1
|
Zhao Y, Arceneaux L, Culicchia F, Lukiw WJ. Neurofilament Light (NF-L) Chain Protein from a Highly Polymerized Structural Component of the Neuronal Cytoskeleton to a Neurodegenerative Disease Biomarker in the Periphery. HSOA JOURNAL OF ALZHEIMER'S & NEURODEGENERATIVE DISEASES 2021; 7:056. [PMID: 34881359 PMCID: PMC8651065 DOI: 10.24966/and-9608/100056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurofilaments (NFs) are critical scaffolding components of the axoskeleton of healthy neurons interacting directly with multiple synaptic-phosphoproteins to support and coordinate neuronal cell shape, cytoarchitecture, synaptogenesis and neurotransmission. While neuronal presynaptic proteins such as synapsin-2 (SYN II) degrade rapidly via the ubiquitin-proteasome pathway, a considerably more stable neurofilament light (NF-L) chain protein turns over much more slowly, and in several neurological diseases is accompanied by a pathological shift from an intracellular neuronal cytoplasmic location into various biofluid compartments. NF-L has been found to be significantly elevated in peripheral biofluids in multiple neurodegenerative disorders, however it is not as widely appreciated that NF-L expression within neurons undergoing inflammatory neurodegeneration exhibit a significant down-regulation in these neuron-specific intermediate-filament components. Down-regulated NF-L in neurons correlates well with the observed axonal and neuronal atrophy, neurite deterioration and synaptic disorganization in tissues affected by Alzheimer's disease (AD) and other progressive, age-related neurological diseases. This Review paper: (i) will briefly assess the remarkably high number of neurological disorders that exhibit NF-L depolymerization, liberation from neuron-specific compartments, mobilization and enrichment into pathological biofluids; (ii) will evaluate how NF-L exhibits compartmentalization effects in age-related neurological disorders; (iii) will review how the shift of NF-L compartmentalization from within the neuronal cytoskeleton into peripheral biofluids may be a diagnostic biomarker for neuronal-decline in all cause dementia most useful in distinguishing between closely related neurological disorders; and (iv) will review emerging evidence that deficits in plasma membrane barrier integrity, pathological transport and/or vesicle-mediated trafficking dysfunction of NF-L may contribute to neuronal decline, with specific reference to AD wherever possible.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans LA 70112, USA
- Department of Cell Biology and Anatomy, LSU Health Science Center, New Orleans LA 70112, USA
| | - Lisa Arceneaux
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans LA 70112, USA
| | - Frank Culicchia
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans LA 70112, USA
- Department of Neurosurgery, Louisiana State University Health Science Center, New Orleans LA 70112, USA
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans LA 70112, USA
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans LA 7011, USA
- Department of Neurology, Louisiana State University Health Science Center, New Orleans LA 70112, USA
| |
Collapse
|
2
|
Neural substrates involved in the cognitive information processing in teleost fish. Anim Cogn 2021; 24:923-946. [PMID: 33907938 PMCID: PMC8360893 DOI: 10.1007/s10071-021-01514-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 02/04/2023]
Abstract
Over the last few decades, it has been shown that fish, comprising the largest group of vertebrates and in many respects one of the least well studied, possess many cognitive abilities comparable to those of birds and mammals. Despite a plethora of behavioural studies assessing cognition abilities and an abundance of neuroanatomical studies, only few studies have aimed to or in fact identified the neural substrates involved in the processing of cognitive information. In this review, an overview of the currently available studies addressing the joint research topics of cognitive behaviour and neuroscience in teleosts (and elasmobranchs wherever possible) is provided, primarily focusing on two fundamentally different but complementary approaches, i.e. ablation studies and Immediate Early Gene (IEG) analyses. More recently, the latter technique has become one of the most promising methods to visualize neuronal populations activated in specific brain areas, both during a variety of cognitive as well as non-cognition-related tasks. While IEG studies may be more elegant and potentially easier to conduct, only lesion studies can help researchers find out what information animals can learn or recall prior to and following ablation of a particular brain area.
Collapse
|
3
|
Sommerlandt FMJ, Brockmann A, Rössler W, Spaethe J. Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cell Mol Life Sci 2019; 76:637-651. [PMID: 30349993 PMCID: PMC6514070 DOI: 10.1007/s00018-018-2948-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/31/2023]
Abstract
Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.
Collapse
Affiliation(s)
- Frank M J Sommerlandt
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Yagi S, Galea LAM. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology 2019; 44:200-213. [PMID: 30214058 PMCID: PMC6235970 DOI: 10.1038/s41386-018-0208-4] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022]
Abstract
Sex differences are reported in hippocampal plasticity, cognition, and in a number of disorders that target the integrity of the hippocampus. For example, meta-analyses reveal that males outperform females on hippocampus-dependent tasks in rodents and in humans, furthermore women are more likely to experience greater cognitive decline in Alzheimer's disease and depression, both diseases characterized by hippocampal dysfunction. The hippocampus is a highly plastic structure, important for processing higher order information and is sensitive to the environmental factors such as stress. The structure retains the ability to produce new neurons and this process plays an important role in pattern separation, proactive interference, and cognitive flexibility. Intriguingly, there are prominent sex differences in the level of neurogenesis and the activation of new neurons in response to hippocampus-dependent cognitive tasks in rodents. However, sex differences in spatial performance can be nuanced as animal studies have demonstrated that there are task, and strategy choice dependent sex differences in performance, as well as sex differences in the subregions of the hippocampus influenced by learning. This review discusses sex differences in pattern separation, pattern completion, spatial learning, and links between adult neurogenesis and these cognitive functions of the hippocampus. We emphasize the importance of including both sexes when studying genomic, cellular, and structural mechanisms of the hippocampal function.
Collapse
Affiliation(s)
- Shunya Yagi
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Liisa A M Galea
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
5
|
González-Salinas S, Medina AC, Alvarado-Ortiz E, Antaramian A, Quirarte GL, Prado-Alcalá RA. Retrieval of Inhibitory Avoidance Memory Induces Differential Transcription of arc in Striatum, Hippocampus, and Amygdala. Neuroscience 2018; 382:48-58. [PMID: 29723575 DOI: 10.1016/j.neuroscience.2018.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/27/2018] [Accepted: 04/20/2018] [Indexed: 12/29/2022]
Abstract
Similar to the hippocampus and amygdala, the dorsal striatum is involved in memory retrieval of inhibitory avoidance, a task commonly used to study memory processes. It has been reported that memory retrieval of fear conditioning regulates gene expression of arc and zif268 in the amygdala and the hippocampus, and it is surprising that only limited effort has been made to study the molecular events caused by retrieval in the striatum. To further explore the involvement of immediate early genes in retrieval, we used real-time PCR to analyze arc and zif268 transcription in dorsal striatum, dorsal hippocampus, and amygdala at different time intervals after retrieval of step-through inhibitory avoidance memory. We found that arc expression in the striatum increased 30 min after retrieval while no changes were observed in zif268 in this region. Expression of arc and zif268 also increased in the dorsal hippocampus but the changes were attributed to context re-exposure. Control procedures indicated that in the amygdala, arc and zif268 expression was not dependent on retrieval. Our data indicate that memory retrieval of inhibitory avoidance induces arc gene expression in the dorsal striatum, caused, very likely, by the instrumental component of the task. Striatal arc expression after retrieval may induce structural and functional changes in the neurons involved in this process.
Collapse
Affiliation(s)
- Sofía González-Salinas
- Escuela Superior Tepeji del Río, Universidad Autónoma del Estado de Hidalgo, Tepeji del Río, Hidalgo 42850, México.
| | - Andrea C Medina
- Laboratorio de Aprendizaje y Memoria, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro 76230, México.
| | - Eduardo Alvarado-Ortiz
- Laboratorio de Aprendizaje y Memoria, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro 76230, México.
| | - Anaid Antaramian
- Unidad de Proteogenómica, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro 76230, México.
| | - Gina L Quirarte
- Laboratorio de Aprendizaje y Memoria, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro 76230, México.
| | - Roberto A Prado-Alcalá
- Laboratorio de Aprendizaje y Memoria, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro 76230, México.
| |
Collapse
|
6
|
Yagi S, Drewczynski D, Wainwright SR, Barha CK, Hershorn O, Galea LAM. Sex and estrous cycle differences in immediate early gene activation in the hippocampus and the dorsal striatum after the cue competition task. Horm Behav 2017; 87:69-79. [PMID: 27984032 DOI: 10.1016/j.yhbeh.2016.10.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/29/2016] [Accepted: 10/28/2016] [Indexed: 12/28/2022]
Abstract
The hippocampus and dorsal striatum are important structures involved in place and response learning strategies respectively. Both sex and estrous cycle phase differences in learning strategy preference exist following cue competition paradigms. Furthermore, significant effects of sex and learning strategy on hippocampal neural plasticity have been reported. However, associations between learning strategy and immediate early gene (IEG) expression in the hippocampus and dorsal striatum are not completely understood. In the current study we investigated the effects of sex and estrous cycle phase on strategy choice and IEG expression in the hippocampus and dorsal striatum of rats following cue competition training in the Morris water maze. We found that proestrous rats were more likely to choose a place strategy than non-proestrous or male rats. Although male cue strategy users travelled greater distances than the other groups on the first day of training, there were no other sex or strategy differences in the ability to reach a hidden or a visible platform. Female place strategy users exhibited greater zif268 expression and male place strategy users exhibited greater cFos expression compared to all other groups in CA3. Furthermore, cue strategy users had greater expression of cFos in the dorsal striatum than place strategy users. Shorter distances to reach a visible platform were associated with less activation of cFos in CA3 and CA1 of male place strategy users. Our findings indicate multiple differences in brain activation with sex and strategy use, despite limited behavioral differences between the sexes on this cue competition paradigm.
