vitro in the presence of rap2, the small G-protein specifically associated with the actin filaments. Finally, rap2 loaded with either GDP or GTPgammaS was able to bind to purified F-actin immobilized on a plastic surface. These results demonstrate that rap2 interacts with the platelet cytoskeleton by direct binding to the actin filaments and that this interaction is not regulated by the activation state of the protein.
Collapse
Affiliation(s)
- M Torti
- Department of Biochemistry, University of Pavia, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
Zhang Q, Calafat J, Janssen H, Greenberg S. ARF6 is required for growth factor- and rac-mediated membrane ruffling in macrophages at a stage distal to rac membrane targeting. Mol Cell Biol 1999; 19:8158-68. [PMID: 10567541 PMCID: PMC84900 DOI: 10.1128/mcb.19.12.8158] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of Rac1, a member of the Rho family of GTPases, is associated with multiple cellular responses, including membrane ruffling and focal complex formation. The mechanisms by which Rac1 is coupled to these functional responses are not well understood. It was recently shown that ARF6, a GTPase implicated in cytoskeletal alterations and a membrane recycling pathway, is required for Rac1-dependent phagocytosis in macrophages (Q. Zhang et al., J. Biol. Chem. 273:19977-19981, 1998). To determine whether ARF6 is required for Rac1-dependent cytoskeletal responses in macrophages, we expressed wild-type (WT) or guanine nucleotide binding-deficient alleles (T27N) of ARF6 in macrophages coexpressing activated alleles of Rac1 (Q61L) or Cdc42 (Q61L) or stimulated with colony-stimulating factor 1 (CSF-1). Expression of ARF6 T27N but not ARF6 WT inhibited ruffles mediated by Rac1 Q61L or CSF-1. In contrast, expression of ARF6 T27N did not inhibit Rac1 Q61L-mediated focal complex formation and did not impair Cdc42 Q61L-mediated filopodial formation. Cryoimmunogold electron microscopy demonstrated the presence of ARF6 in membrane ruffles induced by either CSF-1 or Rac1 Q61L. Addition of CSF-1 to macrophages led to the redistribution of ARF6 from the interior of the cell to the plasma membrane, suggesting that this growth factor triggers ARF6 activation. Direct targeting of Rac1 to the plasma membrane did not bypass the blockade in ruffling induced by ARF6 T27N, indicating that ARF6 regulates a pathway leading to membrane ruffling that occurs after the activation and membrane association of Rac. These data demonstrate that intact ARF6 function is required for coupling activated Rac to one of several effector pathways and suggest that a principal function of ARF6 is to coordinate Rac activation with plasma membrane-based protrusive events.
Collapse
Affiliation(s)
- Q Zhang
- Departments of Medicine and Pharmacology, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
24
|
Dichotomous Regulation of Myosin Phosphorylation and Shape Change by Rho-Kinase and Calcium in Intact Human Platelets. Blood 1999. [DOI: 10.1182/blood.v94.5.1665.417k33_1665_1672] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both Rho-kinase and the Ca2+/calmodulin-dependent myosin light chain (MLC) kinase increase the phosphorylation of MLC. We show that upon thrombin receptor stimulation by low-dose thrombin or the peptide ligand YFLLRNP, or upon thromboxane receptor activation by U46619, shape change and MLC phosphorylation in human platelets proceed through a pathway that does not involve an increase in cytosolic Ca2+. Under these conditions, Y-27632, a specific Rho-kinase inhibitor, prevented shape change and reduced the stimulation of MLC-phosphorylation. In contrast, Y-27632 barely affected shape change and MLC-phosphorylation by adenosine diphosphate (ADP), collagen-related peptide, and ionomycin that were associated with an increase in cytosolic Ca2+ and inhibited by BAPTA-AM/EGTA treatment. Furthermore, C3 exoenzyme, which inactivates Rho, inhibited preferentially the shape change induced by YFLLRNP compared with ADP and ionomycin. The results indicate that the Rho/Rho-kinase pathway is pivotal in mediating the MLC phosphorylation and platelet shape change by low concentrations of certain G protein–coupled platelet receptors, independent of an increase in cytosolic Ca2+. Our study defines 2 alternate pathways, Rho/Rho-kinase and Ca2+/calmodulin-regulated MLC-kinase, that lead independently of each other through stimulation of MLC-phosphorylation to the same physiological response in human platelets (ie, shape change).
