1
|
Ragavendran PV, Tripathi V, Gandotra S. Structure prediction-based insights into the patatin family of Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748562 DOI: 10.1099/mic.0.001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite its genome sequencing more than two decades ago, the majority of the genes of Mycobacterium tuberculosis remain functionally uncharacterized. Patatins are one such class of proteins that, despite undergoing an expansion in this pathogenic species compared to their non-pathogenic cousins, remain largely unstudied. Recent advances in protein structure prediction using machine learning tools such as AlphaFold2 have provided high-confidence predicted structures for all M. tuberculosis proteins. Here we present detailed analyses of the patatin family of M. tuberculosis using AlphaFold-predicted structures, providing insights into likely modes of regulation, membrane interaction and substrate binding. Regulatory domains within this family of proteins include cyclic nucleotide binding, lid-like domains and other helical domains. Using structural homologues, we identified the likely membrane localization mechanisms and substrate-binding sites. These analyses reveal diversity in their regulatory capacity, mechanisms of membrane binding and likely length of fatty acid substrates. Together, this analysis suggests unique roles for the eight predicted patatins of M. tuberculosis.
Collapse
Affiliation(s)
- P V Ragavendran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| | - Vaishnavi Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| | - Sheetal Gandotra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| |
Collapse
|
2
|
Rasmussen M, Welinder C, Schwede F, Ekström P. The stereospecific interaction sites and target specificity of cGMP analogs in mouse cortex. Chem Biol Drug Des 2021; 99:206-221. [PMID: 34687134 DOI: 10.1111/cbdd.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
Abstract
cGMP interactors play a role in several pathologies and may be targets for cGMP analog-based drugs, but the success of targeting depends on the biochemical stereospecificity between the cGMP-analog and the interactor. The stereospecificity between general cGMP analogs-or such that are selectivity-modified to obtain, for example, inhibitory actions on a specific target, like the cGMP-dependent protein kinase-have previously been investigated. However, the importance of stereospecificity for cGMP-analog binding to interactors is not known. We, therefore, applied affinity chromatography on mouse cortex proteins utilizing analogs with cyclic phosphate (8-AET-cGMP, 2-AH-cGMP, 2'-AHC-cGMP) and selectivity-modified analogs with sulfur-containing cyclic phosphorothioates (Rp/Sp-8-AET-cGMPS, Rp/Sp-2'-AHC-cGMPS) immobilized to agaroses. The results illustrate the cGMP analogs' stereospecific binding for PKG, PKA regulatory subunits and PKA catalytic subunits, PDEs, and EPAC2 and the involvement of these in various KEGG pathways. For the seven agaroses, PKG, PKA regulatory subunits, and PKA catalytic subunits were more prone to be enriched by 2-AH-, 8-AET-, Rp-8-AET-, and Sp-8-AET-cGMP, whereas PDEs and EPAC2 were more likely to be enriched by 2-AH-, Rp-2'-AHC-, and Rp-8-AET-cGMP. Our findings help elucidate the stereospecific-binding sites essential for the interaction between individual cGMP analogs and cGMP-binding proteins, as well as the cGMP analogs' target specificity, which are two crucial parameters in drug design.
Collapse
Affiliation(s)
- Michel Rasmussen
- Faculty of Medicine, Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | - Charlotte Welinder
- Faculty of Medicine, Department of Clinical Sciences Lund, Oncology, Lund University, Lund, Sweden
| | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co. KG, Bremen, Germany
| | - Per Ekström
- Faculty of Medicine, Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Kim C, Sharma R. Cyclic nucleotide selectivity of protein kinase G isozymes. Protein Sci 2020; 30:316-327. [PMID: 33271627 DOI: 10.1002/pro.4008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
The intrinsic activity of the C-terminal catalytic (C) domain of cyclic guanosine monophosphate (cGMP)-dependent protein kinases (PKG) is inhibited by interactions with the N-terminal regulatory (R) domain. Selective binding of cGMP to cyclic nucleotide binding (CNB) domains within the R-domain disrupts the inhibitory R-C interaction, leading to the release and activation of the C-domain. Affinity measurements of mammalian and plasmodium PKG CNB domains reveal different degrees of cyclic nucleotide affinity and selectivity; the CNB domains adjacent to the C-domain are more cGMP selective and therefore critical for cGMP-dependent activation. Crystal structures of isolated CNB domains in the presence and absence of cyclic nucleotides reveal isozyme-specific contacts that explain cyclic nucleotide selectivity and conformational changes that accompany CNB. Crystal structures of tandem CNB domains identify two types of CNB-mediated dimeric contacts that indicate cGMP-driven reorganization of domain-domain interfaces that include large conformational changes. Here, we review the available structural and functional information of PKG CNB domains that further advance our understanding of cGMP mediated regulation and activation of PKG isozymes.
Collapse
Affiliation(s)
- Choel Kim
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Rajesh Sharma
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Gerlits O, Campbell JC, Blakeley MP, Kim C, Kovalevsky A. Neutron Crystallography Detects Differences in Protein Dynamics: Structure of the PKG II Cyclic Nucleotide Binding Domain in Complex with an Activator. Biochemistry 2018. [PMID: 29517905 DOI: 10.1021/acs.biochem.8b00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As one of the main receptors of a second messenger, cGMP, cGMP-dependent protein kinase (PKG) isoforms I and II regulate distinct physiological processes. The design of isoform-specific activators is thus of great biomedical importance and requires detailed structural information about PKG isoforms bound with activators, including accurate positions of hydrogen atoms and a description of the hydrogen bonding and water architecture. Here, we determined a 2.2 Å room-temperature joint X-ray/neutron (XN) structure of the human PKG II carboxyl cyclic nucleotide binding (CNB-B) domain bound with a potent PKG II activator, 8-pCPT-cGMP. The XN structure directly visualizes intermolecular interactions and reveals changes in hydrogen bonding patterns upon comparison to the X-ray structure determined at cryo-temperatures. Comparative analysis of the backbone hydrogen/deuterium exchange patterns in PKG II:8-pCPT-cGMP and previously reported PKG Iβ:cGMP XN structures suggests that the ability of these agonists to activate PKG is related to how effectively they quench dynamics of the cyclic nucleotide binding pocket and the surrounding regions.
Collapse
Affiliation(s)
- Oksana Gerlits
- Bredesen Center , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - James C Campbell
- Department of Pharmacology and Chemical Biology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Matthew P Blakeley
- Large-Scale Structures Group , Institut Laue Langevin , 38042 Grenoble Cedex 9, France
| | - Choel Kim
- Department of Pharmacology and Chemical Biology , Baylor College of Medicine , Houston , Texas 77030 , United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Andrey Kovalevsky
- Neutron Scattering Division, Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
5
|
He D, Lorenz R, Kim C, Herberg FW, Lim CJ. Switching Cyclic Nucleotide-Selective Activation of Cyclic Adenosine Monophosphate-Dependent Protein Kinase Holoenzyme Reveals Distinct Roles of Tandem Cyclic Nucleotide-Binding Domains. ACS Chem Biol 2017; 12:3057-3066. [PMID: 29111666 DOI: 10.1021/acschembio.7b00732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-dependent protein kinases (PKA and PKG) are key effectors of cyclic nucleotide signaling. Both share structural features that include tandem cyclic nucleotide-binding (CNB) domains, CNB-A and CNB-B, yet their functions are separated through preferential activation by either cAMP or cGMP. Based on structural studies and modeling, key CNB contact residues have been identified for both kinases. In this study, we explored the requirements for conversion of PKA activation from cAMP-dependent to cGMP-dependent. The consequences of the residue substitutions T192R/A212T within CNB-A or G316R/A336T within CNB-B of PKA-RIα on cyclic nucleotide binding and holoenzyme activation were assessed in vitro using purified recombinant proteins, and ex vivo using RIα-deficient mouse embryonic fibroblasts genetically reconstituted with wild-type or mutant PKA-RIα. In vitro, a loss of binding and activation selectivity was observed when residues in either one of the CNB domains were mutated, while mutations in both CNB domains resulted in a complete switch of selectivity from cAMP to cGMP. The switch in selectivity was also recapitulated ex vivo, confirming their functional roles in cells. Our results highlight the importance of key cyclic nucleotide contacts within each CNB domain and suggest that these domains may have evolved from an ancestral gene product to yield two distinct cyclic nucleotide-dependent protein kinases.
Collapse
Affiliation(s)
- Daniel He
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Michael
Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Robin Lorenz
- Department of Biochemistry, University of Kassel, 34132 Kassel, Germany
| | - Choel Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | | | - Chinten James Lim
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Michael
Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
6
|
Lorenz R, Bertinetti D, Herberg FW. cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors. Handb Exp Pharmacol 2017; 238:105-122. [PMID: 27885524 DOI: 10.1007/164_2015_36] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cAMP-dependent protein kinase (PKA) and the cGMP-dependent protein kinase (PKG) are homologous enzymes with different binding and activation specificities for cyclic nucleotides. Both enzymes harbor conserved cyclic nucleotide-binding (CNB) domains. Differences in amino acid composition of these CNB domains mediate cyclic nucleotide selectivity in PKA and PKG, respectively. Recently, the presence of the noncanonical cyclic nucleotides cCMP and cUMP in eukaryotic cells has been proven, while the existence of cellular cIMP and cXMP remains unclear. It was shown that the main effectors of cyclic nucleotide signaling, PKA and PKG, can be activated by each of these noncanonical cyclic nucleotides. With unique effector proteins still missing, such cross-activation effects might have physiological relevance. Therefore, we approach PKA and PKG as cyclic nucleotide effectors in this chapter. The focus of this chapter is the general cyclic nucleotide-binding properties of both kinases as well as the selectivity for cAMP or cGMP, respectively. Furthermore, we discuss the binding affinities and activation potencies of noncanonical cyclic nucleotides.