Collapse
Affiliation(s)
- Shunya Yagi
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Dimka Drewczynski
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Steven R Wainwright
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Cindy K Barha
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Olivia Hershorn
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver, Canada; Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
7
|
Lee S, Kang S, Kim J, Yoon S, Kim SH, Moon C. Enhanced expression of immediate-early genes in mouse hippocampus after trimethyltin treatment. Acta Histochem 2016; 118:679-684. [PMID: 27614947 DOI: 10.1016/j.acthis.2016.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 12/27/2022]
Abstract
Immediate-early genes (IEGs) are transiently and rapidly activated in response to various cellular stimuli. IEGs mediate diverse functions during pathophysiologic events by regulating cellular signal transduction. We investigated the temporal expression of several IEGs, including c-fos, early growth response protein-1 (Egr-1), and activity-regulated cytoskeleton-associated protein (Arc), in trimethyltin (TMT)-induced hippocampal neurodegeneration. Mice (7 weeks old, C57BL/6) administered TMT (2.6mg/kg intraperitoneally) presented severe neurodegenerative lesions in the dentate gyrus (DG) and showed behavioral seizure activity on days 1-4 post-treatment, after which the lesions and behavior recovered spontaneously over time. c-fos, Egr-1, and Arc mRNA and protein levels significantly increased in the mouse hippocampus after TMT treatment. Immunohistochemical analysis showed that nuclear c-fos expression increased mainly in the DG, whereas nuclear Egr-1 expression was increased extensively in cornu ammonis (CA) 1, CA3, and the DG after TMT treatment. Increased Arc levels were detected in the cellular somata/dendrites of the hippocampal subregions after TMT treatment. Therefore, we suggest that increased IEGs are associated with TMT-induced pathological events in mouse hippocampus.
Collapse
Affiliation(s)
- Sueun Lee
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Juhwan Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Seongwook Yoon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Sung-Ho Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
8
|
Kumar A, Thakur M. Binding of transcription factors to Presenilin 1 and 2 promoter cis-acting elements varies during the development of mouse cerebral cortex. Neurosci Lett 2016; 628:98-104. [DOI: 10.1016/j.neulet.2016.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 01/18/2023]
|
9
|
Pfaffenseller B, da Silva Magalhães PV, De Bastiani MA, Castro MAA, Gallitano AL, Kapczinski F, Klamt F. Differential expression of transcriptional regulatory units in the prefrontal cortex of patients with bipolar disorder: potential role of early growth response gene 3. Transl Psychiatry 2016; 6:e805. [PMID: 27163206 PMCID: PMC5070056 DOI: 10.1038/tp.2016.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 01/08/2023] Open
Abstract
Bipolar disorder (BD) is a severe mental illness with a strong genetic component. Despite its high degree of heritability, current genetic studies have failed to reveal individual loci of large effect size. In lieu of focusing on individual genes, we investigated regulatory units (regulons) in BD to identify candidate transcription factors (TFs) that regulate large groups of differentially expressed genes. Network-based approaches should elucidate the molecular pathways governing the pathophysiology of BD and reveal targets for potential therapeutic intervention. The data from a large-scale microarray study was used to reconstruct the transcriptional associations in the human prefrontal cortex, and results from two independent microarray data sets to obtain BD gene signatures. The regulatory network was derived by mapping the significant interactions between known TFs and all potential targets. Five regulons were identified in both transcriptional network models: early growth response 3 (EGR3), TSC22 domain family, member 4 (TSC22D4), interleukin enhancer-binding factor 2 (ILF2), Y-box binding protein 1 (YBX1) and MAP-kinase-activating death domain (MADD). With a high stringency threshold, the consensus across tests was achieved only for the EGR3 regulon. We identified EGR3 in the prefrontal cortex as a potential key target, robustly repressed in both BD signatures. Considering that EGR3 translates environmental stimuli into long-term changes in the brain, disruption in biological pathways involving EGR3 may induce an impaired response to stress and influence on risk for psychiatric disorders, particularly BD.
Collapse
Affiliation(s)
- B Pfaffenseller
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - P V da Silva Magalhães
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, 2350 Ramiro Barcelos Street, Porto Alegre 90035 903, Brazil. E-mail:
| | - M A De Bastiani
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Polytechnic Center, Curitiba, Brazil
| | - A L Gallitano
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - F Kapczinski
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - F Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Molinaro L, Hui P, Tan M, Mishra RK. Role of presynaptic phosphoprotein synapsin II in schizophrenia. World J Psychiatry 2015; 5:260-272. [PMID: 26425441 PMCID: PMC4582303 DOI: 10.5498/wjp.v5.i3.260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/30/2015] [Accepted: 06/11/2015] [Indexed: 02/05/2023] Open
Abstract
Synapsin II is a member of the neuronal phosphoprotein family. These phosphoproteins are evolutionarily conserved across many organisms and are important in a variety of synaptic functions, including synaptogenesis and the regulation of neurotransmitter release. A number of genome-wide scans, meta-analyses, and genetic susceptibility studies have implicated the synapsin II gene (3p25) in the etiology of schizophrenia (SZ) and other psychiatric disorders. Further studies have found a reduction of synapsin II mRNA and protein in the prefrontal cortex in post-mortem samples from schizophrenic patients. Disruptions in the expression of this gene may cause synaptic dysfunction, which can result in neurotransmitter imbalances, likely contributing to the pathogenesis of SZ. SZ is a costly, debilitating psychiatric illness affecting approximately 1.1% of the world’s population, amounting to 51 million people today. The disorder is characterized by positive (hallucinations, paranoia), negative (social withdrawal, lack of motivation), and cognitive (memory impairments, attention deficits) symptoms. This review provides a comprehensive summary of the structure, function, and involvement of the synapsin family, specifically synapsin II, in the pathophysiology of SZ and possible target for therapeutic intervention/implications.
Collapse
|
11
|
Pourié G, Martin N, Bossenmeyer-Pourié C, Akchiche N, Guéant-Rodriguez RM, Geoffroy A, Jeannesson E, El Hajj Chehadeh S, Mimoun K, Brachet P, Koziel V, Alberto JM, Helle D, Debard R, Leininger B, Daval JL, Guéant JL. Folate- and vitamin B12-deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor α. FASEB J 2015; 29:3713-25. [PMID: 26018677 DOI: 10.1096/fj.14-264267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
Abstract
Deficiency in the methyl donors vitamin B12 and folate during pregnancy and postnatal life impairs proper brain development. We studied the consequences of this combined deficiency on cerebellum plasticity in offspring from rat mothers subjected to deficient diet during gestation and lactation and in rat neuroprogenitor cells expressing cerebellum markers. The major proteomic change in cerebellum of 21-d-old deprived females was a 2.2-fold lower expression of synapsins, which was confirmed in neuroprogenitors cultivated in the deficient condition. A pathway analysis suggested that these proteomic changes were related to estrogen receptor α (ER-α)/Src tyrosine kinase. The influence of impaired ER-α pathway was confirmed by abnormal negative geotaxis test at d 19-20 and decreased phsophorylation of synapsins in deprived females treated by ER-α antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP). This effect was consistent with 2-fold decreased expression and methylation of ER-α and subsequent decreased ER-α/PPAR-γ coactivator 1 α (PGC-1α) interaction in deficiency condition. The impaired ER-α pathway led to decreased expression of synapsins through 2-fold decreased EGR-1/Zif-268 transcription factor and to 1.7-fold reduced Src-dependent phosphorylation of synapsins. The treatment of neuroprogenitors with either MPP or PP1 (4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline, 6,7-dimethoxy-N-(4-phenoxyphenyl)-4-quinazolinamine, SKI-1, Src-l1) Src inhibitor produced similar effects. In conclusion, the deficiency during pregnancy and lactation impairs the expression of synapsins through a deregulation of ER-α pathway.
Collapse
Affiliation(s)
- Grégory Pourié
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Nicolas Martin
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Carine Bossenmeyer-Pourié
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Nassila Akchiche
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Rosa Maria Guéant-Rodriguez
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Andréa Geoffroy
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Elise Jeannesson
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Sarah El Hajj Chehadeh
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Khalid Mimoun
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Patrick Brachet
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Violette Koziel
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Jean-Marc Alberto
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Deborah Helle
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Renée Debard
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Brigitte Leininger
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Jean-Luc Daval
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Jean-Louis Guéant
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| |
Collapse
|
12
|
Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. Proc Natl Acad Sci U S A 2014; 111:17929-34. [PMID: 25453090 DOI: 10.1073/pnas.1420369111] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.
Collapse
|
13
|
Penke Z, Morice E, Veyrac A, Gros A, Chagneau C, LeBlanc P, Samson N, Baumgärtel K, Mansuy IM, Davis S, Laroche S. Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130159. [PMID: 24298160 DOI: 10.1098/rstb.2013.0159] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is well established that Zif268/Egr1, a member of the Egr family of transcription factors, is critical for the consolidation of several forms of memory; however, it is as yet uncertain whether increasing expression of Zif268 in neurons can facilitate memory formation. Here, we used an inducible transgenic mouse model to specifically induce Zif268 overexpression in forebrain neurons and examined the effect on recognition memory and hippocampal synaptic transmission and plasticity. We found that Zif268 overexpression during the establishment of memory for objects did not change the ability to form a long-term memory of objects, but enhanced the capacity to form a long-term memory of the spatial location of objects. This enhancement was paralleled by increased long-term potentiation in the dentate gyrus of the hippocampus and by increased activity-dependent expression of Zif268 and selected Zif268 target genes. These results provide novel evidence that transcriptional mechanisms engaging Zif268 contribute to determining the strength of newly encoded memories.