Collapse
|
25
|
Dichotomous Regulation of Myosin Phosphorylation and Shape Change by Rho-Kinase and Calcium in Intact Human Platelets. Blood 1999. [DOI: 10.1182/blood.v94.5.1665] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractBoth Rho-kinase and the Ca2+/calmodulin-dependent myosin light chain (MLC) kinase increase the phosphorylation of MLC. We show that upon thrombin receptor stimulation by low-dose thrombin or the peptide ligand YFLLRNP, or upon thromboxane receptor activation by U46619, shape change and MLC phosphorylation in human platelets proceed through a pathway that does not involve an increase in cytosolic Ca2+. Under these conditions, Y-27632, a specific Rho-kinase inhibitor, prevented shape change and reduced the stimulation of MLC-phosphorylation. In contrast, Y-27632 barely affected shape change and MLC-phosphorylation by adenosine diphosphate (ADP), collagen-related peptide, and ionomycin that were associated with an increase in cytosolic Ca2+ and inhibited by BAPTA-AM/EGTA treatment. Furthermore, C3 exoenzyme, which inactivates Rho, inhibited preferentially the shape change induced by YFLLRNP compared with ADP and ionomycin. The results indicate that the Rho/Rho-kinase pathway is pivotal in mediating the MLC phosphorylation and platelet shape change by low concentrations of certain G protein–coupled platelet receptors, independent of an increase in cytosolic Ca2+. Our study defines 2 alternate pathways, Rho/Rho-kinase and Ca2+/calmodulin-regulated MLC-kinase, that lead independently of each other through stimulation of MLC-phosphorylation to the same physiological response in human platelets (ie, shape change).
Collapse
|
26
|
|
27
|
Jones GE, Allen WE, Ridley AJ. The Rho GTPases in macrophage motility and chemotaxis. CELL ADHESION AND COMMUNICATION 1998; 6:237-45. [PMID: 9823474 DOI: 10.3109/15419069809004479] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The GTP-binding proteins, Rho, Rac and Cdc42 are known to regulate actin organisation. Rho induces the assembly of contractile actin-based microfilaments such as stress fibres, Rac regulates the formation of membrane ruffles and lamellipodia, and Cdc42 activation is necessary for the formation of filopodia. In addition, all three proteins can also regulate the assembly of integrin-containing focal adhesion complexes. The orchestration of these distinct cytoskeletal changes is thought to form the basis of the coordination of cell motility and we have investigated the roles of Rho family proteins in migration using a model system. We have found that in the macrophage cell line Bac1, the cytokine CSF-1 rapidly induces actin reorganisation: it stimulates the formation of filopodia, lamellipodia and membrane ruffles, as well as the appearance of fine actin cables within the cell. We have shown that Cdc42, Rac and Rho regulate the CSF-1 induced formation of these distinct actin filament-based structures. Using a cell tracking procedure we found that both Rho and Rac were required for CSF-1 stimulated cell translocation. In contrast, inhibition of Cdc42 does not prevent macrophages migrating in response to CSF-1, but does prevent recognition of a CSF-1 concentration gradient, so that cells now migrate randomly rather than up the gradient of this chemotactic cytokine. This implies that Cdc42, and thus probably filopodia, are required for gradient sensing and cell polarisation in macrophages.
