1
|
Han M, Yang G, Lin Q, Yang Y, Zhang H, Su Y. Determination of Endogenous Bufalin in Serum of Patients With Hepatocellular Carcinoma Based on HPLC-MS/MS. Front Oncol 2020; 9:1572. [PMID: 32039033 PMCID: PMC6989541 DOI: 10.3389/fonc.2019.01572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Bufalin is a cardiotonic steroid and a key active ingredient of the Chinese medicine ChanSu. It has significant anti-tumor activity against many malignancies, including hepatocellular carcinoma (HCC). Previous studies have shown that human bodies contain an endogenous bufalin-like substance. This study aimed to confirm whether the endogenous bufalin-like substances is bufalin and further detect the differences between HCC and control groups of endogenous bufalin concentration by the high-performance liquid chromatography coupled tandem mass spectrometry (HPLC-MS/MS). The results confirmed the endogenous bufalin-like substance is bufalin. Totally, 227 serum samples were collected: 54 from HCC patients and 173 from healthy volunteers constituting a control group. Both the test group and the control group contained bufalin in serum, revealing that bufalin is indeed an endogenous substance. The bufalin concentration was 1.3 nM in HCC patients and 5.7 nM in normal people (P < 0.0001). These results indicate that human bodies contain endogenous bufalin, and it may be negatively correlated with the incidence of HCC.
Collapse
Affiliation(s)
- Mengfei Han
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Geliang Yang
- Department of Traditional Chinese Medicine and Acupuncture, The Second Medical Centre, Chinese People Liberation Army General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qing Lin
- Fuzhou Traditional Chinese Hospital, Fuzhou, China
| | - Yanlong Yang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Huiqing Zhang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yonghua Su
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Pavlovic D. Endogenous cardiotonic steroids and cardiovascular disease, where to next? Cell Calcium 2019; 86:102156. [PMID: 31896530 PMCID: PMC7031694 DOI: 10.1016/j.ceca.2019.102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 11/18/2022]
Abstract
Ever since British Physician William Withering first described the use of foxglove extract for treatment of patients with congestive heart failure in 1785, cardiotonic steroids have been used clinically to treat heart failure and more recently atrial fibrillation. Due to their ability to bind and inhibit the ubiquitous transport enzyme sodium potassium pump, thus regulating intracellular Na+ concentration in every living cell, they are also an essential tool for research into the sodium potassium pump structure and function. Exogenous CTS have been clearly demonstrated to affect cardiovascular system through modulation of vagal tone, cardiac contraction (via ionic changes) and altered natriuresis. Reports of a number of endogenous CTS, since the 1980s, have intensified research into their physiologic and pathophysiologic roles and opened up novel therapeutic targets. Substantive evidence pointing to the role of endogenous ouabain and marinobufagenin, the two most prominent CTS, in development of cardiovascular disease has accumulated. Nevertheless, their presence, structure, biosynthesis pathways and even mechanism of action remain unclear or controversial. In this review the current state-of-the-art, the controversies and the remaining questions surrounding the role of endogenous cardiotonic steroids in health and disease are discussed.
Collapse
Affiliation(s)
- Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Pavlovic D. The role of cardiotonic steroids in the pathogenesis of cardiomyopathy in chronic kidney disease. Nephron Clin Pract 2014; 128:11-21. [PMID: 25341357 DOI: 10.1159/000363301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cardiotonic steroids (CTS) are a new class of hormones that circulate in the blood and are divided into two distinct groups, cardenolides, such as ouabain and digoxin, and bufadienolides, such as marinobufagenin, telocinobufagin and bufalin. They have the ability to bind and inhibit the ubiquitous transport enzyme sodium potassium pump, thus regulating intracellular Na(+) concentration in every living cell. Although digoxin has been prescribed to heart failure patients for at least 200 years, the realization that CTS are endogenously produced has intensified research into their physiological and pathophysiological roles. Over the last two decades, substantial evidence has accumulated demonstrating the effects of endogenously synthesised CTS on the kidneys, vasculature and the heart. In this review, the current state of art and the controversies surrounding the manner in which CTS mediate their pathophysiological effects are discussed. Several potential therapeutic strategies have emerged as a result of our increased understanding of the role CTS play in health and disease.
