1
|
Ballard CJ, Paserba MR, Paul Daniel EJ, Hurtado-Guerrero R, Gerken TA. Polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) isozyme surface charge governs charge substrate preferences to modulate mucin type O-glycosylation. Glycobiology 2023; 33:817-836. [PMID: 37555669 PMCID: PMC10629720 DOI: 10.1093/glycob/cwad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023] Open
Abstract
A large family of polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) initiate mucin type O-glycosylation transferring α-GalNAc from a UDP-GalNAc donor to the hydroxyl groups of Ser and Thr residues of peptides and proteins, thereby defining sites of O-glycosylation. Mutations and differential expression of several GalNAc-Ts are associated with many disease states including cancers. The mechanisms by which these isozymes choose their targets and their roles in disease are not fully understood. We previously showed that the GalNAc-Ts possess common and unique specificities for acceptor type, peptide sequence and prior neighboring, and/or remote substrate GalNAc glycosylation. In the present study, the role of flanking charged residues was investigated using a library of charged peptide substrates containing the central -YAVTPGP- acceptor sequence. Eleven human and one bird GalNAc-T were initially characterized revealing a range of preferences for net positive, net negative, or unique combinations of flanking N- and/or C-terminal charge, correlating to each isozyme's different electrostatic surface potential. It was further found that isoforms with high sequence identity (>70%) within a subfamily can possess vastly different charge specificities. Enzyme kinetics, activities obtained at elevated ionic strength, and molecular dynamics simulations confirm that the GalNAc-Ts differently recognize substrate charge outside the common +/-3 residue binding site. These electrostatic interactions impact how charged peptide substrates bind/orient on the transferase surface, thus modulating their activities. In summary, we show the GalNAc-Ts utilize more extended surfaces than initially thought for binding substrates based on electrostatic, and likely other hydrophobic/hydrophilic interactions, furthering our understanding of how these transferases select their target.
Collapse
Affiliation(s)
- Collin J Ballard
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Miya R Paserba
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Ramón Hurtado-Guerrero
- Department of Biomedical Engineering, The Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza 50018, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
- Fundación ARAID, Zaragoza 50018, Spain
| | - Thomas A Gerken
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Chen Z, Wang D, Yu Q, Johnson J, Shipman R, Zhong X, Huang J, Yu Q, Zetterberg H, Asthana S, Carlsson C, Okonkwo O, Li L. In-Depth Site-Specific O-Glycosylation Analysis of Glycoproteins and Endogenous Peptides in Cerebrospinal Fluid (CSF) from Healthy Individuals, Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD) Patients. ACS Chem Biol 2022; 17:3059-3068. [PMID: 34964596 PMCID: PMC9240109 DOI: 10.1021/acschembio.1c00932] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Site-specific O-glycoproteome mapping in complex biological systems provides a molecular basis for understanding the structure-function relationships of glycoproteins and their roles in physiological and pathological processes. Previous O-glycoproteome analysis in cerebrospinal fluid (CSF) focused on sialylated glycoforms, while missing information on other glycosylation types. In order to achieve an unbiased O-glycosylation profile, we developed an integrated strategy combining universal boronic acid enrichment, high-pH fractionation, and electron-transfer and higher-energy collision dissociation (EThcD) for enhanced intact O-glycopeptide analysis. We applied this strategy to analyze the O-glycoproteome in CSF, resulting in the identification of 308 O-glycopeptides from 110 O-glycoproteins, covering both sialylated and nonsialylated glycoforms. To our knowledge, this is the largest data set of O-glycoproteins and O-glycosites reported for CSF to date. We also developed a peptidomics workflow that utilized the EThcD and a three-step database searching strategy for comprehensive PTM analysis of endogenous peptides, including N-glycosylation, O-glycosylation, and other common peptide PTMs. Interestingly, among the 1411 endogenous peptides identified, 89 were O-glycosylated, and only one N-glycosylated peptide was found, indicating that CSF endogenous peptides were predominantly O-glycosylated. Analyses of the O-glycoproteome and endogenous peptidome PTMs were also conducted in the CSF of MCI and AD patients to provide a landscape of glycosylation patterns in different disease states. Our results showed a decreasing trend in fucosylation and an increasing trend of endogenous peptide O-glycosylation, which may play an important role in AD progression.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Danqing Wang
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Richard Shipman
- Applied Science Program, University of Wisconsin-Stout, Menomonie, WI 54751, USA
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 43180, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom,UK Dementia Research Institute at UCL, London, WC1E 6BT, United Kingdom
| | - Sanjay Asthana
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
| | - Cynthia Carlsson
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
| | - Ozioma Okonkwo
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA,School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA,Correspondence: Professor Lingjun Li, School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, , Fax: +1-608-262-5345, Phone: +1-608-265-8491
| |
Collapse
|
3
|
Kong Y, Joshi HJ, Schjoldager KTBG, Madsen TD, Gerken TA, Vester-Christensen MB, Wandall HH, Bennett EP, Levery SB, Vakhrushev SY, Clausen H. Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis. Glycobiology 2015; 25:55-65. [PMID: 25155433 PMCID: PMC4245906 DOI: 10.1093/glycob/cwu089] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/16/2022] Open
Abstract
N-acetylgalactosaminyltransferase (GalNAc)-type (mucin-type) O-glycosylation is an abundant and highly diverse modification of proteins. This type of O-glycosylation is initiated in the Golgi by a large family of up to 20 homologous polypeptide GalNAc-T isoenzymes that transfer GalNAc to Ser, Thr and possibly Tyr residues. These GalNAc residues are then further elongated by a large set of glycosyltransferases to build a variety of complex O-glycan structures. What determines O-glycan site occupancy is still poorly understood, although it is clear that the substrate specificities of individual isoenzymes and the repertoire of GalNAc-Ts in cells are key parameters. The GalNAc-T isoenzymes are differentially expressed in cells and tissues in principle allowing cells to produce unique O-glycoproteomes dependent on the specific subset of isoforms present. In vitro analysis of acceptor peptide substrate specificities using recombinant expressed GalNAc-Ts has been the method of choice for probing activities of individual isoforms, but these studies have been hampered by biological validation of actual O-glycosylation sites in proteins and number of substrate testable. Here, we present a systematic analysis of the activity of 10 human GalNAc-T isoenzymes with 195 peptide substrates covering known O-glycosylation sites and provide a comprehensive dataset for evaluating isoform-specific contributions to the O-glycoproteome.
Collapse
Affiliation(s)
- Yun Kong
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hiren J Joshi
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine Ter-Borch Gram Schjoldager
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Thomas Daugbjerg Madsen
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Thomas A Gerken
- Department of Pediatrics Department of Biochemistry and Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Malene B Vester-Christensen
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hans H Wandall
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Eric Paul Bennett
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Steven B Levery
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen, Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
4
|
Taus C, Windwarder M, Altmann F, Grabherr R, Staudacher E. UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyl-transferase from the snail Biomphalaria glabrata - substrate specificity and preference of glycosylation sites. Glycoconj J 2014; 31:661-70. [PMID: 25338825 PMCID: PMC4245494 DOI: 10.1007/s10719-014-9565-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/11/2014] [Accepted: 10/13/2014] [Indexed: 12/22/2022]
Abstract
O-glycosylation is a widely occurring posttranslational modification of proteins. The glycosylation status of a specific site may influence the location, activity and function of a protein. The initiating enzyme of mucin-type O-glycosylation is UDP-GalNAc:polypeptide GalNAc transferase (ppGalNAcT; EC 2.4.1.41). Using electron-transfer dissociation mass spectrometry, ppGalNAcT from the snail Biomphalaria glabrata was characterized regarding its ability to glycosylate threonine and serine residues in different peptide sequence environments. The preferences of the snail enzyme for flanking amino acids of the potential glycosylation site were very similar to vertebrate and insect members of the family. Acceptor sites with adjacent proline residues were highly preferred, while other residues caused less pronounced effects. No specific O-glycosylation consensus sequence was found. The results obtained from synthetic peptides were in good correlation with the observed glycosylation patterns of native peptides and with the order of attachment in a multi-glycosylated peptide. The snail enzyme clearly preferred threonine over serine in the in vitro assays. No significant differences of transfer speed or efficiency could be detected using a mutant of the enzyme lacking the lectin domain. This is the first characterisation of the substrate specificity of a member of the ppGalNAcT family from mollusc origin.
Collapse
Affiliation(s)
- Christopher Taus
- Department of Chemistry, Glycobiology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- Present Address: Institute of Urology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Markus Windwarder
- Department of Chemistry, Glycobiology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, Glycobiology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Erika Staudacher
- Department of Chemistry, Glycobiology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
5
|
Schjoldager KTBG, Clausen H. Site-specific protein O-glycosylation modulates proprotein processing - deciphering specific functions of the large polypeptide GalNAc-transferase gene family. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:2079-94. [PMID: 23022508 DOI: 10.1016/j.bbagen.2012.09.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND Posttranslational modifications (PTMs) greatly expand the function and regulation of proteins, and glycosylation is the most abundant and diverse PTM. Of the many different types of protein glycosylation, one is quite unique; GalNAc-type (or mucin-type) O-glycosylation, where biosynthesis is initiated in the Golgi by up to twenty distinct UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). These GalNAc-Ts are differentially expressed in cells and have different (although partly overlapping) substrate specificities, which provide for both unique functions and considerable redundancy. Recently we have begun to uncover human diseases associated with deficiencies in GalNAc-T genes (GALNTs). Thus deficiencies in individual GALNTs produce cell and protein specific effects and subtle distinct phenotypes such as hyperphosphatemia with hyperostosis (GALNT3) and dysregulated lipid metabolism (GALNT2). These phenotypes appear to be caused by deficient site-specific O-glycosylation that co-regulates proprotein convertase (PC) processing of FGF23 and ANGPTL3, respectively. SCOPE OF REVIEW Here we summarize recent progress in uncovering the interplay between human O-glycosylation and protease regulated processing and describes other important functions of site-specific O-glycosylation in health and disease. MAJOR CONCLUSIONS Site-specific O-glycosylation modifies pro-protein processing and other proteolytic events such as ADAM processing and thus emerges as an important co-regulator of limited proteolytic processing events. GENERAL SIGNIFICANCE Our appreciation of this function may have been hampered by our sparse knowledge of the O-glycoproteome and in particular sites of O-glycosylation. New strategies for identification of O-glycoproteins have emerged and recently the concept of SimpleCells, i.e. human cell lines made deficient in O-glycan extension by zinc finger nuclease gene targeting, was introduced for broad O-glycoproteome analysis.