Collapse
Affiliation(s)
- G E Jones
- Muscle and Motility Research Centre, Randall Institute, King's College, London, UK.
| | | | | |
Collapse
|
28
|
Han O, Sumpio BE, Basson MD. Mechanical strain rapidly redistributes tyrosine phosphorylated proteins in human intestinal Caco-2 cells. Biochem Biophys Res Commun 1998; 250:668-73. [PMID: 9784404 DOI: 10.1006/bbrc.1998.9372] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repetitive strain stimulates proliferation and modulates differentiation in human Caco-2 intestinal epithelial cells via tyrosine kinase activity. We therefore sought to characterize strain modulation of tyrosine phosphorylation in Caco-2 cells. Immunoblotting for phosphotyrosine demonstrated that repetitive strain (10 cpm, 10% strain) rapidly increased tyrosine phosphorylation of 125-, 70-, 60-, and 50-kDa bands in the soluble fraction by 94+/-31, 145+/-21, 365+/-46, and 1240+/-240%, respectively (p<0.05, n=4). However, strain decreased tyrosine phosphorylated band intensity of the 125-, 70-, 60-, and 50-kDa proteins in the particulate fraction by 81+/-17, 70+/-23, 79+/-7, and 59+/-23%, respectively (p<0.05, n=4). The decreased band intensity in the particulate fraction was not due to decreased tyrosine kinase activity because strain equally increased tyrosine kinase activity in both soluble and particulate fractions. Cyclic strain at a physiologically relevant amplitude and frequency appears to modulate the subcellular distribution of tyrosine phosphorylated proteins in human Caco-2 intestinal cells.
Collapse
Affiliation(s)
- O Han
- Departments of Surgery, Yale University School of Medicine and the Connecticut VA Health Care System, New Haven, Connecticut, 06520-8062, USA
| | | | | |
Collapse
|
29
|
|
30
|
Fujita A, Saito Y, Ishizaki T, Maekawa M, Fujisawa K, Ushikubi F, Narumiya S. Integrin-dependent translocation of p160ROCK to cytoskeletal complex in thrombin-stimulated human platelets. Biochem J 1997; 328 ( Pt 3):769-75. [PMID: 9396719 PMCID: PMC1218985 DOI: 10.1042/bj3280769] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
p160(ROCK) is a protein serine/threonine kinase that binds to GTP-Rho and is activated by this binding. We have recently found that the expression of p160(ROCK) induces focal adhesions and stress fibres in HeLa cells, whereas a dominant-negative form of this kinase suppresses Rho-induced formation of these structures, suggesting that this kinase is a downstream target of Rho in this process [Ishizaki, Naito, Fujisawa, Maekawa, Watanabe, Saito and Narumiya (1997) FEBS Lett. 404, 118-124]. To find out the mode of action of p160(ROCK), we developed immunoblotting with an anti-p160(ROCK) antibody and investigated the subcellular localization of p160(ROCK) during platelet aggregation. In resting human platelets, more than 90% of p160(ROCK) was present in the Triton X-100-soluble fraction. When platelets were stimulated with thrombin, approx. 10% of p160(ROCK) was translocated to the Triton X-100-insoluble fraction. This translocation was detected as early as 20 s after stimulation and reached a maximum at 5 min; it was suppressed by the addition of EDTA or an Arg-Gly-Asp-Ser peptide (RGDS), both of which inhibit integrin alphaIIbbeta3-mediated platelet aggregation. Using [32P]Pi-loaded platelets, we found that p160(ROCK) was phosphorylated in response to stimulation by thrombin. This phosphorylation, however, was not affected by the addition of EDTA and RGDS. These results suggest that p160(ROCK) translocates to cytoskeleton in a manner dependent on integrin ligation and works in an early stage of cytoskeletal reorganization in thrombin-stimulated platelets.