Collapse
Affiliation(s)
- Zsuzsa Penke
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, , Orsay 91405, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wairkar YP, Trivedi D, Natarajan R, Barnes K, Dolores L, Cho P. CK2α regulates the transcription of BRP in Drosophila. Dev Biol 2013; 384:53-64. [PMID: 24080510 DOI: 10.1016/j.ydbio.2013.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 01/26/2023]
Abstract
Development and plasticity of synapses are brought about by a complex interplay between various signaling pathways. Typically, either changing the number of synapses or strengthening an existing synapse can lead to changes during synaptic plasticity. Altering the machinery that governs the exocytosis of synaptic vesicles, which primarily fuse at specialized structures known as active zones on the presynaptic terminal, brings about these changes. Although signaling pathways that regulate the synaptic plasticity from the postsynaptic compartments are well defined, the pathways that control these changes presynaptically are poorly described. In a genetic screen for synapse development in Drosophila, we found that mutations in CK2α lead to an increase in the levels of Bruchpilot (BRP), a scaffolding protein associated with the active zones. Using a combination of genetic and biochemical approaches, we found that the increase in BRP in CK2α mutants is largely due to an increase in the transcription of BRP. Interestingly, the transcripts of other active zone proteins that are important for function of active zones were also increased, while the transcripts from some other synaptic proteins were unchanged. Thus, our data suggest that CK2α might be important in regulating synaptic plasticity by modulating the transcription of BRP. Hence, we propose that CK2α is a novel regulator of the active zone protein, BRP, in Drosophila.
Collapse
Affiliation(s)
- Yogesh P Wairkar
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd., Rte#1045, Galveston, TX 77555, United States.
| | | | | | | | | | | |
Collapse
|
15
|
Noninvasive strategies to promote functional recovery after stroke. Neural Plast 2013; 2013:854597. [PMID: 23864962 PMCID: PMC3707231 DOI: 10.1155/2013/854597] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/02/2013] [Indexed: 01/17/2023] Open
Abstract
Stroke is a common and disabling global health-care problem, which is the third most common cause of death and one of the main causes of acquired adult disability in many countries. Rehabilitation interventions are a major component of patient care. In the last few years, brain stimulation, mirror therapy, action observation, or mental practice with motor imagery has emerged as interesting options as add-on interventions to standard physical therapies. The neural bases for poststroke recovery rely on the concept of plasticity, namely, the ability of central nervous system cells to modify their structure and function in response to external stimuli. In this review, we will discuss recent noninvasive strategies employed to enhance functional recovery in stroke patients and we will provide an overview of neural plastic events associated with rehabilitation in preclinical models of stroke.
Collapse
|
16
|
H3K4 tri-methylation in synapsin genes leads to different expression patterns in bipolar disorder and major depression. Int J Neuropsychopharmacol 2013; 16:289-99. [PMID: 22571925 PMCID: PMC3564952 DOI: 10.1017/s1461145712000363] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The synapsin family of neuronal phosphoproteins is composed of three genes (SYN1, SYN2 and SYN3) with alternative splicing resulting in a number of variants with various levels of homology. These genes have been postulated to play significant roles in several neuropsychiatric disorders, including bipolar disorder, schizophrenia and epilepsy. Epigenetic regulatory mechanisms, such as histone modifications in gene regulatory regions, have also been proposed to play a role in a number of psychiatric disorders, including bipolar disorder and major depressive disorder. One of the best characterized histone modifications is histone 3 lysine 4 tri-methylation (H3K4me3), an epigenetic mark shown to be highly enriched at transcriptional start sites and associated with active transcription. In the present study we have quantified the expression of transcript variants of the three synapsin genes and investigated their relationship to H3K4me3 promoter enrichment in post-mortem brain samples. We found that histone modification marks were significantly increased in bipolar disorder and major depression and this effect was correlated with significant increases in gene expression. Our findings suggest that synapsin dysregulation in mood disorders is mediated in part by epigenetic regulatory mechanisms.
Collapse
|
17
|
Martin N, Bossenmeyer-Pourié C, Koziel V, Jazi R, Audonnet S, Vert P, Guéant JL, Daval JL, Pourié G. Non-injurious neonatal hypoxia confers resistance to brain senescence in aged male rats. PLoS One 2012; 7:e48828. [PMID: 23173039 PMCID: PMC3500249 DOI: 10.1371/journal.pone.0048828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022] Open
Abstract
Whereas brief acute or intermittent episodes of hypoxia have been shown to exert a protective role in the central nervous system and to stimulate neurogenesis, other studies suggest that early hypoxia may constitute a risk factor that influences the future development of mental disorders. We therefore investigated the effects of a neonatal “conditioning-like” hypoxia (100% N2, 5 min) on the brain and the cognitive outcomes of rats until 720 days of age (physiologic senescence). We confirmed that such a short hypoxia led to brain neurogenesis within the ensuing weeks, along with reduced apoptosis in the hippocampus involving activation of Erk1/2 and repression of p38 and death-associated protein (DAP) kinase. At 21 days of age, increased thicknesses and cell densities were recorded in various subregions, with strong synapsin activation. During aging, previous exposure to neonatal hypoxia was associated with enhanced memory retrieval scores specifically in males, better preservation of their brain integrity than controls, reduced age-related apoptosis, larger hippocampal cell layers, and higher expression of glutamatergic and GABAergic markers. These changes were accompanied with a marked expression of synapsin proteins, mainly of their phosphorylated active forms which constitute major players of synapse function and plasticity, and with increases of their key regulators, i.e. Erk1/2, the transcription factor EGR-1/Zif-268 and Src kinase. Moreover, the significantly higher interactions between PSD-95 scaffolding protein and NMDA receptors measured in the hippocampus of 720-day-old male animals strengthen the conclusion of increased synaptic functional activity and plasticity associated with neonatal hypoxia. Thus, early non-injurious hypoxia may trigger beneficial long term effects conferring higher resistance to senescence in aged male rats, with a better preservation of cognitive functions.
Collapse
Affiliation(s)
- Nicolas Martin
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Carine Bossenmeyer-Pourié
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Violette Koziel
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Rozat Jazi
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Sandra Audonnet
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Paul Vert
- Service de Médecine Néonatale, Maternité Régionale Universitaire, Nancy, France
| | - Jean-Louis Guéant
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- IRCCS, Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina (EN), Italy
| | - Jean-Luc Daval
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Grégory Pourié
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
18
|
Cruceanu C, Alda M, Grof P, Rouleau GA, Turecki G. Synapsin II is involved in the molecular pathway of lithium treatment in bipolar disorder. PLoS One 2012; 7:e32680. [PMID: 22384280 PMCID: PMC3286475 DOI: 10.1371/journal.pone.0032680] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/28/2012] [Indexed: 01/06/2023] Open
Abstract
Bipolar disorder (BD) is a debilitating psychiatric condition with a prevalence of 1–2% in the general population that is characterized by severe episodic shifts in mood ranging from depressive to manic episodes. One of the most common treatments is lithium (Li), with successful response in 30–60% of patients. Synapsin II (SYN2) is a neuronal phosphoprotein that we have previously identified as a possible candidate gene for the etiology of BD and/or response to Li treatment in a genome-wide linkage study focusing on BD patients characterized for excellent response to Li prophylaxis. In the present study we investigated the role of this gene in BD, particularly as it pertains to Li treatment. We investigated the effect of lithium treatment on the expression of SYN2 in lymphoblastoid cell lines from patients characterized as excellent Li-responders, non-responders, as well as non-psychiatric controls. Finally, we sought to determine if Li has a cell-type-specific effect on gene expression in neuronal-derived cell lines. In both in vitro models, we found SYN2 to be modulated by the presence of Li. By focusing on Li-responsive BD we have identified a potential mechanism for Li response in some patients.
Collapse
Affiliation(s)
- Cristiana Cruceanu
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paul Grof
- Mood Disorders Centre of Ottawa, Ottawa, Ontario, Canada
| | - Guy A. Rouleau
- Centre of Excellence in Neuromics, CHUM Research Center and the Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
19
|
Abstract
While there is ample agreement that the cognitive role of sleep is explained by sleep-dependent synaptic changes, consensus is yet to be established as to the nature of these changes. Some researchers believe that sleep promotes global synaptic downscaling, leading to a non-Hebbian reset of synaptic weights that is putatively necessary for the acquisition of new memories during ensuing waking. Other investigators propose that sleep also triggers experience-dependent, Hebbian synaptic upscaling able to consolidate recently acquired memories. Here, I review the molecular and physiological evidence supporting these views, with an emphasis on the calcium signaling pathway. I argue that the available data are consistent with sleep promoting experience-dependent synaptic embossing, understood as the simultaneous non-Hebbian downscaling and Hebbian upscaling of separate but complementary sets of synapses, heterogeneously activated at the time of memory encoding and therefore differentially affected by sleep.