Collapse
Affiliation(s)
- Davor Pavlovic
- Cardiovascular Division, King's College London, Rayne Institute, St. Thomas' Hospital, London, UK
| |
Collapse
|
4
|
Khundmiri SJ. Advances in understanding the role of cardiac glycosides in control of sodium transport in renal tubules. J Endocrinol 2014; 222:R11-24. [PMID: 24781255 DOI: 10.1530/joe-13-0613] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiotonic steroids have been used for the past 200 years in the treatment of congestive heart failure. As specific inhibitors of membrane-bound Na(+)/K(+) ATPase, they enhance cardiac contractility through increasing myocardial cell calcium concentration in response to the resulting increase in intracellular Na concentration. The half-minimal concentrations of cardiotonic steroids required to inhibit Na(+)/K(+) ATPase range from nanomolar to micromolar concentrations. In contrast, the circulating levels of cardiotonic steroids under physiological conditions are in the low picomolar concentration range in healthy subjects, increasing to high picomolar levels under pathophysiological conditions including chronic kidney disease and heart failure. Little is known about the physiological function of low picomolar concentrations of cardiotonic steroids. Recent studies have indicated that physiological concentrations of cardiotonic steroids acutely stimulate the activity of Na(+)/K(+) ATPase and activate an intracellular signaling pathway that regulates a variety of intracellular functions including cell growth and hypertrophy. The effects of circulating cardiotonic steroids on renal salt handling and total body sodium homeostasis are unknown. This review will focus on the role of low picomolar concentrations of cardiotonic steroids in renal Na(+)/K(+) ATPase activity, cell signaling, and blood pressure regulation.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Division of Nephrology and HypertensionDepartment of MedicineDepartment of Physiology and BiophysicsUniversity of Louisville, 570 S. Preston Street, Louisville, Kentucky 40202, USADivision of Nephrology and HypertensionDepartment of MedicineDepartment of Physiology and BiophysicsUniversity of Louisville, 570 S. Preston Street, Louisville, Kentucky 40202, USA
| |
Collapse
|
5
|
Patkar RN, Xue YK, Shui G, Wenk MR, Naqvi NI. Abc3-mediated efflux of an endogenous digoxin-like steroidal glycoside by Magnaporthe oryzae is necessary for host invasion during blast disease. PLoS Pathog 2012; 8:e1002888. [PMID: 22927822 PMCID: PMC3426555 DOI: 10.1371/journal.ppat.1002888] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
Magnaporthe oryzae, which causes the devastating rice-blast disease, invades its host plants via a specialized infection structure called the appressorium. Previously, we showed that the ATP-Binding Cassette 3 transporter is necessary for appressorial function (host penetration) in M. oryzae. However, thus far, the molecular basis underlying impaired appressorial function in the abc3Δ remains elusive. We hypothesized that the abc3Δ appressoria accumulate excessive amounts of specific efflux substrate(s) of the Abc3 transporter in M. oryzae. We devised an innovative yeast-based strategy and identified Abc3 Transporter efflux Substrate (ATS) to be a digoxin-like endogenous steroidal glycoside that accumulates to inhibitory levels in M. oryzae abc3Δ appressoria. Exogenous ATS altered cell wall biogenesis and viability in wild-type Schizosaccharomyces pombe, but not in S. pombe expressing M. oryzae Abc3. We show that ATS associates with the Translation Elongation factor Tef2 in M. oryzae, and propose that ATS regulates ion homeostasis during pathogenesis. Excessive ATS accumulation, either intracellularly due to impaired efflux in the abc3Δ or when added exogenously to the wild type, renders M. oryzae nonpathogenic. Furthermore, we demonstrate that the host penetration defects in the abc3Δ are due to aberrant F-actin dynamics as a result of altered Tef2 function and/or ion homeostasis defects caused by excess accumulation of ATS therein. Rather surprisingly, excessive exogenous ATS or digoxin elicited the hypersensitive response in rice, even in the absence of the blast fungus. Lastly, reduced disease symptoms in the inoculated host plants in the presence of excessive digoxin suggest a potential use for such related steroidal glycosides in controlling rice-blast disease.
Collapse
Affiliation(s)
- Rajesh N. Patkar
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (RNP); (NIN)
| | - Yang Kui Xue
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Guanghou Shui
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Markus R. Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (RNP); (NIN)
| |
Collapse
|
6
|
Bagrov AY, Shapiro JI, Fedorova OV. Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev 2009; 61:9-38. [PMID: 19325075 PMCID: PMC2763610 DOI: 10.1124/pr.108.000711] [Citation(s) in RCA: 392] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Endogenous cardiotonic steroids (CTS), also called digitalis-like factors, have been postulated to play important roles in health and disease for nearly half a century. Recent discoveries, which include the specific identification of endogenous cardenolide (endogenous ouabain) and bufadienolide (marinobufagenin) CTS in humans along with the delineation of an alternative mechanism by which CTS can signal through the Na(+)/K(+)-ATPase, have increased the interest in this field substantially. Although CTS were first considered important in the regulation of renal sodium transport and arterial pressure, more recent work implicates these hormones in the regulation of cell growth, differentiation, apoptosis, and fibrosis, the modulation of immunity and of carbohydrate metabolism, and the control of various central nervous functions and even behavior. This review focuses on the physiological interactions between CTS and other regulatory systems that may be important in the pathophysiology of essential hypertension, preeclampsia, end-stage renal disease, congestive heart failure, and diabetes mellitus. Based on our increasing understanding of the regulation of CTS as well as the molecular mechanisms of these hormone increases, we also discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Y Bagrov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Dr., Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
7
|
Bagrov AY, Shapiro JI. Endogenous digitalis: pathophysiologic roles and therapeutic applications. NATURE CLINICAL PRACTICE. NEPHROLOGY 2008; 4:378-92. [PMID: 18542120 PMCID: PMC2574729 DOI: 10.1038/ncpneph0848] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 04/29/2008] [Indexed: 12/22/2022]
Abstract
Endogenous digitalis-like factors, also called cardiotonic steroids, have been thought for nearly half a century to have important roles in health and disease. The endogenous cardiotonic steroids ouabain and marinobufagenin have been identified in humans, and an effector mechanism has been delineated by which these hormones signal through the sodium/potassium-transporting ATPase. These findings have increased interest in this field substantially. Although cardiotonic steroids were first considered important in the regulation of renal sodium transport and arterial pressure, subsequent work has implicated these hormones in the control of cell growth, apoptosis and fibrosis, among other processes. This Review focuses on the role of endogenous cardiotonic steroids in the pathophysiology of essential hypertension, congestive heart failure, end-stage renal disease and pre-eclampsia. We also discuss potential therapeutic strategies that have emerged as a result of the increased understanding of the regulation and actions of cardiotonic steroids.