Collapse
Affiliation(s)
- A Fujita
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida, Sakyo-ku, Kyoto 606-01, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Abstractvon Willebrand factor (vWF ) in the presence of botrocetin induces p72syk activation, assessed as its autophosphorylated level and in vitro kinase assays, the transient association of p72syk with p60c-src, and the translocation of p60c-src and p54/58lyn to cytoskeletal fractions. Jararaca glycoprotein Ib-binding protein (GPIb-BP), which specifically binds to GPIb, abolished these phenomena, suggesting that they are mediated by the vWF-GPIb interaction. These tyrosine kinase-related events were not inhibited by GRGDS peptide (plus EGTA), indicating that GPIIb/IIIa is not involved in the observed responses. Shc, an adaptor protein, was also tyrosine phosphorylated by the botrocetin-vWF activation. When GPIb was immunoprecipitated with nonfunctional monoclonal antibodies (MoAbs) directed against GPIb, a kinase activity was found to associate with GPIb upon botrocetin-vWF activation. On the other hand, anti-GPIb MoAbs that inhibit the vWF-GPIb interaction did not coprecipitate a kinase activity. Because the recovery of GPIb did not differ significantly, it is suggested that the excessive presence of inhibitory anti-GPIb MoAb dissociated a kinase activity from GPIb. Phosphoamino acid analysis showed that the kinase activity was that of a tyrosine kinase. The identity of the tyrosine kinase and the mode of interaction with the cytoplasmic region of GPIb await to be determined. Our findings suggest that the tyrosine kinase associated with GPIb serves at a most proximal step in the signal transduction pathway involved in the vWF-GPIb-induced platelet activation, which leads to other tyrosine kinase-related intracellular signals.
Collapse
|
32
|
Abstract
von Willebrand factor (vWF ) in the presence of botrocetin induces p72syk activation, assessed as its autophosphorylated level and in vitro kinase assays, the transient association of p72syk with p60c-src, and the translocation of p60c-src and p54/58lyn to cytoskeletal fractions. Jararaca glycoprotein Ib-binding protein (GPIb-BP), which specifically binds to GPIb, abolished these phenomena, suggesting that they are mediated by the vWF-GPIb interaction. These tyrosine kinase-related events were not inhibited by GRGDS peptide (plus EGTA), indicating that GPIIb/IIIa is not involved in the observed responses. Shc, an adaptor protein, was also tyrosine phosphorylated by the botrocetin-vWF activation. When GPIb was immunoprecipitated with nonfunctional monoclonal antibodies (MoAbs) directed against GPIb, a kinase activity was found to associate with GPIb upon botrocetin-vWF activation. On the other hand, anti-GPIb MoAbs that inhibit the vWF-GPIb interaction did not coprecipitate a kinase activity. Because the recovery of GPIb did not differ significantly, it is suggested that the excessive presence of inhibitory anti-GPIb MoAb dissociated a kinase activity from GPIb. Phosphoamino acid analysis showed that the kinase activity was that of a tyrosine kinase. The identity of the tyrosine kinase and the mode of interaction with the cytoplasmic region of GPIb await to be determined. Our findings suggest that the tyrosine kinase associated with GPIb serves at a most proximal step in the signal transduction pathway involved in the vWF-GPIb-induced platelet activation, which leads to other tyrosine kinase-related intracellular signals.
Collapse
|
33
|
Venema VJ, Zou R, Ju H, Marrero MB, Venema RC. Caveolin-1 detergent solubility and association with endothelial nitric oxide synthase is modulated by tyrosine phosphorylation. Biochem Biophys Res Commun 1997; 236:155-61. [PMID: 9223444 DOI: 10.1006/bbrc.1997.6921] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Caveolin-1 and endothelial nitric oxide synthase (eNOS) are associated within endothelial caveolae. We have shown previously that eNOS is translocated to the detergent-insoluble, cytoskeletal fraction of bovine aortic endothelial cells (BAEC) in response to bradykinin (BK)-stimulation or tyrosine phosphatase inhibition. In the present study, we have examined whether caveolin-1 is similarly translocated in response to these or other stimuli. Exposure of BAEC to the eNOS-activating agonists, BK, histamine, or ATP produces transient increases in the amounts of detergent-insoluble caveolin-1. Increases in insolubility are blocked by tyrosine kinase inhibitors and are potently mimicked by tyrosine phosphatase inhibitors. Increased insolubility is accompanied by an increased association of caveolin-1 with eNOS and inhibition of eNOS catalytic activity. Agonist-activation of eNOS in endothelial cells thus appears to involve tyrosine phosphorylation-dependent changes in the interaction of eNOS with caveolin-1. Increased interaction of eNOS with caveolin-1 may deactivate the enzyme subsequent to its activation by Ca2+/calmodulin.
