1
|
Anto NP, Arya AK, Muraleedharan A, Shaik J, Nath PR, Livneh E, Sun Z, Braiman A, Isakov N. Cyclophilin A associates with and regulates the activity of ZAP70 in TCR/CD3-stimulated T cells. Cell Mol Life Sci 2022; 80:7. [PMID: 36495335 PMCID: PMC11072327 DOI: 10.1007/s00018-022-04657-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
The ZAP70 protein tyrosine kinase (PTK) couples stimulated T cell antigen receptors (TCRs) to their downstream signal transduction pathways and is sine qua non for T cell activation and differentiation. TCR engagement leads to activation-induced post-translational modifications of ZAP70, predominantly by kinases, which modulate its conformation, leading to activation of its catalytic domain. Here, we demonstrate that ZAP70 in TCR/CD3-activated mouse spleen and thymus cells, as well as human Jurkat T cells, is regulated by the peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin A (CypA) and that this regulation is abrogated by cyclosporin A (CsA), a CypA inhibitor. We found that TCR crosslinking promoted a rapid and transient, Lck-dependent association of CypA with the interdomain B region, at the ZAP70 regulatory domain. CsA inhibited CypA binding to ZAP70 and prevented the colocalization of CypA and ZAP70 at the cell membrane. In addition, imaging analyses of antigen-specific T cells stimulated by MHC-restricted antigen-fed antigen-presenting cells revealed the recruitment of ZAP70-bound CypA to the immunological synapse. Enzymatically active CypA downregulated the catalytic activity of ZAP70 in vitro, an effect that was reversed by CsA in TCR/CD3-activated normal T cells but not in CypA-deficient T cells, and further confirmed in vivo by FRET-based studies. We suggest that CypA plays a role in determining the activity of ZAP70 in TCR-engaged T cells and impact on T cell activation by intervening with the activity of multiple downstream effector molecules.
Collapse
Affiliation(s)
- Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Awadhesh Kumar Arya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amitha Muraleedharan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Jakeer Shaik
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Pulak Ranjan Nath
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
- Clinical and Translational Immunology Unit, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892-1857, USA
| | - Etta Livneh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Zuoming Sun
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
2
|
Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses. Immunity 2021; 54:976-987.e7. [PMID: 33979589 DOI: 10.1016/j.immuni.2021.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
Aerobic glycolysis-the Warburg effect-converts glucose to lactate via the enzyme lactate dehydrogenase A (LDHA) and is a metabolic feature of effector T cells. Cells generate ATP through various mechanisms and Warburg metabolism is comparatively an energy-inefficient glucose catabolism pathway. Here, we examined the effect of ATP generated via aerobic glycolysis in antigen-driven T cell responses. Cd4CreLdhafl/fl mice were resistant to Th17-cell-mediated experimental autoimmune encephalomyelitis and exhibited defective T cell activation, migration, proliferation, and differentiation. LDHA deficiency crippled cellular redox balance and inhibited ATP production, diminishing PI3K-dependent activation of Akt kinase and thereby phosphorylation-mediated inhibition of Foxo1, a transcriptional repressor of T cell activation programs. Th17-cell-specific expression of an Akt-insensitive Foxo1 recapitulated the defects seen in Cd4CreLdhafl/fl mice. Induction of LDHA required PI3K signaling and LDHA deficiency impaired PI3K-catalyzed PIP3 generation. Thus, Warburg metabolism augments glycolytic ATP production, fueling a PI3K-centered positive feedback regulatory circuit that drives effector T cell responses.
Collapse
|
3
|
Xu K, Yin N, Peng M, Stamatiades EG, Shyu A, Li P, Zhang X, Do MH, Wang Z, Capistrano KJ, Chou C, Levine AG, Rudensky AY, Li MO. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science 2021; 371:405-410. [PMID: 33479154 DOI: 10.1126/science.abb2683] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/29/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
Infection triggers expansion and effector differentiation of T cells specific for microbial antigens in association with metabolic reprograming. We found that the glycolytic enzyme lactate dehydrogenase A (LDHA) is induced in CD8+ T effector cells through phosphoinositide 3-kinase (PI3K) signaling. In turn, ablation of LDHA inhibits PI3K-dependent phosphorylation of Akt and its transcription factor target Foxo1, causing defective antimicrobial immunity. LDHA deficiency cripples cellular redox control and diminishes adenosine triphosphate (ATP) production in effector T cells, resulting in attenuated PI3K signaling. Thus, nutrient metabolism and growth factor signaling are highly integrated processes, with glycolytic ATP serving as a rheostat to gauge PI3K-Akt-Foxo1 signaling in the control of T cell immunity. Such a bioenergetic mechanism for the regulation of signaling may explain the Warburg effect.
Collapse
Affiliation(s)
- Ke Xu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Na Yin
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Min Peng
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Efstathios G Stamatiades
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Institute of Microbiology, Infectious Diseases and Immunology, Charité University Medical Centre, 12203 Berlin, Germany
| | - Amy Shyu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peng Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xian Zhang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mytrang H Do
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Zhaoquan Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | | | - Chun Chou
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew G Levine
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Alexander Y Rudensky
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| |
Collapse
|
4
|
Affiliation(s)
- Byron B. Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Lin Shen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
5
|
Shah NH, Wang Q, Yan Q, Karandur D, Kadlecek TA, Fallahee IR, Russ WP, Ranganathan R, Weiss A, Kuriyan J. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor. eLife 2016; 5:e20105. [PMID: 27700984 PMCID: PMC5089863 DOI: 10.7554/elife.20105] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022] Open
Abstract
The sequence of events that initiates T cell signaling is dictated by the specificities and order of activation of the tyrosine kinases that signal downstream of the T cell receptor. Using a platform that combines exhaustive point-mutagenesis of peptide substrates, bacterial surface-display, cell sorting, and deep sequencing, we have defined the specificities of the first two kinases in this pathway, Lck and ZAP-70, for the T cell receptor ζ chain and the scaffold proteins LAT and SLP-76. We find that ZAP-70 selects its substrates by utilizing an electrostatic mechanism that excludes substrates with positively-charged residues and favors LAT and SLP-76 phosphosites that are surrounded by negatively-charged residues. This mechanism prevents ZAP-70 from phosphorylating its own activation loop, thereby enforcing its strict dependence on Lck for activation. The sequence features in ZAP-70, LAT, and SLP-76 that underlie electrostatic selectivity likely contribute to the specific response of T cells to foreign antigens.
Collapse
Affiliation(s)
- Neel H Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Qi Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Qingrong Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Deepti Karandur
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Theresa A Kadlecek
- Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, United States
| | - Ian R Fallahee
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - William P Russ
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rama Ranganathan
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Arthur Weiss
- Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, United States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
6
|
Furlan G, Minowa T, Hanagata N, Kataoka-Hamai C, Kaizuka Y. Phosphatase CD45 both positively and negatively regulates T cell receptor phosphorylation in reconstituted membrane protein clusters. J Biol Chem 2014; 289:28514-25. [PMID: 25128530 DOI: 10.1074/jbc.m114.574319] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
T cell receptor (TCR) phosphorylation requires the kinase Lck and phosphatase CD45. CD45 activates Lck by dephosphorylating an inhibitory tyrosine of Lck to relieve autoinhibition. However, CD45 also dephosphorylates the TCR, and the spatial exclusion of CD45 from TCR clustering in the plasma membrane appears to attenuate this negative effect of CD45. To further investigate the role of CD45 in signal initiation, we reconstituted membrane TCR clusters in vitro on supported lipid bilayers. Fluorescence microscopy of single clusters showed that incorporation of CD45 enhanced phosphorylation of TCR clusters, but only when Lck co-clustered with TCR. We found that clustered Lck autophosphorylated the inhibitory tyrosine and thus could be activated by CD45, whereas diffusive Lck molecules did not. In the TCR-Lck clusters and at low CD45 density, we speculate that the effect of Lck activation may overcome dephosphorylation of TCR, resulting in a net positive regulation. The CD45 density in physiological TCR clusters is also low because of the exclusion of CD45. Thus, we propose that the spatial organization of TCR/Lck/CD45 in T cell membranes is important not only for modulating the negative role of CD45 but also for creating conditions in which CD45 has a positive role in signal initiation.