Collapse
|
6
|
Murine noroviruses bind glycolipid and glycoprotein attachment receptors in a strain-dependent manner. J Virol 2012; 86:5584-93. [PMID: 22438544 DOI: 10.1128/jvi.06854-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human norovirus infections are the most common cause of acute nonbacterial gastroenteritis in humans worldwide, and glycan binding plays an important role in the susceptibility to these infections. However, due to the lack of an efficient cell culture system or small animal model for human noroviruses, little is known about the biological role of glycan binding during infection. Murine noroviruses (MNV) are also enteric viruses that bind to cell surface glycans, but in contrast to their human counterparts, they can be grown in tissue culture and a small animal host. In this study, we determined glycan-binding specificities of the MNV strains MNV-1 and CR3 in vitro, identified molecular determinants of glycan binding, and analyzed infection in vivo. We showed that unlike MNV-1, CR3 binding to murine macrophages was resistant to neuraminidase treatment and glycosphingolipid depletion. Both strains depended on N-linked glycoproteins for binding, while only MNV-1 attachment to macrophages was sensitive to O-linked glycoprotein depletion. In vivo, CR3 showed differences in tissue tropism compared to MNV-1 by replicating in the large intestine. Mapping of a glycan-binding site in the MNV-1 capsid by reverse genetics identified a region topologically similar to the histo-blood group antigen (HBGA)-binding sites of the human norovirus strain VA387. The recombinant virus showed distinct changes in tissue tropism compared to wild-type virus. Taken together, our data demonstrate that MNV strains evolved multiple strategies to bind different glycan receptors on the surface of murine macrophages and that glycan binding contributes to tissue tropism in vivo.
Collapse
|
7
|
Gerken TA, Jamison O, Perrine CL, Collette JC, Moinova H, Ravi L, Markowitz SD, Shen W, Patel H, Tabak LA. Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. J Biol Chem 2011; 286:14493-507. [PMID: 21349845 DOI: 10.1074/jbc.m111.218701] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian mucin-type O-glycosylation is initiated by a large family of ∼20 UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAc Ts) that transfer α-GalNAc from UDP-GalNAc to Ser and Thr residues of polypeptide acceptors. Characterizing the peptide substrate specificity of each isoform is critical to understanding their properties, biological roles, and significance. Presently, only the specificities of ppGalNAc T1, T2, and T10 and the fly orthologues of T1 and T2 have been systematically characterized utilizing random peptide substrates. We now extend these studies to ppGalNAc T3, T5, and T12, transferases variously associated with human disease. Our results reveal several common features; the most striking is the similar pattern of enhancements for the three residues C-terminal to the site of glycosylation for those transferases that contain a common conserved Trp. In contrast, residues N-terminal to the site of glycosylation show a wide range of isoform-specific enhancements, with elevated preferences for Pro, Val, and Tyr being the most common at the -1 position. Further analysis reveals that the ratio of positive (Arg, Lys, and His) to negative (Asp and Glu) charged residue enhancements varied among transferases, thus further modulating substrate preference in an isoform-specific manner. By utilizing the obtained transferase-specific preferences, the glycosylation patterns of the ppGalNAc Ts against a series of peptide substrates could roughly be reproduced, demonstrating the potential for predicting isoform-specific glycosylation. We conclude that each ppGalNAc T isoform may be uniquely sensitive to peptide sequence and overall charge, which together dictates the substrate sites that will be glycosylated.
Collapse
Affiliation(s)
- Thomas A Gerken
- Department of Pediatrics (W. A. Bernbaum Center for Cystic Fibrosis Research), Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tarp MA, Clausen H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:546-63. [PMID: 17988798 DOI: 10.1016/j.bbagen.2007.09.010] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 09/14/2007] [Indexed: 01/03/2023]
Abstract
Mucin-type O-glycans are found on mucins as well as many other glycoproteins. The initiation step in synthesis is catalyzed by a large family of polypeptide GalNAc-transferases attaching the first carbohydrate residue, GalNAc, to selected serine and threonine residues in proteins. During the last decade an increasing number of GalNAc-transferase isoforms have been cloned and their substrate-specificities partly characterized. These differences in substrate specificities have been exploited for in vitro site-directed O-glycosylation. In GlycoPEGylation, polyehylene glycol (PEG) is transferred to recombinant therapeutics to specific acceptor sites directed by GalNAc-transferases. GalNAc-transferases have also been used to control density of glycosylation in the development of glycopeptide-based cancer vaccines. The membrane-associated mucin-1 (MUC1) has long been considered a target for immunotherapeutic and immunodiagnostic measures, since it is highly overexpressed and aberrantly O-glycosylated in most adenocarcinomas, including breast, ovarian, and pancreatic cancers. By using vaccines mimicking the glycosylation pattern of cancer-cells, it is possible to overcome tolerance in transgenic animals expressing the human MUC1 protein as a self-antigen providing important clues for an improved MUC1 vaccine design. The present review will highlight some of the potential applications of site-directed O-glycosylation.
Collapse
Affiliation(s)
- Mads Agervig Tarp
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, 6.4, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
9
|
Wang H, Julenius K, Hryhorenko J, Hagen FK. Systematic Analysis of proteoglycan modification sites in Caenorhabditis elegans by scanning mutagenesis. J Biol Chem 2007; 282:14586-97. [PMID: 17369258 DOI: 10.1074/jbc.m609193200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteoglycan modification is essential for development and early cell division in Caenorhabditis elegans. The specification of proteoglycan attachment sites is defined by the Golgi enzyme polypeptide xylosyltransferase. Here we evaluate the substrate specificity of this xylosyltransferase for its downstream targets by using reporter proteins containing proteoglycan modification sites from C. elegans syndecan/SDN-1. The N terminus of the SDN-1 contains a Ser-Gly proteoglycan site at Ser(71), flanked by potential mucin and N-glycosylation sites. However, Ser(71) was exclusively used as a proteoglycan site in vivo, based on mapping studies with a Ser(71) reporter protein, glycosyltransferase RNA interference, and co-expression of worm polypeptide xylosyltransferase. To elucidate the substrate requirements of this enzyme, a library of 42 point mutants of the Ser(71) reporter was expressed in tissue culture. The nematode proteoglycan modification site in SDN-1 required serine (not threonine), two flanking glycine residues (positions -1 and +1), and either one proximal acidic N-terminal amino acid (positions -4, -3, and -2) or a pair of distal N-terminal acidic amino acids (positions -6 and -5). C-terminal acidic amino acids, although present in many proteoglycan modification sites, had minimal impact on xylosylation at Ser(71). Proline inhibited glycosylation when present at -1, +1, or +2. The position of glycine, proline, and acidic amino acids allows the glycosylation machinery to discriminate between mucin and proteoglycan modification sites. The key residues that define proteoglycan modification sites also function with the Drosophila polypeptide xylosyltransferase, indicating that the specificity in the glycosylation process is evolutionarily conserved. Using a neural network method, a preliminary proteoglycan predictor has been developed.
Collapse
Affiliation(s)
- Huan Wang
- Department of Biochemistry and Biophysics, Center for Oral Biology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
10
|
Matsuba T, Suzuki Y, Tanaka Y. Association of the Rv0679c protein with lipids and carbohydrates in Mycobacterium tuberculosis/Mycobacterium bovis BCG. Arch Microbiol 2007; 187:297-311. [PMID: 17252234 DOI: 10.1007/s00203-006-0195-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 11/06/2006] [Indexed: 11/29/2022]
Abstract
The Rv0679c gene in Mycobacterium tuberculosis H37Rv encodes a protein with a predicted molecular mass of 16,586 Da consisting of 165 amino acids which contains a putative N-terminal signal sequence and a consensus lipoprotein-processing motif. Globomycin treatment, Triton X-114 separation and mass spectrometry analyses clarified a property of the Rv0679c protein as a lipoprotein. In addition, trifluoromethanesulphonic acid treatment of the lysate revealed an association of the recombinant Rv0679c protein with carbohydrates. The Rv0679c protein homolog of Mycobacterium bovis BCG was also expressed as the protein associated with lipids and carbohydrates. In Western blot analysis, each of the protein homolog and Lipoarabinomannan (LAM) was detected as a similar pattern by anti-Rv0679c and anti-LAM antibodies, respectively. Interestingly, the Rv0679c protein was detected in commercially available LAM purified from M. tuberculosis. Inhibition assay of LAM synthesis in M. bovis BCG by ethambutol showed an altered migration pattern of the Rv0679c protein to low molecular mass similar to that of LAM. The results suggest that the Rv0679c protein exists as a tight complex with LAM in M. tuberculosis/M. bovis BCG.
Collapse
Affiliation(s)
- Takashi Matsuba
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | | | | |
Collapse
|
11
|
Williams Z, Litscher ES, Jovine L, Wassarman PM. Polypeptide encoded by mouseZP3 exon-7 Is Necessary and Sufficient for binding of mouse sperm in vitro. J Cell Physiol 2006; 207:30-9. [PMID: 16245311 DOI: 10.1002/jcp.20532] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fertilization in mice is initiated by species-specific binding of sperm to mZP3, one of three mouse zona pellucida (ZP) glycoproteins. At nanomolar concentrations, purified egg mZP3 binds to acrosome-intact sperm heads and inhibits binding of sperm to eggs in vitro. Although several reports suggest that sperm recognize and bind to a region of mZP3 encoded by mZP3 exon-7 (so-called, sperm combining-site), this issue remains controversial. Here, exon-swapping and an IgG(Fc) fusion construct were used to further evaluate whether mZP3 exon-7 is essential for binding of sperm to mZP3. In one set of experiments, hamster ZP3 (hZP3) exon-6, -7, and -8 were individually replaced with the corresponding exon of mZP3. Stably transfected embryonal carcinoma (EC) cell lines carrying the recombinant genes were produced and secreted recombinant glycoprotein was purified and assayed for the ability to inhibit binding of sperm to eggs. While EC-hZP3, a recombinant form of hZP3 made by EC cells, is unable to inhibit binding of mouse sperm to eggs in vitro, the results suggest that substitution of mZP3 exon-7 for hZP3 exon-7, but not mZP3 exon-6 or -8, can impart inhibitory activity to EC-hZP3. In this context, a fusion construct consisting of human IgG(Fc) and mZP3 exon-7 and -8 was prepared, an EC cell line carrying the recombinant gene was produced, and secreted chimeric glycoprotein, called EC-huIgG(Fc)/mZP3(7), was purified and assayed. It was found that the chimeric glycoprotein binds specifically to plasma membrane overlying sperm heads to a similar extent as egg mZP3 and, at nanomolar concentrations, inhibits binding of mouse sperm to eggs in vitro. Collectively, these observations provide new evidence that sperm recognize and bind to a region of mZP3 polypeptide immediately downstream of its ZP domain that is encoded by mZP3 exon-7. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Zev Williams
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
12
|
Hang HC, Bertozzi CR. The chemistry and biology of mucin-type O-linked glycosylation. Bioorg Med Chem 2005; 13:5021-34. [PMID: 16005634 DOI: 10.1016/j.bmc.2005.04.085] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 04/26/2005] [Indexed: 02/04/2023]
Abstract
Mucin-type O-linked glycosylation is a fundamental post-translational modification that is involved in a variety of important biological processes. However, the lack of chemical tools to study mucin-type O-linked glycosylation has hindered our molecular understanding of O-linked glycans in many biological contexts. The review discusses the significance of mucin-type O-linked glycosylation initiated by the polypeptide N-acetylgalactosaminyltransferases in biology and development of chemical tools to study these enzymes and their substrates.