Collapse
Affiliation(s)
- V J Venema
- Vascular Biology Center, Department of Pediatrics, Medical College of Georgia, Augusta 30912, USA
| | | | | | | | | |
Collapse
|
34
|
Manser E, Huang HY, Loo TH, Chen XQ, Dong JM, Leung T, Lim L. Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol 1997; 17:1129-43. [PMID: 9032240 PMCID: PMC231838 DOI: 10.1128/mcb.17.3.1129] [Citation(s) in RCA: 480] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The family of p21-activated protein kinases (PAKs) appear to be present in all organisms that have Cdc42-like GTPases. In mammalian cells, PAKs have been implicated in the activation of mitogen-activated protein kinase cascades, but there are no reported effects of these kinases on the cytoskeleton. Recently we have shown that a Drosophila PAK is enriched in the leading edge of embryonic epithelial cells undergoing dorsal closure (N. Harden, J. Lee, H.-Y. Loh, Y.-M. Ong, I. Tan, T. Leung, E. Manser, and L. Lim, Mol. Cell. Biol. 16:1896-1908, 1996), where it colocalizes with structures resembling focal complexes. We show here by transfection that in epithelial HeLa cells alpha-PAK is recruited from the cytoplasm to distinct focal complexes by both Cdc42(G12V) and Rac1(G12V), which themselves colocalize to these sites. By deletion analysis, the N terminus of PAK is shown to contain targeting sequences for focal adhesions which indicate that these complexes are the site of kinase function in vivo. Cdc42 and Rac1 cause alpha-PAK autophosphorylation and kinase activation. Mapping alpha-PAK autophosphorylation sites has allowed generation of a constitutively active kinase mutant. By fusing regions of Cdc42 to the C terminus of PAK, activated chimeras were also obtained. Plasmids encoding these different constitutively active alpha-PAKs caused loss of stress fibers when introduced into both HeLa cells and fibroblasts, which was similar to the effect of introducing Cdc42(G12V) or Rac1(G12V). Significantly dramatic losses of focal adhesions were also observed. These combined effects resulted in retraction of the cell periphery after plasmid microinjection. These data support our previous suggestions of a role for PAK downstream of both Cdc42 and Rac1 and indicate that PAK functions include the dissolution of stress fibers and reorganization of focal complexes.