Collapse
Affiliation(s)
- Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
20
|
Penke Z, Chagneau C, Laroche S. Contribution of Egr1/zif268 to Activity-Dependent Arc/Arg3.1 Transcription in the Dentate Gyrus and Area CA1 of the Hippocampus. Front Behav Neurosci 2011; 5:48. [PMID: 21887136 PMCID: PMC3156974 DOI: 10.3389/fnbeh.2011.00048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/27/2011] [Indexed: 01/03/2023] Open
Abstract
Egr1, a member of the Egr family of transcription factors, and Arc are immediate early genes known to play major roles in synaptic plasticity and memory. Despite evidence that Egr family members can control Arc transcriptional regulation, demonstration of a selective role of Egr1 alone is lacking. We investigated the extent to which activity-dependent Arc expression is dependent on Egr1 by analyzing Arc mRNA expression using fluorescence insitu hybridization in the dorsal dentate gyrus and CA1 of wild-type (WT) and Egr1 knockout mice. Following electroconvulsive shock, we found biphasic expression of Arc in area CA1 in mice, consisting in a rapid (30 min) and transient wave followed by a second late-phase of expression (8 h), and a single but prolonged wave of expression in the dentate gyrus. Egr1 deficiency abolished the latest, but not the early wave of Arc expression in CA1, and curtailed that of the dentate gyrus. Since the early wave of Arc expression was not affected in Egr1 mutant mice, we next analyzed behaviorally induced Arc expression patterns as an index of neural ensemble activation in the dentate gyrus and area CA1 of WT and Egr1 mutant mice. Spatial exploration of novel or familiar environments induced in mice a single early and transient wave of Arc expression in the dentate gyrus and area CA1, which were not affected in Egr1 mutant mice. Analyses of Arc-expressing cells revealed that exploration recruits similar size dentate gyrus and CA1 neural ensembles in WT and Egr1 knockout mice. These findings suggest that hippocampal neural ensembles are normally activated immediately following spatial exploration in Egr1 knockout mice, indicating normal hippocampal encoding of information. They also provide evidence that in condition of strong activation Egr1 alone can control late-phases of activity-dependent Arc transcription in the dentate gyrus and area CA1 of the hippocampus.
Collapse
Affiliation(s)
- Zsuzsa Penke
- UMR 8195, Centre de Neurosciences Paris-Sud, Université Paris-Sud Orsay, France
| | | | | |
Collapse
|
21
|
Fan Y, Zou W, Green LA, Kim BO, He JJ. Activation of Egr-1 expression in astrocytes by HIV-1 Tat: new insights into astrocyte-mediated Tat neurotoxicity. J Neuroimmune Pharmacol 2011; 6:121-9. [PMID: 20414733 PMCID: PMC3056338 DOI: 10.1007/s11481-010-9217-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/12/2010] [Indexed: 01/29/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat plays an important role in HIV-associated neuropathogenesis; the underlying mechanisms are still evolving. We have recently shown that HIV-1 Tat induces expression of glial fibrillary acidic protein (GFAP), a characteristic of HIV-1 infection of the central nervous system. We have also shown that the Tat-induced GFAP expression in astrocytes is regulated by p300 and that deletion of the early growth response 1 (Egr-1) cis-transacting element within the p300 promoter abolishes Tat-induced GFAP expression. In this study, we further examined the relationship between Tat and Egr-1 in astrocytes. We found increased Egr-1 protein expression in Tat-expressing human astrocytoma cells and mouse primary astrocytes. Using the Egr-1 promoter-driven firefly luciferase reporter gene assay and the site-directed mutagenesis, we demonstrated that Tat increased Egr-1 expression by transactivating the Egr-1 promoter and involving specific serum response elements within the promoter. Consistent with these data, we showed that Tat transactivation of the Egr-1 promoter was abrogated when astrocytes were cultured in serum-reduced media. Taken together, these results reveal that Tat directly transactivates Egr-1 expression and suggest that Tat interaction with Egr-1 is probably one of the very upstream molecular events that initiate Tat-induced astrocyte dysfunction and subsequent Tat neurotoxicity.
Collapse
Affiliation(s)
- Yan Fan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Wei Zou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Linden A. Green
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Byung oh Kim
- Department of Applied Biology, College of Life Science and Natural Resources, Kyungpook National University, Sangju 742-711, Republic of Korea
| | - Johnny J. He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Center for AIDS Research, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
22
|
Szaro BG, Strong MJ. Regulation of Cytoskeletal Composition in Neurons: Transcriptional and Post-transcriptional Control in Development, Regeneration, and Disease. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
23
|
Maddox SA, Monsey MS, Schafe GE. Early growth response gene 1 (Egr-1) is required for new and reactivated fear memories in the lateral amygdala. Learn Mem 2011; 18:24-38. [PMID: 21177377 PMCID: PMC3023969 DOI: 10.1101/lm.1980211] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/13/2010] [Indexed: 01/16/2023]
Abstract
The immediate-early gene early growth response gene-1 (EGR-1, zif-268) has been extensively studied in synaptic plasticity and memory formation in a variety of memory systems. However, a convincing role for EGR-1 in amygdala-dependent memory consolidation processes has yet to emerge. In the present study, we have examined the role of EGR-1 in the consolidation and reconsolidation of amygdala-dependent auditory Pavlovian fear conditioning. In our first series of experiments, we show that EGR-1 is regulated following auditory fear conditioning in the lateral nucleus of the amygdala (LA). Next, we use antisense oligodeoxynucleotide (ODN) knockdown of EGR-1 in the LA to show that training-induced expression of EGR-1 is required for memory consolidation of auditory fear conditioning; that is, long-term memory (LTM) is significantly impaired while acquisition and short-term memory (STM) are intact. In a second set of experiments, we show that EGR-1 is regulated in the LA by retrieval of an auditory fear memory. We then show that retrieval-induced expression of EGR-1 in the LA is required for memory reconsolidation of auditory fear conditioning; that is, post-retrieval (PR)-LTM is significantly impaired while memory retrieval and PR-STM are intact. Additional experiments show these effects to be restricted to the LA, to be temporally graded, and unlikely to be due to nonspecific toxicity within the LA. Collectively, our findings strongly implicate a role for EGR-1 in both the initial consolidation and in the reconsolidation of auditory fear memories in the LA.
Collapse
Affiliation(s)
- Stephanie A. Maddox
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | - Melissa S. Monsey
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | - Glenn E. Schafe
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
24
|
Krox20/EGR2 deficiency accelerates cell growth and differentiation in the monocytic lineage and decreases bone mass. Blood 2010; 116:3964-71. [PMID: 20716776 DOI: 10.1182/blood-2010-01-263830] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Krox20/EGR2, one of the 4 early growth response genes, is a highly conserved transcription factor implicated in hindbrain development, peripheral nerve myelination, tumor suppression, and monocyte/macrophage cell fate determination. Here, we established a novel role for Krox20 in postnatal skeletal metabolism. Microcomputed tomographic analysis of 4- and 8-week-old mice revealed a low bone mass phenotype (LBM) in both the distal femur and the vertebra of Krox20(+/-) mice. This was attributable to accelerated bone resorption as demonstrated in vivo by increased osteoclast number and serum C-terminal telopeptides, a marker for collagen degradation. Krox20 haploinsufficiency did not reduce bone formation in vivo, nor did it compromise osteoblast differentiation in vitro. In contrast, growth and differentiation were significantly stimulated in preosteoclast cultures derived from Krox20(+/-) splenocytes, suggesting that the LBM is attributable to Krox20 haploinsufficiency in the monocytic lineage. Furthermore, Krox20 silencing in preosteoclasts increased cFms expression and response to macrophage colony-stimulating factor, leading to a cell-autonomous stimulation of cell-cycle progression. Our data indicate that the antimitogenic role of Krox20 in preosteoclasts is the predominant mechanism underlying the LBM phenotype of Krox20-deficient mice. Stimulation of Krox20 expression in preosteoclasts may present a viable therapeutic strategy for high-turnover osteoporosis.
Collapse
|
25
|
Overeem KA, Ota KT, Monsey MS, Ploski JE, Schafe GE. A role for nitric oxide-driven retrograde signaling in the consolidation of a fear memory. Front Behav Neurosci 2010; 4:2. [PMID: 20161806 PMCID: PMC2820379 DOI: 10.3389/neuro.08.002.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 01/13/2010] [Indexed: 12/11/2022] Open
Abstract
In both invertebrate and vertebrate models of synaptic plasticity, signaling via the putative “retrograde messenger” nitric oxide (NO) has been hypothesized to serve as a critical link between functional and structural alterations at pre- and postsynaptic sites. However, while in vitro models of synaptic plasticity have consistently implicated NO signaling in linking postsynaptic induction mechanisms with accompanying presynaptic changes, a convincing role of such “retrograde signaling” in mammalian memory formation has remained elusive. Using auditory Pavlovian fear conditioning, we show that synaptic plasticity and NO signaling in the lateral nucleus of the amygdala (LA) regulate the expression of the ERK-driven immediate early gene early growth response gene I (EGR-1) in regions of the auditory thalamus that are presynaptic to the LA. Further, antisense knockdown of EGR-1 in the auditory thalamus impairs both fear memory consolidation and the training-induced elevation of two presynaptically localized proteins in the LA. These findings indicate that synaptic plasticity and NO signaling in the LA during auditory fear conditioning promote alterations in ERK-driven gene expression in auditory thalamic neurons that are required for both fear memory consolidation as well as presynaptic correlates of fear memory formation in the LA, and provide general support for a role of NO as a “retrograde signal” in mammalian memory formation.