Collapse
Affiliation(s)
- Alexei Y Bagrov
- Hypertension Unit at Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore 21224, MD, USA.
| | | |
Collapse
|
8
|
Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 2007; 293:C509-36. [PMID: 17494630 DOI: 10.1152/ajpcell.00098.2007] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiotonic steroids (CTS), long used to treat heart failure, are endogenously produced in mammals. Among them are the hydrophilic cardenolide ouabain and the more hydrophobic cardenolide digoxin, as well as the bufadienolides marinobufagenin and telecinobufagin. The physiological effects of endogenous ouabain on blood pressure and cardiac activity are consistent with the "Na(+)-lag" hypothesis. This hypothesis assumes that, in cardiac and arterial myocytes, a CTS-induced local increase of Na(+) concentration due to inhibition of Na(+)/K(+)-ATPase leads to an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) via a backward-running Na(+)/Ca(2+) exchanger. The increase in [Ca(2+)](i) then activates muscle contraction. The Na(+)-lag hypothesis may best explain short-term and inotropic actions of CTS. Yet all data on the CTS-induced alteration of gene expression are consistent with another hypothesis, based on the Na(+)/K(+)-ATPase "signalosome," that describes the interaction of cardiac glycosides with the Na(+) pump as machinery activating various signaling pathways via intramembrane and cytosolic protein-protein interactions. These pathways, which may be activated simultaneously or selectively, elevate [Ca(2+)](i), activate Src and the ERK1/2 kinase pathways, and activate phosphoinositide 3-kinase and protein kinase B (Akt), NF-kappaB, and reactive oxygen species. A recent development indicates that new pharmaceuticals with antihypertensive and anticancer activities may be found among CTS and their derivatives: the antihypertensive rostafuroxin suppresses Na(+) resorption and the Src-epidermal growth factor receptor-ERK pathway in kidney tubule cells. It may be the parent compound of a new principle of antihypertensive therapy. Bufalin and oleandrin or the cardenolide analog UNBS-1450 block tumor cell proliferation and induce apoptosis at low concentrations in tumors with constitutive activation of NF-kappaB.
Collapse
Affiliation(s)
- Wilhelm Schoner
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Frankfurter Str 100, Giessen, Germany.
| | | |
Collapse
|
9
|
Dasgupta A. Therapeutic drug monitoring of digoxin: impact of endogenous and exogenous digoxin-like immunoreactive substances. ACTA ACUST UNITED AC 2007; 25:273-81. [PMID: 17288498 DOI: 10.2165/00139709-200625040-00007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Digoxin is a cardioactive drug with a narrow therapeutic range. Therapeutic drug monitoring is essential in clinical practice for efficacy as well as to avoid digoxin toxicity. Immunoassays are commonly used in clinical laboratories for determination of serum or plasma digoxin concentrations. Unfortunately, digoxin immunoassays are affected by both endogenous and exogenous compounds. Endogenous compounds are termed 'digoxin-like immunoreactive substances' (DLIS), which are found in elevated concentrations in volume-expanded patients. Exogenous compounds that interfere with digoxin assays are various drugs such as spironolactone, potassium canrenoate as well as Digibind (Fab fragment of antidigoxin antibody), which is used in treating life-threatening digoxin overdose. Moreover, various Chinese medicines such as Chan Su, Lu-Shen Wan and oleander-containing herbal preparations also interfere with serum digoxin measurements by immunoassays. Monitoring unbound (free) digoxin concentration may under certain circumstances eliminate such interferences. Clinicians should be aware of limitations of therapeutic drug monitoring of digoxin using immunoassays.
Collapse
Affiliation(s)
- Amitava Dasgupta
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030, USA.
| |
Collapse
|
10
|
|
11
|
Abstract
Cardiac glycosides have been used for decades to treat congestive heart failure. The recent identification of cardiotonic steroids such as ouabain, digoxin, marinobufagenin, and telocinobufagin in blood plasma, adrenal glands, and hypothalamus of mammals led to exciting new perspectives in the pathology of heart failure and arterial hypertension. Biosynthesis of ouabain and digoxin occurs in adrenal glands and is under the control of angiotensin II, endothelin, and epinephrine released from cells of the midbrain upon stimulation of brain areas sensing cerebrospinal Na(+) concentration and, apparently, the body's K(+) content. Rapid changes of endogenous ouabain upon physical exercise may favor the economy of the heart by a rise of intracellular Ca(2)(+) levels in cardiac and atrial muscle cells. According to the sodium pump lag hypothesis, this may be accomplished by partial inhibition of the sodium pump and Ca(2+) influx via the Na(+)/Ca(2+) exchanger working in reverse mode or via activation of the Na(+)/K(+)-ATPase signalosome complex, generating intracellular calcium oscillations, reactive oxygen species, and gene activation via nuclear factor-kappaB or extracellular signal-regulated kinases 1 and 2. Elevated concentrations of endogenous ouabain and marinobufagenin in the subnanomolar concentration range were found to stimulate proliferation and differentiation of cardiac and smooth muscle cells. They may have a primary role in the development of cardiac dysfunction and failure because (i) offspring of hypertensive patients evidently inherit elevated plasma concentrations of endogenous ouabain; (ii) such elevated concentrations correlate positively with cardiac dysfunction, hypertrophy, and arterial hypertension; (iii) about 40% of Europeans with uncomplicated essential hypertension show increased concentrations of endogenous ouabain associated with reduced heart rate and cardiac hypertrophy; (iv) in patients with advanced arterial hypertension, circulating levels of endogenous ouabain correlate with BP and total peripheral resistance; (v) among patients with idiopathic dilated cardiomyopathy, high circulating levels of endogenous ouabain and marinobufagenin identify those individuals who are predisposed to progressing more rapidly to heart failure, suggesting that endogenous ouabain (and marinobufagenin) may contribute to toxicity upon digoxin therapy. In contrast to endogenous ouabain, endogenous marinobufagenin may act as a natriuretic substance as well. It shows a higher affinity for the ouabain-insensitive alpha(1) isoform of Na(+)/K(+)-ATPase of rat kidney tubular cells and its levels are increased in volume expansion and pre-eclampsia. Digoxin, which is synthesized in adrenal glands, seems to counteract the hypertensinogenic action of ouabain in rats, as do antibodies against ouabain, for example, (Digibind) and rostafuroxin (PST 2238), a selective ouabain antagonist. It lowers BP in ouabain- and adducin-dependent hypertension in rats and is a promising new class of antihypertensive medication in humans.