Collapse
Affiliation(s)
- Gabriela Furlan
- From the International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Takashi Minowa
- From the International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Nobutaka Hanagata
- From the International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Chiho Kataoka-Hamai
- From the International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Yoshihisa Kaizuka
- From the International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
7
|
Larson B, Banks P, Zegzouti H, Goueli SA. A Simple and robust automated kinase profiling platform using luminescent ADP accumulation technology. Assay Drug Dev Technol 2010; 7:573-84. [PMID: 20059362 DOI: 10.1089/adt.2009.0216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kinases continue to be one of the most important targets in today's drug discovery efforts. Following the identification of lead compounds through screening efforts, it is important to profile these leads against other kinases within that family, as well as from other families, to ascertain potential off-target effects. Because many kinase assays require the use of different substrates, optimization time and costs during profiling can be prohibitive. Here we demonstrate the versatility of a luminescent ADP accumulation assay, where one set of reagents can be used for a wide variety of kinases with differing K(m app) for ATP and substrates. Assay sensitivity allows for the use of low enzyme concentrations and small percent ATP conversion levels while still maintaining high signal:background ratios. We have used a simple, inexpensive automated pipetting system to automate the entire process from enzyme optimization through generation of compound IC(50) values. Agreement with literature values proves this combination of chemistry and instrumentation provides a simple, yet robust solution for automated kinase profiling.
Collapse
Affiliation(s)
- Brad Larson
- BioTek Instruments, Inc., Winooski, Vermont, USA.
| | | | | | | |
Collapse
|
8
|
Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, Sheetz MP. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 2007; 127:1015-26. [PMID: 17129785 PMCID: PMC2746973 DOI: 10.1016/j.cell.2006.09.044] [Citation(s) in RCA: 709] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 08/20/2006] [Accepted: 09/25/2006] [Indexed: 11/23/2022]
Abstract
How physical force is sensed by cells and transduced into cellular signaling pathways is poorly understood. Previously, we showed that tyrosine phosphorylation of p130Cas (Cas) in a cytoskeletal complex is involved in force-dependent activation of the small GTPase Rap1. Here, we mechanically extended bacterially expressed Cas substrate domain protein (CasSD) in vitro and found a remarkable enhancement of phosphorylation by Src family kinases with no apparent change in kinase activity. Using an antibody that recognized extended CasSD in vitro, we observed Cas extension in intact cells in the peripheral regions of spreading cells, where higher traction forces are expected and where phosphorylated Cas was detected, suggesting that the in vitro extension and phosphorylation of CasSD are relevant to physiological force transduction. Thus, we propose that Cas acts as a primary force sensor, transducing force into mechanical extension and thereby priming phosphorylation and activation of downstream signaling.
Collapse
Affiliation(s)
- Yasuhiro Sawada
- Department of Biological Sciences, Columbia University, Sherman Fairchild Center Room 715, MC-2416, 1212 Amsterdam Avenue, New York, NY 10027, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Gelkop S, Gish GD, Babichev Y, Pawson T, Isakov N. T cell activation-induced CrkII binding to the Zap70 protein tyrosine kinase is mediated by Lck-dependent phosphorylation of Zap70 tyrosine 315. THE JOURNAL OF IMMUNOLOGY 2006; 175:8123-32. [PMID: 16339550 DOI: 10.4049/jimmunol.175.12.8123] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Zap70 protein tyrosine kinase controls TCR-linked signal transduction pathways and is critical for T cell development and responsiveness. Following engagement of TCR, the Zap70 undergoes phosphorylation on multiple tyrosine residues that are implicated in the regulation of its catalytic activity and interaction with signaling effector molecules downstream of the TCR. We have shown previously that the CT10 regulator of kinase II (CrkII) adapter protein interacts with tyrosine-phosphorylated Zap70 in TCR-engaged T cells, and now extend these studies to show that Tyr315 in the Zap70 interdomain B region is the site of interaction with CrkII. A point mutation of Tyr315 (Y315F) eliminated the CrkII-Zap70 interaction capacity. Phosphorylation of Tyr315 and Zap70 association with CrkII were both dependent upon the Lck protein tyrosine kinase. Previous studies demonstrated the Tyr315 is the Vav-Src homology 2 (SH2) binding site, and that replacement of Tyr315 by Phe impaired the function of Zap70 in TCR signaling. However, fluorescence polarization-based binding studies revealed that the CrkII-SH2 and the Vav-SH2 bind a phosphorylated Tyr315-Zap70-derived peptide with affinities of a similar order of magnitude (Kd of 2.5 and 1.02 microM, respectively). The results suggest therefore that the biological functions attributed to the association of Zap70 with Vav following T cell activation may equally reflect the association of Zap70 with CrkII, and further support a regulatory role for CrkII in the TCR-linked signal transduction pathway.
Collapse
Affiliation(s)
- Sigal Gelkop
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | |
Collapse
|
10
|
Dangelmaier CA, Quinter PG, Jin J, Tsygankov AY, Kunapuli SP, Daniel JL. Rapid ubiquitination of Syk following GPVI activation in platelets. Blood 2005; 105:3918-24. [PMID: 15701717 PMCID: PMC1895068 DOI: 10.1182/blood-2004-09-3689] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spleen tyrosine kinase (Syk) activation is a key intermediate step in the activation of platelets by the physiologic agonist collagen. We have found that Syk is rapidly ubiquitinated upon activation of platelets by collagen, collagen-related peptide (CRP), and convulxin. The Src family kinase inhibitors prevented Syk phosphorylation and its ubiquitination, indicating that the process is downstream of Src kinases. The ubiquitination of Syk did not cause degradation of the protein as evidenced by the lack of effect of proteasomal and lysosomal inhibitors. We separated ubiquitinated Syk from its nonubiquitinated counterpart and used an in vitro kinase assay to compare their activities. We found that the ubiquitinated Syk appeared to be about 5-fold more active. Using a phosphospecific antibody to Syk (Tyr525/Tyr526) that measures activated Syk, we found that most (60%-75%) of the active Syk is in the ubiquitinated fraction. This result explains the apparent high specific activity of ubiquitinated Syk. In c-Cbl-deficient mice, Syk is not ubiquitinated, implicating c-Cbl as the E3 ligase involved in Syk ubiquitination. Furthermore, Syk is not dephosphorylated in these mice. We propose that c-Cbl plays a regulatory role in glycoprotein VI (GPVI)/Fc receptor gamma (FcRgamma)-chain-dependent platelet activation through its interaction with Syk.
Collapse
Affiliation(s)
- Carol A Dangelmaier
- Department of Pharmacology, Temple University School of Medicine, 3420 N Broad St, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
11
|
Gelkop S, Babichev Y, Kalifa R, Tamir A, Isakov N. Involvement of crk adapter proteins in regulation of lymphoid cell functions. Immunol Res 2004; 28:79-91. [PMID: 14610286 DOI: 10.1385/ir:28:2:79] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Crk adapter proteins consist of Src homology 2 (SH2) SH2 and SH3 domains, which bind tyrosine-phosphorylated peptides and polyproline-rich motives, respectively. They are linked to multiple signaling pathways in different cell types, including lymphocytes, and because of their lack of catalytic activity, many studies on Crk were aimed at the identification of their binding partners and determination of the physiologic meaning of these interactions. Crk proteins were found to be involved in the early steps of lymphocyte activation through their SH2-mediated transient interaction with signal-transducing molecules, such as Cbl, ZAP-70, CasL, and STAT5. In addition, Crk proteins are constitutively associated with effector molecules that mediate cell adhesion and thereby regulate lymphocyte extravasation and recruitment to sites of inflammation. This article describes selected studies of Crk, performed predominantly in lymphocytes, and discusses their potential relevance to the role of Crk in the regulation of lymphocyte functions.
Collapse
Affiliation(s)
- Sigal Gelkop
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | |
Collapse
|
12
|
Czupalla C, Culo M, Müller EC, Brock C, Reusch HP, Spicher K, Krause E, Nürnberg B. Identification and characterization of the autophosphorylation sites of phosphoinositide 3-kinase isoforms beta and gamma. J Biol Chem 2003; 278:11536-45. [PMID: 12502714 DOI: 10.1074/jbc.m210351200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class I phosphoinositide 3-kinases (PI3Ks) are bifunctional enzymes possessing lipid kinase activity and the capacity to phosphorylate their catalytic and/or regulatory subunits. In this study, in vitro autophosphorylation of the G protein-sensitive p85-coupled class I(A) PI3K beta and p101-coupled class I(B) PI3K gamma was examined. Autophosphorylation sites of both PI3K isoforms were mapped to C-terminal serine residues of the catalytic p110 subunit (i.e. serine 1070 of p110 beta and serine 1101 of p110 gamma). Like other class I(A) PI3K isoforms, autophosphorylation of p110 beta resulted in down-regulated PI3K beta lipid kinase activity. However, no inhibitory effect of p110 gamma autophosphorylation on PI3K gamma lipid kinase activity was observed. Moreover, PI3K beta and PI3K gamma differed in the regulation of their autophosphorylation. Whereas p110 beta autophosphorylation was stimulated neither by G beta gamma complexes nor by a phosphotyrosyl peptide derived from the platelet-derived growth factor receptor, autophosphorylation of p110 gamma was significantly enhanced by G beta gamma in a time- and concentration-dependent manner. In summary, we show that autophosphorylation of both PI3K beta and PI3K gamma occurs in a C-terminal region of the catalytic p110 subunit but differs in its regulation and possible functional consequences, suggesting distinct roles of autophosphorylation of PI3K beta and PI3K gamma.