Collapse
Affiliation(s)
- E Manser
- Glaxo-IMCB Group, Institute of Molecular & Cell Biology, National University of Singapore, Kent Ridge
| | | | | | | | | | | | | |
Collapse
|
35
|
Gachet C, Payrastre B, Guinebault C, Trumel C, Ohlmann P, Mauco G, Cazenave JP, Plantavid M, Chap H. Reversible translocation of phosphoinositide 3-kinase to the cytoskeleton of ADP-aggregated human platelets occurs independently of Rho A and without synthesis of phosphatidylinositol (3,4)-bisphosphate. J Biol Chem 1997; 272:4850-4. [PMID: 9030542 DOI: 10.1074/jbc.272.8.4850] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The aim of our study was to evaluate the effect of ADP and the role of cytoskeleton reorganization during reversible and irreversible platelet aggregation induced by ADP and thrombin, respectively, on the heterodimeric (p85alpha-p110) phosphoinositide 3-kinase translocation to the cytoskeleton and its activation. Reversible ADP-induced aggregation was accompanied by a reversible reorganization of the cytoskeleton and an increase in levels of the regulatory subunit p85alpha in this cytoskeleton similar to the increase observed in thrombin-activated platelets. This translocation followed a course parallel to the amplitude of aggregation. No increase in levels of both phosphatidylinositol (3, 4)-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol-(3,4,5)P3 could, however, be detected even at the maximum aggregation and PI 3-kinase alpha translocation. Moreover, in contrast to the situation for thrombin stimulation, the GTP-binding protein RhoA was hardly translocated to the cytoskeleton when platelets were stimulated with ADP, whereas translocation of pp60(c-)src and focal adhesion kinase did occur. These results suggest (i) translocation of signaling enzymes does not necessarily imply their activation, (ii) the reversibility of ADP-induced platelet aggregation may be the cause or the result of a lack of PI 3-kinase activation and hence of PtdIns(3,4)P2 production, and (iii) RhoA does not seem to be involved in the ADP activation pathway of platelets. Whether PtdIns(3,4)P2 or RhoA may contribute to the stabilization of platelet aggregates remains to be established.
Collapse
Affiliation(s)
- C Gachet
- INSERM U.311, ETS, 10 rue Spielmann, 67065 Strasbourg, Hôpital Purpan, 31059 Toulouse, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Rap1 is a small, Ras-like GTPase whose function and regulation are still largely unknown. We have developed a novel assay to monitor the active, GTP-bound form of Rap1 based on the differential affinity of Rap1GTP and Rap1GDP for the Rap binding domain of RalGDS (RBD). Stimulation of blood platelets with alpha-thrombin or other platelet activators caused a rapid and strong induction of Rap1 that associated with RBD in vitro. Binding to RBD increased from undetectable levels in resting platelets to >50% of total Rap1 within 30 s after stimulation. An increase in the intracellular Ca2+ concentration is both necessary and sufficient for Rap1 activation since it was induced by agents that increase intracellular Ca2+ and inhibited by a Ca2+-chelating agent. Neither inhibition of translocation of Rap1 to the cytoskeleton nor inhibition of platelet aggregation affected thrombin-induced activation of Rap1. In contrast, prostaglandin I2 (PGI2), a strong negative regulator of platelet function, inhibited agonist-induced as well as Ca2+-induced activation of Rap1. From our results, we conclude that Rap1 activation in platelets is an important common event in early agonist-induced signalling, and that this activation is mediated by an increased intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- B Franke
- Laboratory for Physiological Chemistry, Utrecht University, The Netherlands
| | | | | |
Collapse
|
37
|
Fleming IN, Elliott CM, Exton JH. Differential translocation of rho family GTPases by lysophosphatidic acid, endothelin-1, and platelet-derived growth factor. J Biol Chem 1996; 271:33067-73. [PMID: 8955154 DOI: 10.1074/jbc.271.51.33067] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The small GTPases of the Rho family play a key role in a number of signaling pathways activated by lysophosphatidic acid (LPA). However, little is known concerning the mechanism of regulation of these proteins. In this study we demonstrate that in Swiss 3T3 fibroblasts, LPA induces a sustained, time-dependent relocalization of RhoA to the Triton X-100-soluble low speed membrane fraction, which can be reversed by removal of LPA from the medium. Translocation was only observed with micromolar concentrations of LPA and was inhibited by pretreating the cells with pertussis toxin but not with tyrosine kinase inhibitors. LPA also induced translocation of CDC42Hs to the membranes but had no effect on the distribution of Rac1, RhoB, or Rho-GDI. Translocation of RhoA was also induced by endothelin-1. Conversely, platelet-derived growth factor did not cause the translocation of RhoA to any membrane fraction but stimulated relocalization of Rac1 to the high speed membrane fraction. Significantly, incubation of cell lysates with guanosine 5'-O-(thiotriphosphate) was sufficient to translocate RhoA, Rac1, and CDC42Hs from the cytosol to the membranes, whereas incubation with GDP had the opposite effect. These data suggest that the translocation of the Rho family proteins to the membrane fraction is controlled by their activation state and that agonists show selectivity in inducing the activation/translocation of these proteins.