Collapse
Affiliation(s)
- Howard C Hang
- Department of Chemistry, University of California, Berkeley 94720-1460, USA.
| | | |
Collapse
|
13
|
Gerken TA, Tep C, Rarick J. Role of Peptide Sequence and Neighboring Residue Glycosylation on the Substrate Specificity of the Uridine 5'-Diphosphate−α-N-acetylgalactosamine:PolypeptideN-acetylgalactosaminyl Transferases T1 and T2: Kinetic Modeling of the Porcine and Canine Submaxillary Gland Mucin Tandem Repeats†. Biochemistry 2004; 43:9888-900. [PMID: 15274643 DOI: 10.1021/bi049178e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A large family of uridine 5'-diphosphate (UDP)-alpha-N-acetylgalactosamine (GalNAc):polypeptide N-acetylgalactosaminyl transferases (ppGalNAc Ts) initiates mucin-type O-glycan biosynthesis at serine and threonine. The peptide substrate specificities of individual family members are not well characterized or understood, leaving an inability to rationally predict or comprehend sites of O-glycosylation. Recently, a kinetic modeling approach demonstrated neighboring residue glycosylation as a major factor modulating the O-glycosylation of the porcine submaxillary gland mucin 81 residue tandem repeat by ppGalNAc T1 and T2 [Gerken et al. (2002) J. Biol. Chem. 277, 49850-49862]. To confirm the general applicability of this model and its parameters, the ppGalNAc T1 and T2 glycosylation kinetics of the 80+ residue tandem repeat from the canine submaxillary gland mucin was obtained and characterized. To reproduce the glycosylation patterns of both mucins (comprising 50+ serine/threonine residues), specific effects of neighboring peptide sequence, in addition to the previously described effects of neighboring residue glycosylation, were required of the model. Differences in specificity of the two transferases were defined by their sensitivities to neighboring proline and nonglycosylated hydroxyamino acid residues, from which a ppGalNAc T2 motif was identified. Importantly, the model can approximate the previously reported ppGalNAc T2 glycosylation kinetics of the IgA1 hinge domain peptide [Iwasaki, et al. (2003) J. Biol. Chem. 278, 5613-5621], further validating both the approach and the ppGalNAc T2 positional weighting parameters. The characterization of ppGalNAc transferase specificity by this approach may prove useful for the search for isoform-specific substrates, the creation of isoform-specific inhibitors, and the prediction of mucin-type O-glycosylation sites.
Collapse
Affiliation(s)
- Thomas A Gerken
- W. A. Bernbaum Center for Cystic Fibrosis Research, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4948, USA.
| | | | | |
Collapse
|
14
|
Abstract
The four essential building blocks of cells are proteins, nucleic acids, lipids, and glycans. Also referred to as carbohydrates, glycans are composed of saccharides that are typically linked to lipids and proteins in the secretory pathway. Glycans are highly abundant and diverse biopolymers, yet their functions have remained relatively obscure. This is changing with the advent of genetic reagents and techniques that in the past decade have uncovered many essential roles of specific glycan linkages in living organisms. Glycans appear to modulate biological processes in the development and function of multiple physiologic systems, in part by regulating protein-protein and cell-cell interactions. Moreover, dysregulation of glycan synthesis represents the etiology for a growing number of human genetic diseases. The study of glycans, known as glycobiology, has entered an era of renaissance that coincides with the acquisition of complete genome sequences for multiple organisms and an increased focus upon how posttranslational modifications to protein contribute to the complexity of events mediating normal and disease physiology. Glycan production and modification comprise an estimated 1% of genes in the mammalian genome. Many of these genes encode enzymes termed glycosyltransferases and glycosidases that reside in the Golgi apparatus where they play the major role in constructing the glycan repertoire that is found at the cell surface and among extracellular compartments. We present a review of the recently established functions of glycan structures in the context of mammalian genetic studies focused upon the mouse and human species. Nothing tends so much to the advancement of knowledge as the application of a new instrument. The native intellectual powers of men in different times are not so much the causes of the different success of their labours, as the peculiar nature of the means and artificial resources in their possession. T. Hager: Force of Nature (1)
Collapse
Affiliation(s)
- John B Lowe
- Department of Pathology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
15
|
Boja ES, Hoodbhoy T, Fales HM, Dean J. Structural characterization of native mouse zona pellucida proteins using mass spectrometry. J Biol Chem 2003; 278:34189-202. [PMID: 12799386 DOI: 10.1074/jbc.m304026200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The zona pellucida is an extracellular matrix consisting of three glycoproteins that surrounds mammalian eggs and mediates fertilization. The primary structures of mouse ZP1, ZP2, and ZP3 have been deduced from cDNA. Each has a predicted signal peptide and a transmembrane domain from which an ectodomain must be released. All three zona proteins undergo extensive co- and post-translational modifications important for secretion and assembly of the zona matrix. In this report, native zonae pellucidae were isolated and structural features of individual zona proteins within the mixture were determined by high resolution electrospray mass spectrometry. Complete coverage of the primary structure of native ZP3, 96% of ZP2, and 56% of ZP1, the least abundant zona protein, was obtained. Partial disulfide bond assignments were made for each zona protein, and the size of the processed, native protein was determined. The N termini of ZP1 and ZP3, but not ZP2, were blocked by cyclization of glutamine to pyroglutamate. The C termini of ZP1, ZP2, and ZP3 lie upstream of a dibasic motif, which is part of, but distinct from, a proprotein convertase cleavage site. The zona proteins are highly glycosylated and 4/4 potential N-linkage sites on ZP1, 6/6 on ZP2, and 5/6 on ZP3 are occupied. Potential O-linked carbohydrate sites are more ubiquitous, but less utilized.
Collapse
Affiliation(s)
- Emily S Boja
- Laboratory of Biophysical Chemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
16
|
Williams Z, Litscher ES, Wassarman PM. Conversion of Ser to Thr residues at the sperm combining-site of mZP3 does not affect sperm receptor activity. Biochem Biophys Res Commun 2003; 301:813-8. [PMID: 12589785 DOI: 10.1016/s0006-291x(03)00044-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mammalian eggs are surrounded by a thick extracellular coat, the zona pellucida, that is composed of three glycoproteins, called ZP1-3. Sperm recognize and bind to O-linked oligosaccharides attached to Ser-332 and Ser-334 at the sperm combining-site of mouse ZP3 (mZP3). Mutation of either of these Ser residues to a small aliphatic amino acid results in the loss of sperm binding to mZP3 in vitro. Here, we converted both Ser-332 and Ser-334 to Thr residues by site-directed mutagenesis. Recombinant mutant glycoprotein made by stably transfected EC cells was purified and then assayed for its ability to inhibit binding of sperm to ovulated eggs in vitro. Results of these experiments suggest that Thr residues can replace the two evolutionarily conserved Ser residues as acceptors for essential O-linked oligosaccharides at the sperm combining-site of mZP3 without affecting the glycoprotein's sperm receptor activity.
Collapse
Affiliation(s)
- Zev Williams
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
17
|
Gerken TA, Zhang J, Levine J, Elhammer A. Mucin core O-glycosylation is modulated by neighboring residue glycosylation status. Kinetic modeling of the site-specific glycosylation of the apo-porcine submaxillary mucin tandem repeat by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases T1 and T2. J Biol Chem 2002; 277:49850-62. [PMID: 12397077 DOI: 10.1074/jbc.m205851200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influence of peptide sequence and environment on the initiation and elongation of mucin O-glycosylation is not well understood. The in vivo glycosylation pattern of the porcine submaxillary gland mucin (PSM) tandem repeat containing 31 O-glycosylation sites (Gerken, T. A., Gilmore, M., and Zhang, J. (2002) J. Biol. Chem. 277, 7736-7751) reveals a weak inverse correlation with hydroxyamino acid density (and by inference the density of glycosylation) with the extent of GalNAc glycosylation and core-1 substitution. We now report the time course of the in vitro glycosylation of the apoPSM tandem repeat by recombinant UDP-GalNAc:polypeptide alpha-GalNAc transferases (ppGalNAc transferase) T1 and T2 that confirm these findings. A wide range of glycosylation rates are found, with several residues showing apparent plateaus in glycosylation. An adjustable kinetic model that reduces the first-order rate constants proportional to neighboring glycosylation status, plus or minus three residues of the site of glycosylation, was found to reasonably reproduce the experimental rate data for both transferases, including apparent plateaus in glycosylation. The unique, transferase-specific, positional weighting constants reveal information on the peptide/glycopeptide recognition site for each transferase. Both transferases displayed high sensitivities to neighboring Ser/Thr glycosylation, whereas ppGalNAc T2 displayed additional high sensitivities to the presence of nonglycosylated Ser/Thr residues. This is the first demonstration of the ability to model mucin O-glycosylation kinetics, confirming that under the appropriate conditions neighboring glycosylation status can be a significant factor modulating the first step of mucin O-glycan biosynthesis.