Collapse
Affiliation(s)
- Robin Lorenz
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany.
| |
Collapse
|
7
|
Mutations of PKA cyclic nucleotide-binding domains reveal novel aspects of cyclic nucleotide selectivity. Biochem J 2017; 474:2389-2403. [PMID: 28583991 DOI: 10.1042/bcj20160969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 11/17/2022]
Abstract
Cyclic AMP and cyclic GMP are ubiquitous second messengers that regulate the activity of effector proteins in all forms of life. The main effector proteins, the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), are preferentially activated by cAMP and cGMP, respectively. However, the molecular basis of this cyclic nucleotide selectivity is still not fully understood. Analysis of isolated cyclic nucleotide-binding (CNB) domains of PKA regulatory subunit type Iα (RIα) reveals that the C-terminal CNB-B has a higher cAMP affinity and selectivity than the N-terminal CNB-A. Here, we show that introducing cGMP-specific residues using site-directed mutagenesis reduces the selectivity of CNB-B, while the combination of two mutations (G316R/A336T) results in a cGMP-selective binding domain. Furthermore, introducing the corresponding mutations (T192R/A212T) into the PKA RIα CNB-A turns this domain into a highly cGMP-selective domain, underlining the importance of these contacts for achieving cGMP specificity. Binding data with the generic purine nucleotide 3',5'-cyclic inosine monophosphate (cIMP) reveal that introduced arginine residues interact with the position 6 oxygen of the nucleobase. Co-crystal structures of an isolated CNB-B G316R/A336T double mutant with either cAMP or cGMP reveal that the introduced threonine and arginine residues maintain their conserved contacts as seen in PKG I CNB-B. These results improve our understanding of cyclic nucleotide binding and the molecular basis of cyclic nucleotide specificity.
Collapse
|
8
|
Sharma S, Visweswariah SS. Illuminating Cyclic Nucleotides: Sensors for cAMP and cGMP and Their Application in Live Cell Imaging. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0014-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Ohta Y, Kamagata T, Mukai A, Takada S, Nagai T, Horikawa K. Nontrivial Effect of the Color-Exchange of a Donor/Acceptor Pair in the Engineering of Förster Resonance Energy Transfer (FRET)-Based Indicators. ACS Chem Biol 2016; 11:1816-22. [PMID: 27232891 DOI: 10.1021/acschembio.6b00221] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically encoded indicators driven by the Förster resonance energy transfer (FRET) mechanism are reliable tools for live imaging. While the properties of FRET-based indicators have been improved over the years, they often suffer from a poor dynamic range due to the lack of comprehensive understanding about how to apply an appropriate strategy to optimize the FRET parameters. One of the most successful optimizations is the incorporation of circularly permuted fluorescent proteins (cpFPs). To better understand the effects of this strategy, we systematically investigated the properties of the indicators by utilizing a set of FRET backbones consisting of native or one of the most effective cp variants (cp173FPs) with considerations of their order. As a result, the ordering of donor and acceptor FPs, which has been ignored in previous studies, was found to significantly affect the dynamic range of indicators. By utilizing these backbones, we succeeded in improving a cGMP indicator with 3.6-fold increased dynamic range and in generating an ultrasensitive cAMP indicator capable of environmental imaging, demonstrating the practical importance of the ordering of donors and acceptors in the engineering of FRET-based indicators.
Collapse
Affiliation(s)
- Yusaku Ohta
- Division
of Bioimaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima
City, Tokushima 770-8503, Japan
| | - Takanori Kamagata
- Division
of Bioimaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima
City, Tokushima 770-8503, Japan
- Okazaki
Institute for Integrative Bioscience and National Institute for Basic
Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Asuka Mukai
- Division
of Bioimaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima
City, Tokushima 770-8503, Japan
| | - Shinji Takada
- Okazaki
Institute for Integrative Bioscience and National Institute for Basic
Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Takeharu Nagai
- The
Institute of Scientific and Industrial Research, Osaka University, Mihogaoka
8-1, Ibaraki, Osaka 567-0047, Japan
| | - Kazuki Horikawa
- Division
of Bioimaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima
City, Tokushima 770-8503, Japan
| |
Collapse
|
10
|
Huang GY, Gerlits OO, Blakeley MP, Sankaran B, Kovalevsky AY, Kim C. Neutron diffraction reveals hydrogen bonds critical for cGMP-selective activation: insights for cGMP-dependent protein kinase agonist design. Biochemistry 2014; 53:6725-7. [PMID: 25271401 PMCID: PMC4222537 DOI: 10.1021/bi501012v] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
High selectivity of cyclic-nucleotide
binding (CNB) domains for
cAMP and cGMP are required for segregating signaling pathways; however,
the mechanism of selectivity remains unclear. To investigate the mechanism
of high selectivity in cGMP-dependent protein kinase (PKG), we determined
a room-temperature joint X-ray/neutron (XN) structure of PKG Iβ
CNB-B, a domain 200-fold selective for cGMP over cAMP, bound to cGMP
(2.2 Å), and a low-temperature X-ray structure of CNB-B with
cAMP (1.3 Å). The XN structure directly describes the hydrogen
bonding interactions that modulate high selectivity for cGMP, while
the structure with cAMP reveals that all these contacts are disrupted,
explaining its low affinity for cAMP.
Collapse
Affiliation(s)
- Gilbert Y Huang
- Verna and Mars McClean Department of Biochemistry and Molecular Biology, Baylor College of Medicine , One Baylor Plaza, Houston, Texas 77004, United States
| | | | | | | | | | | |
Collapse
|
11
|
Aggarwal S, Gross CM, Rafikov R, Kumar S, Fineman JR, Ludewig B, Jonigk D, Black SM. Nitration of tyrosine 247 inhibits protein kinase G-1α activity by attenuating cyclic guanosine monophosphate binding. J Biol Chem 2014; 289:7948-61. [PMID: 24469460 DOI: 10.1074/jbc.m113.534313] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The cGMP-dependent protein kinase G-1α (PKG-1α) is a downstream mediator of nitric oxide and natriuretic peptide signaling. Alterations in this pathway play a key role in the pathogenesis and progression of vascular diseases associated with increased vascular tone and thickness, such as pulmonary hypertension. Previous studies have shown that tyrosine nitration attenuates PKG-1α activity. However, little is known about the mechanisms involved in this event. Utilizing mass spectrometry, we found that PKG-1α is susceptible to nitration at tyrosine 247 and 425. Tyrosine to phenylalanine mutants, Y247F- and Y425F-PKG-1α, were both less susceptible to nitration than WT PKG-1α, but only Y247F-PKG-1α exhibited preserved activity, suggesting that the nitration of Tyr(247) is critical in attenuating PKG-1α activity. The overexpression of WT- or Y247F-PKG-1α decreased the proliferation of pulmonary artery smooth muscle cells (SMC), increased the expression of SMC contractile markers, and decreased the expression of proliferative markers. Nitrosative stress induced a switch from a contractile to a synthetic phenotype in cells expressing WT- but not Y247F-PKG-1α. An antibody generated against 3-NT-Y247 identified increased levels of nitrated PKG-1α in humans with pulmonary hypertension. Finally, to gain a more mechanistic understanding of how nitration attenuates PKG activity, we developed a homology model of PKG-1α. This model predicted that the nitration of Tyr(247) would decrease the affinity of PKG-1α for cGMP, which we confirmed using a [(3)H]cGMP binding assay. Our study shows that the nitration of Tyr(247) and the attenuation of cGMP binding is an important mechanism regulating in PKG-1α activity and SMC proliferation/differentiation.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- From the Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Huang GY, Kim JJ, Reger AS, Lorenz R, Moon EW, Zhao C, Casteel DE, Bertinetti D, Vanschouwen B, Selvaratnam R, Pflugrath JW, Sankaran B, Melacini G, Herberg FW, Kim C. Structural basis for cyclic-nucleotide selectivity and cGMP-selective activation of PKG I. Structure 2013; 22:116-24. [PMID: 24239458 DOI: 10.1016/j.str.2013.09.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Cyclic guanosine monophosphate (cGMP) and cyclic AMP (cAMP)-dependent protein kinases (PKG and PKA) are closely related homologs, and the cyclic nucleotide specificity of each kinase is crucial for keeping the two signaling pathways segregated, but the molecular mechanism of cyclic nucleotide selectivity is unknown. Here, we report that the PKG Iβ C-terminal cyclic nucleotide binding domain (CNB-B) is highly selective for cGMP binding, and we have solved crystal structures of CNB-B with and without bound cGMP. These structures, combined with a comprehensive mutagenic analysis, allowed us to identify Leu296 and Arg297 as key residues that mediate cGMP selectivity. In addition, by comparing the cGMP bound and unbound structures, we observed large conformational changes in the C-terminal helices in response to cGMP binding, which were stabilized by recruitment of Tyr351 as a "capping residue" for cGMP. The observed rearrangements of the C-terminal helices provide a mechanical insight into release of the catalytic domain and kinase activation.