Collapse
|
26
|
|
27
|
Role of AP-2alpha transcription factor in the regulation of synapsin II gene expression by dopamine D1 and D2 receptors. J Mol Neurosci 2009; 41:267-77. [PMID: 19842069 DOI: 10.1007/s12031-009-9299-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 10/02/2009] [Indexed: 01/11/2023]
Abstract
Synapsins are a family of neuron-specific phosphoproteins involved in synaptic vesicle docking, synaptogenesis, and synaptic plasticity. Previous studies have reported an increase in synapsin II protein by dopaminergic agents in the striatum, medial prefrontal cortex, and nucleus accumbens. This study investigated the mechanistic pathway involved in synapsin II regulation by dopaminergic drugs using primary midbrain neurons to determine which of several transcription factors regulates synapsin II expression. Protein kinase A (PKA) participation in the signaling pathway was examined using selective PKA inhibitors, which reduced synapsin II expression in cell cultures while dopaminergic agents were unable to increase synapsin II in the presence of the PKA inhibitor. Transcription factor involvement was further investigated using separate cultures treated with antisense deoxyoligonucleotides (ADONs) against the following transcription factors: activating protein 2 alpha (AP-2alpha), early growth response factor 1 (EGR-1), or polyoma enhancer activator-3 (PEA-3). Selective knockdown of AP-2alpha by ADONs reduced synapsin II levels, whereas treatment with EGR-1 and PEA-3 ADONs did not affect synapsin II expression. Furthermore, dopaminergic agents were no longer able to influence synapsin II concentrations following AP-2alpha knockdown. Collectively, these results indicate that a cyclic adenosine-3',5'-monophosphate/PKA-dependent mechanism involving the AP-2alpha transcription factor is likely responsible for the increase in neuronal synapsin II following dopamine D1 receptor stimulation or dopamine D2 receptor inhibition.
Collapse
|
28
|
Wang JL, Chang WT, Tong CW, Kohno K, Huang AM. Human synapsin I mediates the function of nuclear respiratory factor 1 in neurite outgrowth in neuroblastoma IMR-32 cells. J Neurosci Res 2009; 87:2255-63. [DOI: 10.1002/jnr.22059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Pinaud R. EXPERIENCE-DEPENDENT IMMEDIATE EARLY GENE EXPRESSION IN THE ADULT CENTRAL NERVOUS SYSTEM: EVIDENCE FROM ENRICHED-ENVIRONMENT STUDIES. Int J Neurosci 2009; 114:321-33. [PMID: 14754658 DOI: 10.1080/00207450490264142] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Here I discuss evidence from our group's work that implicates the immediate early genes NGFI-A and arc as possible regulators of neuronal plasticity. The enriched environment (EE) paradigm has been demonstrated to induce neural plasticity in both developing and mature mammals. Others and we have recently demonstrated that adult rats placed within an enriched environment underwent central nervous system-wide increases in the expression levels for the IEGs NGFI-A and arc. The relationships between the altered expression profiles for both genes in response to an EE exposure, and their putative role in orchestrating network restructuring in response to enhanced environmental complexity are discussed.
Collapse
Affiliation(s)
- Raphael Pinaud
- Neurological Sciences Institute, Oregon Health & Science University, Portland, Oregon 97006, USA.
| |
Collapse
|
30
|
Vitalo A, Fricchione J, Casali M, Berdichevsky Y, Hoge EA, Rauch SL, Berthiaume F, Yarmush ML, Benson H, Fricchione GL, Levine JB. Nest making and oxytocin comparably promote wound healing in isolation reared rats. PLoS One 2009; 4:e5523. [PMID: 19436750 PMCID: PMC2677672 DOI: 10.1371/journal.pone.0005523] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 04/17/2009] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Environmental enrichment (EE) fosters attachment behavior through its effect on brain oxytocin levels in the hippocampus and other brain regions, which in turn modulate the hypothalamic-pituitary axis (HPA). Social isolation and other stressors negatively impact physical healing through their effect on the HPA. Therefore, we reasoned that: 1) provision of a rat EE (nest building with Nestlets) would improve wound healing in rats undergoing stress due to isolation rearing and 2) that oxytocin would have a similar beneficial effect on wound healing. METHODOLOGY/PRINCIPAL FINDINGS In the first two experiments, we provided isolation reared rats with either EE or oxytocin and compared their wound healing to group reared rats and isolation reared rats that did not receive Nestlets or oxytocin. In the third experiment, we examined the effect of Nestlets on open field locomotion and immediate early gene (IEG) expression. We found that isolation reared rats treated with Nestlets a) healed significantly better than without Nestlets, 2) healed at a similar rate to rats treated with oxytocin, 3) had decreased hyperactivity in the open field test, and 4) had normalized IEG expression in brain hippocampus. CONCLUSIONS/SIGNIFICANCE This study shows that when an EE strategy or oxytocin is given to isolation reared rats, the peripheral stress response, as measured by burn injury healing, is decreased. The findings indicate an association between the effect of nest making on wound healing and administration of the pro-bonding hormone oxytocin. Further elucidation of this animal model should lead to improved understanding of how EE strategies can ameliorate poor wound healing and other symptoms that result from isolation stress.
Collapse
Affiliation(s)
- Antonia Vitalo
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Benson Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Engineering and Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Shriners Burns Hospital, Boston, Massachusetts, United States of America
| | - Jonathan Fricchione
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Benson Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Engineering and Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Shriners Burns Hospital, Boston, Massachusetts, United States of America
| | - Monica Casali
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Benson Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Engineering and Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Shriners Burns Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yevgeny Berdichevsky
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Engineering and Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Shriners Burns Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth A. Hoge
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott L. Rauch
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- McLean Hospital, Belmont, Massachusetts, United States of America
| | - Francois Berthiaume
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Engineering and Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Shriners Burns Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martin L. Yarmush
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Engineering and Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Shriners Burns Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Herbert Benson
- Department of Medicine Services, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Benson Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory L. Fricchione
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Benson Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John B. Levine
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Benson Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Engineering and Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Shriners Burns Hospital, Boston, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
31
|
De Steno DA, Schmauss C. A role for dopamine D2 receptors in reversal learning. Neuroscience 2009; 162:118-27. [PMID: 19401217 DOI: 10.1016/j.neuroscience.2009.04.052] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/08/2009] [Accepted: 04/20/2009] [Indexed: 11/15/2022]
Abstract
Reversal learning has been shown to require intact serotonergic innervation of the forebrain neocortex. Whether dopamine acting through D2 receptors plays a complementary role in this anatomic area is still unclear. Here we show that mice lacking dopamine D2 receptors exhibited significantly impaired performance in the reversal learning phase of an attention-set-shifting task (ASST) and that wild type mice treated chronically with the D2-like receptor antagonist haloperidol exhibited the same cognitive deficit. The test-phase-specific deficits of D2 mutants and haloperidol-treated mice were also accompanied by deficits in the induction of expression of early growth response gene 2 (egr-2), a regulatory transcription factor previously shown to be selectively induced in the ventrolateral orbital frontal cortex and the pre- and infralimbic medial prefrontal cortex of ASST-tested mice. D2-receptor knockout mice and haloperidol-treated wild type, however, exhibited lower egr-2 expression in these anatomic regions after completion of an ASST-test phase that required reversal learning but not after completion of set-shifting phases without rule reversals. In contrast, mice treated chronically with clozapine, an atypical neuroleptic drug with lower D2-receptor affinity and broader pharmacological effects, had deficits in compound discrimination phases of the ASST, but also these deficits were accompanied by lower egr-2 expression in the same anatomic subregions. Thus, the findings indicate that egr-2 expression is a sensitive indicator of test-phase-specific performance in the ASST and that normal function of D2 receptors in subregions of the orbital frontal and the medial prefrontal cortex is required for cognitive flexibility in tests involving rule reversals.
Collapse
Affiliation(s)
- D A De Steno
- Department of Pharmacology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
32
|
Szabo Z, Ying Z, Radak Z, Gomez-Pinilla F. Voluntary exercise may engage proteasome function to benefit the brain after trauma. Brain Res 2009; 1341:25-31. [PMID: 19368831 DOI: 10.1016/j.brainres.2009.01.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/17/2009] [Accepted: 01/21/2009] [Indexed: 12/29/2022]
Abstract
Brain trauma is associated with long-term decrements in synaptic plasticity and cognitive function, which likely reside on the acute effects of the injury on protein structure and function. Based on the action of proteasome on protein synthesis and degradation we have examined the effects of brain injury on proteasome level/activity and the potential of exercise to interact with the effects of the injury. Exercise has a healing ability but its action on proteasome function is not understood. Male Sprague-Dawley adult rats (n=19) were performed mild brain fluid percussion injury (FPI) prior to exercise. Animals were assigned to four groups: sedentary (Sed) or exercise (Exc) with sham surgery (Sham) or FPI: Sham/Sed, Sham/Exc, FPI/Sed, FPI/Exc. Animals were sacrificed after 14 days of treatment. FPI elevated levels of carbonyl (160.1+/-9.6% SEM, p<0.01) and reduced synapsin I levels (58.3+/-4.3% SEM, p<0.01) in the ipsilateral side of caudal cerebral cortex (FPI/Sed compared to Sham/Sed controls), and it appears that increased levels of carbonyls were associated with increased chymotripsin like activity. These results seem to indicate that proteasome function may be associated with levels of oxidative stress, and that these events may contribute to the action of exercise on synaptic plasticity. Interestingly, exercise attenuated changes in carbonyls, proteasome activity, and synapsin I following FPI, which may indicate an action of exercise on the molecular substrates that control protein turnover following brain trauma. Levels of the regulatory transcription factor of proteasome, Zif 268 were reduced by exercise in Sham and FPI animals and changed in proportion with proteasome activity/content. The overall results indicate that the action of exercise interfaces with that of brain injury on molecular systems involved with protein fate and function, which may be significant for synaptic plasticity.
Collapse
Affiliation(s)
- Zsofia Szabo
- Department of Physiological Science, Brain Injury Research Center, UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
33
|
Abstract
The consolidation of long-lasting sensory memories requires the activation of gene expression programs in the brain. Despite considerable knowledge about the early components of this response, little is known about late components (i.e., genes regulated 2-6 h after stimulation) and the relationship between early and late genes. Birdsong represents one of the best natural behaviors to study sensory-induced gene expression in awake, freely behaving animals. Here we show that the expression of several isoforms of synapsins, a group of phosphoproteins thought to regulate the dynamics of synaptic vesicle storage and release, is induced by auditory stimulation with birdsong in the caudomedial nidopallium (NCM) of the zebra finch (Taeniopygia guttata) brain. This induction occurs mainly in excitatory (non-GABAergic) neurons and is modulated (suppressed) by early song-inducible proteins. We also show that ZENK, an early song-inducible transcription factor, interacts with the syn3 promoter in vivo, consistent with a direct regulatory effect and an emerging novel view of ZENK action. These results demonstrate that synapsins are a late component of the genomic response to neuronal activation and that their expression depends on a complex set of regulatory interactions between early and late regulated genes.