Collapse
Affiliation(s)
- Wilhelm Schoner
- Institute of Biochemistry and Endocrinology, Justus-Liebig-University Giessen, Giessen, Germany.
| | | |
Collapse
|
12
|
Haddy FJ. Role of dietary salt in hypertension. Life Sci 2006; 79:1585-92. [PMID: 16828490 DOI: 10.1016/j.lfs.2006.05.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 05/10/2006] [Accepted: 05/23/2006] [Indexed: 11/16/2022]
Abstract
Certain things have not changed since my colleague and I last reviewed the role of dietary salt in hypertension [Haddy, F.J., Pamnani, M.B., 1995. Role of dietary salt in hypertension. Journal of the American College of Nutrition 14, 428-438]. Over half of hypertensives are still salt sensitive, i.e., they respond to a high NaCl intake with a rise in blood pressure. This can be ameliorated by restricting NaCl intake, supplementing potassium intake, and consuming diuretics. Some things have changed. We now have more insight into mechanism; we suspected that volume expansion and endogenous Na(+),K(+)-ATPase inhibitors were the connection between excessive salt intake and the hypertension, but we were not certain as to the nature of the inhibitors. Now it appears that the inhibitors are steroids released from the adrenal gland and are members of the cardenolide family, e.g., ouabain, and the bufadienolide family, e.g., marinobufagenin. This presents new possibilities in therapy, including antibodies to these agents and competitive inhibitors to their binding to Na(+),K(+)-ATPase.
Collapse
Affiliation(s)
- Francis J Haddy
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55901, USA.
| |
Collapse
|
13
|
Schoner W, Scheiner-Bobis G. Endogenous Cardiac Glycosides: Hormones Using the Sodium Pump as Signal Transducer. Semin Nephrol 2005; 25:343-51. [PMID: 16139690 DOI: 10.1016/j.semnephrol.2005.03.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The search for an endogenous digitalis has led to the identification of the cardenolides ouabain and digoxin and the bufadienolide marinobufagenin in mammalian tissues and biological fluids. Ouabain's release from adrenal glands is under the control of epinephrine and angiotensin II; hence, its blood concentration changes rapidly on physical exercise. It also is controlled by brain areas sensing cerebrospinal Na+ concentration and apparently the body's K+ content because urinary K+ loss leads to an increase in its plasma concentration as well. Long-term treatment of rats with ouabain results in arterial hypertension, and 50% of Caucasians with low-renin hypertension have increased plasma concentrations of this cardenolide. Levels of digoxin, which is synthesized from acetate in adrenal glands, increase slightly in blood on prolonged exercise. It counteracts the hypertensinogenic action of ouabain in rats, as does the ouabain antagonist PST 2238. The plasma concentration of the bufadienolide marinobufagenin is increased after cardiac infarction. It may show natriuretic properties because it inhibits the alpha1 isoform of Na+/K+-adenosine triphosphatase (ATPase), the main sodium pump isoform of the kidney, much better than other sodium pump isoforms. These effects of endogenous cardiac glycosides are observed at concentrations that do not inhibit the sodium pump. Apparently, Na+/K+-ATPase is used by these steroids as a signal transducer to activate tissue proliferation, heart contractility, arterial hypertension, and natriuresis via various intracellular signaling pathways.
Collapse
Affiliation(s)
- Wilhelm Schoner
- Institut für Biochemie und Endokrinologie, Justus-Liebig-Universität Giessen, Giessen, Germany.