Collapse
Affiliation(s)
- Cornelia Czupalla
- Institut für Biochemie und Molekularbiologie II, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Human ENX-2 is a homologue of Drosophila Enhancer of zeste, which is a member of Polycomb-group proteins regulating the expression of homeotic genes as chromatin-associated proteins. In this study, we demonstrate that ENX-2 plays an important role as a signaling molecule involved in T cell receptor-mediated signaling pathway. In immunoprecipitation experiments, ENX-2 and zeta associated protein-70 (ZAP-70) were co-precipitated from T cell lysate. When probed with an anti-phospho-tyrosine antibody, ENX-2 was found to be phosphorylated on tyrosine. On the other hand, ENX-2 was not phosphorylated on tyrosine in the mutant Jurkat cell, J.Cam1.6 lacking the activity of lymphocyte protein tyrosine kinase p56(lck). The interaction between ENX-2 and ZAP-70 was abolished in the mutant cell. Furthermore, in-vitro kinase assay using purified p56(lck) demonstrated that ENX-2 became tyrosine phosphorylated by this kinase. These findings show that the phosphorylation of ENX-2 is responsible for the interaction between ENX-2 and ZAP-70.
Collapse
Affiliation(s)
- Motoyuki Ogawa
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
14
|
Zhang J, Berenstein E, Siraganian RP. Phosphorylation of Tyr342 in the linker region of Syk is critical for Fc epsilon RI signaling in mast cells. Mol Cell Biol 2002; 22:8144-54. [PMID: 12417718 PMCID: PMC134060 DOI: 10.1128/mcb.22.23.8144-8154.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The linker region of Syk and ZAP70 tyrosine kinases plays an important role in regulating their function. There are three conserved tyrosines in this linker region; Tyr317 of Syk and its equivalent residue in ZAP70 were previously shown to negatively regulate the function of Syk and ZAP70. Here we studied the roles of the other two tyrosines, Tyr342 and Tyr346 of Syk, in Fc epsilon RI-mediated signaling. Antigen stimulation resulted in Tyr342 phosphorylation in mast cells. Syk with Y342F mutation failed to reconstitute Fc epsilon RI-initiated histamine release. In the Syk Y342F-expressing cells there was dramatically impaired receptor-induced phosphorylation of multiple signaling molecules, including LAT, SLP-76, phospholipase C-gamma2, but not Vav. Compared to wild-type Syk, Y342F Syk had decreased binding to phosphorylated immunoreceptor tyrosine-based activation motifs and reduced kinase activity. Surprisingly, mutation of Tyr346 had much less effect on Fc epsilon RI-dependent mast cell degranulation. An anti-Syk-phospho-346 tyrosine antibody indicated that antigen stimulation induced only a very minor increase in the phosphorylation of this tyrosine. Therefore, Tyr342, but not Tyr346, is critical for regulating Syk in mast cells and the function of these tyrosines in immune receptor signaling appears to be different from what has been previously reported for the equivalent residues of ZAP70.
Collapse
Affiliation(s)
- Juan Zhang
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
15
|
Nauclér C, Grinstein S, Sundler R, Tapper H. Signaling to localized degranulation in neutrophils adherent to immune complexes. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.4.701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Claes Nauclér
- Department of Cell and Molecular Biology, BMC, Lund University, Sweden; and
| | - Sergio Grinstein
- Division of Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roger Sundler
- Department of Cell and Molecular Biology, BMC, Lund University, Sweden; and
| | - Hans Tapper
- Department of Cell and Molecular Biology, BMC, Lund University, Sweden; and
| |
Collapse
|
16
|
Di Bartolo V, Malissen M, Dufour E, Sechet E, Malissen B, Acuto O. Tyrosine 315 determines optimal recruitment of ZAP-70 to the T cell antigen receptor. Eur J Immunol 2002; 32:568-75. [PMID: 11828374 DOI: 10.1002/1521-4141(200202)32:2<568::aid-immu568>3.0.co;2-q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recruitment of ZAP-70 protein tyrosine kinase to the T cell antigen receptor (TCR) is mediated by the binding of the SH2 domains of this enzyme to phosphorylated ITAM motifs in the CD3 and TCRzeta subunits. We have previously shown that the efficiency of both positive and negative thymocyte selection was decreased in knock-in mice expressing ZAP-70 mutated at Tyr315 (ZAP-70-Y315F), a residue laying in the interdomain B of this protein. Surprisingly, in these cells the amount of phosphorylated TCRzeta chain co-precipitating with ZAP-70-Y315F was significantly reduced compared to control mice. We report now that the binding affinity of ZAP-70-Y315F to phosphorylated ITAM is reduced as compared to the wild-type protein, whereas the intrinsic catalytic activity is untouched. Consequently, phosphorylated ITAM appear to be more accessible to protein tyrosine phosphatases (PTP) and can be readily dephosphorylated. We provide evidence suggesting that the defective ITAM binding induced by Tyr315 mutation is independent of the putative role of this residue as a binding site for Vav-1. Finally, we found that the extracellular signal-regulated kinase pathway is impaired in ZAP-70-Y315F-expressing mice. Collectively, these results demonstrate that Tyr315 has an unsuspected structural role in ZAP-70 and may allosterically regulate the function of the nearby SH2 domains.
Collapse
Affiliation(s)
- Vincenzo Di Bartolo
- Molecular Immunology Unit, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, F-75724 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
17
|
Gelkop S, Babichev Y, Isakov N. T cell activation induces direct binding of the Crk adapter protein to the regulatory subunit of phosphatidylinositol 3-kinase (p85) via a complex mechanism involving the Cbl protein. J Biol Chem 2001; 276:36174-82. [PMID: 11418612 DOI: 10.1074/jbc.m100731200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Crk adapter proteins are assumed to play a role in T lymphocyte activation because of their induced association with tyrosine-phosphorylated proteins, such as ZAP-70 and Cbl, and with the phosphatidylinositol 3kinase regulatory subunit, p85, following engagement of the T cell antigen receptor. Although the exact mechanism of interaction between these molecules has not been fully defined, it has been generally accepted that Crk, ZAP-70, and p85 interact with tyrosine-phosphorylated Cbl, which serves as a major scaffold protein in activated T lymphocytes. Our present results demonstrate a cell activation-dependent reciprocal co-immunoprecipitation of CrkII and p85 from lysates of Jurkat T cells and a direct binding of CrkII to p85 in an overlay assay. The use of bead-immobilized GST fusion proteins indicated a complex mechanism of interaction between CrkII and p85 involving two distinct and mutually independent regions in each molecule. A relatively high affinity binding of the CrkII-SH3(N) domain to p85 and the p85-proline-B cell receptor-proline (PBP) region to CrkII was observed in lysates of either resting or activated T cells. Direct physical interaction between the CrkII-SH3(N) and the p85-PBP domain was demonstrated using recombinant fusion proteins and was further substantiated by binding competition studies. In addition, immobilized fusion proteins possessing the CrkII-SH2 and p85-SH3 domains were found to pull down p85 and CrkII, respectively, but only from lysates of activated T cells. Nevertheless, the GST-CrkII-SH2 fusion protein was unable to mediate direct association with p85 from lysates of either resting or activated T cells. Our results support a model in which T cell activation dependent conformational changes in CrkII and/or p85 promote an initial direct or indirect low affinity interaction between the two molecules, which is then stabilized by a secondary high affinity interaction mediated by direct binding of the CrkII-SH3(N) to the p85-PBP domain.
Collapse
Affiliation(s)
- S Gelkop
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | |
Collapse
|
18
|
Krawczyk C, Penninger JM. Molecular motors involved in T cell receptor clusterings. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.3.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Connie Krawczyk
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| | - Josef M. Penninger
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| |
Collapse
|
19
|
Zhang J, Billingsley ML, Kincaid RL, Siraganian RP. Phosphorylation of Syk activation loop tyrosines is essential for Syk function. An in vivo study using a specific anti-Syk activation loop phosphotyrosine antibody. J Biol Chem 2000; 275:35442-7. [PMID: 10931839 DOI: 10.1074/jbc.m004549200] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syk is an important protein-tyrosine kinase in immunoreceptor signaling. FcepsilonRI aggregation in mast cells induces tyrosine phosphorylation and increased enzymatic activity of Syk. The two adjacent tyrosines in the Syk activation loop are thought to be important for the propagation of FcepsilonRI signaling. To evaluate the phosphorylation of these tyrosines in vivo and further understand the relationship of Syk tyrosine phosphorylation with its function, an antibody was developed specific for phosphorylated tyrosines in the activation loop of Syk. FcepsilonRI aggregation on mast cells induced the phosphorylation of both tyrosine residues of the activation loop. The kinase activity of Syk played the major role in phosphorylating its activation loop tyrosines both in vivo and in vitro. In FcepsilonRI-stimulated mast cells, the total Syk tyrosine phosphorylation paralleled the phosphorylation of its activation loop tyrosines and downstream propagation of signals for histamine release. In contrast, the cell surface binding of anti-ganglioside monoclonal antibody AA4 induced only strong general tyrosine phosphorylation of Syk and minimal histamine release and weak phosphorylation of activation loop tyrosines. These results demonstrate that phosphorylation of the activation loop tyrosines is important for mediating receptor signaling and is a better marker of Syk function than is total Syk tyrosine phosphorylation.