Collapse
Affiliation(s)
- Thomas A Gerken
- Departments of Pediatrics and Biochemistry, W. A. Bernbaum Center for Cystic Fibrosis Research, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
18
|
Garcia-Campayo V, Sugahara T, Boime I. Unmasking a new recognition signal for O-linked glycosylation in the chorionic gonadotropin beta subunit. Mol Cell Endocrinol 2002; 194:63-70. [PMID: 12242028 DOI: 10.1016/s0303-7207(02)00189-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
hCGbeta subunit is distinguished among the other members of the family of the glycoprotein hormones by the presence of four serine O-linked oligosaccharide units in the last 25 amino acids. This carboxy terminal peptide (CTP) influences the intracellular behavior of the subunit and is important for maintaining the biological half-life of hCG. To examine how the O-linked oligosaccharides affect the metabolic behavior of hCG, we generated a CGbeta mutant devoid of the native O-linked acceptor sites. An alternative site not used in the native subunit was glycosylated and the structure of this oligosaccharide differed from the wild-type O-linked carbohydrates. This glycosylation occurred at serine 130 in the CTP and in contrast to the wild type O-linked oligosaccharides, sialic acid is a major component of the alternatively linked carbohydrate. The data show that deleting the native acceptor sites exposes a new site for O-glycosylation and promotes a differential intracellular processing of the beta subunit. These results support the hypothesis that the CTP participates in the folding of the newly synthesized subunit, which is manifested by the post-translational changes reported here.
Collapse
Affiliation(s)
- Vicenta Garcia-Campayo
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
19
|
Ten Hagen KG, Tran DT. A UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase is essential for viability in Drosophila melanogaster. J Biol Chem 2002; 277:22616-22. [PMID: 11925446 DOI: 10.1074/jbc.m201807200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the first demonstration that the activity of a member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase gene family is necessary for viability in Drosophila melanogaster. Expression of the wild-type recombinant pgant35A gene in COS7 cells resulted in in vitro activity against peptide and glycopeptide substrates, demonstrating that this gene encodes a biochemically active transferase. Previous mutagenesis studies identified recessive lethal mutations that were rescued by a genomic fragment containing the pgant35A gene; however, the presence of additional open reading frames within this fragment left open the possibility that another gene was responsible for rescue of the observed lethality. Here, we have determined the molecular nature of the mutations in three independent mutant alleles. Two of the mutant alleles contain premature stop codons within the coding region of pgant35A. The third mutant contains an arginine to tryptophan amino acid change, which, when expressed in COS7 cells, resulted in a dramatic reduction of transferase activity in vitro. PCR amplification of this gene from Drosophila cDNA panels and Northern analysis revealed that it is expressed throughout embryonic, larval, and pupal stages as well as in adult males and females. This study provides the first direct evidence for the involvement of a member of this conserved multigene family in eukaryotic development and viability.
Collapse
Affiliation(s)
- Kelly G Ten Hagen
- Section of Biological Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
20
|
Silverman HS, Parry S, Sutton-Smith M, Burdick MD, McDermott K, Reid CJ, Batra SK, Morris HR, Hollingsworth MA, Dell A, Harris A. In vivo glycosylation of mucin tandem repeats. Glycobiology 2001; 11:459-71. [PMID: 11445551 DOI: 10.1093/glycob/11.6.459] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The biochemical and biophysical properties of mucins are largely determined by extensive O-glycosylation of serine- and threonine-rich tandem repeat (TR) domains. In a number of human diseases aberrant O-glycosylation is associated with variations in the properties of the cell surface-associated and secreted mucins. To evaluate in vivo the O-glycosylation of mucin TR domains, we generated recombinant chimeric mucins with TR sequences from MUC2, MUC4, MUC5AC, or MUC5B, which were substituted for the native TRs of epitope-tagged MUC1 protein (MUC1F). These hybrid mucins were extensively O-glycosylated and showed the expected association with the cell surface and release into culture media. The presence of different TR domains within the chimeric mucins appears to have limited influence on their posttranslational processing. Alterations in glycosylation were detailed by fast atom bombardment mass spectrometry and reactivity with antibodies against particular blood-group and tumor-associated carbohydrate antigens. Future applications of these chimeras will include investigations of mucin posttranslational modification in the context of disease.
Collapse
Affiliation(s)
- H S Silverman
- Paediatric Molecular Genetics, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wassarman PM, Litscher ES. Towards the molecular basis of sperm and egg interaction during mammalian fertilization. Cells Tissues Organs 2001; 168:36-45. [PMID: 11114585 DOI: 10.1159/000016804] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the past 2 decades, a number of genes have been cloned from mammals which encode polypeptides that participate in the process of fertilization. Among these are glycoproteins ZP1-3 that constitute the zona pellucida of eggs from mice to human beings. In mice, one of these glycoproteins, mZP3, acts as a primary sperm receptor and acrosome reaction-inducer. The evidence suggests that acrosome-intact sperm recognize and bind to a specific class of mZP3 oligosaccharides present on two serine residues (O-linked) located near the carboxy-terminus of the polypeptide. Mutagenesis of either of these residues results in the synthesis of an inactive form of the receptor. Therefore, mammalian fertilization is a carbohydrate-mediated event. It is possible that changes in the structure of these oligosaccharides (e.g., composition, sequence, linkages, modifications, etc.) could account for species-specific binding of sperm to eggs. Stably transfected somatic cells, null mutant animals, and DNA constructs are now available to test this possibility both in vivo and in vitro.
Collapse
Affiliation(s)
- P M Wassarman
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | |
Collapse
|
22
|
Swanson WJ, Yang Z, Wolfner MF, Aquadro CF. Positive Darwinian selection drives the evolution of several female reproductive proteins in mammals. Proc Natl Acad Sci U S A 2001; 98:2509-14. [PMID: 11226269 PMCID: PMC30168 DOI: 10.1073/pnas.051605998] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2000] [Accepted: 12/20/2000] [Indexed: 11/18/2022] Open
Abstract
Rapid evolution driven by positive Darwinian selection is a recurrent theme in male reproductive protein evolution. In contrast, positive selection has never been demonstrated for female reproductive proteins. Here, we perform phylogeny-based tests on three female mammalian fertilization proteins and demonstrate positive selection promoting their divergence. Two of these female fertilization proteins, the zona pellucida glycoproteins ZP2 and ZP3, are part of the mammalian egg coat. Several sites identified in ZP3 as likely to be under positive selection are located in a region previously demonstrated to be involved in species-specific sperm-egg interaction, suggesting the selective pressure is related to male-female interaction. The results provide long-sought evidence for two evolutionary hypotheses: sperm competition and sexual conflict.
Collapse
Affiliation(s)
- W J Swanson
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853-2703, USA.
| | | | | | | |
Collapse
|
23
|
Pabon A, Chan KW, Sui JL, Wu X, Logothetis DE, Thornhill WB. Glycosylation of GIRK1 at Asn119 and ROMK1 at Asn117 has different consequences in potassium channel function. J Biol Chem 2000; 275:30677-82. [PMID: 10889209 DOI: 10.1074/jbc.m005338200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
GIRK (G protein-gated inward rectifier K(+) channel) proteins play critical functional roles in heart and brain physiology. Using antibodies directed to either GIRK1 or GIRK4, site-directed mutagenesis, and specific glycosidases, we have investigated the effects of glycosylation in the biosynthesis and heteromerization of these proteins expressed in oocytes. Both GIRK1 and GIRK4 have one extracellular consensus N-glycosylation site. Using chimeras between GIRK1 and GIRK4 as well as a GIRK1 N-glycosylation mutant, we report that GIRK1 was glycosylated at Asn(119), whereas GIRK4 was not glycosylated at Asn(132). GIRK1 membrane-spanning domain 1 was required for optimal glycosylation at Asn(119) because a chimera that contained GIRK4 membrane-spanning domain 1 significantly reduced the addition of a carbohydrate structure at this site. This finding may partly account for the reason that GIRK4 is not glycosylated at Asn(132), either as a homomer or when coexpressed with GIRK1. When the GIRK1(N119Q) mutant was coexpressed with GIRK4, the biophysical properties of the heteromeric channel and the magnitude of the agonist-induced currents were similar to those of controls. Thus, N-glycosylation of GIRK1 at Asn(119) does not appear to affect its physical association with GIRK4, the routing of the heteromer to the cell surface, or heteromeric channel function, unlike the dramatic functional effects of N-glycosylation of ROMK1 at Asn(117) (Schwalbe, R. A., Wang, Z., Wible, B. A., and Brown, A. M. (1995) J. Biol. Chem. 270, 15336-15340).
Collapse
Affiliation(s)
- A Pabon
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
24
|
Herrmann JL, Delahay R, Gallagher A, Robertson B, Young D. Analysis of post-translational modification of mycobacterial proteins using a cassette expression system. FEBS Lett 2000; 473:358-62. [PMID: 10818240 DOI: 10.1016/s0014-5793(00)01553-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A recombinant expression system was developed to analyse sequence determinants involved in O-glycosylation of proteins in mycobacteria. By expressing peptide sequences corresponding to known glycosylation sites within a chimeric lipoprotein construct, amino acids flanking modified threonine residues were found to have an important influence on glycosylation. The expression system was used to screen mycobacterial sequences selected using a neural network (NetOglyc) trained on eukaryotic O-glycoproteins. Evidence of glycosylation was obtained for eight of 11 proteins tested. The results suggest that sites involved in O-glycosylation of mycobacterial and eukaryotic proteins share similar structural features.
Collapse
Affiliation(s)
- J L Herrmann
- Department of Infectious Diseases and Microbiology, Imperial College School of Medicine, St. Mary's Campus, Norfolk Place, W2 1PG, London, UK.
| | | | | | | | | |
Collapse
|
25
|
Gupta R, Jung E, Gooley AA, Williams KL, Brunak S, Hansen J. Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks. Glycobiology 1999; 9:1009-22. [PMID: 10521537 DOI: 10.1093/glycob/9.10.1009] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dictyostelium discoideum has been suggested as a eukaryotic model organism for glycobiology studies. Presently, the characteristics of acceptor sites for the N-acetylglucosaminyl-transferases in Dictyostelium discoideum, which link GlcNAc in an alpha linkage to hydroxyl residues, are largely unknown. This motivates the development of a species specific method for prediction of O-linked GlcNAc glycosylation sites in secreted and membrane proteins of D. discoideum. The method presented here employs a jury of artificial neural networks. These networks were trained to recognize the sequence context and protein surface accessibility in 39 experimentally determined O-alpha-GlcNAc sites found in D. discoideum glycoproteins expressed in vivo. Cross-validation of the data revealed a correlation in which 97% of the glycosylated and nonglycosylated sites were correctly identified. Based on the currently limited data set, an abundant periodicity of two (positions-3, -1, +1, +3, etc.) in Proline residues alternating with hydroxyl amino acids was observed upstream and downstream of the acceptor site. This was a consequence of the spacing of the glycosylated residues themselves which were peculiarly found to be situated only at even positions with respect to each other, indicating that these may be located within beta-strands. The method has been used for a rapid and ranked scan of the fraction of the Dictyostelium proteome available in public databases, remarkably 25-30% of which were predicted glycosylated. The scan revealed acceptor sites in several proteins known experimentally to be O-glycosylated at unmapped sites. The available proteome was classified into functional and cellular compartments to study any preferential patterns of glycosylation. A sequence based prediction server for GlcNAc O-glycosylations in D. discoideum proteins has been made available through the WWW at http://www.cbs.dtu.dk/services/DictyOGlyc/ and via E-mail to DictyOGlyc@cbs.dtu.dk.