Collapse
Affiliation(s)
- Gilbert Y Huang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeong Joo Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Albert S Reger
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robin Lorenz
- Department of Biochemistry, University of Kassel, Kassel 34132, Germany
| | - Eui-Whan Moon
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chi Zhao
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Bryan Vanschouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Rajeevan Selvaratnam
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | | | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Building 6R2100, Berkeley, CA 94720, USA
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | | | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Moon TM, Osborne BW, Dostmann WR. The switch helix: a putative combinatorial relay for interprotomer communication in cGMP-dependent protein kinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1346-51. [PMID: 23416533 DOI: 10.1016/j.bbapap.2013.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/04/2013] [Indexed: 11/26/2022]
Abstract
For over three decades the isozymes of cGMP-dependent protein kinase (PKG) have been studied using an array of biochemical and biophysical techniques. When compared to its closest cousin, cAMP-dependent protein kinase (PKA), these studies revealed a set of identical domain types, yet containing distinct, sequence-specific features. The recently solved structure of the PKG regulatory domain showed the presence of the switch helix (SW), a novel motif that promotes the formation of a domain-swapped dimer in the asymmetric unit. This dimer is mediated by the interaction of a knob motif on the C-terminal locus of the SW, with a hydrophobic nest on the opposing protomer. This nest sits adjacent to the cGMP binding pocket of the B-site. Priming of this site by cGMP may influence the geometry of the hydrophobic nest. Moreover, this unique interaction may have wide implications for the architecture of the inactive and active forms of PKG. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Thomas M Moon
- Department of Pharmacology, The University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
14
|
Osborne BW, Wu J, McFarland CJ, Nickl CK, Sankaran B, Casteel DE, Woods VL, Kornev AP, Taylor SS, Dostmann WR. Crystal structure of cGMP-dependent protein kinase reveals novel site of interchain communication. Structure 2011; 19:1317-27. [PMID: 21893290 PMCID: PMC3168983 DOI: 10.1016/j.str.2011.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/08/2011] [Accepted: 06/13/2011] [Indexed: 11/27/2022]
Abstract
The cGMP-dependent protein kinase (PKG) serves as an integral component of second messenger signaling in a number of biological contexts including cell differentiation, memory, and vasodilation. PKG is homodimeric and large conformational changes accompany cGMP binding. However, the structure of PKG and the molecular mechanisms associated with protomer communication following cGMP-induced activation remain unknown. Here, we report the 2.5 Å crystal structure of a regulatory domain construct (aa 78-355) containing both cGMP binding sites of PKG Iα. A distinct and segregated architecture with an extended central helix separates the two cGMP binding domains. Additionally, a previously uncharacterized helical domain (switch helix) promotes the formation of a hydrophobic interface between protomers. Mutational disruption of this interaction in full-length PKG implicates the switch helix as a critical site of dimer communication in PKG biology. These results offer new structural insight into the mechanism of allosteric PKG activation.
Collapse
Affiliation(s)
- Brent W. Osborne
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405
| | - Jian Wu
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Caitlin J. McFarland
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405
| | - Christian K. Nickl
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405
| | - Banumathi Sankaran
- The Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Darren E. Casteel
- Department of Medicine and Cancer Center, University of California, San Diego, La Jolla, California 92093
| | - Virgil L. Woods
- Department of Medicine and Cancer Center, University of California, San Diego, La Jolla, California 92093
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
| | - Susan S. Taylor
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
| | - Wolfgang R. Dostmann
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405
| |
Collapse
|
15
|
Lee JH, Li S, Liu T, Hsu S, Kim C, Woods VL, Casteel DE. The amino terminus of cGMP-dependent protein kinase Iβ increases the dynamics of the protein's cGMP-binding pockets. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 302:44-52. [PMID: 21643460 PMCID: PMC3107041 DOI: 10.1016/j.ijms.2010.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The type I cGMP-dependent protein kinases play critical roles in regulating vascular tone, platelet activation and synaptic plasticity. PKG I α and PKG Iβ differ in their first ~100 amino acids giving each isoform unique dimerization and autoinhibitory domains with identical cGMP-binding pockets and catalytic domains. The N-terminal leucine zipper and autoinhibitory domains have been shown to mediate isoform specific affinity for cGMP. PKG Iα has a >10 fold higher affinity for cGMP than PKG Iβ, and PKG Iβ that is missing its leucine zipper has a three-fold decreased affinity for cGMP. The exact mechanism through which the N-terminus of PKG alters cGMP-affinity is unknown. In the present study, we have used deuterium exchange mass spectrometry to study how PKG Iβ's N-terminus affects the conformation and dynamics of its cGMP-binding pockets. We found that the N-terminus increases the rate of deuterium exchange throughout the cGMP-binding domain. Our results suggest that the N-terminus shifts the conformational dynamics of the binding pockets, leading to an "open" conformation that has an increased affinity for cGMP.
Collapse
Affiliation(s)
- Jun H. Lee
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Tong Liu
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Simon Hsu
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Choel Kim
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Virgil L. Woods
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Darren E. Casteel
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Kim JJ, Casteel DE, Huang G, Kwon TH, Ren RK, Zwart P, Headd JJ, Brown NG, Chow DC, Palzkill T, Kim C. Co-crystal structures of PKG Iβ (92-227) with cGMP and cAMP reveal the molecular details of cyclic-nucleotide binding. PLoS One 2011; 6:e18413. [PMID: 21526164 PMCID: PMC3080414 DOI: 10.1371/journal.pone.0018413] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cyclic GMP-dependent protein kinases (PKGs) are central mediators of the NO-cGMP signaling pathway and phosphorylate downstream substrates that are crucial for regulating smooth muscle tone, platelet activation, nociception and memory formation. As one of the main receptors for cGMP, PKGs mediate most of the effects of cGMP elevating drugs, such as nitric oxide-releasing agents and phosphodiesterase inhibitors which are used for the treatment of angina pectoris and erectile dysfunction, respectively. METHODOLOGY/PRINCIPAL FINDINGS We have investigated the mechanism of cyclic nucleotide binding to PKG by determining crystal structures of the amino-terminal cyclic nucleotide-binding domain (CNBD-A) of human PKG I bound to either cGMP or cAMP. We also determined the structure of CNBD-A in the absence of bound nucleotide. The crystal structures of CNBD-A with bound cAMP or cGMP reveal that cAMP binds in either syn or anti configurations whereas cGMP binds only in a syn configuration, with a conserved threonine residue anchoring both cyclic phosphate and guanine moieties. The structure of CNBD-A in the absence of bound cyclic nucleotide was similar to that of the cyclic nucleotide bound structures. Surprisingly, isothermal titration calorimetry experiments demonstrated that CNBD-A binds both cGMP and cAMP with a relatively high affinity, showing an approximately two-fold preference for cGMP. CONCLUSIONS/SIGNIFICANCE Our findings suggest that CNBD-A binds cGMP in the syn conformation through its interaction with Thr193 and an unusual cis-peptide forming residues Leu172 and Cys173. Although these studies provide the first structural insights into cyclic nucleotide binding to PKG, our ITC results show only a two-fold preference for cGMP, indicating that other domains are required for the previously reported cyclic nucleotide selectivity.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Darren E. Casteel
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Gilbert Huang
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Taek Hun Kwon
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ronnie Kuo Ren
- Rice University, Houston, Texas, United States of America
| | - Peter Zwart
- The Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jeffrey J. Headd
- Computational Crystallography Initiative, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Nicholas Gene Brown
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dar-Chone Chow
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Choel Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 2010; 62:525-63. [PMID: 20716671 DOI: 10.1124/pr.110.002907] [Citation(s) in RCA: 710] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To date, studies suggest that biological signaling by nitric oxide (NO) is primarily mediated by cGMP, which is synthesized by NO-activated guanylyl cyclases and broken down by cyclic nucleotide phosphodiesterases (PDEs). Effects of cGMP occur through three main groups of cellular targets: cGMP-dependent protein kinases (PKGs), cGMP-gated cation channels, and PDEs. cGMP binding activates PKG, which phosphorylates serines and threonines on many cellular proteins, frequently resulting in changes in activity or function, subcellular localization, or regulatory features. The proteins that are so modified by PKG commonly regulate calcium homeostasis, calcium sensitivity of cellular proteins, platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-signaling pathway, and other processes. Current therapies that have successfully targeted the NO-signaling pathway include nitrovasodilators (nitroglycerin), PDE5 inhibitors [sildenafil (Viagra and Revatio), vardenafil (Levitra), and tadalafil (Cialis and Adcirca)] for treatment of a number of vascular diseases including angina pectoris, erectile dysfunction, and pulmonary hypertension; the PDE3 inhibitors [cilostazol (Pletal) and milrinone (Primacor)] are used for treatment of intermittent claudication and acute heart failure, respectively. Potential for use of these medications in the treatment of other maladies continues to emerge.
Collapse
Affiliation(s)
- Sharron H Francis
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232-0615, USA.
| | | | | | | |
Collapse
|
18
|
Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation. Proc Natl Acad Sci U S A 2010; 107:6016-21. [PMID: 20220099 DOI: 10.1073/pnas.1000866107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To navigate a complex and changing environment, an animal's sensory neurons must continually adapt to persistent cues while remaining responsive to novel stimuli. Long-term exposure to an inherently attractive odor causes Caenorhabditis elegans to ignore that odor, a process termed odor adaptation. Odor adaptation is likely to begin within the sensory neuron, because it requires factors that act within these cells at the time of odor exposure. The process by which an olfactory sensory neuron makes a decisive shift over time from a receptive state to a lasting unresponsive one remains obscure. In C. elegans, adaptation to odors sensed by the AWC pair of olfactory neurons requires the cGMP-dependent protein kinase EGL-4. Using a fully functional, GFP-tagged EGL-4, we show here that prolonged odor exposure sends EGL-4 into the nucleus of the stimulated AWC neuron. This odor-induced nuclear translocation correlates temporally with the stable dampening of chemotaxis that is indicative of long-term adaptation. Long-term adaptation requires cGMP binding residues as well as an active EGL-4 kinase. We show here that EGL-4 nuclear accumulation is both necessary and sufficient to induce long-lasting odor adaptation. After it is in the AWC nucleus, EGL-4 decreases the animal's responsiveness to AWC-sensed odors by acting downstream of the primary sensory transduction. Thus, the EGL-4 protein kinase acts as a sensor that integrates odor signaling over time, and its nuclear translocation is an instructive switch that allows the animal to ignore persistent odors.