| | | |
Collapse
|
14
|
Qazzaz HMAM, Cao Z, Bolanowski DD, Clark BJ, Valdes R. De novo biosynthesis and radiolabeling of mammalian digitalis-like factors. Clin Chem 2004; 50:612-20. [PMID: 14981028 DOI: 10.1373/clinchem.2003.022715] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Digoxin-like immunoreactive factors (DLIFs) are endogenous mammalian cardenolides with structural features similar to those of the plant-derived digitalis compounds. DLIFs and their structurally related forms (Dh-DLIFs) may serve as effectors of ion-transport activity mediated by their interaction with Na,K-ATPase and thus play a role as a new hormonal axis. Although some evidence implicates the adrenal gland as a tissue source for the DLIFs, little is known about the biosynthetic pathway producing these compounds. We now demonstrate de novo biosynthesis of DLIF by incorporation of radioactive carbon ((14)C) into the structures of both DLIF and Dh-DLIF. METHODS We used a combination of reversed-phase HPLC techniques to separate the radioactive DLIF components after incorporation of (14)C into their structure by use of either [1,2-(14)C]acetic acid or [4-(14)C]cholesterol as precursors and a Y-1 mouse adrenocortical tumor cell line. We also stimulated and suppressed production of steroidogenesis by use of cAMP analogs and Mevastatin, respectively, to demonstrate the dependence of DLIF production on the cholesterol-dependent biosynthetic pathway. A combination of chromatographic mobility, immunoassays specific for digoxin and dihydrodigoxin, and deglycosylation using 5-sulfosalicylic acid were used to identify the DLIF and Dh-DLIF components. RESULTS With cholesterol as precursor, the cells produced DLIF (7.5 mCi/mmol) with a labeling efficiency of 10%, whereas with acetate the cells produced DLIF (72.2 mCi/mmol) with a labeling efficiency of 0.08% of the total DLIF produced. The radiolabeled DLIF and Dh-DLIF molecules had identical chromatographic mobilities and stoichiometric removal of sugars as the previously characterized DLIFs isolated from different mammalian species and tissues. With radioactive cholesterol as precursor, the (14)C was incorporated into the DLIF-genin portion of the compounds and not the sugars. Interestingly, treatment of Y-1 cells with 8-bromoadenosine 3':5'-cAMP to stimulate steroidogenesis did not increase production of DLIF or Dh-DLIF but did increase production of progesterone. Mevastatin (5 micromol), an inhibitor of the enzyme hydroxymethylglutaryl-CoA reductase and thus of cholesterol biosynthesis, gave an 85% decrease in the production of (14)C-DLIF and progesterone, but only a modest 15% decrease in (14)C-Dh-DLIF production. CONCLUSIONS These data demonstrate that the adrenal cell has the cellular machinery necessary for de novo biosynthesis of DLIF and Dh-DLIF starting from a simple carbon pool and also support the concept that cholesterol is a major precursor of the DLIF compounds. This cell culture model provides a source of radiolabeled DLIF compounds for future experimental work.
Collapse
Affiliation(s)
- Hassan M A M Qazzaz
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
15
|
Dasgupta A. Endogenous and exogenous digoxin-like immunoreactive substances: impact on therapeutic drug monitoring of digoxin. Am J Clin Pathol 2002; 118:132-40. [PMID: 12109847 DOI: 10.1309/3vnp-twfq-ht9a-1qh8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Endogenous digoxin-like immunoreactive substance (DLIS) was first reported in volume-expanded dogs. Its presence has been confirmed in blood, urine, and other body fluids. Elevated DLIS concentrations are encountered in patients with volume-expanded conditions such as uremia, essential hypertension, liver disease, and preeclampsia. DLISs cross-react with antidigoxin antibodies and falsely elevate serum digoxin concentrations, interfering in interpretation of results for therapeutic digoxin monitoring. Falsely lower digoxin values due to the presence of DLISs have been reported. The association of DLISs with volume expansion led to speculation that they could be natriuretic hormones. Several structures have been proposed for DLISs, including nonesterified fatty acid, phospholipid, lysophospholipid, bile acid, bile salt, and steroid. Exogenous DLISs can be found in serum after ingestion of various Chinese medicines and therapy with spironolactone, canrenone, or potassium canrenoate. Like endogenous DLISs, exogenous DLISs interfere with serum digoxin assays, complicating therapeutic digoxin monitoring. However, most reported endogenous and exogenous DLISs are strongly protein-bound while digoxin is weakly protein-bound. Therefore, interference of both endogenous and exogenous DLISs in serum digoxin measurement can be eliminated by monitoring digoxin concentrations in the protein-free ultrafiltrates.
Collapse
Affiliation(s)
- Amitava Dasgupta
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, 77030, USA
| |
Collapse
|
16
|
Schoner W. Endogenous cardiac glycosides, a new class of steroid hormones. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2440-8. [PMID: 12027881 DOI: 10.1046/j.1432-1033.2002.02911.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The search for endogenous digitalis has led to the isolation of ouabain as well as several additional cardiotonic steroids of the cardenolide and bufadienolide type from blood, adrenals, and hypothalamus. The concentration of endogenous ouabain is elevated in blood upon increased Na(+) uptake, hypoxia, and physical exercise. Changes in blood levels of ouabain upon physical exercise occur rapidly. Adrenal cortical cells in tissue culture release ouabain upon addition of angiotensin II and epinephrine, and it is thought that ouabain is released from adrenal cortex in vivo. Ouabain levels in blood are elevated in 50% of Caucasians with low-renin hypertension. Infusion over several weeks of low concentrations of ouabain, but not of digoxin, induces hypertension in rats. A digoxin-like compound, which has been isolated from human urine and adrenals, as well various other endogenous cardiac glycosides may counterbalance their actions within a regulatory framework of water and salt metabolism. Marinobufagenin, for instance, whose concentration is increased after cardiac infarction, may show natriuretic properties because it inhibits the alpha1 isoform of Na(+)/K(+)-ATPase, the main sodium pump isoform of the kidney, much better than other sodium pump isoforms. In analogy to other steroid hormones, cardiotonic steroid hormones in blood are bound to a specific cardiac glycoside binding globulin. The discovery of ouabain as a new adrenal hormone affecting Na(+) metabolism and the development of the new ouabain antagonist PST 2238 allows for new possibilities for the therapy of hypertension and congestive heart failure. This will lead in turn to a better understanding of the disease on a physiological and endocrinological level and of the action of ouabain on the cellular level as a signal that is transduced to the plasma membrane as well as to the cell nucleus.