Collapse
Affiliation(s)
- R Gupta
- Department of Biotechnology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
26
|
Müller S, Alving K, Peter-Katalinic J, Zachara N, Gooley AA, Hanisch FG. High density O-glycosylation on tandem repeat peptide from secretory MUC1 of T47D breast cancer cells. J Biol Chem 1999; 274:18165-72. [PMID: 10373415 DOI: 10.1074/jbc.274.26.18165] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The site-specific O-glycosylation of MUC1 tandem repeat peptides from secretory mucin of T47D breast cancer cells was analyzed. After affinity isolation on immobilized BC3 antibody, MUC1 was partially deglycosylated by enzymatic treatment with alpha-sialidase/beta-galactosidase and fragmented by proteolytic cleavage with the Arg-C-specific endopeptidase clostripain. The PAP20 glycopeptides were isolated by reversed phase high pressure liquid chromatography and subjected to the structural analyses by quadrupole time-of-flight electrospray ionization mass spectrometry and to the sequencing by Edman degradation. All five positions of the repeat peptide were revealed as O-glycosylation targets in the tumor cell, including the Thr within the DTR motif. The degree of substitution was estimated to average 4.8 glycans per repeat, which compares to 2.6 glycosylated sites per repeat for the mucin from milk (Müller, S., Goletz, S., Packer, N., Gooley, A. A., Lawson, A. M., and Hanisch, F.-G. (1997) J. Biol. Chem. 272, 24780-24793). In addition to a modification by glycosylation, the immunodominant DTR motif on T47D-MUC1 is altered by amino acid replacements (PAPGSTAPAAHGVTSAPESR), which were revealed in about 50% of PAP20 peptides. The high incidence of these replacements and their detection also in other cancer cell lines imply that the conserved tandem repeat domain of MUC1 is polymorphic with respect to the peptide sequence.
Collapse
Affiliation(s)
- S Müller
- Institute of Biochemistry, Medical Faculty of the University, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Iida S, Takeuchi H, Hassan H, Clausen H, Irimura T. Incorporation of N-acetylgalactosamine into consecutive threonine residues in MUC2 tandem repeat by recombinant human N-acetyl-D-galactosamine transferase-T1, T2 and T3. FEBS Lett 1999; 449:230-4. [PMID: 10338138 DOI: 10.1016/s0014-5793(99)00445-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An oligopeptide containing three consecutive Thr residues mimicking the tandem repeat portion of MUC2 (PTTTPLK) was investigated for the acceptor specificity to UDP-N-acetyl-D-galactosamine:peptide N-acetylgalactosaminyltransferase isozymes, UDP-N-acetyl-D-galactosamine:peptide N-acetylgalactosaminyltransferase-T1, T2 and T3. The enzymatic reaction products were fractionated by the reversed-phase high performance liquid chromatography, then characterized by matrix-assisted laser desorption ionization time of flight mass spectrometry and by a peptide sequencing analysis. A maximum of two, one or three N-acetyl-D-galactosamine residues was transferred by UDP-N-acetyl-D-galactosamine:peptide N-acetylgalactosaminyltransferase-T1, T2 or T3, respectively. The preferential orders of N-acetyl-D-galactosamine incorporation were Thr-2, then Thr-4 for UDP-N-acetyl-D-galactosamine:peptide N-acetylgalactosaminyltransferase-T1, Thr-2 for UDP-N-acetyl-D-galactosamine:peptide N-acetylgalactosaminyltransferase-T2 and Thr4, Thr-3, then Thr-2 for UDP-N-acetyl-D-galactosamine:peptide N-acetylgalactosaminyltransferase-T3.
Collapse
Affiliation(s)
- S Iida
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
28
|
Hanisch FG, Müller S, Hassan H, Clausen H, Zachara N, Gooley AA, Paulsen H, Alving K, Peter-Katalinic J. Dynamic epigenetic regulation of initial O-glycosylation by UDP-N-Acetylgalactosamine:Peptide N-acetylgalactosaminyltransferases. site-specific glycosylation of MUC1 repeat peptide influences the substrate qualities at adjacent or distant Ser/Thr positions. J Biol Chem 1999; 274:9946-54. [PMID: 10187769 DOI: 10.1074/jbc.274.15.9946] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In search of possible epigenetic regulatory mechanisms ruling the initiation of O-glycosylation by polypeptide:N-acetylgalactosaminyltransferases, we studied the influences of mono- and disaccharide substituents of glycopeptide substrates on the site-specific in vitro addition of N-acetylgalactosamine (GalNAc) residues by recombinant GalNAc-Ts (rGalNAc-T1, -T2, and -T3). The substrates were 20-mers (HGV20) or 21-mers (AHG21) of the MUC1 tandem repeat peptide carrying GalNAcalpha or Galbeta1-3GalNAcalpha at different positions. The enzymatic products were analyzed by MALDI mass spectrometry and Edman degradation for the number and sites of incorporated GalNAc. Disaccharide placed on the first position of the diad Ser-16-Thr-17 prevents glycosylation of the second, whereas disaccharide on the second position of Ser-16-Thr-17 and Thr-5-Ser-6 does not prevent GalNAc addition to the first. Multiple disaccharide substituents suppress any further glycosylation at the remaining sites. Glycosylation of Ser-16 is negatively affected by glycosylation at position -6 (Thr-10) or -10 (Ser-6) and is inhibited by disaccharide at position -11 (Thr-5), suggesting the occurrence of glycosylation-induced effects on distant acceptor sites. Kinetic studies revealed the accelerated addition of GalNAc to Ser-16 adjacent to GalNAc-substituted Thr-17, demonstrating positive regulatory effects induced by glycosylation on the monosaccharide level. These antagonistic effects of mono- and disaccharides could underlie a postulated regulatory mechanism.
Collapse
Affiliation(s)
- F G Hanisch
- Institute of Biochemistry, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Elhammer AP, Kézdy FJ, Kurosaka A. The acceptor specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycoconj J 1999; 16:171-80. [PMID: 10612416 DOI: 10.1023/a:1026465232149] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The in vitro and in vivo specificity of the family of peptide:N-acetylgalactosaminyltransferases (GalNAcT) is analyzed on the basis of the reactivity and/or inhibitory activity of peptides and protein segments. The transferases appear to be multi-substrate enzymes with extended active sites containing a least nine subsites that interact cooperatively with a linear segment of at least nine amino acid residues on the acceptor polypeptide. Functional acceptor sites are located on the surface of the protein and extended conformations (beta-strand conformation) are preferred. The acceptor specificity of GalNAc-T can be predicted from the primary structure of the acceptor peptide with an accuracy of 70 to 80%. The same GalNAc-T enzymes catalyze the glycosylation of both serine and threonine residues. The higher in vitro catalytic efficiency toward threonine versus serine is the result of enhanced binding as well as increased reaction velocity, both effects being the result of steric interactions between the active site of the enzyme and the methyl group of threonine. Results from substrate binding studies suggest that GalNAc-T catalyzed transfer proceeds via an ordered sequential mechanism.
Collapse
|
30
|
Bennett EP, Hassan H, Mandel U, Mirgorodskaya E, Roepstorff P, Burchell J, Taylor-Papadimitriou J, Hollingsworth MA, Merkx G, van Kessel AG, Eiberg H, Steffensen R, Clausen H. Cloning of a human UDP-N-acetyl-alpha-D-Galactosamine:polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem 1998; 273:30472-81. [PMID: 9804815 DOI: 10.1074/jbc.273.46.30472] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A fourth human UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, designated GalNAc-T4, was cloned and expressed. The genomic organization of GalNAc-T4 is distinct from GalNAc-T1, -T2, and -T3, which contain multiple coding exons, in that the coding region is contained in a single exon. GalNAc-T4 was placed at human chromosome 12q21.3-q22 by in situ hybridization and linkage analysis. GalNAc-T4 expressed in Sf9 cells or in a stably transfected Chinese hamster ovary cell line exhibited a unique acceptor substrate specificity. GalNAc-T4 transferred GalNAc to two sites in the MUC1 tandem repeat sequence (Ser in GVTSA and Thr in PDTR) using a 24-mer glycopeptide with GalNAc residues attached at sites utilized by GalNAc-T1, -T2, and -T3 (TAPPAHGVTSAPDTRPAPGSTAPPA, GalNAc attachment sites underlined). Furthermore, GalNAc-T4 showed the best kinetic properties with an O-glycosylation site in the P-selectin glycoprotein ligand-1 molecule. Northern analysis of human organs revealed a wide expression pattern. Immunohistology with a monoclonal antibody showed the expected Golgi-like localization in salivary glands. A single base polymorphism, G1516A (Val to Ile), was identified (allele frequency 34%). The function of GalNAc-T4 complements other GalNAc-transferases in O-glycosylation of MUC1 showing that glycosylation of MUC1 is a highly ordered process and changes in the repertoire or topology of GalNAc-transferases will result in altered pattern of O-glycan attachments.