Collapse
Affiliation(s)
- J Zhang
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
20
|
Nishikawa K, Sawasdikosol S, Fruman DA, Lai J, Songyang Z, Burakoff SJ, Yaffe MB, Cantley LC. A peptide library approach identifies a specific inhibitor for the ZAP-70 protein tyrosine kinase. Mol Cell 2000; 6:969-74. [PMID: 11090635 DOI: 10.1016/s1097-2765(05)00085-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We utilized a novel peptide library approach to identify specific inhibitors of ZAP-70, a protein Tyr kinase involved in T cell activation. By screening more than 6 billion peptides oriented by a common Tyr residue for their ability to bind to ZAP-70, we determined a consensus optimal peptide. A Phe-for-Tyr substituted version of the peptide inhibited ZAP-70 protein Tyr kinase activity by competing with protein substrates (K(I) of 2 microM). The related protein Tyr kinases, Lck and Syk, were not significantly inhibited by the peptide. When introduced into intact T cells, the peptide blocked signaling downstream of ZAP-70, including ZAP-70-dependent gene induction, without affecting upstream Tyr phosphorylation. Thus, screening Tyr-oriented peptide libraries can identify selective peptide inhibitors of protein Tyr kinases.
Collapse
Affiliation(s)
- K Nishikawa
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Faruki S, Geahlen RL, Asai DJ. Syk-dependent phosphorylation of microtubules in activated B-lymphocytes. J Cell Sci 2000; 113 ( Pt 14):2557-65. [PMID: 10862713 DOI: 10.1242/jcs.113.14.2557] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Syk is a protein-tyrosine kinase that is essential for B-lymphocyte development and B-cell signaling. Syk phosphorylates tubulin on tyrosine both in vitro and in intact lymphocytes. Here we show that (alpha)-tubulin present within the cytoskeletal microtubule network was phosphorylated in a Syk-dependent manner following the activation of B-cells by engagement of the B-cell antigen receptor or by treatment with the phosphotyrosine phosphatase inhibitor, pervanadate. Immunofluorescence staining of microtubule cytoskeletons and western blotting studies with antibodies to phosphotyrosine confirmed the phosphorylation of polymerized tubulin in Syk-expressing, but not Syk-deficient, cells. At low concentrations of pervanadate, centrosomes appeared to be preferentially tyrosine-phosphorylated. Tubulin phosphorylated to a high stoichiometry on tyrosine assembled into microtubules in vitro, and preassembled microtubules were also phosphorylated by Syk kinase in vitro. Thus, Syk has the capacity to interact with microtubule networks within the B-lymphocyte and catalyzes the phosphorylation of the (alpha)-tubulin subunit. Syk-dependent phosphorylation of microtubules may affect the ability of the microtubule cytoskeleton to serve as a platform upon which signaling complexes are assembled.
Collapse
Affiliation(s)
- S Faruki
- Department of Biological Sciences and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
22
|
Baldock D, Graham B, Akhlaq M, Graff P, Jones CE, Menear K. Purification and characterization of human Syk produced using a baculovirus expression system. Protein Expr Purif 2000; 18:86-94. [PMID: 10648173 DOI: 10.1006/prep.1999.1171] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytoplasmic tyrosine kinase p72syk (Syk) plays an essential role in signaling via a variety of immune and nonimmune cell receptors. Syk is activated in response to the engagement of the appropriate cell surface receptors and can phosphorylate downstream targets and recruit additional SH2-domain-containing proteins. In order to study the characteristics of Syk in vitro, we have overexpressed untagged, full-length human Syk in a recombinant baculovirus expression system. The enzyme was purified to 95% purity using a novel two-step affinity chromatography process using reactive yellow and phosphotyrosine columns. Yields of 3-10 mg purified Syk were obtained from 1 liter of infected insect cells. Western blotting, internal protein sequencing, and the specific tyrosine phosphorylation of a Syk peptide substrate indicated authenticity of the purified protein. The enzymatic properties of Syk were in good agreement with published data for the human enzyme, as the apparent K(m) of Syk for ATP was 10 microM and the peptide substrate was 3 microM. The recombinant protein also showed similar biochemical characteristics to the native protein isolated from B-cells such as autophosphorylation. Proteolytic cleavage of purified recombinant Syk was used to generate the kinase domain by micro-calpain. We therefore describe an efficient expression system and purification methodology to produce biologically active human Syk.
Collapse
Affiliation(s)
- D Baldock
- Respiratory Disease Therapeutic Area, Novartis Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex, RH12 5AB, United Kingdom.
| | | | | | | | | | | |
Collapse
|
23
|
Matsuda S, Suzuki-Fujimoto T, Minowa A, Ueno H, Katamura K, Koyasu S. Temperature-sensitive ZAP70 mutants degrading through a proteasome-independent pathway. Restoration of a kinase domain mutant by Cdc37. J Biol Chem 1999; 274:34515-8. [PMID: 10574909 DOI: 10.1074/jbc.274.49.34515] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD8 deficiency is an autosomal recessive form of severe combined immunodeficiency diseases characterized by the absence of CD8(+) T lymphocytes and impaired T cell functions. We identified two novel mis-sense mutations in the zap70 genes of a CD8-deficiency patient. One mutation (P80Q) affects a residue in an SH2 domain and another (M572L) in the kinase subdomain XI. Both mutations cause a degradation of ZAP70 protein in a temperature-sensitive manner through an ATP-dependent and proteasome-independent pathway. We further demonstrated that Cdc37, a protein kinase-specific chaperone, bound to M572L but not P80Q mutant and restored the expression of the M572L mutant when overexpressed. The restoration of M572L mutant by Cdc37 required the function of HSP90. These results indicate that Cdc37 in conjunction with HSP90 functions as a molecular chaperone for a temperature-sensitive kinase domain mutant of ZAP70.
Collapse
Affiliation(s)
- S Matsuda
- Department of Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Magistrelli G, Bosotti R, Valsasina B, Visco C, Perego R, Toma S, Acuto O, Isacchi A. Role of the Src homology 2 domains and interdomain regions in ZAP-70 phosphorylation and enzymatic activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:1166-73. [PMID: 10583414 DOI: 10.1046/j.1432-1327.1999.00973.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The protein tyrosine kinase ZAP-70, which mediates T-cell antigen receptor (TCR) signalling, contains three distinct functional modules, two tandemly arranged SH2 domains, a kinase domain and a linker region (interdomain B) that connects them. ZAP-70 enzymatic activation is strictly dependent on the binding, via its SH2 domains, to the triggered TCR and on tyrosine phosphorylation. Here we utilized recombinant ZAP-70 and carried out a mutational analysis to understand the structural requirements for its activation. We show that deletion of both SH2 domains corresponding to the first 254 residues moderately increases ZAP-70 enzymatic activity on an exogenous substrate in vitro, results in increased tyrosine phosphorylation and produces subtle conformational changes, as judged by altered SDS/PAGE migration. Mutation of Tyr292, 315 and 319 to Phe in the interdomain B region, which constitute the major phosphorylation sites both in vitro and in vivo, did not affect ZAP-70 enzymatic activity. Moreover, deletion analysis of the interdomain B region established residues 320-619 as a minimal region endowed with full kinase activity. We propose that binding of ZAP-70 to the TCR promotes, through conformational changes, its extensive phosphorylation on tyrosine. However, Tyr292, 315 and 319 do not affect ZAP-70 enzymatic activity and may influence ZAP-70 signalling only indirectly by mediating its association with intracellular transducers.