Collapse
|
19
|
Paquet-Durand F, Hauck SM, van Veen T, Ueffing M, Ekström P. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models. J Neurochem 2009; 108:796-810. [PMID: 19187097 DOI: 10.1111/j.1471-4159.2008.05822.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photoreceptor degeneration in retinitis pigmentosa is one of the leading causes of hereditary blindness in the developed world. Although causative genetic mutations have been elucidated in many cases, the underlying neuronal degeneration mechanisms are still unknown. Here, we show that activation of cGMP-dependent protein kinase (PKG) hallmarks photoreceptor degeneration in rd1 and rd2 human homologous mouse models. When induced in wild-type retinae, PKG activity was both necessary and sufficient to trigger cGMP-mediated photoreceptor cell death. Target-specific, pharmacological inhibition of PKG activity in both rd1 and rd2 retinae strongly reduced photoreceptor cell death in organotypic retinal explants. Likewise, inhibition of PKG in vivo, using three different application paradigms, resulted in robust photoreceptor protection in the rd1 retina. These findings suggest a pivotal role for PKG activity in cGMP-mediated photoreceptor degeneration mechanisms and highlight the importance of PKG as a novel target for the pharmacological intervention in RP.
Collapse
Affiliation(s)
- François Paquet-Durand
- University of Tübingen, Centre for Ophthalmology, Institute for Ophthalmic Research, Division of Experimental Ophthalmology, Röntgenweg 11, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
20
|
Waldkirch E, Uckert S, Sigl K, Imkamp F, Langnaese K, Richter K, Jonas U, Sohn M, Stief C, Wolf G, Hedlund P. Expression and distribution of cyclic GMP-dependent protein kinase-1 isoforms in human penile erectile tissue. J Sex Med 2008; 5:536-43. [PMID: 18194177 DOI: 10.1111/j.1743-6109.2007.00735.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Besides the bioavailability of nitric oxide (NO), downstream guanine monophosphate (cGMP) effector proteins are also considered to play a significant role in penile vascular disease. In animal studies, a downregulation of the cGMP-dependent protein kinase-1 (cGKI) alpha isoform has been linked to erectile dysfunction and diabetes mellitus. So far, the expression of cGKI alpha and beta isoforms has not been evaluated in human penile erectile tissue. AIM To evaluate the expression of cGKI alpha and beta isoforms in relation to smooth muscle alpha-actin, cGMP, and endothelial NO synthase (eNOS) in human cavernous arteries (HCAs) and human corpus cavernosum (HCC). METHODS Cryostat sections of HCA and HCC were incubated with primary antibodies directed against alpha-actin, cGMP, eNOS, cGKI, cGKI alpha, and cGKI beta. Visualization of double-labeled immunofluorescent stainings was achieved by laser microscopy. Western blot analysis was performed in order to confirm the expression of cGKI isoforms. MAIN OUTCOME MEASURES Expression of cGKI alpha and beta isoforms in relation to smooth muscle alpha-actin, cGMP, and eNOS in human penile erectile tissue. RESULTS Immunoreactivities specific for cGKI, cGKI alpha, and cGKI beta were observed within the smooth musculature and the endothelium of cavernous arteries and sinusoids. Double stainings revealed the colocalization of alpha-actin, cGMP, eNOS, and cGKI isoforms. The expression of cGKI isoforms was confirmed by Western blot analysis. CONCLUSIONS Our results demonstrate, for the first time, the expression of both cGKI alpha and beta isoforms in the smooth musculature of HCA and HCC. Corresponding to recent findings from animal studies, the presence of cGKI alpha and beta provides further evidence for a significant role of these enzymes in the control of smooth muscle function in human penile erectile tissue.
Collapse
|
21
|
Alverdi V, Mazon H, Versluis C, Hemrika W, Esposito G, van den Heuvel R, Scholten A, Heck AJR. cGMP-binding prepares PKG for substrate binding by disclosing the C-terminal domain. J Mol Biol 2007; 375:1380-93. [PMID: 18082764 DOI: 10.1016/j.jmb.2007.11.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 10/23/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
Type I cyclic guanosine 3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) is involved in the nitric oxide/cGMP signaling pathway. PKG has been identified in many different species, ranging from unicelölular organisms to mammals. The enzyme serves as one of the major receptor proteins for intracellular cGMP and controls a variety of cellular responses, ranging from smooth-muscle relaxation to neuronal synaptic plasticity. In the absence of a crystal structure, the three-dimensional structure of the homodimeric 152-kDa kinase PKG is unknown; however, there is evidence that the kinase adopts a distinct cGMP-dependent active conformation when compared to the inactive conformation. We performed mass-spectrometry-based hydrogen/deuterium exchange experiments to obtain detailed information on the structural changes in PKG I alpha induced by cGMP activation. Site-specific exchange measurements confirmed that the autoinhibitory domain and the hinge region become more solvent exposed, whereas the cGMP-binding domains become more protected in holo-PKG (dimeric PKG saturated with four cGMP molecules bound). More surprisingly, our data revealed a specific disclosure of the substrate-binding region of holo-PKG, shedding new light into the kinase-activation process of PKG.
Collapse
Affiliation(s)
- Vera Alverdi
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Russwurm M, Mullershausen F, Friebe A, Jäger R, Russwurm C, Koesling D. Design of fluorescence resonance energy transfer (FRET)-based cGMP indicators: a systematic approach. Biochem J 2007; 407:69-77. [PMID: 17516914 PMCID: PMC2267402 DOI: 10.1042/bj20070348] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The intracellular signalling molecule cGMP regulates a variety of physiological processes, and so the ability to monitor cGMP dynamics in living cells is highly desirable. Here, we report a systematic approach to create FRET (fluorescence resonance energy transfer)-based cGMP indicators from two known types of cGMP-binding domains which are found in cGMP-dependent protein kinase and phosphodiesterase 5, cNMP-BD [cyclic nucleotide monophosphate-binding domain and GAF [cGMP-specific and -stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA] respectively. Interestingly, only cGMP-binding domains arranged in tandem configuration as in their parent proteins were cGMP-responsive. However, the GAF-derived sensors were unable to be used to study cGMP dynamics because of slow response kinetics to cGMP. Out of 24 cGMP-responsive constructs derived from cNMP-BDs, three were selected to cover a range of cGMP affinities with an EC50 between 500 nM and 6 microM. These indicators possess excellent specifity for cGMP, fast binding kinetics and twice the dynamic range of existing cGMP sensors. The in vivo performance of these new indicators is demonstrated in living cells and validated by comparison with cGMP dynamics as measured by radioimmunoassays.
Collapse
Affiliation(s)
- Michael Russwurm
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Federal Republic of Germany
| | - Florian Mullershausen
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Federal Republic of Germany
| | - Andreas Friebe
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Federal Republic of Germany
| | - Ronald Jäger
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Federal Republic of Germany
| | - Corina Russwurm
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Federal Republic of Germany
| | - Doris Koesling
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Federal Republic of Germany
- To whom correspondence should be addressed ()
| |
Collapse
|
23
|
Scholten A, Fuss H, Heck AJR, Dostmann WR. The hinge region operates as a stability switch in cGMP-dependent protein kinase I alpha. FEBS J 2007; 274:2274-86. [PMID: 17403045 DOI: 10.1111/j.1742-4658.2007.05764.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The molecular mechanism of cGMP-dependent protein kinase activation by its allosteric regulator cyclic-3',5'-guanosine monophosphate (cGMP) has been intensely studied. However, the structural as well as thermodynamic changes upon binding of cGMP to type I cGMP-dependent protein kinase are not fully understood. Here we report a cGMP-induced shift of Gibbs free enthalpy (DeltaDeltaGD) of 2.5 kJ.mol-1 as determined from changes in tryptophan fluorescence using urea-induced unfolding for bovine PKG Ialpha. However, this apparent increase in overall stability specifically excluded the N-terminal region of the kinase. Analyses of tryptic cleavage patterns using liquid chromatography-coupled ESI-TOF mass spectrometry and SDS/PAGE revealed that cGMP binding destabilizes the N-terminus at the hinge region, centered around residue 77, while the C-terminus was protected from degradation. Furthermore, two recombinantly expressed mutants: the deletion fragment Delta1-77 and the trypsin resistant mutant Arg77Leu (R77L) revealed that the labile nature of the N-terminus is primarily associated with the hinge region. The R77L mutation not only stabilized the N-terminus but extended a stabilizing effect on the remaining domains of the enzyme as well. These findings support the concept that the hinge region of PKG acts as a stability switch.
Collapse
Affiliation(s)
- Arjen Scholten
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
24
|
Islam MS, Kawase O, Hase S, Hoshi M, Matsumoto M. PKA activation in concert with ARIS and asterosap induces the acrosome reaction in starfish. ZYGOTE 2007; 14:329-40. [PMID: 17266791 DOI: 10.1017/s0967199406003881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Accepted: 02/08/2006] [Indexed: 11/05/2022]
Abstract
The acrosome reaction (AR) is a fundamental event for fertilization, which is induced in concert with acrosome reaction-inducing substance (ARIS) and asterosap, both of which are components of starfish egg jelly (EJ). During the AR, a spermatozoon undergoes a series of physiological changes, such as in intracellular cGMP concentration ([cGMP]i), pHi and intracellular Ca2+ concentration ([Ca2+]i). Affinity purification of cGMP-binding protein resulted in the isolation of a regulatory subunit of the cAMP-dependent protein kinase A (PKA), suggesting the involvement of a cAMP-dependent pathway in the AR. By using a cAMP enzyme immunoassay, [cAMP]i was found to increase in starfish spermatozoa when stimulated with ARIS and asterosap. ARIS could also increase the [cAMP]i in the presence of high pH seawater. Pretreatment of spermatozoa with two specific and cell-permeable PKA inhibitors, H89 and KT5720, prevented the induction of the AR in a concentration-dependent manner. These results suggest that PKA activity participates in the induction of the AR with ARIS and asterosap. To investigate this, we have cloned a gene that encodes a regulatory subunit of PKA that had been identified in starfish spermatozoa.