Collapse
Affiliation(s)
- E P Bennett
- Faculty of Health Sciences, School of Dentistry, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
de Haan CA, Roestenberg P, de Wit M, de Vries AA, Nilsson T, Vennema H, Rottier PJ. Structural requirements for O-glycosylation of the mouse hepatitis virus membrane protein. J Biol Chem 1998; 273:29905-14. [PMID: 9792708 DOI: 10.1074/jbc.273.45.29905] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse hepatitis virus (MHV) membrane (M) protein contains only O-linked oligosaccharides. We have used this protein as a model to study the structural requirements for O-glycosylation. We show that MHV M is modified by the addition of a single oligosaccharide side chain at the cluster of 4 hydroxylamino acids present at its extreme amino terminus and identified Thr at position 5 as the functional acceptor site. The hydroxylamino acid cluster, which is quite conserved among O-glycosylated coronavirus M proteins, is not in itself sufficient for O-glycosylation. Downstream amino acids are required to introduce a functional O-glycosylation site into a foreign protein. In a mutagenic analysis O-glycosylation was found to be sensitive to some particular changes but no unique sequence motif for O-glycosylation could be identified. Expression of mutant M proteins in cells revealed that substitution of any 1 residue was tolerated, conceivably due to the occurrence of multiple UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc transferases). Indeed, MHV M served as a substrate for GalNac-T1, -T2, and -T3, as was demonstrated using an in situ glycosylation assay based on the co-expression of endoplasmic reticulum-retained forms of the GalNAc transferases with endoplasmic reticulum-resident MHV M mutants. The GalNAc transferases were found to have largely overlapping, but distinct substrate specificities. The requirement for a threonine as acceptor rather than a serine residue and the requirement for a proline residue three positions downstream of the acceptor site were found to be distinctive features.
Collapse
Affiliation(s)
- C A de Haan
- Institute of Virology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, and the Institute of Biomembranes, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Ten Hagen KG, Hagen FK, Balys MM, Beres TM, Van Wuyckhuyse B, Tabak LA. Cloning and expression of a novel, tissue specifically expressed member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family. J Biol Chem 1998; 273:27749-54. [PMID: 9765313 DOI: 10.1074/jbc.273.42.27749] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning and expression of the fifth member of the mammalian UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (ppGaNTase) family. Degenerate polymerase chain reaction amplification and hybridization screening of a rat sublingual gland (RSLG) cDNA library were used to identify a novel isoform termed ppGaNTase-T5. Conceptual translation of the cDNA reveals a uniquely long stem region not observed for other members of this enzyme family. Recombinant proteins expressed transiently in COS7 cells displayed transferase activity in vitro. Relative activity and substrate preferences of ppGaNTase-T5 were compared with previously identified isoforms (ppGaNTase-T1, -T3, and -T4); ppGaNTase-T5 and -T4 glycosylated a restricted subset of peptides whereas ppGaNTase-T1 and -T3 glycosylated a broader range of substrates. Northern blot analysis revealed that ppGaNTase-T5 is expressed in a highly tissue-specific manner; abundant expression was seen in the RSLG, with lesser amounts of message in the stomach, small intestine, and colon. Therefore, the pattern of expression of ppGaNTase-T5 is the most restricted of all isoforms examined thus far. The identification of this novel isoform underscores the diversity and complexity of the family of genes controlling O-linked glycosylation.
Collapse
Affiliation(s)
- K G Ten Hagen
- Center for Oral Biology, Rochester Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
33
|
Kirnarsky L, Nomoto M, Ikematsu Y, Hassan H, Bennett EP, Cerny RL, Clausen H, Hollingsworth MA, Sherman S. Structural analysis of peptide substrates for mucin-type O-glycosylation. Biochemistry 1998; 37:12811-7. [PMID: 9737858 DOI: 10.1021/bi981034a] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structures of three nine-residue peptide substrates that show differential kinetics of O-linked glycosylation catalyzed by distinct recombinant uridine diphosphate-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc transferases) were investigated by NMR spectroscopy. A combined use of NMR data, molecular modeling techniques, and kinetic data may explain some structural features required for O-glycosylation of these substrates by two GalNAc transferases, GalNAc-T1 and GalNAc-T3. In the proposed model, the formation of an extended backbone structure at the threonine residue to be glycosylated is likely to enhance the O-glycosylation process. The segment of extended structure includes the reactive residue in a beta-like or an inverse gamma-turn conformation and flanking residues in a beta-strand conformation. The hydroxyl group of the threonine to be glycosylated is exposed to solvent, and both the amide proton and carbonyl oxygen of the peptide backbone are exposed to solvent. The exchange rate of the amide proton for the reactive threonine correlated well with substrate efficiency, leading us to hypothesize that this proton may serve as a donor for hydrogen bonding with the active site of the enzyme. The oxygens of the residue to be glycosylated and several flanking residues may also be involved in a set of hydrogen bonds with the GalNAc-T1 and -T3 transferases.
Collapse
Affiliation(s)
- L Kirnarsky
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-6805, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Satyanarayana J, Gururaja TL, Naganagowda GA, Ramasubbu N, Levine MJ. A concise methodology for the stereoselective synthesis of O-glycosylated amino acid building blocks: complete 1H NMR assignments and their application in solid-phase glycopeptide synthesis. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 52:165-79. [PMID: 9774229 DOI: 10.1111/j.1399-3011.1998.tb01473.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile strategy for the stereoselective synthesis of suitably protected O-glycosylated amino acid building blocks, namely, Nalpha-Fmoc-Ser-[Ac4-beta-D-Gal-(1-3)-Ac2-alpha or beta-D-GalN3]-OPfp and Nalpha-Fmoc-Thr-[Ac4-beta-D-Gal-(1-3)-Ac2-alpha or beta-D-GalN3]-OPfp is described. What is new and novel in this report is that Koenigs-Knorr type glycosylation of an aglycon serine/threonine derivative (i.e. Nalpha-Fmoc-Ser-OPfp or Nalpha-Fmoc-Thr-OPfp) with protected beta-D-Gal(1-3)-D-GalN3 synthon mediated by silver salts resulted in only alpha- and/or beta-isomers in excellent yields under two different reaction conditions. The subtle differences in stereoselectivity were demonstrated clearly when glycosylation was carried out using only AgClO4 at -40 degrees C which afforded a-isomer in a quantitative yield (alpha:beta = 5:1). On the other hand, the beta-isomer was formed exclusively when the reaction was performed in the presence of Ag2CO3/AgClO4 at room temperature. A complete assignment of 1H resonances to individual sugar ring protons and the characteristic anomeric alpha-1 H and beta-1 H in Ac4Galbeta(1-3)Ac2GalN3 alpha and/or beta linked to Ser/Thr building blocks was accomplished unequivocally by two-dimensional double-quantum filtered correlated spectroscopy and nuclear Overhauser enhancement and exchange spectroscopy NMR experiments. An unambiguous structural characterization and documentation of chemical shifts, including the coupling constants for all the protons of the aforementioned alpha- and beta-isomers of the O-glycosylated amino acid building blocks carrying protected beta-D-Gal(1-3)-D-GalN3, could serve as a template in elucidating the three-dimensional structure of glycoproteins. The synthetic utility of the building blocks and versatility of the strategy was exemplified in the construction of human salivary mucin (MUC7)-derived, O-linked glycopeptides with varied degrees of glycosylation by solid-phase Fmoc chemistry. Fmoc/tert-butyl-based protecting groups were used for the peptidic moieties in conjunction with acetyl sugar protection. The transformation of the 2-azido group into the acetamido derivative was carried out with thioacetic acid on the polymer-bound glycopeptides before the cleavage step. After cleaving the glycopeptide from the resin, the acetyl groups used for sugar OH-protection were removed with sodium methoxide in methanol. Finally, the glycopeptides were purified by reversed-phase high-performance liquid chromatography and their integrity was confirmed by proton NMR as well as by mass spectral analysis. Secondary structure analysis by circular dichroism of both the glycosylated and nonglycosylated peptides revealed that carbohydrates did not exert any profound structural effect on the peptide backbone conformation.
Collapse
Affiliation(s)
- J Satyanarayana
- Department of Oral Biology and Dental Research Institute, State University of New York at Buffalo, 14214-3092, USA
| | | | | | | | | |
Collapse
|
35
|
Chen J, Litscher ES, Wassarman PM. Inactivation of the mouse sperm receptor, mZP3, by site-directed mutagenesis of individual serine residues located at the combining site for sperm. Proc Natl Acad Sci U S A 1998; 95:6193-7. [PMID: 9600940 PMCID: PMC27623 DOI: 10.1073/pnas.95.11.6193] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/1998] [Accepted: 03/18/1998] [Indexed: 02/07/2023] Open
Abstract
To initiate fertilization, mouse sperm bind to Ser- (O-) linked oligosaccharides located at the sperm combining site of zona pellucida glycoprotein mZP3. Apparently, the oligosaccharides are present on one or more of five Ser residues clustered in the carboxyl-terminal region of the mZP3 polypeptide. Here, each of the Ser residues, as well as an intervening Asn residue, was converted to a small, nonhydroxy amino acid by site-directed mutagenesis. Mouse embryonal carcinoma (EC) cells were then stably transfected with the wild-type and mutated mZP3 genes. In each case, transfected cells synthesized and secreted recombinant EC-mZP3 into the culture medium. The glycoproteins were partially purified and assayed for their ability to inhibit binding of sperm to ovulated eggs in vitro. As compared with wild-type EC-mZP3, mutations of Ser-329, Ser-331, or Ser-333 had no effect on sperm receptor activity. Mutation of Asn-330, a potential N-linked glycosylation site, also had no effect on sperm receptor activity. On the other hand, mutation of either Ser-332 or Ser-334, or mutation of Ser-332, Ser-333, and Ser-334, resulted in complete inactivation of EC-mZP3 as a sperm receptor. These results suggest that Ser-332 and Ser-334, residues conserved in mouse, hamster, and human ZP3, are essential for sperm receptor activity.
Collapse
Affiliation(s)
- J Chen
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
36
|
Gururaja TL, Ramasubbu N, Venugopalan P, Reddy MS, Ramalingam K, Levine MJ. Structural features of the human salivary mucin, MUC7. Glycoconj J 1998; 15:457-67. [PMID: 9881747 DOI: 10.1023/a:1006978818555] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human salivary mucin (MUC7) is characterized by a single polypeptide chain of 357 aa. Detailed analysis of the derived MUC7 peptide sequence reveals five distinct regions or domains: (1) an N-terminal basic, histatin-like domain which has a leucine-zipper segment, (2) a moderately glycosylated domain, (3) six heavily glycosylated tandem repeats each consisting of 23 aa, (4) another heavily glycosylated MUC1- and MUC2-like domain, and (5) a C-terminal leucine-zipper segment. Chemical analysis and semi-empirical prediction algorithms for O-glycosylation suggested that 86/105 (83%) Ser/Thr residues were O-glycosylated with the majority located in the tandem repeats. The high (approximately 25%) proline content of MUC7 including 19 diproline segments suggested the presence of polyproline type structures. CD studies of natural and synthetic diproline-rich peptides and glycopeptides indicated that polyproline type structures do play a significant role in the conformational dynamics of MUC7. In addition, crystal structure analysis of a synthetic diproline segment (Boc-Ala-Pro-OBzl) revealed a polyproline type II extended structure. Collectively, the data indicate that the polyproline type II structure, dispersed throughout the tandem repeats, may impart a stiffening of the backbone and could act in consort with the glycosylated segments to keep MUC7 in a semi-rigid, rod shaped conformation resembling a 'bottle-brush' model.