Collapse
Affiliation(s)
- I N Fleming
- Howard Hughes Medical Institute and the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0295, USA
| | | | | |
Collapse
|
38
|
Hartwig JH, Kung S, Kovacsovics T, Janmey PA, Cantley LC, Stossel TP, Toker A. D3 phosphoinositides and outside-in integrin signaling by glycoprotein IIb-IIIa mediate platelet actin assembly and filopodial extension induced by phorbol 12-myristate 13-acetate. J Biol Chem 1996; 271:32986-93. [PMID: 8955143 DOI: 10.1074/jbc.271.51.32986] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phorbol 12-myristate 13-acetate (PMA) uncaps a small number of the fast-growing (barbed) ends of actin filaments, thereby eliciting slow actin assembly and extension of filopodia in human blood platelets. These reactions, which also occur in response to immunologic perturbation of the integrin glycoprotein (GP) IIb-IIIa, are sensitive to the phosphoinositide 3-kinase inhibitor wortmannin. Platelets deficient in GPIIb-IIIa integrins or with GPIIb-IIIa function inhibited by calcium chelation or the peptide RGDS have diminished PMA responsiveness. The effects of PMA contrast with thrombin receptor stimulation by >/=5 microM thrombin receptor-activating peptide (TRAP), which causes rapid and massive wortmannin-insensitive actin assembly and lamellar and filopodial extension. However, we show here that wortmannin can inhibit filopod formation if the thrombin receptor is ligated using suboptimal doses (<1 microM) of TRAP. Phosphatidylinositol 3,4-bisphosphate inhibits actin filament severing and capping by human gelsolin in vitro. The findings implicate D3 polyphosphoinositides and integrin signaling in PMA-mediated platelet stimulation and implicate D3 containing phosphoinositides generated in response to protein kinase C activation and GPIIb-IIIa signaling as late-acting intermediates leading to filopodial actin assembly.
Collapse
Affiliation(s)
- J H Hartwig
- Divisions of Experimental Medicine and Hematology-Oncology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Negrescu EV, Siess W. Dissociation of the alphaIIbbeta3-integrin by EGTA stimulates the tyrosine kinase pp72(syk) without inducing platelet activation. J Biol Chem 1996; 271:26547-53. [PMID: 8900125 DOI: 10.1074/jbc.271.43.26547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Incubation of human platelets with EGTA under conditions that dissociate the alphaIIbbeta3-integrin stimulated tyrosine phosphorylation of pp72(syk) (6.8-fold) and of proteins of 62 (2. 2-fold), 68 (2.5-fold) and 130 kDa (1.4-fold). Stimulation of tyrosine phosphorylation of pp72(syk) was associated with an increase of pp72(syk) kinase activity. In contrast to pp72(syk), tyrosine phosphorylation of the focal adhesion kinase pp125(FAK) was not stimulated by EGTA. Preincubation of platelets with the monoclonal antibody P2, which binds to the alphaIIbbeta3 complex and thus stabilizes it, strongly reduced the increase of tyrosine phosphorylation of pp72(syk), p62, and p68 induced by EGTA. The Y2/51 monoclonal antibody, which recognizes only the beta3 glycoprotein, did not inhibit the stimulation of protein tyrosine phosphorylation evoked by EGTA. Stimulation of tyrosine phosphorylation of pp72(syk), p62, p68, and p130 induced by EGTA was not observed in thrombasthenic platelets, which lack the alphaIIbbeta3-integrin. The results indicate that the dissociation of the alphaIIbbeta3 complex in intact platelets activates pp72(syk). The mechanism of activation was found to be insensitive to inhibition by cAMP and cGMP and only partially dependent on cytosolic Ca2+, suggesting a close functional coupling of alphaIIbbeta3-integrin and pp72(syk). Since platelets retain their discoid shape after EGTA treatment, we further conclude that pp72(syk) stimulation alone is not sufficient for platelet activation.