Collapse
Affiliation(s)
- G Magistrelli
- Department of Biology, Pharmacia & Upjohn, Nerviano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
da Cruz LA, Penfold S, Zhang J, Somani AK, Shi F, McGavin MK, Song X, Siminovitch KA. Involvement of the lymphocyte cytoskeleton in antigen-receptor signaling. Curr Top Microbiol Immunol 1999; 245:135-67. [PMID: 10533312 DOI: 10.1007/978-3-642-57066-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- L A da Cruz
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang J, Siraganian RP. CD45 Is Essential for FcεRI Signaling by ZAP70, But Not Syk, in Syk-Negative Mast Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The ZAP70/Syk family of protein tyrosine kinases plays an important role in Ag receptor signaling. Structural similarity of Syk and ZAP70 suggests their functional overlap. Previously, it was observed that expression of either ZAP70 or Syk reconstitutes Ag receptor signaling in Syk-negative B cells. However, in CD45-deficient T cells, Syk, but not ZAP70, restores T cell receptor-signaling pathway. To study the function of Syk, ZAP70, and CD45 in mast cells, a Syk/CD45 double-deficient variant of RBL-2H3 cells was characterized. After transfection, stable cell lines were isolated that expressed ZAP70, Syk, CD45, ZAP70 plus CD45, and Syk plus CD45. IgE stimulation did not induce degranulation in parental double-deficient cells, nor in the cells expressing only CD45. ZAP70 expression did not restore FcεRI signaling unless CD45 was coexpressed in the cells. However, Syk alone restored the IgE signal transduction pathway. The coexpression of CD45 with Syk had no significant effects on the responses to FcεRI-aggregation. There was much better binding of Syk than ZAP70 to the phosphorylated FcεRIγ-ITAM. Furthermore, unlike Syk, ZAP70 required CD45 to display receptor-induced increase in kinase activity. Therefore, in mast cells, ZAP70, but not Syk, requires CD45 for Ag receptor-induced signaling.
Collapse
Affiliation(s)
- Juan Zhang
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Reuben P. Siraganian
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
27
|
Gelkop S, Isakov N. T cell activation stimulates the association of enzymatically active tyrosine-phosphorylated ZAP-70 with the Crk adapter proteins. J Biol Chem 1999; 274:21519-27. [PMID: 10419455 DOI: 10.1074/jbc.274.31.21519] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Engagement of the T cell antigen receptor initiates signal transduction involving tyrosine phosphorylation of multiple effector molecules and the formation of multimolecular complexes at the receptor site. Adapter proteins that possess SH2 and SH3 protein-protein interaction domains are implicated in the assembly of cell activation-induced signaling complexes. We found that Crk adapter proteins undergo activation-induced interaction with the zeta-chain associated protein (ZAP-70) tyrosine kinase in the human T cell line, Jurkat. Incubation of various glutathione S-transferase fusion proteins with a lysate of activated Jurkat cells resulted in selective association of ZAP-70 with Crk, but not Grb2 or Nck, adapter proteins. In addition, tyrosine-phosphorylated ZAP-70 co-immunoprecipitated with Crk from a lysate of activated Jurkat cells, and ZAP-70 association with GST-Crk was observed in a lysate of activated human peripheral blood T cells. Association between the two molecules was mediated by direct physical interaction and involved the Crk-SH2 domain and phosphotyrosyl-containing sequences on ZAP-70. The association required intact Lck, considered to be an upstream regulator of ZAP-70, because it could not take place in activated JCaM1 cells, which express normal levels of ZAP-70 but are devoid of Lck. Finally, glutathione S-transferase-Crk fusion proteins were found to interact predominantly with membrane-residing tyrosine-phosphorylated ZAP-70 that exhibited autophosphorylation activity as well as phosphorylation of an exogenous substrate, CFB3. These findings suggest that Crk adapter proteins play a role in the early activation events of T lymphocytes, apparently, by direct interaction with, and regulation of, the membrane-residing ZAP-70 protein tyrosine kinase.
Collapse
Affiliation(s)
- S Gelkop
- Department of Microbiology and Immunology, Faculty of Health Sciences, Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | |
Collapse
|
28
|
Liu H, Vignali DAA. Differential CD3ζ Phosphorylation Is Not Required for the Induction of T Cell Antagonism by Altered Peptide Ligands. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
T cells recognize foreign Ags in the form of short peptides bound to MHC molecules. Ligation of the TCR:CD3 complex gives rise to the generation of two tyrosine-phosphorylated forms of the CD3 ζ-chain, pp21 and pp23. Replacement of residues in MHC-bound peptides that alter its recognition by the TCR can generate altered peptide ligands (APL) that antagonize T cell responses to the original agonist peptide, leading to altered T cell function and anergy. This biological process has been linked to differential CD3ζ phosphorylation and generation of only the pp21 phospho-species. Here, we show that T cells expressing CD3ζ mutants, which cannot be phosphorylated, exhibit a 5-fold reduction in IL-2 production and a 30-fold reduction in sensitivity following stimulation with an agonist peptide. However, these T cells are still strongly antagonized by APL. These data demonstrate that: 1) the threshold required for an APL to block a response is much lower than for an agonist peptide to induce a response, 2) CD3ζ is required for full agonist but not antagonist responses, and 3) differential CD3ζ phosphorylation is not a prerequisite for T cell antagonism.
Collapse
Affiliation(s)
- Haiyan Liu
- *Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105; and
- †Graduate Program in Pathology and
| | - Dario A. A. Vignali
- *Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105; and
- ‡Department of Pathology, University of Tennessee Medical Center, Memphis, TN 38163
| |
Collapse
|
29
|
Pelosi M, Di Bartolo V, Mounier V, Mège D, Pascussi JM, Dufour E, Blondel A, Acuto O. Tyrosine 319 in the interdomain B of ZAP-70 is a binding site for the Src homology 2 domain of Lck. J Biol Chem 1999; 274:14229-37. [PMID: 10318843 DOI: 10.1074/jbc.274.20.14229] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T-cell antigen receptor-induced signaling requires both ZAP-70 and Lck protein-tyrosine kinases. One essential function of Lck in this process is to phosphorylate ZAP-70 and up-regulate its catalytic activity. We have previously shown that after T-cell antigen receptor stimulation, Lck binds to ZAP-70 via its Src homology 2 (SH2) domain (LckSH2) and, more recently, that Tyr319 of ZAP-70 is phosphorylated in vivo and plays a positive regulatory role. Here, we investigated the possibility that Tyr319 mediates the SH2-dependent interaction between Lck and ZAP-70. We show that a phosphopeptide encompassing the motif harboring Tyr319, YSDP, interacted with LckSH2, although with a lower affinity compared with a phosphopeptide containing the optimal binding motif, YEEI. Moreover, mutation of Tyr319 to phenylalanine prevented the interaction of ZAP-70 with LckSH2. Based on these results, a gain-of-function mutant of ZAP-70 was generated by changing the sequence Y319SDP into Y319EEI. As a result of its increased ability to bind LckSH2, this mutant induced a dramatic increase in NFAT activity in Jurkat T-cells, was hyperphosphorylated, and displayed a higher catalytic activity compared with wild-type ZAP-70. Collectively, our findings indicate that Tyr319-mediated binding of the SH2 domain of Lck is crucial for ZAP-70 activation and consequently for the propagation of the signaling cascade leading to T-cell activation.
Collapse
Affiliation(s)
- M Pelosi
- Molecular Immunology Unit, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hegedûs Z, Chitu V, Tóth GK, Finta C, Váradi G, Andó I, Monostori E. Contribution of kinases and the CD45 phosphatase to the generation of tyrosine phosphorylation patterns in the T-cell receptor complex zeta chain. Immunol Lett 1999; 67:31-9. [PMID: 10217203 DOI: 10.1016/s0165-2478(98)00138-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The zeta subunit of the T-cell receptor complex plays a crucial role in coupling the antigen binding alphabeta and gammadelta heterodimers to the downstream activation pathways. Three tandem amino acid sequence motifs containing pairs of exactly spaced Tyr-X-X-Leu/Ile sequences, designated as Immunoreceptor Tyrosine-based Activation Motifs (ITAMs), control this function. The phosphorylated forms of ITAMs serve as docking sites for several src homology 2 (SH2) domain containing signaling proteins. The composition of the assembled signaling complex and the outcome of cell activation depends on the tyrosine phosphorylation pattern of the zeta polypeptide. The mechanism that conducts the generation of various phosphorylated forms has not yet been well established. In this study we have analyzed the ability of src family tyrosine kinases and the CD45 tyrosine phosphatase in determining the phosphorylation state of the different ITAMs and the individual tyrosine residues of the TCR zeta chain. The intracellular part of the zeta chain was phosphorylated by src family tyrosine kinases, p56lck and p59fyn in vitro. Synthetic oligopeptides representing full-length or half-sized ITAMs with a single tyrosine residue were also phosphorylated by both p56lck and p59fyn. In contrast, an additional membrane proximal tyrosine residue in the human zeta chain, located outside of the ITAMs, was not phosphorylated. We also examined the activity of the CD45 phosphatase, using a panel of ITAM derivatives, in which one or both tyrosines were phosphorylated. The efficiency of ITAM dephosphorylation by CD45 was dependent on the primary sequence of the oligopeptides and the position of the phosphotyrosine residues. The in vitro data suggest that the CD45 phosphatase rather than the tyrosine kinase(s) may control the generation of specific phosphorylation patterns of the zeta chain during cell activation.