Collapse
Affiliation(s)
- M Sadiqul Islam
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | | | | | | | | |
Collapse
|
25
|
Waldkirch ES, Uckert S, Langnäse K, Richter K, Jonas U, Wolf G, Andersson KE, Stief CG, Hedlund P. Immunohistochemical distribution of cyclic GMP-dependent protein kinase-1 in human prostate tissue. Eur Urol 2007; 52:495-501. [PMID: 17329019 DOI: 10.1016/j.eururo.2007.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 02/05/2007] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Phosphodiesterase 5 (PDE5) inhibitors improve smooth muscle relaxation and therefore are considered for pharmacotherapy of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Cyclic guanosine monophosphate (cGMP)-dependent protein kinase-1 (cGKI) has been identified as one of the downstream targets for cGMP. The aim of the present study was to evaluate, by means of immunohistochemistry and Western blot analysis, the expression and localization of cGKI isoforms in relation to smooth muscle alpha-actin and cGMP in the human prostate. METHODS Cryostat sections of tissue segments excised from the transition zone of human prostates from 11 patients (aged 54-68 yr) were incubated with primary antibodies directed against smooth muscle alpha-actin, cGMP, cGKI, cGKIalpha, and cGKIbeta. Visualization of double-labelled immunofluorescent staining was achieved by laser microscopy. Western blot analysis was performed to confirm the expression of cGKI isoforms. RESULTS Immunoreactivities specific for cGKI, cGKIalpha, and cGKIbeta were observed in the smooth musculature of the transition zone. Double-staining revealed the colocalization of smooth muscle alpha-actin, cGMP, and cGKI isoforms in smooth muscle cells of the fibromuscular stroma. The expression of cGKI isoforms was confirmed by Western blot analysis. CONCLUSIONS Our results confirm the presence of cGKI isoforms alpha and beta in the transition zone of human prostate tissue. In addition, the colocalization of alpha-actin, cGMP, and cGKI isoforms provides further evidence for a significant role of the nitric oxide/cGMP pathway in the regulation of smooth muscle contractility in human prostate tissue and therefore could provide additional targets for pharmacotherapy of BPH and LUTS.
Collapse
|
26
|
Lara L, Cavalcante F, Axelband F, De Souza A, Lopes A, Caruso-Neves C. Involvement of the Gi/o/cGMP/PKG pathway in the AT2-mediated inhibition of outer cortex proximal tubule Na+-ATPase by Ang-(1-7). Biochem J 2006; 395:183-90. [PMID: 16390332 PMCID: PMC1409686 DOI: 10.1042/bj20051455] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/20/2005] [Accepted: 01/04/2006] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms involved in the Ang-(1-7) [angiotensin-(1-7)] effect on sodium renal excretion remain to be determined. In a previous study, we showed that Ang-(1-7) has a biphasic effect on the proximal tubule Na+-ATPase activity, with the stimulatory effect mediated by the AT1 receptor. In the present study, we investigated the molecular mechanisms involved in the inhibition of the Na+-ATPase by Ang-(1-7). All experiments were carried out in the presence of 0.1 nM losartan to block the AT1 receptor-mediated stimulation. In this condition, Ang-(1-7) at 0.1 nM inhibited the Na+-ATPase activity of the proximal tubule by 54%. This effect was reversed by 10 nM PD123319, a specific antagonist of the AT2 receptor, and by 1 muM GDP[beta-S] (guanosine 5'-[beta-thio]diphosphate), an inhibitor of G protein. Ang-(1-7) at 0.1 M induced [35S]GTP[S] (guanosine 5'-[gamma-[35S]thio]triphosphate) binding and 1 mug/ml pertussis toxin, an inhibitor of G(i/o) protein, reversed the Ang-(1-7) effect. Furthermore, it was observed that the inhibitory effect of Ang-(1-7) on the Na+-ATPase activity was completely reversed by 0.1 microM LY83583, an inhibitor of guanylate cyclase, and by 2 muM KT5823, a PKG (protein kinase G) inhibitor, and was mimicked by 10 nM d-cGMP (dibutyryl cGMP). Ang-(1-7) increased the PKG activity by 152% and this effect was abolished by 10 nM PD123319 and 0.1 microM LY83583. Taken together, these data indicate that Ang-(1-7) inhibits the proximal tubule Na+-ATPase by interaction with the AT2 receptor that subsequently activates the G(i/o) protein/cGMP/PKG pathway.
Collapse
Key Words
- angiotensin-(1–7)
- angiotensin receptors
- na+-atpase
- renal epithelium
- cellular signalling
- extracellular volume
- ang-(1–7), angiotensin-(1–7)
- d-camp, dibutyryl camp
- d-cgmp, dibutyryl cgmp
- gdp[β-s], guanosine 5′-[β-thio]diphosphate
- gpcr, g-protein-coupled receptor
- gtp[s], guanosine 5′-[γ-thio]triphosphate
- nos, nitric oxide synthetase
- pacocf3, palmitoyl trifluoromethyl ketone
- pka, protein kinase a
- pkai, pka inhibitor peptide
- pkc, protein kinase c
- pkg, protein kinase g
- pla2, phospholipase a2
- ptx, pertussis toxin
- tbst, tris-buffered saline containing 0.05% tween 20
- tca, trichloroacetic acid
Collapse
Affiliation(s)
- Lucienne da Silva Lara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS-bloco G, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Fabíola Cavalcante
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS-bloco G, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Flavia Axelband
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS-bloco G, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Aloa Machado De Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS-bloco G, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Anibal Gil Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS-bloco G, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS-bloco G, 21949-900, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
27
|
Jang IS, Rhim JH, Kim KT, Cho KA, Yeo EJ, Park SC. Lysophosphatidic acid-induced changes in cAMP profiles in young and senescent human fibroblasts as a clue to the ageing process. Mech Ageing Dev 2006; 127:481-9. [PMID: 16516270 DOI: 10.1016/j.mad.2006.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2006] [Indexed: 11/19/2022]
Abstract
This study attempts to elucidate the molecular mechanisms underlying the ageing-dependent cAMP profiles in human diploid fibroblasts stimulated by lysophosphatidic acid (LPA). In senescent cells, LPA-dependent Gialpha activation was reduced, with a consequent reduction in Gi-suppressed cAMP levels, without alterations in the levels of Gialpha proteins. In young cells, when Gialpha activity was inhibited by pertussis toxin pretreatment, or when its expression was blocked by siRNA, the pattern of changes in cAMP levels in response to LPA was similar to that seen in senescent cells. An increase in protein kinase C (PKC)-dependent isoforms of adenylyl cyclase (AC) types II, IV, and VI was also observed in these senescent fibroblasts. In senescent cells treated with PKC-specific inhibitors, bis-indolylmaleimide, Gö6976, rottlerin, and PKCvarepsilonV1, LPA-induced cAMP accumulation was inhibited, indicating that increased ACs in response to LPA occur via the activation of protein kinase Cs. When the expression of AC II, IV, and VI was blocked by siRNA in senescent fibroblasts, LPA-induced cAMP accumulation was also blocked. These results suggest that the senescence-associated increase of cAMP levels after LPA treatment is associated with reduced Gialpha, increased AC II, IV, and VI proteins, and PKC-dependent stimulation of their activities and provide an explanation for the age-dependent differences in cAMP-related physiological responses.
Collapse
Affiliation(s)
- Ik-Soon Jang
- Department of Biochemistry and Molecular Biology, Ageing and Apoptosis Research Center, Seoul National University College of Medicine, Chongno-gu, South Korea
| | | | | | | | | | | |
Collapse
|
28
|
Richie-Jannetta R, Busch JL, Higgins KA, Corbin JD, Francis SH. Isolated regulatory domains of cGMP-dependent protein kinase Ialpha and Ibeta retain dimerization and native cGMP-binding properties and undergo isoform-specific conformational changes. J Biol Chem 2006; 281:6977-84. [PMID: 16407222 DOI: 10.1074/jbc.m510886200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular mechanisms that provide for cGMP activation of cGMP-dependent protein kinase (PKG) are unknown. PKGs are dimeric; each monomer contains a regulatory (R) and catalytic (C) domain. In this study, isolated recombinant R domains of PKGIalpha-(Delta349-670) and PKGIbeta-(Delta364-685) containing the dimerization and autoinhibitory subdomains and two allosteric cGMP-binding sites were expressed in Sf9 cells. Both R domains were dimers with elongated conformations (Stokes radii of 44 and 51 A, respectively, and frictional coefficients of 1.6 and 1.8, respectively). Exchange dissociation kinetics and K(D) values for cGMP were similar for each holoenzyme and its isolated R domain, indicating that under these conditions the C domain does not appreciably alter cGMP-binding functions of the R domain. As determined by gel filtration chromatography, cGMP binding caused elongation of the PKGIalpha-isolated R domain and contraction of the PKGIbeta-isolated R domain. Cyclic GMP-bound forms of the isoforms have similar physical dimensions that may reflect a common conformation of active isoforms. Elongation of the PKGIbeta holoenzyme associated with cGMP binding and PKG activation cannot be explained solely by conformational change in its R domain, but elongation of the PKGIalpha R domain may partially account for the elongation of wild type PKGIalpha associated with cGMP binding. The cGMP-induced conformational changes in the respective R domains are likely to be critical for kinase activation.