Collapse
|
34
|
Luo Y, Lathia J, Mughal M, Mattson MP. SDF1alpha/CXCR4 signaling, via ERKs and the transcription factor Egr1, induces expression of a 67-kDa form of glutamic acid decarboxylase in embryonic hippocampal neurons. J Biol Chem 2008; 283:24789-800. [PMID: 18606818 PMCID: PMC2529007 DOI: 10.1074/jbc.m800649200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 06/06/2008] [Indexed: 02/04/2023] Open
Abstract
Stromal cell-derived factor alpha (SDF1alpha) and its cognate receptor CXCR4 play an important role in neuronal development in the hippocampus, but the genes directly regulated by SDF1alpha/CXCR4 signaling are unknown. To study the role of CXCR4 targeted genes in neuronal development, we used neuronal cultures established from embryonic day 18 rats. Hippocampal neurons express CXCR4 receptor proteins and are stimulated by SDF1alpha resulting in activation of extracellular signal-regulated kinase (ERK)1/2 and the transcription factor cAMP-response element-binding protein. SDF1alpha rapidly induces the expression of the early growth response gene Egr1, a transcription factor involved in activity-dependent neuronal responses, in a concentration-dependent manner. Gel-shift analysis showed that SDF1alpha enhances DNA binding activity to the Egr1-containing promoter for GAD67. Chromatin immunoprecipitation analysis using an Egr1 antibody indicated that SDF1alpha stimulation increases binding of Egr1 to a GAD67 promoter DNA sequence. SDF1alpha stimulation increases the expression of GAD67 at both the mRNA and protein levels, and increases the amount and neurite localization of gamma-aminobutyric acid (GABA) in neurons already expressing GABA. SDF1alpha-induced Egr1/GAD67 expression is mediated by the G protein-coupled CXCR4 receptor and activation of the ERK pathway. Reduction of Egr1 gene expression using small interfering RNA technology lowers the level of GAD67 transcripts and inhibits SDF1alpha-induced GABA production. Inhibition of CXCR4 activation in the developing mouse brain in utero greatly reduced Egr1 and GAD67 mRNA levels and GAD67 protein levels, suggesting a pivotal role for CXCR4 signaling in the development of GABAergic neurons in vivo. Our data suggest that SDF1alpha/CXCR4/G protein/ERK signaling induces the expression of the GAD67 system via Egr1 activation, a mechanism that may promote the maturation of GABAergic neurons during development.
Collapse
MESH Headings
- Animals
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/pharmacology
- Dose-Response Relationship, Drug
- Early Growth Response Protein 1/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/enzymology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Glutamate Decarboxylase/biosynthesis
- Hippocampus/embryology
- Hippocampus/enzymology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Mice
- Neurites/enzymology
- Pregnancy
- RNA, Messenger/biosynthesis
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, CXCR4/agonists
- Receptors, CXCR4/metabolism
- Response Elements/physiology
- gamma-Aminobutyric Acid/biosynthesis
Collapse
Affiliation(s)
| | | | | | - Mark P. Mattson
- Laboratory of Neurosciences, NIA Intramural Research Program, National
Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
35
|
Poirier R, Cheval H, Mailhes C, Garel S, Charnay P, Davis S, Laroche S. Distinct functions of egr gene family members in cognitive processes. Front Neurosci 2008; 2:47-55. [PMID: 18982106 PMCID: PMC2570062 DOI: 10.3389/neuro.01.002.2008] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 05/12/2008] [Indexed: 12/11/2022] Open
Abstract
The different gene members of the Egr family of transcriptional regulators have often been considered to have related functions in brain, based on their co-expression in many cell-types and structures, the relatively high homology of the translated proteins and their ability to bind to the same consensus DNA binding sequence. Recent research, however, suggest this might not be the case. In this review, we focus on the current understanding of the functional roles of the different Egr family members in learning and memory. We briefly outline evidence from mutant mice that Egr1 is required specifically for the consolidation of long-term memory, while Egr3 is primarily essential for short-term memory. We also review our own recent findings from newly generated forebrain-specific conditional Egr2 mutant mice, which revealed that Egr2, as opposed to Egr1 and Egr3, is dispensable for several forms of learning and memory and on the contrary can act as an inhibitory constraint for certain cognitive functions. The studies reviewed here highlight the fact that Egr family members may have different, and in certain circumstances antagonistic functions in the adult brain.
Collapse
Affiliation(s)
- Roseline Poirier
- Univ. Paris Sud, Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication Orsay, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Pinaud R, Osorio C, Alzate O, Jarvis ED. Profiling of experience-regulated proteins in the songbird auditory forebrain using quantitative proteomics. Eur J Neurosci 2008; 27:1409-22. [PMID: 18364021 DOI: 10.1111/j.1460-9568.2008.06102.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Auditory and perceptual processing of songs are required for a number of behaviors in songbirds such as vocal learning, territorial defense, mate selection and individual recognition. These neural processes are accompanied by increased expression of a few transcription factors, particularly in the caudomedial nidopallium (NCM), an auditory forebrain area believed to play a key role in auditory learning and song discrimination. However, these molecular changes are presumably part of a larger, yet uncharacterized, protein regulatory network. In order to gain further insight into this network, we performed two-dimensional differential in-gel expression (2D-DIGE) experiments, extensive protein quantification analyses, and tandem mass spectrometry in the NCM of adult songbirds hearing novel songs. A subset of proteins was selected for immunocytochemistry in NCM sections to confirm the 2D-DIGE findings and to provide additional quantitative and anatomical information. Using these methodologies, we found that stimulation of freely behaving birds with conspecific songs did not significantly impact the NCM proteome 5 min after stimulus onset. However, following 1 and 3 h of stimulation, a significant number of proteins were consistently regulated in NCM. These proteins spanned a range of functional categories that included metabolic enzymes, cytoskeletal molecules, and proteins involved in neurotransmitter secretion and calcium binding. Our findings suggest that auditory processing of vocal communication signals in freely behaving songbirds triggers a cascade of protein regulatory events that are dynamically regulated through activity-dependent changes in calcium levels.
Collapse
Affiliation(s)
- Raphael Pinaud
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | |
Collapse
|
37
|
DeSteno DA, Schmauss C. Induction of early growth response gene 2 expression in the forebrain of mice performing an attention-set-shifting task. Neuroscience 2008; 152:417-28. [PMID: 18280047 DOI: 10.1016/j.neuroscience.2008.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/17/2007] [Accepted: 01/10/2008] [Indexed: 11/30/2022]
Abstract
Early growth response (egr) genes encode transcription factors that are induced by stimuli that cause synaptic plasticity. Here we show that the expression of one member of this family, egr-2, is induced in the orbital frontal cortex (OFC) and medial prefrontal cortex (mPFC) of mice performing an attention-set-shifting task (ASST). The ASST is a series of two-choice perceptual discriminations between different odors and textures. Within the OFC and mPFC, different subregions exhibited egr-2 induction in response to different test-related features. In the medial OFC and the anterior cingulate subregion of the mPFC, egr-2 induction occurred in response to exposure to the novel odor stimulus. In the ventrolateral OFC and the pre- and infralimbic mPFC, additional egr-2 induction occurred during the associative learning phase of the ASST. In the infralimbic mPFC, further egr-2 induction occurred when mice performed set-shifting and reversal learning phases of the ASST. Mice with enhanced set-shifting performance exhibited decreased egr-2 induction in the mPFC indicating that the magnitude of egr-2 induction correlates with the magnitude of attentional demand. This decrease was largest in the infralimbic mPFC suggesting further that egr-2 induction in this region plays a role in the attentional control during set-shifting. In contrast to egr-2, neither egr-1 nor egr-3 expression was altered in ASST-tested mice, and no egr-2 induction occurred in mice that performed a spatial working memory task. These findings suggest a specific role of egr-2-mediated transcriptional activation in cognitive functions associated with attention.
Collapse
Affiliation(s)
- D A DeSteno
- Department of Pharmacology, Columbia University, NY, NY 10032, USA
| | | |
Collapse
|
38
|
Leclerc N, Noh T, Cogan J, Samarawickrama DB, Smith E, Frenkel B. Opposing effects of glucocorticoids and Wnt signaling on Krox20 and mineral deposition in osteoblast cultures. J Cell Biochem 2008; 103:1938-51. [DOI: 10.1002/jcb.21587] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Ribeiro S, Shi X, Engelhard M, Zhou Y, Zhang H, Gervasoni D, Lin SC, Wada K, Lemos NAM, Nicolelis MAL. Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus. Front Neurosci 2007; 1:43-55. [PMID: 18982118 PMCID: PMC2577304 DOI: 10.3389/neuro.01.1.1.003.2007] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/01/2007] [Indexed: 11/13/2022] Open
Abstract
Episodic and spatial memories engage the hippocampus during acquisition but migrate to the cerebral cortex over time. We have recently proposed that the interplay between slow-wave (SWS) and rapid eye movement (REM) sleep propagates recent synaptic changes from the hippocampus to the cortex. To test this theory, we jointly assessed extracellular neuronal activity, local field potentials (LFP), and expression levels of plasticity-related immediate-early genes (IEG) arc and zif-268 in rats exposed to novel spatio-tactile experience. Post-experience firing rate increases were strongest in SWS and lasted much longer in the cortex (hours) than in the hippocampus (minutes). During REM sleep, firing rates showed strong temporal dependence across brain areas: cortical activation during experience predicted hippocampal activity in the first post-experience hour, while hippocampal activation during experience predicted cortical activity in the third post-experience hour. Four hours after experience, IEG expression was specifically upregulated during REM sleep in the cortex, but not in the hippocampus. Arc gene expression in the cortex was proportional to LFP amplitude in the spindle-range (10-14 Hz) but not to firing rates, as expected from signals more related to dendritic input than to somatic output. The results indicate that hippocampo-cortical activation during waking is followed by multiple waves of cortical plasticity as full sleep cycles recur. The absence of equivalent changes in the hippocampus may explain its mnemonic disengagement over time.