Collapse
Affiliation(s)
- Z Hegedûs
- Institute of Genetics, Biological Research Center of Hungarian Academy of Sciences, Szeged
| | | | | | | | | | | | | |
Collapse
|
31
|
Di Bartolo V, Mège D, Germain V, Pelosi M, Dufour E, Michel F, Magistrelli G, Isacchi A, Acuto O. Tyrosine 319, a newly identified phosphorylation site of ZAP-70, plays a critical role in T cell antigen receptor signaling. J Biol Chem 1999; 274:6285-94. [PMID: 10037717 DOI: 10.1074/jbc.274.10.6285] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Following T cell antigen receptor (TCR) engagement, the protein tyrosine kinase (PTK) ZAP-70 is rapidly phosphorylated on several tyrosine residues, presumably by two mechanisms: an autophosphorylation and a trans-phosphorylation by the Src-family PTK Lck. These events have been implicated in both positive and negative regulation of ZAP-70 activity and in coupling this PTK to downstream signaling pathways in T cells. We show here that Tyr315 and Tyr319 in the interdomain B of ZAP-70 are autophosphorylated in vitro and become phosphorylated in vivo upon TCR triggering. Moreover, by mutational analysis, we demonstrate that phosphorylation of Tyr319 is required for the positive regulation of ZAP-70 function. Indeed, overexpression in Jurkat cells and in a murine T cell hybridoma of a ZAP-70 mutant in which Tyr319 was replaced by phenylalanine (ZAP-70-Y319F) dramatically impaired anti-TCR-induced activation of the nuclear factor of activated T cells and interleukin-2 production, respectively. Surprisingly, an analogous mutation of Tyr315 had little or no effect. The inhibitory effect of ZAP-70-Y319F correlated with a substantial loss of its activation-induced tyrosine phosphorylation and up-regulation of catalytic activity, as well as with a decreased in vivo capacity to phosphorylate known ZAP-70 substrates, such as SLP-76 and LAT. Collectively, our data reveal the pivotal role of Tyr319 phosphorylation in the positive regulation of ZAP-70 and in TCR-mediated signaling.
Collapse
Affiliation(s)
- V Di Bartolo
- Molecular Immunology Unit, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vanhaesebroeck B, Higashi K, Raven C, Welham M, Anderson S, Brennan P, Ward SG, Waterfield MD. Autophosphorylation of p110delta phosphoinositide 3-kinase: a new paradigm for the regulation of lipid kinases in vitro and in vivo. EMBO J 1999; 18:1292-302. [PMID: 10064595 PMCID: PMC1171219 DOI: 10.1093/emboj/18.5.1292] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases which also possess an in vitro protein kinase activity towards themselves or their adaptor proteins. The physiological relevance of these phosphorylations is unclear at present. Here, the protein kinase activity of the tyrosine kinase-linked PI3K, p110delta, is characterized and its functional impact assessed. In vitro autophosphorylation of p110delta completely down-regulates its lipid kinase activity. The single site of autophosphorylation was mapped to Ser1039 at the C-terminus of p110delta. Antisera specific for phospho-Ser1039 revealed a very low level of phosphorylation of this residue in cell lines. However, p110delta that is recruited to activated receptors (such as CD28 in T cells) shows a time-dependent increase in Ser1039 phosphorylation and a concomitant decrease in associated lipid kinase activity. Treatment of cells with okadaic acid, an inhibitor of Ser/Thr phosphatases, also dramatically increases the level of Ser1039-phosphorylated p110delta. LY294002 and wortmannin blocked these in vivo increases in Ser1039 phosphorylation, consistent with the notion that PI3Ks, and possibly p110delta itself, are involved in the in vivo phosphorylation of p110delta. In summary, we show that PI3Ks are subject to regulatory phosphorylations in vivo similar to those identified under in vitro conditions, identifying a new level of control of these signalling molecules.
Collapse
Affiliation(s)
- B Vanhaesebroeck
- Ludwig Institute for Cancer Research, 91 Riding House Street, London W1P 8BT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
McVicar DW, Taylor LS, Gosselin P, Willette-Brown J, Mikhael AI, Geahlen RL, Nakamura MC, Linnemeyer P, Seaman WE, Anderson SK, Ortaldo JR, Mason LH. DAP12-mediated signal transduction in natural killer cells. A dominant role for the Syk protein-tyrosine kinase. J Biol Chem 1998; 273:32934-42. [PMID: 9830044 DOI: 10.1074/jbc.273.49.32934] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The murine Ly49 family contains nine genes in two subgroups: the inhibitory receptors (Ly49A, B, C, E, F, G2, and I) and the noninhibitory receptors (Ly49D and H). Unlike their inhibitory counterparts, Ly49D and H do not contain immunoreceptor tyrosine-based inhibitory motifs but associate with a recently described co-receptor, DAP12, to transmit positive signals to natural killer (NK) cells. DAP12 is also expressed in myeloid cells, but the receptors coupled to it there are unknown. Here we document the signaling pathways of the Ly49D/DAP12 complex in NK cells. We show that ligation of Ly49D results in 1) tyrosine phosphorylation of several substrates, including phospholipase Cgamma1, Cbl, and p44/p42 mitogen-activated protein kinase, and 2) calcium mobilization. Moreover, we demonstrate that although human DAP12 reportedly binds the SH2 domains of both Syk and Zap-70, ligation of Ly49D leads to activation of Syk but not Zap-70. Consistent with this observation, Ly49D/DAP12-mediated calcium mobilization is blocked by dominant negative Syk but not by catalytically inactive Zap-70. These data demonstrate the dependence of DAP12-coupled receptors on Syk and suggest that the outcome of Ly49D/DAP12 engagement will be regulated by Cbl and culminate in the activation of transcription factors.
Collapse
Affiliation(s)
- D W McVicar
- Laboratory of Experimental Immunology, Division of Basic Sciences, NCI, National Institutes of Health, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Minetti G, Seppi C, Ciana A, Balduini C, Low PS, Brovelli A. Characterization of the hypertonically induced tyrosine phosphorylation of erythrocyte band 3. Biochem J 1998; 335 ( Pt 2):305-11. [PMID: 9761728 PMCID: PMC1219783 DOI: 10.1042/bj3350305] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human erythrocyte band 3 becomes rapidly phosphorylated on tyrosine residues after exposure of erythrocytes to hypertonic conditions. The driving force for this phosphorylation reaction seems to be a decrease in cell volume, because (1) changes in band 3 phosphotyrosine content accurately track repeated changes in erythrocyte volume through several cycles of swelling and shrinking; (2) the level of band 3 phosphorylation is independent of the osmolyte employed but strongly sensitive to the magnitude of cell shrinkage; and (3) exposure of erythrocytes to hypertonic buffers under conditions in which intracellular osmolarity increases but volume does not change (nystatin-treated cells) does not promote an increase in tyrosine phosphorylation. We hypothesize that shrinkage-induced tyrosine phosphorylation results either from an excluded-volume effect, stemming from an increase in intracellular crowding, or from changes in membrane curvature that accompany the decrease in cell volume. Although the net phosphorylation state of band 3 is shown to be due to a delicate balance between a constitutively active tyrosine phosphatase and constitutively active tyrosine kinase, the increase in phosphorylation during cell shrinkage was demonstrated to derive specifically from an activation of the latter. Further, a peculiar inhibition pattern of the volume-sensitive erythrocyte tyrosine kinase that matched that of p72syk, a tyrosine kinase already known to associate with band 3 in vivo, suggested the involvement of this kinase in the volume-dependent response.
Collapse
Affiliation(s)
- G Minetti
- Dipartimento di Biochimica 'A. Castellani', Università di Pavia, Via Bassi 21, I-27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Zeitlmann L, Knorr T, Knoll M, Romeo C, Sirim P, Kolanus W. T cell activation induced by novel gain-of-function mutants of Syk and ZAP-70. J Biol Chem 1998; 273:15445-52. [PMID: 9624129 DOI: 10.1074/jbc.273.25.15445] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Syk family tyrosine kinases play a crucial role in antigen receptor-mediated signal transduction, but their regulation and cellular targets remain incompletely defined. Following receptor engagement, phosphorylation of tyrosine residues within ZAP-70 and Syk is thought to control both kinase activity and recruitment of modulatory factors. We report here the characterization of novel mutants of ZAP-70 and Syk, in which conserved C-terminal tyrosine residues have been replaced by phenylalanines (ZAP YF-C, Syk YF-C). Both mutant kinases display a prominent gain-of-function phenotype in Jurkat T cells, as demonstrated by lymphokine promoter activation, tyrosine phosphorylation of potential targets in vivo, and elevated intracellular calcium mobilization. While the presence of p56-Lck was required for ZAP YF-C-induced signaling, Syk YF-C showed enhanced functional activity in Lck-deficient JCaM1 Jurkat cells. Our results implicate the C terminus of Syk family kinases as an important regulatory region modulating T cell activation.