Collapse
Affiliation(s)
- E V Negrescu
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, b. d. Universität München, Pettenkoferstrasse 9, 80336 Munich, Germany
| | | |
Collapse
|
40
|
Banno Y, Nakashima S, Ohzawa M, Nozawa Y. Differential translocation of phospholipase C isozymes to integrin-mediated cytoskeletal complexes in thrombin-stimulated human platelets. J Biol Chem 1996; 271:14989-94. [PMID: 8663010 DOI: 10.1074/jbc.271.25.14989] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To investigate a role of phospholipase C (PLC) isozymes in the integrin alphaIIbbeta3-mediated signaling, their location was examined in thrombin-activated human platelets, revealing different regulation of their translocation to the cytoskeleton (CSK). In resting platelets, the major PLCs such as PLCbeta2, PLCbeta3a (155 kDa), and PLCgamma2 and the minor PLCs (PLCbeta1 and PLCgamma1) were located in the Triton X-100-soluble (Tx.Sol) fraction and the membrane skeleton, whereas PLCbeta3b (140 kDa) was present only in Tx.Sol fraction when examined by Western immunoblotting. Thrombin stimulation caused a rapid and transient translocation of PLCbeta3a and PLCbeta3b and a slower accumulation of PLCbeta2 and PLCgamma2 in the reorganized CSK. The translocation to CSK of both PLCbeta3a and PLCbeta3b, but not PLCbeta2, was dependent on integrin alphaIIbbeta3-mediated aggregation. Furthermore, an actin polymerization inhibitor, cytochalasin D, or a protein tyrosine kinase inhibitor, genistein, abolished the CSK association of alphaIIbbeta3, PLCbeta3a, and PLCbeta3b. In the genistein-pretreated platelets, pp60(c-)src, Gq, and protein kinase Calpha were no longer able to associate with CSK. In contrast, these agents had no or marginal inhibitory effects on the CSK association of PLCbeta2 and Gi2. The late diacylglycerol generation induced by thrombin stimulation was significantly reduced by the genistein treatment. These results suggest that the integrin alphaIIbbeta3-mediated cytoskeletal association of PLCbeta3 is regulated by protein tyrosine kinase and also that the activation of the relocated PLC may play a role in the late platelet-to-platelet aggregation in thrombin-stimulated human platelets.
Collapse
Affiliation(s)
- Y Banno
- Department of Biochemistry, Gifu University School of Medicine, Tsukasamashi-40, Gifu 500, Japan
| | | | | | | |
Collapse
|
41
|
Ozawa K, Takahashi M, Sobue K. Phase specific association of heterotrimeric GTP-binding proteins with the actin-based cytoskeleton during thrombin receptor-mediated platelet activation. FEBS Lett 1996; 382:159-63. [PMID: 8612741 DOI: 10.1016/0014-5793(96)00162-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Subcellular distribution of heterotrimeric GTP-binding proteins during thrombin receptor-mediated platelet activation was examined, revealing two phases of translocation to the cytoskeleton. A part of Gi2 alpha and Gs alpha shows first phase translocation to the low-speed pellet (15000 x g pellet) within 1 min after activation, suggesting involvement in platelet shape change or granule secretion. In the second phase, Gi2 alpha, Gs alpha, Gq alpha, and G beta translocate to the low-speed pellet, depending on platelet aggregation. These translocations correlated with the reorganization of the actin-cytoskeleton and were inhibited by cytochalasin D. Reconstitution experiments also revealed that G proteins are associated with the actin-cytoskeleton during platelet activation.
Collapse
Affiliation(s)
- K Ozawa
- Department of Neurochemistry and Neuropharmacology, Biomedical Research Center, Osaka University Medical School, Japan
| | | | | |
Collapse
|