Collapse
Affiliation(s)
- Sidarta Ribeiro
- Edmond and Lily Safra International Institute of Neuroscience of Natal (ELS-IINN), Natal, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chung EY, Shin SY, Lee YH. Amitriptyline induces early growth response-1 gene expression via ERK and JNK mitogen-activated protein kinase pathways in rat C6 glial cells. Neurosci Lett 2007; 422:43-8. [PMID: 17590509 DOI: 10.1016/j.neulet.2007.05.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 05/23/2007] [Accepted: 05/27/2007] [Indexed: 12/23/2022]
Abstract
Astrocytes play important roles in guiding the construction of the nervous system, controlling extracellular ions and neurotransmitters, and regulating CNS synaptogenesis. Egr-1 is a transcription factor involved in neuronal differentiation and astrocyte cell proliferation. In this study, we investigated whether the tricyclic antidepressant (TCA) amitriptyline induces Egr-1 expression in astrocytes using rat C6 glioma cells as a model. We found that amitriptyline increased the expression of Egr-1 in a dose- and time-dependent manner. The amitriptyline-induced Egr-1 expression was mediated through serum response elements (SREs) in the Egr-1 promoter. SREs were activated by the Ets-domain transcription factor Elk-1 through the ERK and JNK mitogen-activated protein (MAP) kinase pathways. The inhibition of the ERK and JNK MAP kinase signals attenuated amitriptyline-induced transactivation of Gal4-Elk-1 and Egr-1 promoter activity. Our findings suggest that the induction of Egr-1 expression in astrocytes may be required to attain the therapeutic effects of antidepressant drugs.
Collapse
Affiliation(s)
- Eun Young Chung
- Institute of Molecular Life Science and Technology, Ewha Women's University, Seoul 120-750, South Korea
| | | | | |
Collapse
|
41
|
A comparative genomics approach to identifying the plasticity transcriptome. BMC Neurosci 2007; 8:20. [PMID: 17355637 PMCID: PMC1831778 DOI: 10.1186/1471-2202-8-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 03/13/2007] [Indexed: 02/04/2023] Open
Abstract
Background Neuronal activity regulates gene expression to control learning and memory, homeostasis of neuronal function, and pathological disease states such as epilepsy. A great deal of experimental evidence supports the involvement of two particular transcription factors in shaping the genomic response to neuronal activity and mediating plasticity: CREB and zif268 (egr-1, krox24, NGFI-A). The gene targets of these two transcription factors are of considerable interest, since they may help develop hypotheses about how neural activity is coupled to changes in neural function. Results We have developed a computational approach for identifying binding sites for these transcription factors within the promoter regions of annotated genes in the mouse, rat, and human genomes. By combining a robust search algorithm to identify discrete binding sites, a comparison of targets across species, and an analysis of binding site locations within promoter regions, we have defined a group of candidate genes that are strong CREB- or zif268 targets and are thus regulated by neural activity. Our analysis revealed that CREB and zif268 share a disproportionate number of targets in common and that these common targets are dominated by transcription factors. Conclusion These observations may enable a more detailed understanding of the regulatory networks that are induced by neural activity and contribute to the plasticity transcriptome. The target genes identified in this study will be a valuable resource for investigators who hope to define the functions of specific genes that underlie activity-dependent changes in neuronal properties.
Collapse
|
42
|
Li L, Yun SH, Keblesh J, Trommer BL, Xiong H, Radulovic J, Tourtellotte WG. Egr3, a synaptic activity regulated transcription factor that is essential for learning and memory. Mol Cell Neurosci 2007; 35:76-88. [PMID: 17350282 PMCID: PMC2683345 DOI: 10.1016/j.mcn.2007.02.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 02/03/2007] [Indexed: 11/24/2022] Open
Abstract
Learning and memory depend upon poorly defined synaptic and intracellular modifications that occur in activated neurons. Mitogen activated protein kinase-extracellular regulated kinase (MAPK-ERK) signaling and de novo protein synthesis are essential aspects of enduring memory formation, but the precise effector molecules of MAPK-ERK signaling in neurons are not well defined. Early growth response (Egr) transcriptional regulators are examples of MAPK-ERK regulated genes and Egr1 (zif268) has been widely recognized as essential for some aspects of learning and memory. Here we show that Egr3, a transcriptional regulator closely related to Egr1, is essential for normal hippocampal long-term potentiation (LTP) and for hippocampal and amygdala dependent learning and memory. In the absence of Egr3, the defects in learning and memory appear to be independent of Egr1 since Egr1 protein levels are not altered in amygdala, hippocampus or cortex. Moreover, unlike Egr1-deficient mice which have impairments in late phase hippocampal LTP and consolidation of some forms of long-term hippocampus- and amygdala-dependent memory, Egr3-deficient mice have profound defects in early- and late-phase hippocampal LTP, as well as short-term and long-term hippocampus- and amygdala-dependent learning and memory. Thus, Egr3 has an essential role in learning and memory processing that appears to be partly distinct from the role of Egr1.
Collapse
Affiliation(s)
- Lin Li
- Department of Pathology, Northwestern University, Chicago, IL 60611
| | - Sung Hwan Yun
- Department of Pediatrics, Northwestern University, Chicago, IL 60611
| | | | - Barbara L. Trommer
- Department of Neurology, Northwestern University, Chicago, IL 60611
- Department of Pediatrics, Northwestern University, Chicago, IL 60611
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Jelena Radulovic
- Department of Psychiatry, Northwestern University, Chicago, IL 60611
| | - Warren G. Tourtellotte
- Department of Pathology, Northwestern University, Chicago, IL 60611
- Department of Neurology, Northwestern University, Chicago, IL 60611
| |
Collapse
|
43
|
Uvarov P, Ludwig A, Markkanen M, Rivera C, Airaksinen MS. Upregulation of the neuron-specific K+/Cl- cotransporter expression by transcription factor early growth response 4. J Neurosci 2006; 26:13463-73. [PMID: 17192429 PMCID: PMC6674722 DOI: 10.1523/jneurosci.4731-06.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 11/23/2006] [Accepted: 11/23/2006] [Indexed: 11/21/2022] Open
Abstract
The expression of the neuron-specific K+/Cl- cotransporter (KCC2) is restricted to the CNS and is strongly upregulated during neuronal maturation, yielding a low intracellular chloride concentration that is required for fast synaptic inhibition in adult neurons. To elucidate the mechanisms of KCC2 gene regulation, we analyzed the KCC2 (alias Slc12a5) promoter and proximal intron-1 regions and revealed 10 candidate transcription factor binding sites that are highly conserved in mammalian KCC2 genes. Here we focus on one of these factors, early growth response 4 (Egr4), which shows a similar developmental upregulation in CNS neurons as KCC2. KCC2 luciferase reporter constructs containing the Egr4 site (Egr4(KCC2)) were strongly induced by Egr4 overexpression in neuro-2a neuroblastoma cells and in cultured neurons. Egr4-mediated induction was decreased significantly by point-mutating the Egr4(KCC2). Insertion of Egr4(KCC2) into the KCC2 basal promoter in the endogenous reverse, but not in the opposite, orientation reestablished Egr4-mediated induction. Electrophoretic mobility shift assay confirmed specific Egr4 binding to Egr4(KCC2). Interference RNA-mediated knock-down of Egr4 and a dominant-negative isoform of Egr4 significantly inhibited KCC2 reporter induction and endogenous KCC2 expression in cultured neurons. Together, the results indicate an important role for Egr4 in the developmental upregulation of KCC2 gene expression.
Collapse
Affiliation(s)
| | - Anastasia Ludwig
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | - Claudio Rivera
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
44
|
Chong VZ, Skoblenick K, Morin F, Xu Y, Mishra RK. Dopamine-D1 and -D2 receptors differentially regulate synapsin II expression in the rat brain. Neuroscience 2006; 138:587-99. [PMID: 16413126 DOI: 10.1016/j.neuroscience.2005.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/07/2005] [Accepted: 11/19/2005] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that chronic treatment with the dopamine-D2 receptor antagonist, haloperidol, increases mRNA and protein content of the phosphoprotein, synapsin II, in the rat striatum. Since dopamine-D2 receptor antagonism and dopamine-D1 receptor blockade can have opposing effects on gene expression, the present investigation compared the effects of haloperidol with those of the dopamine-D1 receptor antagonist, R-[+]-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH23390), on the expression of synapsin II protein. Haloperidol and SCH23390 respectively elevated and reduced concentrations of the molecule in mouse primary midbrain cell cultures. Additional experiments revealed that the dopamine-D1 receptor agonist, R-[+]-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzapezine-7,8-diol (SKF38393), upregulated the phosphoprotein in these cells. Furthermore, in vivo rat studies demonstrated that chronic haloperidol treatment increases synapsin II protein expression in the medial prefrontal cortex and nucleus accumbens, as was observed in the striatum. In contrast, chronic SCH23390 administration reduced concentrations of this protein in all of these regions, although the reductions seen in the medial prefrontal cortex were insignificant. Neither haloperidol nor the dopamine-D1 receptor antagonist affected synapsin I protein expression in any of the studied brain areas. Based on these findings, we propose dopamine receptors may specifically regulate synapsin II expression through a cyclic AMP-dependent pathway. Since synapsin II is involved in neurotransmitter release and synaptogenesis, and changes in synaptic efficacy and structure are suggested in schizophrenia as well as in haloperidol treatment, our findings offer insight into the mechanistic actions of the antipsychotic agent at the synaptic level.