Collapse
Affiliation(s)
- L Zeitlmann
- Laboratorium für Molekulare Biologie, Genzentrum der Universität München, Feodor Lynen Strasse 25, D-81377 München, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Huby RD, Weiss A, Ley SC. Nocodazole inhibits signal transduction by the T cell antigen receptor. J Biol Chem 1998; 273:12024-31. [PMID: 9575143 DOI: 10.1074/jbc.273.20.12024] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The potential role of the cytoskeleton in signaling via the T cell antigen receptor (TCR) was investigated using pharmacological agents. In Jurkat T cells, disruption of the actin-based cytoskeleton with cytochalasin D or disruption of the microtubules with colchicine did not affect TCR induction of proximal signaling events triggered by CD3 mAb. Polymerized actin and tubulin, therefore, were not required for TCR-mediated signal transduction. Nocodazole, however, was found to inhibit dramatically TCR signaling, independently of its ability to depolymerize microtubules. This effect was TCR-specific, because signaling via the human muscarinic acetylcholine receptor 1 in the same cells was unaffected. A mechanism for the inhibition of TCR signaling by nocodazole was suggested by in vitro assays, which revealed that the drug inhibited the kinase activity of LCK and, to a lesser extent, FYN. The kinase activity of ZAP-70 in vitro, however, was unaffected. These results, therefore, suggested that nocodazole prevented initial phosphorylation of the TCR by LCK after stimulation, and as a result, it blocked activation of downstream signaling pathways. Immunofluorescence analyses also revealed that nocodazole and the specific SRC-family kinase inhibitor PP1 delocalized ZAP-70 from its constitutive site at the cell cortex. These effects did not require the SH2 domains of ZAP-70. The localization of ZAP-70 to the cell cortex is, therefore, regulated by the activity of SRC-family kinases, independently of their ability to phosphorylate immunoreceptor tyrosine-based activation motifs of the TCR.
Collapse
Affiliation(s)
- R D Huby
- Division of Cellular Immunology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
37
|
Griffith CE, Zhang W, Wange RL. ZAP-70-dependent and -independent activation of Erk in Jurkat T cells. Differences in signaling induced by H2o2 and Cd3 cross-linking. J Biol Chem 1998; 273:10771-6. [PMID: 9553143 DOI: 10.1074/jbc.273.17.10771] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress in T cells induces signaling events similar to those initiated by T cell antigen receptor engagement, including tyrosine phosphorylation and activation of the critical protein-tyrosine kinase ZAP-70. Distal signaling events such as the activation of mitogen-activated protein kinases and downstream transcription factors are also initiated by oxidative stimuli. In this study P116, a ZAP-70-negative Jurkat T cell line, was used to investigate the role of ZAP-70 in mediating activation of Erk in response to H2O2. Consistent with the hypothesis that ZAP-70 is required for activation of Erk in response to an oxidative stimulus, Erk1 and Erk2 could be rapidly activated in Jurkat cells but not in P116 cells upon addition of H2O2. P116 cells became competent for H2O2-induced Erk activation upon stable transfection with wild-type ZAP-70. An in vivo ZAP-70 substrate, SLP-76, implicated in Erk activation, also became rapidly tyrosine-phosphorylated in Jurkat cells, but not in P116 cells, upon treatment with H2O2. Surprisingly, although ZAP-70 was required for H2O2-mediated Erk activation, Erk activation in response to T cell antigen receptor engagement did not require ZAP-70. In addition to demonstrating a requirement for ZAP-70 in H2O2-stimulated Erk activation, these results provide the first evidence for the existence of a ZAP-70-independent pathway for Erk activation in T cells.
Collapse
Affiliation(s)
- C E Griffith
- Laboratory of Biological Chemistry, Gerontology Research Center, NIA, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | | | | |
Collapse
|
38
|
Sahuquillo AG, Roumier A, Teixeiro E, Bragado R, Alarcón B. T cell receptor (TCR) engagement in apoptosis-defective, but interleukin 2 (IL-2)-producing, T cells results in impaired ZAP70/CD3-zeta association. J Exp Med 1998; 187:1179-92. [PMID: 9547330 PMCID: PMC2212225 DOI: 10.1084/jem.187.8.1179] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1997] [Revised: 01/29/1998] [Indexed: 12/02/2022] Open
Abstract
We have previously shown that a tyrosine to leucine replacement in the transmembrane region of T cell receptor (TCR)-beta results in a deficient induction of CD95-L and apoptosis upon TCR triggering in a transfected T cell line. By contrast, interleukin (IL)-2 production and the expression of CD25 and CD69 were normally induced. Since the mutation in TCR-beta also resulted in impaired association of CD3-zeta, it was proposed that this chain is specifically required for the induction of apoptosis. We now show that the deficient induction of CD95-L and apoptosis does not derive from a general lower production of second messengers, since intracellular Ca2+ fluxes and tyrosine phosphorylation of total proteins were elicited at wild-type levels. Unlike in T cell clones stimulated with partial agonists, both p21 and p18 forms of tyrosine-phosphorylated CD3-zeta were detected, although the overall level of tyrosine-phosphorylated CD3-zeta was low. More strikingly, inducible association of ZAP70 to CD3-zeta was strongly inhibited, despite a normal induction of ZAP70 tyrosine phosphorylation. Finally, ZAP70 was not concentrated near the plasma membrane in the apoptosis-deficient cells. These results suggest that CD3-zeta is necessary for engagement of a specific signaling pathway leading to CD95-L expression that also needs the recruitment of ZAP70.
Collapse
Affiliation(s)
- A G Sahuquillo
- Department of Immunology, Fundación Jiménez-Díaz, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Grazioli L, Germain V, Weiss A, Acuto O. Anti-peptide antibodies detect conformational changes of the inter-SH2 domain of ZAP-70 due to binding to the zeta chain and to intramolecular interactions. J Biol Chem 1998; 273:8916-21. [PMID: 9535874 DOI: 10.1074/jbc.273.15.8916] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T cell receptor (TCR) triggering induces association of the protein tyrosine kinase ZAP-70, via its two src-homology 2 (SH2) domains, to di-phosphorylated Immunoreceptor Tyrosine-based Activation Motifs (2pY-ITAMs) present in the intracellular tail of the TCR-zeta chain. The crystal structure of the SH2 domains complexed with a 2pY-ITAM peptide suggests that the 60-amino acid-long inter-SH2 spacer helps the SH2 domains to interact with each other to create the binding site for the 2pY-ITAM. To investigate whether the inter-SH2 spacer has additional roles in the whole ZAP-70, we raised antibodies against two peptides of this region and probed ZAP-70 structure under various conditions. We show that the reactivity of antibodies directed at both sequences was dramatically augmented toward the tandem SH2 domains alone compared with that of the entire ZAP-70. This indicates that the conformation of the inter-SH2 spacer is not maintained autonomously but is controlled by sequences C-terminal to the SH2 domains, namely, the linker region and/or the kinase domain. Moreover, antibody binding to the same two determinants was also inhibited when ZAP-70 or the SH2 domains bound to the zeta chain or to a 2pY-ITAM. Together, these two observations suggest a model in which intramolecular contacts keep ZAP-70 in a closed configuration with the two SH2 domains near to each other.
Collapse
Affiliation(s)
- L Grazioli
- Molecular Immunology Unit, Department of Immunology, Pasteur Institut, 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
40
|
Williams BL, Schreiber KL, Zhang W, Wange RL, Samelson LE, Leibson PJ, Abraham RT. Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line. Mol Cell Biol 1998; 18:1388-99. [PMID: 9488454 PMCID: PMC108852 DOI: 10.1128/mcb.18.3.1388] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/1997] [Accepted: 12/08/1997] [Indexed: 02/06/2023] Open
Abstract
T-cell antigen receptor (TCR) engagement activates multiple protein tyrosine kinases (PTKs), including the Src family member, Lck, and the Syk-related PTK, ZAP-70. Studies in ZAP-70-deficient humans have demonstrated that ZAP-70 plays crucial roles in T-cell activation and development. However, progress toward a detailed understanding of the regulation and function of ZAP-70 during TCR signaling has been hampered by the lack of a suitable T-cell model for biochemical and genetic analyses. In this report, we describe the isolation and phenotypic characterization of a Syk- and ZAP-70-negative somatic mutant derived from the Jurkat T-cell line. The P116 cell line displays severe defects in TCR-induced signaling functions, including protein tyrosine phosphorylation, intracellular Ca2+ mobilization, and interleukin-2 promoter-driven transcription. These signaling defects were fully reversed by reintroduction of catalytically active versions of either Syk or ZAP-70 into the P116 cells. However, in contrast to ZAP-70 expression, Syk expression triggered a significant degree of cellular activation in the absence of TCR ligation. Transfection experiments with ZAP-70-Syk chimeric proteins indicated that both the amino-terminal regulatory regions and the carboxy-terminal catalytic domains of Syk and ZAP-70 contribute to the distinctive functional properties of these PTKs. These studies underscore the crucial role of ZAP-70 in TCR signaling and offer a powerful genetic model for further analyses of ZAP-70 regulation and function in T cells.