Collapse
Affiliation(s)
- T L Gururaja
- Department of Oral Biology and Research Center in Oral Biology, School of Dental Medicine, State University of New York at Buffalo, 14214, USA
| | | | | | | | | | | |
Collapse
|
37
|
Prakobphol A, Thomsson KA, Hansson GC, Rosen SD, Singer MS, Phillips NJ, Medzihradszky KF, Burlingame AL, Leffler H, Fisher SJ. Human low-molecular-weight salivary mucin expresses the sialyl lewisx determinant and has L-selectin ligand activity. Biochemistry 1998; 37:4916-27. [PMID: 9538010 DOI: 10.1021/bi972612a] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previously we showed that the low-molecular-weight mucin (MG2, encoded by MUC7), a major component of human submandibular/sublingual saliva, is a bacterial receptor that coats the tooth surface. Here we tested the hypothesis that the structure of its carbohydrate residues contains important information about its function. Purified MG2 (Mr 120 000) was digested with trypsin, and the resulting Mr 90 000 fragment, which carried primarily O-linked oligosaccharides, was subjected to reductive beta-elimination. The released oligosaccharides were characterized by using nuclear magnetic resonance spectroscopy and mass spectrometry. Of the 41 different structures we detected, the most prominent included NeuAcalpha2-->3Galbeta1-->3GalNAc-ol (sialyl-T antigen), Galbeta1-->4(Fucalpha1-->3)GlcNAcbeta1-->6(Galbeta1 -->3)GalNAc-ol [type 2 core with Lewisx (Lex) determinant], and NeuAcalpha2-->3Galbeta1-->4(Fucalpha1-->3)GlcNAcbet a1-->6(Galbeta1--> 3) GalNAc-ol [type 2 core with sialyl Lex (sLex) determinant]. We also detected di-, tri-, and pentasaccharides with one sulfate group. Lex, sLex, and related sulfated structures are ligands for selectins, adhesion molecules that mediate leukocyte trafficking. Therefore, we investigated whether MG2 was a selectin ligand. In an enzyme-linked immunosorbent assay, L-selectin chimeras interacted with immobilized MG2 in a Ca2+-dependent manner. L-Selectin chimeras also bound to MG2 immobilized on nitrocellulose. Together, these results suggest that the saccharides that MG2 carries could specify some of its important functions, which may include mediating leukocyte interactions in the oral cavity.
Collapse
Affiliation(s)
- A Prakobphol
- Department of Stomatology, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nehrke K, Hagen FK, Tabak LA. Isoform-specific O-glycosylation by murine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T3, in vivo. Glycobiology 1998; 8:367-71. [PMID: 9499384 DOI: 10.1093/glycob/8.4.367] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple isoforms of UDP-GalNAc:polypeptide N-acetylgalactosaminyl- transferase (ppGaNTase) have been cloned and expressed from a variety of organisms. In general, these isoforms display different patterns of tissue-specific expression, but exhibit overlapping substrate specificities, in vitro . A peptide substrate, derived from the sequence of the V3 loop of the HIV gp120 protein (HIV peptide), has previously been shown to be glycosylated in vitro exclusively by the ppGaNTase-T3 (Bennett et al. , 1996). To determine if this isoform-specificity is maintained in vivo , we have examined the glycosylation of this substrate when it is expressed as a reporter peptide (rHIV) in a cell background (COS7 cells) which lacks detectable levels of the ppGaNTase-T3. Glycosylation of rHIV was greatly increased by coexpression of a recombinant ppGaNTase-T3. Overexpression of ppGaNTase-T1 yielded only partial glycosylation of the reporter. We have also determined that the introduction of a proline residue at the +3 position flanking the potential glycosylation site eliminated ppGaNTase-T3 selectivity toward rHIV observed both in vivo and in vitro .
Collapse
Affiliation(s)
- K Nehrke
- Department of Dental Research, School of Dentistry, University of Rochester, Rochester, NY 14648, USA
| | | | | |
Collapse
|
39
|
Hennebicq S, Tetaert D, Soudan B, Boersma A, Briand G, Richet C, Gagnon J, Degand P. Influence of the amino acid sequence on the MUC5AC motif peptide O-glycosylation by human gastric UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase(s). Glycoconj J 1998; 15:275-82. [PMID: 9579804 DOI: 10.1023/a:1006949129456] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present work was carried out to study the role of the peptide moiety in the addition of O-linked N-acetylgalactosamineto human apomucin using human crude microsomal homogenates from gastric mucosa (as enzyme source) and a series of peptide acceptors representative of tandem repeat domains deduced from the MUC5AC mucin gene (expressed in the gastric mucosa). Being rich in threonine and serine placed in clusters, these peptides provided several potential sites for O-glycosylation. The glycosylated products were analysed by a combination of electrospray mass spectrometry and capillary electrophoresis in order to isolate the glycopeptides and to determine their sequence by Edman degradation. The O-glycosylation of our MUC5AC motif peptides gave information on the specificity and activity of the gastric microsomal UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase(s). The proline residues and the induced-conformations are of great importance for the recognition of MUC5AC peptides but they are not the only factors for the choice of the O-glycosylation sites. Moreover, for the di-glycosylated peptides, the flanking regions of the proline residues strongly influence the site of the second O-glycosylation.
Collapse
|
40
|
Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL, Brunak S. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 1998; 15:115-30. [PMID: 9557871 DOI: 10.1023/a:1006960004440] [Citation(s) in RCA: 407] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The specificities of the UDP-GalNAc:polypeptide Nacetylgalactosaminyltransferases which link the carbohydrate GalNAc to the side-chain of certain serine and threonine residues in mucin type glycoproteins, are presently unknown. The specificity seems to be modulated by sequence context, secondary structure and surface accessibility. The sequence context of glycosylated threonines was found to differ from that of serine, and the sites were found to cluster. Non-clustered sites had a sequence context different from that of clustered sites. Charged residues were disfavoured at position -1 and +3. A jury of artificial neural networks was trained to recognize the sequence context and surface accessibility of 299 known and verified mucin type O-glycosylation sites extracted from O-GLYCBASE. The cross-validated NetOglyc network system correctly found 83% of the glycosylated and 90% of the non-glycosylated serine and threonine residues in independent test sets, thus proving more accurate than matrix statistics and vector projection methods. Predictions of O-glycosylation sites in the envelope glycoprotein gp120 from the primate lentiviruses HIV-1, HIV-2 and SIV are presented. The most conserved O-glycosylation signals in these evolutionary-related glycoproteins were found in their first hypervariable loop, V1. However, the strain variation for HIV-1 gp120 was significant. A computer server, available through WWW or E-mail, has been developed for prediction of mucin type O-glycosylation sites in proteins based on the amino acid sequence. The server addresses are http://www.cbs.dtu.dk/services/NetOGlyc/ and netOglyc@cbs.dtu.dk.
Collapse
Affiliation(s)
- J E Hansen
- Center for Biological Sequence Analysis, The Technical University of Denmark, Lyngby.
| | | | | | | | | | | |
Collapse
|
41
|
Bateman KP, White RL, Yaguchi M, Thibault P. Characterization of protein glycoforms by capillary-zone electrophoresis–nanoelectrospray mass spectrometry. J Chromatogr A 1998. [DOI: 10.1016/s0021-9673(97)00937-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Müller S, Goletz S, Packer N, Gooley A, Lawson AM, Hanisch FG. Localization of O-glycosylation sites on glycopeptide fragments from lactation-associated MUC1. All putative sites within the tandem repeat are glycosylation targets in vivo. J Biol Chem 1997; 272:24780-93. [PMID: 9312074 DOI: 10.1074/jbc.272.40.24780] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Since there is no consensus sequence directing the initial GalNAc incorporation into mucin peptides, O-glycosylation sites are not reliably predictable. We have developed a mass spectrometric sequencing strategy that allows the identification of in vivo O-glycosylation sites on mucin-derived glycopeptides. Lactation-associated MUC1 was isolated from human milk and partially deglycosylated by trifluoromethanesulfonic acid to the level of core GalNAc residues. The product was fragmented by the Arg-C-specific endopeptidase clostripain to yield tandem repeat icosapeptides starting with the PAP motif. PAP20 glycopeptides were subjected to sequencing by post-source decay matrix-assisted laser desorption ionization mass spectrometry or by solid phase Edman degradation to localize the glycosylation sites. The masses of C- or N-terminal fragments registered for the mono- to pentasubstituted PAP20 indicated that GalNAc was linked to the peptide at Ser5,Thr6 (GSTA) and Thr14 (VTSA) but contrary to previous in vitro glycosylation studies also at Thr19 and Ser15 located within the PDTR or VTSA motifs, respectively. Quantitative data from solid phase Edman sequencing revealed no preferential glycosylation of the threonines. These discrepancies between in vivo and in vitro glycosylation patterns may be explained by assuming that O-glycosylation of adjacent peptide positions is a dynamically regulated process that depends on changes of the substrate qualities induced by glycosylation at vicinal sites.
Collapse
Affiliation(s)
- S Müller
- Institute of Biochemistry, Medical Faculty of the University, 50931 Cologne, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
43
|
Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H. Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem 1997; 272:23503-14. [PMID: 9295285 DOI: 10.1074/jbc.272.38.23503] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mucin-type O-glycosylation is initiated by UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-transferases). The role each GalNAc-transferase plays in O-glycosylation is unclear. In this report we characterized the specificity and kinetic properties of three purified recombinant GalNAc-transferases. GalNAc-T1, -T2, and -T3 were expressed as soluble proteins in insect cells and purified to near homogeneity. The enzymes have distinct but partly overlapping specificities with short peptide acceptor substrates. Peptides specifically utilized by GalNAc-T2 or -T3, or preferentially by GalNAc-T1 were identified. GalNAc-T1 and -T3 showed strict donor substrate specificities for UDP-GalNAc, whereas GalNAc-T2 also utilized UDP-Gal with one peptide acceptor substrate. Glycosylation of peptides based on MUC1 tandem repeat showed that three of five potential sites in the tandem repeat were glycosylated by all three enzymes when one or five repeat peptides were analyzed. However, analysis of enzyme kinetics by capillary electrophoresis and mass spectrometry demonstrated that the three enzymes react at different rates with individual sites in the MUC1 repeat. The results demonstrate that individual GalNAc-transferases have distinct activities and the initiation of O-glycosylation in a cell is regulated by a repertoire of GalNAc-transferases.