Collapse
Affiliation(s)
- V Z Chong
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main Street West, Hamilton, HSC 4N78 Ontario, Canada L8N 3Z5
| | | | | | | | | |
Collapse
|
45
|
James AB, Conway AM, Morris BJ. Genomic profiling of the neuronal target genes of the plasticity-related transcription factor -- Zif268. J Neurochem 2005; 95:796-810. [PMID: 16248890 DOI: 10.1111/j.1471-4159.2005.03400.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The later phases of neuronal plasticity are invariably dependent on gene transcription. Induction of the transcription factor Zif268 (Egr-1) in neurones is closely associated with many forms of functional plasticity, yet the neuronal target genes modulated by Zif268 have not been characterized. After transfection of a neuronal cell line with Zif268 we identified genes that show altered expression using high density microarrays. Although some of the genes identified have previously been associated with forms of neuronal plasticity, the majority have not been linked with neuronal plasticity or Zif268 action. Altered expression of a representative sample of the novel target genes was confirmed in Zif268-transfected PC12 neurones, and in in vitro and in vivo models of Zif268-associated neuronal plasticity. In particular, altered expression of the protease inhibitor Cystatin C and the chemokine Cxcl10 was observed in striatal tissue after haloperidol administration. Surprisingly, the group of identified genes is enriched for components of the proteasome and the major histocompatibility complex. Our findings suggest that altered expression of these genes following Zif268 induction may be a key component of long lasting plasticity in the CNS.
Collapse
Affiliation(s)
- Allan B James
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
46
|
Burmeister SS, Jarvis ED, Fernald RD. Rapid behavioral and genomic responses to social opportunity. PLoS Biol 2005; 3:e363. [PMID: 16216088 PMCID: PMC1255743 DOI: 10.1371/journal.pbio.0030363] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 08/23/2005] [Indexed: 01/20/2023] Open
Abstract
From primates to bees, social status regulates reproduction. In the cichlid fish Astatotilapia (Haplochromis) burtoni, subordinate males have reduced fertility and must become dominant to reproduce. This increase in sexual capacity is orchestrated by neurons in the preoptic area, which enlarge in response to dominance and increase expression of gonadotropin-releasing hormone 1 (GnRH1), a peptide critical for reproduction. Using a novel behavioral paradigm, we show for the first time that subordinate males can become dominant within minutes of an opportunity to do so, displaying dramatic changes in body coloration and behavior. We also found that social opportunity induced expression of the immediate-early gene egr-1 in the anterior preoptic area, peaking in regions with high densities of GnRH1 neurons, and not in brain regions that express the related peptides GnRH2 and GnRH3. This genomic response did not occur in stable subordinate or stable dominant males even though stable dominants, like ascending males, displayed dominance behaviors. Moreover, egr-1 in the optic tectum and the cerebellum was similarly induced in all experimental groups, showing that egr-1 induction in the anterior preoptic area of ascending males was specific to this brain region. Because egr-1 codes for a transcription factor important in neural plasticity, induction of egr-1 in the anterior preoptic area by social opportunity could be an early trigger in the molecular cascade that culminates in enhanced fertility and other long-term physiological changes associated with dominance. Cichlid fish can rise to dominance over subordinate males within minutes of the opportunity to do so; and this behavioural change is accompanied by changes in hypothalamic gene expression.
Collapse
Affiliation(s)
- Sabrina S Burmeister
- Biological Sciences, Stanford University, Stanford, California, United States of America.
| | | | | |
Collapse
|
47
|
Koh S, Chung H, Xia H, Mahadevia A, Song Y. Environmental enrichment reverses the impaired exploratory behavior and altered gene expression induced by early-life seizures. J Child Neurol 2005; 20:796-802. [PMID: 16417873 DOI: 10.1177/08830738050200100301] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Behavioral problems, school failure, and memory impairment are common among children with epilepsy. Currently, no effective treatment exists to promote recovery and neuron regeneration after seizures. To investigate the efficacy of environmental enrichment in reversing early-life seizure-induced changes in exploratory behavior and gene expression, we injected postnatal day 20 to 25 rats with kainic acid or saline and placed them either singly in a cage or as a group of eight in an enriched environment for 7 to 10 days. Exploratory behavior was quantified in an open field, and hippocampal gene analysis was performed on oligonucleotide microarrays. Exploratory behavior in kainic acid isolated rats were decreased in open field, whereas kainic acid rats exposed to an enriched environment behaved similarly to controls (n = 37, analysis of variance, P < .001). Correlated with an improvement in behavior, genes involved in synaptic plasticity and memory consolidation, such as Arc, Homer1a, and Egr1, were significantly increased in rats exposed to environmental enrichment. Real-time quantitative reverse transcriptase-polymerase chain reaction confirmed our microarray data on select genes. Our results provide an experimental basis for promoting enriching education programs for children with epilepsy.
Collapse
Affiliation(s)
- Sookyong Koh
- Children's Memorial Hospital, Children's Memorial Research Center, Feinberg School of medicine, Northwestern University, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Song behavior in songbirds induces the expression of activity-dependent genes in brain areas involved in perceptual processing, production and learning of song. This genomic response is thought to represent a link between neuronal activation and long-term changes in song-processing circuits of the songbird brain. Here we demonstrate that Arc, an activity-regulated gene whose product has dendritic localization and is associated with synaptic plasticity, is rapidly induced by song in the brain of zebra finches. We show that, in the context of song auditory stimulation, Arc expression is induced in several telencephalic auditory areas, most prominently the caudomedial nidopallium and mesopallium, whereas in the context of singing, Arc is also induced in song control areas, namely nucleus HVC, used as a proper name, the robust nucleus of the arcopallium and the interface nucleus of the nidopallium. We also show that song-induced Arc expression co-localizes at the cellular level with those of the transcriptional regulators zenk and c-fos, and that the song induction of these three genes is dependent on activation of the mitogen-activated protein kinase signaling pathway. These findings provide evidence for an involvement of Arc in the brain's response to birdsong. They also demonstrate that genes representing distinct genomic and cellular regulatory programs, namely early effectors and transcription factors, are co-activated in the same neuronal cells by a naturally learned stimulus.
Collapse
Affiliation(s)
- Tarciso A F Velho
- Neurological Sciences Institute, Oregon Health and Science University - West Campus, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | | | | | |
Collapse
|
49
|
Rönnbäck A, Dahlqvist P, Bergström SA, Olsson T. Diurnal effects of enriched environment on immediate early gene expression in the rat brain. Brain Res 2005; 1046:137-44. [PMID: 15927552 DOI: 10.1016/j.brainres.2005.03.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 03/24/2005] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
Rodents housed in an enriched environment (EE) show increased neuronal plasticity with enhanced long-term potentiation and memory performance. We report an EE-induced increase in NGFI-A and Krox-20 mRNA expression exclusively during the dark period of the day. In addition, EE-housed rats showed considerable diurnal variation in NGFI-A, Krox-20, and NGFI-B mRNA expression which was absent in single-housed rats. Thus, EE-induced molecular changes are more evident during the dark phase when the rats have higher motor and exploratory activity. This is important to take into account in future studies of molecular mediators of experience-dependent neuronal plasticity.
Collapse
Affiliation(s)
- Annica Rönnbäck
- Department of Public Health and Clinical Medicine, Medicine, Umeå University Hospital, Sweden
| | | | | | | |
Collapse
|
50
|
Soares JGM, Pereira ACCN, Botelho EP, Pereira SS, Fiorani M, Gattass R. Differential expression of Zif268 and c-Fos in the primary visual cortex and lateral geniculate nucleus of normal Cebus monkeys and after monocular lesions. J Comp Neurol 2005; 482:166-75. [PMID: 15611990 DOI: 10.1002/cne.20361] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The transcription factors c-Fos and Zif268 have been used as markers of neuronal activity, and they also have been implicated in neuronal plasticity. In this study, we investigated the expression of c-Fos and Zif268 proteins in the lateral geniculate nucleus (LGN) and in the cortical primary visual area (V1) of normal adult Cebus apella monkeys and in animals with monocular lesions. In the LGN, the reaction for c-Fos showed immunopositive cells in both magnocellular (M) and parvocellular (P) layers; however, the label was heavier in P layers. In animals that suffered monocular lesions, the immunocytochemistry for c-Fos showed more labeling in layers related to the normal eye compared with those of the lesioned eye. No specific label was observed after the reaction for Zif268 in the LGN. In V1, the reaction for both Zif268 and c-Fos showed a pattern of lamination in which heavier labeling was found in layers 2/3, 4A, 4C, and 6. After monocular lesions, we observed a clear pattern of ocular dominance columns in V1 for both c-Fos and Zif268, in which the columns related to the normal eye are more heavily labeled than those related to the lesioned eye. This pattern is more evident in layer 4C after c-Fos reaction, whereas, after Zif268, it is more clearly observed in layers 2/3. These results suggest that, in addition to be regulated by functional activity, these transcription factors are involved in different processes during cortical reorganization.
Collapse
Affiliation(s)
- Juliana G M Soares
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | | | | | | | | | | |
Collapse
|