Collapse
Affiliation(s)
- B L Williams
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 1998; 92:83-92. [PMID: 9489702 DOI: 10.1016/s0092-8674(00)80901-0] [Citation(s) in RCA: 1019] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite extensive study, several of the major components involved in T cell receptor-mediated signaling remain unidentified. Here we report the cloning of the cDNA for a highly tyrosine-phosphorylated 36-38 kDa protein, previously characterized by its association with Grb2, phospholipase C-gamma1, and the p85 subunit of phosphoinositide 3-kinase. Deduced amino acid sequence identifies a novel integral membrane protein containing multiple potential tyrosine phosphorylation sites. We show that this protein is phosphorylated by ZAP-70/Syk protein tyrosine kinases leading to recruitment of multiple signaling molecules. Its function is demonstrated by inhibition of T cell activation following overexpression of a mutant form lacking critical tyrosine residues. Therefore, we propose to name the molecule LAT-linker for activation of T cells.
Collapse
Affiliation(s)
- W Zhang
- Section on Lymphocyte Signaling, Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5430, USA
| | | | | | | | | |
Collapse
|
42
|
Role of Immunoreceptor Tyrosine-Based Activation Motif in Signal Transduction from Antigen and Fc Receptors**Received for publication October 7, 1997. Adv Immunol 1998. [DOI: 10.1016/s0065-2776(08)60608-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Brumbaugh KM, Binstadt BA, Billadeau DD, Schoon RA, Dick CJ, Ten RM, Leibson PJ. Functional role for Syk tyrosine kinase in natural killer cell-mediated natural cytotoxicity. J Exp Med 1997; 186:1965-74. [PMID: 9396765 PMCID: PMC2199178 DOI: 10.1084/jem.186.12.1965] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/1997] [Revised: 10/09/1997] [Indexed: 02/05/2023] Open
Abstract
Natural killer (NK) cells are named based on their natural cytotoxic activity against a variety of target cells. However, the mechanisms by which sensitive targets activate killing have been difficult to study due to the lack of a prototypic NK cell triggering receptor. Pharmacologic evidence has implicated protein tyrosine kinases (PTKs) in natural killing; however, Lck-deficient, Fyn-deficient, and ZAP-70-deficient mice do not exhibit defects in natural killing despite demonstrable defects in T cell function. This discrepancy implies the involvement of other tyrosine kinases. Here, using combined biochemical, pharmacologic, and genetic approaches, we demonstrate a central role for the PTK Syk in natural cytotoxicity. Biochemical analyses indicate that Syk is tyrosine phosphorylated after stimulation with a panel of NK-sensitive target cells. Pharmacologic exposure to piceatannol, a known Syk family kinase inhibitor, inhibits natural cytotoxicity. In addition, gene transfer of dominant-negative forms of Syk to NK cells inhibits natural cytotoxicity. Furthermore, sensitive targets that are rendered NK-resistant by major histocompatibility complex (MHC) class I transfection no longer activate Syk. These data suggest that Syk activation is an early and requisite signaling event in the development of natural cytotoxicity directed against a variety of cellular targets.
Collapse
Affiliation(s)
- K M Brumbaugh
- Department of Immunology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Galron D, Ansotegui IJ, Isakov N. Posttranslational regulation of Lck and a p36-38 protein by activators of protein kinase C: differential effects of the tumor promoter, PMA, and the non-tumor-promoter, bryostatin. Cell Immunol 1997; 178:141-51. [PMID: 9225005 DOI: 10.1006/cimm.1997.1120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T cell activation via the antigen receptor or by PKC-activating drugs results in phosphorylation of Lck and alteration of its electrophoretic mobility. Although tyrosine phosphorylation appears to regulate Lck enzymatic activity, the significance of phosphorylation of serine residues and its relevance to the cell proliferation process are yet unclear. We found that the PKC activator, bryostatin, like PMA, induced the conversion of p56lck to a slower migrating form with an apparent molecular mass of 60 kDa. The effect of PMA lasted over 48 hr but that of bryostatin was transient and correlated in time kinetics with that of the bryostatin-induced degradation of PKC. The effects of bryostatin were dominant over those of PMA. In addition, PKC was found to affect both serine and tyrosine phosphorylation of Lck but had no significant effect on the in vitro catalytic activity of Lck. To test whether serine phosphorylation of Lck may affect its ability to bind tyrosine phosphoproteins, we compared Lck immunoprecipitates from PMA- and bryostatin-treated T cells. We found that a 36- to 38-kDa tyrosine phosphoprotein co-immunoprecipitated with Lck from cells that were treated for 24 hr with PMA, but not bryostatin. A p36-38 from PMA- but not bryostatin-treated cells also interacted with an Lck-SH2 fusion protein, suggesting differential regulation of p36-38 by PMA and bryostatin. Furthermore, in vitro phosphorylation of p36-38 occurred in lysates of cells that were treated for 24 hr with PMA, but not in lysates of bryostatin-treated cells. The results show that tyrosine phosphorylation and the association of p36-38 with Lck are differentially affected by bryostatin and PMA and suggest that PKC regulates the interaction of potential signaling molecules with Lck, thereby regulating biochemical events that are relevant to T cell mitogenesis and/or transformation.
Collapse
Affiliation(s)
- D Galron
- Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | |
Collapse
|
45
|
Takaki S, Watts JD, Forbush KA, Nguyen NT, Hayashi J, Alberola-Ila J, Aebersold R, Perlmutter RM. Characterization of Lnk. An adaptor protein expressed in lymphocytes. J Biol Chem 1997; 272:14562-70. [PMID: 9169414 DOI: 10.1074/jbc.272.23.14562] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stimulation of the T cell antigen receptor (TCR) activates a set of non-receptor protein tyrosine kinases that assist in delivering signals to the cell interior. Among the presumed substrates for these kinases, adaptor proteins, which juxtapose effector enzyme systems with the antigen receptor complex, figure prominently. Previous studies suggested that Lnk, a 38-kDa protein consisting of a single SH2 domain and a region containing potential tyrosine phosphorylation sites, might serve to join Grb2, phospholipase C-gamma1, and phosphatidylinositol 3-kinase to the TCR. To elucidate the physiological roles of Lnk in T cell signal transduction, we isolated the mouse Lnk cDNA, characterized the structure of the mouse Lnk gene, and generated transgenic mice that overproduce Lnk in thymocytes. Here we report that although Lnk becomes phosphorylated during T cell activation, it plays no limiting role in the TCR signaling process. Moreover, we have distinguished p38(Lnk) from the more prominent 36-kDa tyrosine phosphoproteins that appear in activated T cells. Together these studies suggest that Lnk participates in signaling from receptors other than antigen receptors in lymphocytes.
Collapse
Affiliation(s)
- S Takaki
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Isakov N. ITIMs and ITAMs. The Yin and Yang of antigen and Fc receptor-linked signaling machinery. Immunol Res 1997; 16:85-100. [PMID: 9048210 DOI: 10.1007/bf02786325] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The initial stages of an immune response are regulated at the level of the cell-surface antigen and Fc receptors. The extracellular portions of these receptors provide immune specificity and determine the nature of the responding effector cells, whereas the intracellular portion transduces signals into the cell and determines the intensity and duration of the immune response. Recent studies led to the identification of two types of modules within the cytoplasmic region of receptor subunits that are critical for the activation and termination of signal transduction pathways. Phosphorylation of the conserved tyrosine residues within the two modules, the immunoreceptor tyrosine-based activation motif (ITAM) and the immunoreceptor tyrosine-based inhibition motif (ITIM), is followed by the recruitment of different sets of SH2-containing molecules to the receptor site. These proteins regulate the receptor-linked signal transduction pathways in a positive or a negative fashion, which is a reminiscent of the ancestral Yin-Yang principle.
Collapse
Affiliation(s)
- N Isakov
- Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
47
|
Watts JD, Brabb T, Bures EJ, Wange RL, Samelson LE, Aebersold R. Identification and characterization of a substrate specific for the T cell protein tyrosine kinase ZAP-70. FEBS Lett 1996; 398:217-22. [PMID: 8977110 DOI: 10.1016/s0014-5793(96)01241-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ZAP-70 is a protein tyrosine kinase (PTK) that plays a critical role in T cell activation. To study the role of ZAP-70 catalytic activity in this process, a substrate capable of distinguishing between the activities of ZAP-70 and other PTKs would be useful, especially since it has recently been shown that ZAP-70 interacts with another T cell PTK, Lck. We have thus identified a site of phosphorylation on the cytoplasmic fragment of the erythrocyte band 3 protein that is recognized by ZAP-70, but not Lck. A synthetic peptide based on this site has been demonstrated to be a good in vitro substrate for ZAP-70 and a poor substrate for the T cell PTKs Lck and Itk. This peptide molecule should thus prove useful to many investigators working in the field of T cell activation.
Collapse
Affiliation(s)
- J D Watts
- Department of Molecular Biotechnology, University of Washington, Seattle 98195-7730, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- R L Wange
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|