Collapse
Affiliation(s)
- Wilhelm Schoner
- Institut für Biochemie und Endokrinologie, Justus-Liebig-Universität Giessen, Germany
| |
Collapse
|
17
|
Abstract
The digitalis drugs are plant-derived cardenolide compounds used medicinally for several hundred years. These drugs elicit inotropic and chronotropic effects on the heart, but they also affect many other tissues. The mechanism of action involves inhibition of the ion-transport activity of a membrane-associated protein called Na, K-ATPase (sodium pump). Present theory holds that the sodium pump is the principal molecular receptor for the digitalis drugs. Recent evidence indicates the presence of naturally occurring digitalis-like compounds in mammals. It is believed these compounds, collectively known as either digitalis-like (DLF) or ouabain-like (OLF) factors, may be endogenous hormones regulating the biological activity of the sodium pump and its isoforms. The presence of deglycosylated and other congeners of one specific DLF, the digoxin-like immunoreactive factor (DLIF), has very recently been described in humans. Digoxin as a drug is the most widely prescribed digitalis in the U.S., and its measurement in serum has established a model for present-day therapeutic drug monitoring (TDM). Historically, the accurate measurement of digoxin in blood has been difficult. This article focuses on the present understanding of the clinical use of digoxin, factors that affect the accuracy of measuring digoxin, the principle of measuring metabolically active species of digoxin, and the effects of DLIF and other interfering substances in digoxin immunoassay.
Collapse
Affiliation(s)
- S A Jortani
- Department of Pathology, University of Louisville School of Medicine, KY 40292, USA
| | | |
Collapse
|
18
|
Dmitrieva RI, Bagrov AY, Lalli E, Sassone-Corsi P, Stocco DM, Doris PA. Mammalian bufadienolide is synthesized from cholesterol in the adrenal cortex by a pathway that Is independent of cholesterol side-chain cleavage. Hypertension 2000; 36:442-8. [PMID: 10988279 DOI: 10.1161/01.hyp.36.3.442] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An increasing body of evidence suggests that an endogenous mammalian bufadienolide (BD) may be involved in the regulation of Na(+),K(+)-ATPase activity and the pathogenesis of arterial hypertension. We developed a purification scheme for marinobufagenin (MBG), an amphibian cardiotonic BD, and applied it to purify and characterize material in human plasma, culture medium conditioned by Y-1 adrenocortical cells, and rat adrenal tissue. MBG immunoreactivity purified from plasma and measured by ELISA showed important similarities (chromatography and antibody cross-reactivity) to material secreted into cell culture medium by Y-1 cells. This observation indicates that circulating mammalian BD may have an adrenocortical origin. Release of mammalian BD from adrenocortical cells grown in the absence of exogenous cholesterol was reduced by treatment of cultures with mevastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Supplementation of the serum and cholesterol-free cell culture medium with the LDL fraction of human plasma increased the production of MBG material in the presence of mevastatin, supporting its origin from cholesterol. We used Y-1 cell lines transfected with genes shown to inhibit steroidogenesis through cholesterol side-chain cleavage (Y-1/DAX and Y-1/RIAB) to investigate the dependence of MBG biosynthesis on side-chain cleavage. Our results indicate that the mammalian BD is synthesized in the adrenal cortex from cholesterol and shares important similarities with the amphibian BD MBG, that its biosynthesis is independent of transfer of cholesterol to the side-chain cleavage enzyme complex mediated by steroidogenic acute regulatory protein, and that neither cAMP nor protein kinase A appears to be a critical component of the pathway controlling its biosynthesis.
Collapse
Affiliation(s)
- R I Dmitrieva
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, USA
| | | | | | | | | | | |
Collapse
|
19
|
Qazzaz HM, El-Masri MA, Valdes R. Secretion of a lactone-hydrogenated ouabain-like effector of sodium, potassium-adenosine triphosphatase activity by adrenal cells. Endocrinology 2000; 141:3200-9. [PMID: 10965891 DOI: 10.1210/endo.141.9.7664] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ouabain-like factor (OLF), a mammalian cardenolide, is a counterpart to plant-derived ouabain and is found in the adrenal, hypothalamus, and blood of several mammalian species. We now report the existence of a mammalian lactone-hydrogenated ouabain-like factor (dihydro-OLF) in secretions from cultured mouse adrenal Y-1 cells. Dihydro-OLF structurally and functionally mimics plant-derived dihydroouabain. We measured both OLF and the newly discovered dihydro-OLF using five independent techniques: immunoreactivity with two specific antisera, one against ouabain and one against dihydroouabain; chromatographic mobility; spectral absorbance characteristics; and concentration-dependent inhibition and phosphorylation of Na,K-adenosine triphosphatase. All measured physical attributes of dihydro-OLF mimic those of plant-derived dihydroouabain, including a spectral shift maxima, 220 nm (OLF) to 196 nm (dihydro-OLF), with appropriately decreased molar absorptivity. Dihydro-OLF (IC50 = 590 nM) is a 10-fold less potent Na+,K+-adenosine triphosphatase inhibitor than its oxidized mammalian counterpart OLF (IC50 = 60 nM), just as dihydroouabain is less potent than ouabain. Dihydro-OLF is also 3-fold more potent than a recently identified isomer of plant-derived dihydroouabain (IC50 = 1,700 nM). Using antiouabain and antidihydroouabain antisera we estimate that 3 x 10(7) mouse adrenal Y-1 cells secreted 1.3 ng OLF and 8.9 ng dihydro-OLF. The relative abundance of dihydro-OLF is consistently greater than that of its oxidized form, OLF, in bovine adrenals (22-fold), human serum (13-fold), and secretions from cultured mouse Y-1 cells (5-fold). The discoveries of OLF, OLF-genin, and now dihydro-OLF constitute an intriguing structural polymorphism probably involved in the synthesis, regulation, and metabolic control of these new hormone-like compounds.