Collapse
Affiliation(s)
- Robyn Richie-Jannetta
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|
29
|
Kissmehl R, Krüger TP, Treptau T, Froissard M, Plattner H. Multigene family encoding 3',5'-cyclic-GMP-dependent protein kinases in Paramecium tetraurelia cells. EUKARYOTIC CELL 2006; 5:77-91. [PMID: 16400170 PMCID: PMC1360248 DOI: 10.1128/ec.5.1.77-91.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 11/01/2005] [Indexed: 01/28/2023]
Abstract
In the ciliate Paramecium tetraurelia, 3',5'-cyclic GMP (cGMP) is one of the second messengers involved in several signal transduction pathways. The enzymes for its production and degradation are well established for these cells, whereas less is known about the potential effector proteins. On the basis of a current Paramecium genome project, we have identified a multigene family with at least 35 members, all of which encode cGMP-dependent protein kinases (PKGs). They can be classified into 16 subfamilies with several members each. Two of the genes, PKG1-1 and PKG2-1, were analyzed in more detail after molecular cloning. They encode monomeric enzymes of 770 and 819 amino acids, respectively, whose overall domain organization resembles that in higher eukaryotes. The enzymes contain a regulatory domain of two tandem cyclic nucleotide-binding sites flanked by an amino-terminal region for intracellular localization and a catalytic domain with highly conserved regions for ATP binding and catalysis. However, some Paramecium PKGs show a different structure. In Western blots, PKGs are detected both as cytosolic and as structure-bound forms. Immunofluorescence labeling shows enrichment in the cell cortex, notably around the dense-core secretory vesicles (trichocysts), as well as in cilia. Immunogold electron microscopy analysis reveals consistent labeling of ciliary membranes, of the membrane complex composed of cell membrane and cortical Ca2+ stores, and of regions adjacent to ciliary basal bodies, trichocysts, and trafficking vesicles. Since PKGs (re)phosphorylate the exocytosis-sensitive phosphoprotein pp63/pf upon stimulation, the role of PKGs during stimulated exocytosis is discussed, in addition to a role in ciliary beat regulation.
Collapse
Affiliation(s)
- Roland Kissmehl
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
30
|
Demyanenko GP, Halberstadt AI, Pryzwansky KB, Werner C, Hofmann F, Maness PF. Abnormal neocortical development in mice lacking cGMP-dependent protein kinase I. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:1-8. [PMID: 16154207 DOI: 10.1016/j.devbrainres.2005.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 07/21/2005] [Accepted: 07/23/2005] [Indexed: 11/28/2022]
Abstract
Cyclic GMP-dependent protein kinase type I (cGKI) is a key signaling intermediate important for synaptic potentiation in the hippocampus and cerebellum, but its expression and function in cortical development have not been elucidated. The expression of cGKI in the developing mouse neocortex was evaluated by immunofluorescence labeling, and effect of cGKI deletion on cortical development was studied in adult cGKI knockout mice. cGKI was expressed at highest levels at embryonic stages in young neurons and radial glial fibers, corresponding to the major period of radial migration and laminar development of pyramidal neurons (embryonic day E13.5-E14.5), declining upon maturation (E17.5-postnatal day P28). The cerebral cortex of homozygous null mutant mice lacking cGKI exhibited heterotopic collections of neurons in the upper cortical layers and abnormal invaginations of layer I, in accord with a neuronal migration or positioning defect. Some cGKI mutant mice displayed defects in midline development resulting in partial fusion of cerebral hemispheres with adjacent neuronal heterotopias. Apical dendrites of cortical pyramidal neurons were misoriented in the cerebral cortex of cGKI null mutants, as shown in reporter mice expressing yellow fluorescent protein in layer V pyramidal neurons and by Golgi impregnation. These results demonstrate a role for cGKI signaling in cortical development related to neuronal migration/positioning that is important for dendritic orientation and connectivity.
Collapse
Affiliation(s)
- Galina P Demyanenko
- Department of Biochemistry and Biophysics CB#7260, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
31
|
Leboulle G, Müller U. Synergistic activation of insect cAMP-dependent protein kinase A (type II) by cyclicAMP and cyclicGMP. FEBS Lett 2004; 576:216-20. [PMID: 15474040 DOI: 10.1016/j.febslet.2004.08.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 08/06/2004] [Accepted: 08/17/2004] [Indexed: 11/19/2022]
Abstract
The high cGMP sensitivity of cAMP-dependent protein kinase A (type II) (PKAII) from invertebrates led to the hypothesis that cGMP directly activates PKAII under physiological conditions. We tested this idea using PKAII holoenzyme purified from the honeybee brain in an assay with short stimulation times. In the presence of very low cAMP concentrations, we found a synergistic increase in PKAII activation by physiological cGMP concentrations. Cloning honeybee regulatory subunit RII and phylogenetic comparison of the two cyclic nucleotide-binding sites of RII reveal a high relation of domain A of insect RII with cGMP-binding domains of cGMP-dependent protein kinases.
Collapse
Affiliation(s)
- Gérard Leboulle
- Institut für Biologie, Freie Universität Berlin, Neurobiologie Königin-Luise-Strasse 28/30, D-14195 Berlin, Germany.
| | | |
Collapse
|
32
|
Pinkse MWH, Heck AJR, Rumpel K, Pullen F. Probing noncovalent protein-ligand interactions of the cGMP-dependent protein kinase using electrospray ionization time of flight mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1392-1399. [PMID: 15465351 DOI: 10.1016/j.jasms.2004.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 06/28/2004] [Accepted: 06/29/2004] [Indexed: 05/24/2023]
Abstract
Nanoflow electrospray ionization time of flight mass spectrometry (ESI-TOF-MS) was used to study activation properties of the cGMP-dependent protein kinase (PKG). Our nanoflow ESI-TOF-MS analysis confirms that PKG mainly occurs as a 153 kDa homodimer and is able to bind four cGMP molecules, which is in agreement with the known stoichiometry. Binding order and stoichiometry of cGMP, the non-hydrolysable ATP analog beta,gamma-imidoadenosine 5'-triphosphate (AMPPNP) and Mn2+ for PKG were characterized as model for the active PKG-cGMP-ATP/Mg2+ complex. Already in the absence of cGMP, a noncovalent complex between PKG and two molecules of AMPPNP could be observed by ESI-TOF-MS. Binding of AMPPNP to PKG was strongly enhanced by the addition of MnCl2 to the spray solution. This is in agreement with binding of AMPPNP/Mn2+ in the ATP binding pocket of PKG since all protein kinases require a metal ion to accompany ATP in the ATP-binding pocket for proper positioning of the beta and gamma phosphates. Additionally, this finding could imply that within the inactive conformation of PKG, the autoinhibition-domain, when in contact with the substrate-docking domain, does not block the entrance to the ATP-binding site. In the presence of cGMP, less of the fully saturated PKG-(cGMP)4(AMPPNP/Mn2+)2 complex was observed, suggesting that the PKG-ATP interaction is weakened in the active conformation of PKG. Additionally, limited proteolysis in combination with native-ESI MS showed to be a useful tool to study the contact regions on the PKG-dimer and also allowed the rapid determination of the overall autophosphorylation status of the protein. These measurements indicated that autophosphorylation mainly occurs within the first 80 aminoterminal residues and involves in total 3-4 phosphates per subunit.
Collapse
Affiliation(s)
- Martijn W H Pinkse
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands.
| | - Albert J R Heck
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands
| | - Klaus Rumpel
- Pfizer Global Research and Development, Sandwich, United Kingdom
| | - Frank Pullen
- Pfizer Global Research and Development, Sandwich, United Kingdom
| |
Collapse
|
33
|
Richie-Jannetta R, Francis SH, Corbin JD. Dimerization of cGMP-dependent protein kinase Ibeta is mediated by an extensive amino-terminal leucine zipper motif, and dimerization modulates enzyme function. J Biol Chem 2003; 278:50070-9. [PMID: 12933804 DOI: 10.1074/jbc.m306796200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All mammalian cGMP-dependent protein kinases (PKGs) are dimeric. Dimerization of PKGs involves sequences located near the amino termini, which contain a conserved, extended leucine zipper motif. In PKG Ibeta this includes eight Leu/Ile heptad repeats, and in the present study, deletion and site-directed mutagenesis have been used to systematically delete these repeats or substitute individual Leu/Ile. The enzymatic properties and quaternary structures of these purified PKG mutants have been determined. All had specific enzyme activities comparable to wild type PKG. Simultaneous substitution of alanine at four or more of the Leu/Ile heptad repeats ((L3A/L10A/L17A/I24A), (L31A/I38A/L45A/I52A), (L17A/I24A/L31A/I38A/L45A/I52A), and (L3A/L10A/L45A/I52A)) of the motif produces a monomeric PKG Ibeta. Mutation of two Leu/Ile heptad repeats can produce either a dimeric (L3A/L10A) or monomeric (L17A/I24A and L31A/I38A) PKG. Point mutation of Leu-17 or Ile-24 (L17A or I24A) does not disrupt dimerization. These results suggest that all eight Leu/Ile heptad repeats are involved in dimerization of PKG Ibeta. Six of the eight repeats are sufficient to mediate dimerization, but substitutions at some positions (Leu-17, Ile-24, Leu-31, and Ile-38) appear to have greater impact than others on dimerization. The Ka of cGMP for activation of monomeric mutants (PKG Ibeta (delta1-52) and PKG Ibeta L17A/I24A/L31A/I38A/L45A/I52A) is 2- to 3-fold greater than that for wild type dimeric PKG Ibeta, and there is a corresponding 2- to 3-fold increase in cGMP-dissociation rate of the high affinity cGMP-binding site (site A) of these monomers. These results indicate that dimerization increases sensitivity for cGMP activation of the enzyme.