Collapse
Affiliation(s)
- H H Wandall
- School of Dentistry, University of Copenhagen, Norre Allé 20, 2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nehrke K, Tabak LA. Biosynthesis of a low-molecular-mass rat submandibular gland mucin glycoprotein in COS7 cells. Biochem J 1997; 323 ( Pt 2):497-502. [PMID: 9163344 PMCID: PMC1218347 DOI: 10.1042/bj3230497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have examined the biosynthesis of a low-molecular-mass mucin from rat submandibular gland (RSMG) expressed recombinantly in COS7 tissue culture cells, focusing primarily on the addition of carbohydrate to the protein core of the mucin. We find evidence for N-linked glycosylation, but this modification is not required for secretion of the mucin. Similarly, although the recombinant RSMG mucin, like its native counterpart, contains large amounts of O-linked carbohydrate, chain extension beyond the initial O-linked GalNAc moiety is not required for secretion. We have identified partially glycosylated mucin by a combination of metabolic pulse-chase and lectin precipitations of the biosynthetic intermediates. Our results suggest that the addition of GalNAc to threonine and serine in the RSMG mucin does not occur simultaneously, as has been described for other O-glycosylated proteins.
Collapse
Affiliation(s)
- K Nehrke
- Department of Dental Research, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 611, Rochester, NY 14642, USA
| | | |
Collapse
|
45
|
Gerken TA, Owens CL, Pasumarthy M. Determination of the site-specific O-glycosylation pattern of the porcine submaxillary mucin tandem repeat glycopeptide. Model proposed for the polypeptide:galnac transferase peptide binding site. J Biol Chem 1997; 272:9709-19. [PMID: 9092502 DOI: 10.1074/jbc.272.15.9709] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The heterogeneously glycosylated 81-residue tryptic tandem repeat glycopeptide from porcine submaxillary mucin (PSM) has been isolated and its glycosylation pattern determined by amino acid sequencing. Key to these studies is the ability to trim the structurally heterogeneous PSM oligosaccharide side chains to homogeneous GalNAc monosaccharide side chains by mild trifluoromethanesulfonic acid treatment. Trypsin treatment of trifluoromethanesulfonic acid-treated PSM releases the 81-residue tandem repeat as an ensemble of 81-residue glycopeptides with different glycosylation patterns. Automated amino acid sequencing using Edman degradative chemistry of the repeat was used to determine the extent of glycosylation of nearly every Ser and Thr residue. The Thr residues are all highly glycosylated within the range of 73-90%, giving an average Thr glycosylation of 83%. In contrast, the Ser residues display a wide range of glycosylations, ranging between 33 and 95%, giving an average Ser glycosylation of 74%. These data are consistent with the known elevated glycosylation of Thr peptides over Ser peptides for the porcine UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase. It is also observed that the extent of glycosylation of the repeat correlates poorly with published predictive methods. An examination of the sequences surrounding the glycosylation sites reveals that nearly all of the highly glycosylated sites have a penultimate Gly residue, whereas those that are less highly glycosylated have medium to large side chain penultimate residues. As observed by others, glycosylation also appears to be modulated by the presence of Pro residues. On the basis of these findings we suggest that the acceptor peptide binds the transferase in a beta-like conformation and that penultimate residue side chain steric interactions may play a role in determining extent that a given Ser or Thr is glycosylated. A model for the GalNAc transferase peptide binding site is proposed.
Collapse
Affiliation(s)
- T A Gerken
- W. A. Bernbaum Center for Cystic Fibrosis Research, Case Western Reserve University, Cleveland, Ohio 44106-4948, USA.
| | | | | |
Collapse
|
46
|
Jung E, Gooley AA, Packer NH, Slade MB, Williams KL, Dittrich W. An in vivo approach for the identification of acceptor sites for O-glycosyltransferases: motifs for the addition of O-GlcNAc in Dictyostelium discoideum. Biochemistry 1997; 36:4034-40. [PMID: 9092834 DOI: 10.1021/bi9617825] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To identify and analyze acceptor sequences for O-glycosylation, we have developed an in vivo system expressing short peptides as glutathione S-transferase fusion proteins in the eukaryotic host Dictyostelium discoideum. Using this approach, we show that a short peptide motif (PTVTPT), present in the D. discoideum cell-surface glycoprotein PsA, is sufficient as a signal for O-glycosylation, even when fused to a heterologous protein. Monosaccharide analysis and solid-phase protein sequencing showed that the modification is a single N-acetylglucosamine attached to threonine residues. This was further confirmed by electrospray-mass spectrometry. The O-linked glycosylation of both this peptide and authentic PsA presents the modB-dependent carbohydrate-specific epitope identified by the monoclonal antibody MUD50. Substitution of threonine by serine residues in this peptide also yields a glycosylated fusion protein which is modified with single N-acetylglucosamine residues, but not all of the serines are glycosylated.
Collapse
Affiliation(s)
- E Jung
- MUCAB (Macquarie University Center for Analytical Biotechnology), School of Biological Sciences, Macquarie University, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Joba W, Hoffmann W. Similarities of integumentary mucin B.1 from Xenopus laevis and prepro-von Willebrand factor at their amino-terminal regions. J Biol Chem 1997; 272:1805-10. [PMID: 8999864 DOI: 10.1074/jbc.272.3.1805] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Frog integumentary mucin B.1 (FIM-B.1) contains various cysteine-rich modules. In the past, a COOH-terminal "cystine knot" motif has been found that is similar to von Willebrand factor; this region is generally known to be responsible for dimerization processes. Furthermore, a "complement control protein" motif is present as an internal cysteine-rich domain in FIM-B.1. We characterize here the missing 75% toward the NH2 terminus of the FIM-B.1 precursor by molecular cloning. Analogous to prepro-von Willebrand factor, four elements with considerable similarity to D-domains are present (i.e. D1-D2-D'-D3). These domains have been described as essential for the multimerization of von Willebrand factor. Thus, the general structure of FIM-B.1 resembles that of the human mucin MUC2 as well as prepro-von Willebrand factor; these three molecules at least seem to share common structural elements allowing similar multimerization mechanisms.
Collapse
Affiliation(s)
- W Joba
- Max-Planck-Institut für Psychiatrie, Abteilung Neurochemie, D-82152 Martinsried, Germany
| | | |
Collapse
|
48
|
Hansen JE, Lund O, Rapacki K, Brunak S. O-GLYCBASE version 2.0: a revised database of O-glycosylated proteins. Nucleic Acids Res 1997; 25:278-82. [PMID: 9016554 PMCID: PMC146398 DOI: 10.1093/nar/25.1.278] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
O-GLYCBASE is an updated database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the SWISS-PROT database. Entries include information about species, sequence, glycosylation sites and glycan type. O-GLYCBASE is now fully cross-referenced to the SWISS-PROT, PIR, PROSITE, PDB, EMBL, HSSP, LISTA and MIM databases. Compared with version 1.0 the number of entries have increased by 34%. Revision of the O-glycan assignment was performed on 20% of the entries. Sequence logos displaying the acceptor specificity patterns for the GalNAc, mannose and GlcNAc transferases are shown. The O-GLYCBASE database is available through WWW or by anonymous FTP.
Collapse
Affiliation(s)
- J E Hansen
- Center for Biological Sequence Analysis, The Technical University of Denmark, Building 206, DK-2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
49
|
Abstract
Glycoproteins generally exist as populations of glycosylated variants (glycoforms) of a single polypeptide. Although the same glycosylation machinery is available to all proteins that enter the secretory pathway in a given cell, most glycoproteins emerge with characteristic glycosylation patterns and heterogeneous populations of glycans at each glycosylation site. The factors that control the composition of the glycoform populations and the role that heterogeneity plays in the function of glycoproteins are important questions for glycobiology. A full understanding of the implications of glycosylation for the structure and function of a protein can only be reached when a glycoprotein is viewed as a single entity. Individual glycoproteins, by virtue of their unique structures, can selectively control their own glycosylation by modulating interactions with the glycosylating enzymes in the cell. Examples include protein-specific glycosylation within the immunoglobulins and immunoglobulin superfamily and site-specific processing in ribonuclease, Thy-1, IgG, tissue plasminogen activator, and influenza A hemagglutinin. General roles for the range of sugars on glycoproteins such as the leukocyte antigens include orientating the molecules on the cell surface. A major role for specific sugars is in recognition by lectins, including chaperones involved in protein folding. In addition, the recognition of identical motifs in different glycans allows a heterogeneous population of glycoforms to participate in specific biological interactions.
Collapse
Affiliation(s)
- P M Rudd
- Department of Biochemistry, University of Oxford, U.K
| | | |
Collapse
|
50
|
Litscher ES, Wassarman PM. Recombinant hamster sperm receptors that exhibit species-specific binding to sperm. ZYGOTE 1996; 4:229-36. [PMID: 9117283 DOI: 10.1017/s0967199400003142] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies have shown that mouse sperm bind to hamster eggs and hamster sperm bind to mouse eggs in vitro. Furthermore, sperm receptor glycoprotein isolated from the zona pellucida of unfertilised hamster (hZP3) and mouse (mZP3) eggs binds to sperm from the heterologous species. Here, we expressed the hZP3 gene, under control of a constitutive promoter (pgk-1), in mouse embryonal carcinoma (EC) cells and Chinese hamster ovary (CHO) cells stably transfected with the hZP3 gene. In both cases, recombinant hZP3 (EC-hZP3 and CHO-hZP3) secreted into the culture medium was partially purified by high-performance liquid chromatography on a size-exclusion column and assayed for bioactivity using mouse and hamster gametes. Unlike hamster egg hZP3, which binds to both mouse and hamster sperm, EC-hZP3 and CHO-hZP3 exhibits species-specific binding to hamster sperm and induce hamster sperm, but not mouse sperm, to undergo the acrosome reaction in vitro. These results provide further evidence that species-specific binding of sperm to eggs in mammals is carbohydrate-mediated. Furthermore, the results suggest that recombinant forms of mammalian sperm receptors may be useful in assessing the molecular basis of species-specific fertilisation in mammals.
Collapse
Affiliation(s)
- E S Litscher
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|