Collapse
Affiliation(s)
- H M Qazzaz
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Kentucky 40292, USA
| | | | | |
Collapse
|
20
|
Ball WJ, Wang Z, Malik B, Kasturi R, Dey P, Short MK, Margolies MN. Selection of peptidic mimics of digoxin from phage-displayed peptide libraries by anti-digoxin antibodies. J Mol Biol 2000; 301:101-15. [PMID: 10926495 DOI: 10.1006/jmbi.2000.3934] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the initial report of the development of methodology to generate high-affinity digitalis-specific (digoxin) antibodies, these antibodies have proven extremely useful tools to monitor digoxin levels in digitalized patients and, as Fab fragments, to reverse toxic digoxin effects in life-threatening digoxin overdoses. These antibodies (both digoxin-specific and ouabain-specific) have been used extensively by investigators for the identification and characterization of putative endogenous digitalis-like factors. In this study, we used two well-characterized mouse anti-digoxin monoclonal antibodies (mAbs), designated 26-10 and 45-20, as binding templates with which to select short bacteriophage-displayed (pIII protein inserted) peptides that are capable of binding to these mAbs and mimicking the conformational structure of digoxin. Selective enrichment from two phage-displayed random peptide libraries enabled us to isolate and identify distinct 15 and 26 amino acid residue peptide inserts that bind with high avidity and idiotypic specificity to the selecting mAbs. Among these displayed inserts a subset was identified whose mAb binding is inhibited by digoxin and whose corresponding synthetic peptides inhibit phage binding. They, therefore, appear to bind at the mAbs digoxin-binding sites. These data provide the first clear evidence that short polypeptides can serve as surrogates for the low molecular mass hapten digoxin.
Collapse
Affiliation(s)
- W J Ball
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Qazzaz HM, El-Masri MA, Stolowich NJ, Valdes R. Two biologically active isomers of dihydroouabain isolated from a commercial preparation. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1472:486-97. [PMID: 10564763 DOI: 10.1016/s0304-4165(99)00153-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Ouabain is a plant-derived cardiac glycoside that inhibits the catalytic activity of Na(+),K(+)-ATPase (sodium pump; NKA). Dihydroouabain, a derivative of ouabain with a reduced lactone ring, is commonly used as a sodium pump antagonist. It has been assumed that commercially available dihydroouabain is homogeneous. We now report that preparations of dihydroouabain contain two components each with a different potency for inhibition of sodium pump activity. We used reverse-phase HPLC chromatography, UV spectrophotometry, electrospray ionization-mass spectrometry (ESI-MS), nuclear magnetic resonance (NMR) spectroscopy and two independent bioassays to characterize these compounds. The two dihydroouabain fractions (Dho-A and Dho-B) resolved by 3 min chromatographically, had UV absorbance maxima at 196 nm, and comprised 37% and 63% of the stock dihydroouabain, respectively. The molar potency of each component for inhibition of NKA from porcine cerebral cortex differed by 4. 4-fold (Dho-A, IC(50) = 7.13 +/- 0.8 microM; Dho-B, IC(50) = 1.63 +/- 0.12 microM). The relative potencies were 9% and 40% of those of ouabain, respectively. A similar pattern for phosphorylation of NKA was observed. Mass spectrometry (ESI-MS) and fragmentation patterns are consistent with Dho-A and Dho-B being isomers of identical molecular mass (587 Da) and each with six hydroxyl groups, a deoxyhexose sugar moiety and a lactone ring. Furthermore, NMR spectroscopy revealed structural differences between Dho-A and Dho-B by displaying noticeably different chemical shifts at only two groups of proton resonances assigned to H-21 and H-22. The ESI-MS and NMR results confirm the presence of the isomerism at C20 of the lactone ring. Our results demonstrate the existence of two molecular forms of dihydroouabain, each with a different biological potency. These findings underscore the importance of characterizing the purity of dihydroouabain commercial preparations. It also provides possible molecular models for investigating the metabolism of endogenous ouabain-like factors recently reported in mammals.
Collapse
Affiliation(s)
- H M Qazzaz
- Department of Pathology and Laboratory Medicine, University of Louisville, School of Medicine, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
22
|
Grider G, El-Mallakh RS, Huff MO, Buss TJ, Miller J, Valdes R. Endogenous digoxin-like immunoreactive factor (DLIF) serum concentrations are decreased in manic bipolar patients compared to normal controls. J Affect Disord 1999; 54:261-7. [PMID: 10467969 DOI: 10.1016/s0165-0327(98)00208-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND A decrease in sodium pump activity in erythrocytes has been associated with manic episodes of bipolar illness relative to euthymic moods. Since red blood cells are long-lived and lack a nucleus, it is likely that a plasma factor is responsible for the observed decrease in sodium pump activity. METHODS Utilizing a radioimmunoassay, we examined the serum concentrations of the digoxin-like immunoreactive factor (DLIF) in ill and well bipolar patients and compared the values to those of normal controls. RESULTS DLIF was significantly decreased in manic individuals as compared to normal controls (143.6+/-S.E.M. 20.94 vs. 296.6+/-12.76 pg digoxin equivalents/ml, respectively, F = 4.77, P<0.05), but not compared to euthymic bipolar subjects 213.8+/-86.92, P = 0.77). There were no significant differences in DLIF concentrations between manic and euthymic bipolar individuals (P = 0.8). Since relapse in bipolar patients appears to display a seasonal pattern, we also measured the plasma concentration of this factor over a 12-months period. Normal controls exhibited a seasonal pattern of change in serum DLIF concentrations with a nadir in the winter months. Plasma concentrations of DLIF in bipolar patients did not show a seasonal pattern and maintained low levels throughout the year. LIMITATIONS Due to the nonspecificity of our antibody, we could measure only total DLIF. Furthermore, it is unclear what the role of circulating DLIF, if any, may be on brain function. CONCLUSION DLIF may be involved in the pathophysiology of mania.