Collapse
Affiliation(s)
- Robyn Richie-Jannetta
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | |
Collapse
|
34
|
Rehmann H, Schwede F, Døskeland SO, Wittinghofer A, Bos JL. Ligand-mediated activation of the cAMP-responsive guanine nucleotide exchange factor Epac. J Biol Chem 2003; 278:38548-56. [PMID: 12888551 DOI: 10.1074/jbc.m306292200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epac is a cAMP-dependent exchange factor for the small GTP-binding protein Rap. The activity of Epac is inhibited by a direct interaction between the C-terminal helical part of the cAMP-binding domain, called the lid, and the catalytic region, which is released after binding of cAMP. Herein, we show that the activation properties are very sensitive to modifications of the cyclic nucleotide. Some analogues are inhibitory and others are stimulatory; some are characterized by a much higher activation potential than normal cAMP. Mutational analysis of Epac allows insights into a network of interactions between the cyclic nucleotides and Epac. Mutations in the lid region are able to amplify or to attenuate selectively the activation potency of cAMP analogues. The properties of cAMP analogues previously used for the activation of the cAMP responsive protein kinase A and of 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclicmonophosphate, an analogue highly selective for activation of Epac were investigated in detail.
Collapse
Affiliation(s)
- Holger Rehmann
- Department of Physiological Chemistry and Centre of Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Deng W, Parbhu-Patel A, Meyer DJ, Baker DA. The role of two novel regulatory sites in the activation of the cGMP-dependent protein kinase from Plasmodium falciparum. Biochem J 2003; 374:559-65. [PMID: 12817987 PMCID: PMC1223622 DOI: 10.1042/bj20030474] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Revised: 06/13/2003] [Accepted: 06/20/2003] [Indexed: 11/17/2022]
Abstract
The Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) uniquely contains three cGMP binding sites, but also has a 'degenerate' fourth site. The role of each cGMP-binding site in PfPKG activation remains unknown. We have analysed the effect of mutation of each cGMP-binding site (individually and in combination) on PfPKG activation in vitro. The most striking result was that mutation of cGMP site 3 resulted in a 10-49-fold increase in the K (a((cGMP))) value and a 45-55% decrease in maximal activity compared with wild-type. Mutations involving only cGMP-binding sites 1 and 2 had less effect on both the K (a((cGMP))) values and the maximal activities. These results suggest that, although all three cGMP-binding sites are involved in PfPKG activation, cGMP-binding site 3 has the greatest influence on activation. A mutation in the fourth, degenerate cGMP-binding site decreased PfPKG maximal activity by 40%, but did not change the K (a((cGMP))) value for the PfPKG mutant, suggesting that this site does not bind cGMP, but is required for full activation of PfPKG. The distinct activation properties of PfPKG from mammalian isoforms may be exploitable in the design of a parasite-specific inhibitor and development of a novel anti-malarial drug.
Collapse
Affiliation(s)
- Wensheng Deng
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | | | |
Collapse
|
36
|
Wall ME, Francis SH, Corbin JD, Grimes K, Richie-Jannetta R, Kotera J, Macdonald BA, Gibson RR, Trewhella J. Mechanisms associated with cGMP binding and activation of cGMP-dependent protein kinase. Proc Natl Acad Sci U S A 2003; 100:2380-5. [PMID: 12591946 PMCID: PMC151349 DOI: 10.1073/pnas.0534892100] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using small-angle x-ray scattering, we have observed the cGMP-induced elongation of an active, cGMP-dependent, monomeric deletion mutant of cGMP-dependent protein kinase (Delta(1-52)PKG-I beta). On saturation with cGMP, the radius of gyration of Delta(1-52)PKG-I beta increases from 29.4 +/- 0.1 A to 40.1 +/- 0.7 A, and the maximum linear dimension increases from 90 A +/- 10% to 130 A +/- 10%. The elongation is due to a change in the interaction between structured regulatory (R) and catalytic (C) domains. A model of cGMP binding to Delta(1-52)PKG-I beta indicates that elongation of Delta(1-52)PKG-I beta requires binding of cGMP to the low-affinity binding site of the R domain. A comparison with cAMP-dependent protein kinase suggests that both elongation and activation require cGMP binding to both sites; cGMP binding to the low-affinity site therefore seems to be a necessary, but not sufficient, condition for both elongation and activation of Delta(1-52)PKG-I beta. We also predict that there is little or no cooperativity in cGMP binding to the two sites of Delta(1-52)PKG-I beta under the conditions used here. Results obtained by using the Delta(1-52)PKG-I beta monomer indicate that a previously observed elongation of PKG-I alpha is consistent with a pure change in the interaction between the R domain and the C domain, without alteration of the dimerization interaction. This study has revealed important features of molecular mechanisms in the biochemical network describing PKG-I beta activation by cGMP, yielding new insight into ligand activation of cyclic nucleotide-dependent protein kinases, a class of regulatory proteins that is key to many cellular processes.
Collapse
Affiliation(s)
- Michael E Wall
- Computer and Computational Sciences and Bioscience Divisions, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Muhonen WW, Shabb JB. Resonant mirror biosensor analysis of type Ialpha cAMP-dependent protein kinase B domain--cyclic nucleotide interactions. Protein Sci 2000; 9:2446-56. [PMID: 11206066 PMCID: PMC2144508 DOI: 10.1110/ps.9.12.2446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A resonant mirror biosensor was used to study cyclic nucleotide-receptor interactions. In particular, a novel method was developed to determine inhibition constants (Ki) from initial rates of ligate association to immobilized ligand. This approach was applied to the comparison of cyclic nucleotide-binding properties of the wild-type isolated B domain of the cAMP-dependent protein kinase type Ialpha regulatory subunit and its Ala-334-Thr (A334T) variant that has altered cyclic nucleotide specificity. A cUMP-saturated form of the B domain was used for all measurements. Under the conditions used, cUMP did not affect the kinetics of B domain association to immobilized cAMP. Triton X-100 was required to stabilize the protein at nanomolar concentrations. The association and dissociation rate constants for wild-type and A334T B domains yielded equilibrium dissociation constants of 11 and 16 nM. Heterogeneity of ligate and immobilized ligand, mass transport effects, and other factors were evaluated for their influence on biosensor-determined kinetic constants. Biosensor-determined relative inhibition constants (Ki' = Ki(cAMP)/Ki(analog)) for 16 cyclic nucleotide analogs correlated well with those determined by a [3H]cAMP binding assay. Previously published Ki' values for the B domain in the intact regulatory subunit were similar to those of the isolated B domain. The Ki' values for the wild-type and A334T B domains were essentially unchanged except for dramatic enhancements in affinity of cGMP analogs for the A334T B domain. These observations validate the isolated B domain as a simple model system for studying cyclic nucleotide-receptor interactions.
Collapse
Affiliation(s)
- W W Muhonen
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine, Grand Forks 58202-9037, USA
| | | |
Collapse
|
38
|
Taylor MK, Uhler MD. The amino-terminal cyclic nucleotide binding site of the type II cGMP-dependent protein kinase is essential for full cyclic nucleotide-dependent activation. J Biol Chem 2000; 275:28053-62. [PMID: 10864932 DOI: 10.1074/jbc.m004184200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For the type I cGMP-dependent protein kinases (cGKIalpha and cGKIbeta), a high affinity interaction exists between the C2 amino group of cGMP and the hydroxyl side chain of a threonine conserved in most cGMP binding sites. To examine the effect of this interaction on ligand binding and kinase activation in the type II isozyme of cGMP-dependent protein kinase (cGKII), alanine was substituted for the conserved threonine or serine. cGKII was found to require the C2 amino group of cGMP and its cognate serine or threonine hydroxyl for efficient cGMP activation. Of the two binding sites, disruption of cGMP-specific binding in the NH(2)-terminal binding site had the greatest effect on cGMP-dependent kinase activation, like cGKI. However, ligand dissociation studies showed that the location of the rapid and slow dissociation sites of cGKII was reversed relative to cGKI. Another set of mutations that prevented cyclic nucleotide binding demonstrated the necessity of the NH(2)-terminal, rapid dissociation binding site for cyclic nucleotide-dependent activation of cGKII. These findings suggest distinct mechanisms of activation for cGKII and cGKI isoforms. Because cGKII mediates the effects of heat-stable enterotoxins via the cystic fibrosis transmembrane regulator Cl(-) channel, these findings define a structural target for drug design.
Collapse
Affiliation(s)
- M K Taylor
- Department of Biological Chemistry, the Neuroscience Graduate Program, and the Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48104, USA
| | | |
Collapse
|
39
|
Smith JA, Reed RB, Francis SH, Grimes K, Corbin JD. Distinguishing the roles of the two different cGMP-binding sites for modulating phosphorylation of exogenous substrate (heterophosphorylation) and autophosphorylation of cGMP-dependent protein kinase. J Biol Chem 2000; 275:154-8. [PMID: 10617599 DOI: 10.1074/jbc.275.1.154] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of each of the two different cGMP-binding sites (referred to as slow and fast sites) of type I cGMP-dependent protein kinase (PKG) in altering the rate of catalysis of phosphorylation of exogenous substrates (heterophosphorylation) or the rate of autophosphorylation has not been resolved. In the present study, the cGMP concentration required for half-maximal activation (A(50)) of wild-type PKG type Ibeta (WT) was 5-fold higher for heterophosphorylation than for autophosphorylation. cGMP occupation of the slow site was associated with an increase in the autophosphorylation rate, whereas occupation of the fast and slow site together was associated with a decrease in the autophosphorylation rate compared with the rate observed with occupation of the slow site alone. The contributions of each cGMP-binding site were investigated using PKG mutants containing substitutions of an invariant threonine residue that is critical for high affinity cGMP-binding in each site. Site-directed mutagenesis of Thr-317 of the fast site (T317A) increased the cGMP A(50) for heterophosphorylation 4-fold at 30 degrees C, with nominal effect on cGMP A(50) for autophosphorylation compared with WT. The analogous slow site mutation (T193A) increased the cGMP A(50) for heterophosphorylation and autophosphorylation 32- and 64-fold, respectively. Compared with WT, the cGMP A(50) of the double mutant (T193A/T317A) for heterophosphorylation was increased 300-fold, whereas the cGMP A(50) for autophosphorylation was similar to that of T193A. Thus, occupation of both cGMP-binding sites of PKG is required for maximal stimulation of heterophosphorylation, whereas occupation of the slow site alone is sufficient for stimulation of the rate of autophosphorylation, and additional occupation of the fast site reduces this rate.
Collapse
Affiliation(s)
- J A Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
40
|
Francis SH, Corbin JD. Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Crit Rev Clin Lab Sci 1999; 36:275-328. [PMID: 10486703 DOI: 10.1080/10408369991239213] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Intracellular cAMP and cGMP levels are increased in response to a variety of hormonal and chemical stimuli; these nucleotides play key roles as second messenger signals in modulating myriad physiological processes. The cAMP-dependent protein kinase and cGMP-dependent protein kinase are major intracellular receptors for these nucleotides, and the actions of these enzymes account for much of the cellular responses to increased levels of cAMP or cGMP. This review summarizes many studies that have contributed significantly to an improved understanding of the catalytic, regulatory, and structural properties of these protein kinases. These accumulated findings provide insights into the mechanisms by which these enzymes produce their specific physiological effects and are helpful in considering the actions of other protein kinases as well.
Collapse
Affiliation(s)
- S H Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | |
Collapse
|
41
|
Pfeifer A, Ruth P, Dostmann W, Sausbier M, Klatt P, Hofmann F. Structure and function of cGMP-dependent protein kinases. Rev Physiol Biochem Pharmacol 1999; 135:105-49. [PMID: 9932482 DOI: 10.1007/bfb0033671] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- A Pfeifer
- Institut für Pharmakologie und Toxikologie der TU, München, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Kapphahn MA, Shabb JB. Contribution of the carboxyl-terminal regional of the cAMP-dependent protein kinase type I alpha regulatory subunit to cyclic nucleotide interactions. Arch Biochem Biophys 1997; 348:347-56. [PMID: 9434747 DOI: 10.1006/abbi.1997.0431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The carboxyl-terminal 19 amino acids of the type I alpha regulatory subunit (RI alpha) of cAMP-dependent protein kinase (PKA) were investigated to determine their contributions to cAMP selectivity. The parent RI alpha subunit contained an Ala to Thr mutation at position 334 so that it would bind both cAMP and cGMP with high affinity. Stop codons were introduced into the parent cDNA construct at positions corresponding to Val-375, Asn-372, Gln-370, and Cys-360. The purified, bacterially expressed proteins were characterized for their cAMP and cGMP dissociation properties. Site-selective cAMP analogs were used to compete against [3H]cAMP binding to the mutant RI alpha subunits to correctly assign fast and slow dissociation t1/2 values to the A and B domains. A greater than 60-fold drop in B domain t1/2 in the Asn-372-stop to Gln-370-stop transition implicated Tyr-371 as an important cAMP-binding determinant. A similar drop in [3H]cGMP t1/2 for the same transition suggested that the cGMP/cAMP selectivity was not altered. To test this further, Tyr-371 was mutated to Ala, Phe, and Arg in the parent construct. The cAMP and cGMP t1/2 values were determined, as were protein kinase activation constants (Ka) for holoenzymes formed from mutant RI alpha subunits and purified catalytic subunit. The Ka data suggested that mutation of Tyr-371 enhanced B domain cAMP selectivity. Isolated B domains containing Tyr-371-Arg or Tyr-371-Phe mutations were constructed, expressed, and purified to determine their relative inhibition constants (K'I) for cGMP vs cAMP. These data showed that B domain cAMP selectivity was minimally affected by alteration of Tyr-371. Based on these results, it is concluded that aromatic stacking is not important for determining B-domain cyclic nucleotide selectivity. It is proposed that the main function of Tyr-371 is stabilization of the B-domain cAMP-binding pocket through hydrogen bonding with Glu-324.
Collapse
Affiliation(s)
- M A Kapphahn
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks 58202-9037, USA
| | | |
Collapse
|
43
|
Zhao J, Trewhella J, Corbin J, Francis S, Mitchell R, Brushia R, Walsh D. Progressive cyclic nucleotide-induced conformational changes in the cGMP-dependent protein kinase studied by small angle X-ray scattering in solution. J Biol Chem 1997; 272:31929-36. [PMID: 9395542 DOI: 10.1074/jbc.272.50.31929] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Small angle scattering data from bovine lung type Ialpha cGMP-dependent protein kinase (PKG) in the absence of cGMP show the protein to have a highly asymmetric structure with a radius of gyration (Rg) of 45 A and a maximum linear dimension (dmax) of 165 A. The addition of cGMP induces a marked conformational change in PKG. The Rg and dmax increase 25-30%, and the protein's mass moves further away from the center of mass; this results in an even more asymmetric structure. Fourier transform infrared spectroscopy data suggest that the conformational change induced by cGMP binding is primarily due to a topographical movement of the structural domains of PKG rather than to secondary structural changes within one or more of the individual domains. Each monomer of the dimeric PKG contains one high and one low affinity cGMP-binding site. A prominent increase in the asymmetry of PKG occurs with binding to high affinity cGMP-binding sites alone, but the full domain movements require the binding to both sets of sites. These conformational changes occurring in PKG with the progressive binding of cGMP to both sets of cGMP-binding sites correlate with past data, which have indicated that cGMP binding to both sets of sites is required for the full activation of the enzyme. These results provide the first quantitative measurement of the overall PKG structure, as well as an assessment of the structural events that accompany the activation of a protein kinase upon binding a small molecular weight ligand.
Collapse
Affiliation(s)
- J Zhao
- Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Reed RB, Sandberg M, Jahnsen T, Lohmann SM, Francis SH, Corbin JD. Structural order of the slow and fast intrasubunit cGMP-binding sites of type I alpha cGMP-dependent protein kinase. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1997; 31:205-17. [PMID: 9344253 DOI: 10.1016/s1040-7952(97)80020-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R B Reed
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
45
|
Lohmann SM, Vaandrager AB, Smolenski A, Walter U, De Jonge HR. Distinct and specific functions of cGMP-dependent protein kinases. Trends Biochem Sci 1997; 22:307-12. [PMID: 9270304 DOI: 10.1016/s0968-0004(97)01086-4] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
cGMP-dependent protein kinases I and II conduct signals from widespread signaling systems. Whereas the type I kinase mediates numerous effects of natriuretic peptides and nitric oxide in cardiovascular cells, the type II kinase transduces signals from the Escherichia coli heat-stable enterotoxin, STa, and from the endogenous intestinal peptide, guanylin, stimulating Cl- conductance of the cystic fibrosis transmembrane conductance regulator (CFTR). Although the two kinases may be interchangeable for several functions, CFTR regulation specifically requires the type II kinase.
Collapse
Affiliation(s)
- S M Lohmann
- University of Würzburg, Germany. slohmann@klin-biochem
| | | | | | | | | |
Collapse
|
46
|
Ruth P, Pfeifer A, Kamm S, Klatt P, Dostmann WR, Hofmann F. Identification of the amino acid sequences responsible for high affinity activation of cGMP kinase Ialpha. J Biol Chem 1997; 272:10522-8. [PMID: 9099696 DOI: 10.1074/jbc.272.16.10522] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cGMP-dependent protein kinases (cGK) Ialpha and Ibeta have identical cGMP binding sites and catalytic domains. However, differences in their first 100 amino acids result in 15-fold different activation constants for cGMP. We constructed chimeras to identify those amino acid sequences that contribute to the high affinity cGK Ialpha and low affinity cGK Ibeta phenotype. The cGK Ialpha/Ibeta chimeras contained permutations of six amino-terminal regions (S1-S6) including the leucine zipper (S2), the autoinhibitory domain (S4), and the hinge domain (S5, S6). The exchange of S2 along with S4 switched the phenotype from cGK Ialpha to cGK Ibeta and vice versa, suggesting that the domains with the highest homology between the two isozymes determine their affinity for cGMP. The high affinity cGK Ialpha phenotype was also obtained by a specific substitution within the hinge domain. Chimeras with the sequence of cGK Ialpha in S5 and cGK Ibeta in S6 were activated at up to 6-fold lower cGMP concentrations than cGK Ialpha. Based on the activation constants of all chimeras constructed, empirical weighting factors have been calculated that quantitatively describe the contribution of the individual amino-terminal domains S1-S6 to the high affinity cGK Ialpha phenotype.
Collapse
Affiliation(s)
- P Ruth
- Institut für Pharmakologie und Toxikologie der Technische Universität München, Biedersteiner Strasse 29, D-80802 München, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Dostmann WR, Koep N, Endres R. The catalytic domain of the cGMP-dependent protein kinase Ialpha modulates the cGMP-binding characteristics of its regulatory domain. FEBS Lett 1996; 398:206-10. [PMID: 8977108 DOI: 10.1016/s0014-5793(96)01242-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cGMP-dependent protein kinase Ialpha (PKG Ialpha) possesses two functional moieties, the regulatory and catalytic domains, which reside on a single polypeptide chain. Here we report on the influence of the catalytic domain on the binding of cGMP to the regulatory domain. A deletion mutant, delta352-670 of PKG Ialpha, lacking the catalytic domain, was constructed and expressed in E. coli. The purified 38 kDa mutant protein showed strong reactivity toward tryptic proteolysis at residue Arg77. Thus, a double deletion fragment delta1-77/352-670 PKG Ialpha, lacking the N-terminus, was also purified. Both proteins had functional cGMP binding, but differed kinetically from the wild-type protein. First the affinity constants for cGMP were modulated, second the constructs showed no signs of cooperative cGMP binding and third dimerization of the delta352-670 mutant was abolished. Our results provide evidence that the catalytic domain forms an intimate interaction with the regulatory domain and modulates the kinetics of cGMP binding.
Collapse
Affiliation(s)
- W R Dostmann
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Germany.
| | | | | |
Collapse
|