Collapse
Affiliation(s)
- G Grider
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, KY 40292-0001, USA
| | | | | | | | | | | |
Collapse
|
23
|
Goto A, Yamada K. Purification of endogenous digitalis-like factors from normal human urine. Clin Exp Hypertens 1998; 20:551-6. [PMID: 9682911 DOI: 10.3109/10641969809053233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We detected two candidates for endogenous digitalis-like factors in human urine based on the inhibition of 3H-ouabain binding to human erythrocytes. Two ouabain-displacing compound(ODC)s were consistently eluted off the C18 reverse phase HPLC column with 18% and 31% acetonitrile. The more-polar ODC-1 was ubiquitously found in mammals, markedly increased after acute and chronic salt loading in humans, and was thought to be a natriuretic factor with vasoactive property. ODC-1 mostly resembled ouabain in biological, physicochemical, and chromatographic properties and may correspond to ouabainlike compound purified by other investigators. The less-polar ODC-2 was indistinguishable from digoxin in proton nuclear magnetic resonance(NMR) and fast atom bombardment(FAB) mass spectrum.
Collapse
Affiliation(s)
- A Goto
- Second Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
24
|
Goto A, Yamada K. An approach to the development of novel antihypertensive drugs: potential role of sodium pump inhibitors. Trends Pharmacol Sci 1998; 19:201-4. [PMID: 9666708 DOI: 10.1016/s0165-6147(98)01216-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A Goto
- Second Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
25
|
Abstract
Accumulated evidence has suggested that several sodium pump inhibitors, similar to cardiotonic steroids, are present in the human body. Ouabain-like factor, the most appealing candidate, has been found to be increased with high sodium intake and hypervolaemia, and in essential hypertension, mineralocorticoid hypertension, and pregnancy-induced hypertension. Furthermore, blocking the action of ouabain-like factor with digibind or a novel anti-ouabain agent lowers blood pressure in several models of hypertension. Several important questions remain, however, before it can be concluded that ouabain-like factor is indeed involved in the regulation of sodium homeostasis and blood pressure.
Collapse
Affiliation(s)
- A Goto
- Second Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.
| | | |
Collapse
|
26
|
Butt AN, Semra YK, Ho CS, Swaminathan R. Effect of high salt intake on plasma and tissue concentration of endogenous ouabain-like substance in the rat. Life Sci 1997; 61:2367-73. [PMID: 9399628 DOI: 10.1016/s0024-3205(97)00953-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of high salt intake on serum concentration and tissue distribution of ouabain-like substance (OLS) was examined in rats. Sprague-Dawley rats (n=8) were placed on a high salt diet by the inclusion of 1.8% sodium chloride in drinking water for 7 days and a 'control' group (n=8) was maintained on normal drinking water during the study period. Serum and tissue OLS was measured by radioimmunoassay after solid phase extraction. High salt intake significantly increased serum OLS concentration (1.43 +/- 0.06 vs 1.14 +/- 0.05 nmol/L; mean +/- SEM, P=0.002). In both groups, the adrenal showed significantly (p < 0.001) higher OLS content compared to liver, kidney, heart and brain. HPLC of rat serum extract resolved a major peak with a retention time identical to that of standard ouabain, further confirming the nature of OLS. We conclude that high salt intake increases endogenous production of OLS, which appears to originate from the adrenal gland in the rat.
Collapse
Affiliation(s)
- A N Butt
- Department of Chemical Pathology, Guy's and St Thomas' Hospital Trust, UMDS, London
| | | | | | | |
Collapse
|
27
|
Noé B, Hagenbuch B, Stieger B, Meier PJ. Isolation of a multispecific organic anion and cardiac glycoside transporter from rat brain. Proc Natl Acad Sci U S A 1997; 94:10346-50. [PMID: 9294213 PMCID: PMC23365 DOI: 10.1073/pnas.94.19.10346] [Citation(s) in RCA: 301] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel multispecific organic anion transporting polypeptide (oatp2) has been isolated from rat brain. The cloned cDNA contains 3,640 bp. The coding region extends over 1,983 nucleotides, thus encoding a polypeptide of 661 amino acids. Oatp2 is homologous to other members of the oatp gene family of membrane transporters with 12 predicted transmembrane domains, five potential glycosylation, and six potential protein kinase C phosphorylation sites. In functional expression studies in Xenopus laevis oocytes, oatp2 mediated uptake of the bile acids taurocholate (Km approximately 35 microM) and cholate (Km approximately 46 microM), the estrogen conjugates 17beta-estradiol-glucuronide (Km approximately 3 microM) and estrone-3-sulfate (Km approximately 11 microM), and the cardiac gylcosides ouabain (Km approximately 470 microM) and digoxin (Km approximately 0.24 microM). Although most of the tested compounds are common substrates of several oatp-related transporters, high-affinity uptake of digoxin is a unique feature of the newly cloned oatp2. On the basis of Northern blot analysis under high-stringency conditions, oatp2 is highly expressed in brain, liver, and kidney but not in heart, spleen, lung, skeletal muscle, and testes. These results provide further support for the overall significance of oatps as a new family of multispecific organic anion transporters. They indicate that oatp2 may play an especially important role in the brain accumulation and toxicity of digoxin and in the hepatobiliary and renal excretion of cardiac glycosides from the body.
Collapse
Affiliation(s)
- B Noé
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | | | | | | |
Collapse
|