1
|
Pu Y, Yang J, Pan Q, Li C, Wang L, Xie X, Chen X, Xiao F, Chen G. MGST3 regulates BACE1 protein translation and amyloidogenesis by controlling the RGS4-mediated AKT signaling pathway. J Biol Chem 2024; 300:107530. [PMID: 38971310 PMCID: PMC11332907 DOI: 10.1016/j.jbc.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024] Open
Abstract
Microsomal glutathione transferase 3 (MGST3) regulates eicosanoid and glutathione metabolism. These processes are associated with oxidative stress and apoptosis, suggesting that MGST3 might play a role in the pathophysiology of Alzheimer's disease. Here, we report that knockdown (KD) of MGST3 in cell lines reduced the protein level of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and the resulting amyloidogenesis. Interestingly, MGST3 KD did not alter intracellular reactive oxygen species level but selectively reduced the expression of apoptosis indicators which could be associated with the receptor of cysteinyl leukotrienes, the downstream metabolites of MGST3 in arachidonic acid pathway. We then showed that the effect of MGST3 on BACE1 was independent of cysteinyl leukotrienes but involved a translational mechanism. Further RNA-seq analysis identified that regulator of G-protein signaling 4 (RGS4) was a target gene of MGST3. Silencing of RGS4 inhibited BACE1 translation and prevented MGST3 KD-mediated reduction of BACE1. The potential mechanism was related to AKT activity, as the protein level of phosphorylated AKT was significantly reduced by silencing of MGST3 and RGS4, and the AKT inhibitor abolished the effect of MGST3/RGS4 on phosphorylated AKT and BACE1. Together, MGST3 regulated amyloidogenesis by controlling BACE1 protein expression, which was mediated by RGS4 and downstream AKT signaling pathway.
Collapse
Affiliation(s)
- Yalan Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Department of Neurology, Langzhong People's Hospital, Nanchong, Sichuan, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan, China
| | - Qiuling Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Chenlu Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiaoyong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.
| |
Collapse
|
2
|
Schomakers BV, Jillings SL, van Weeghel M, Vaz FM, Salomons GS, Janssens GE, Houtkooper RH. Ophthalmic acid is a glutathione regulating tripeptide. FEBS J 2024; 291:3317-3330. [PMID: 38245827 DOI: 10.1111/febs.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Since its discovery in 1958 in the lens of cows, ophthalmic acid (OPH) has stood in the shadow of its anti-oxidant analog: glutathione (GSH). Lacking the thiol group that gives GSH many of its important properties, ophthalmic acid's function has remained elusive, and it has been widely presumed to be an accidental product of the same enzymes. In this review, we compile evidence demonstrating that OPH is a ubiquitous metabolite found in bacteria, plants, fungi, and animals, produced through several layers of metabolic regulation. We discuss the limitations of the oft-repeated suggestions that aberrations in OPH levels should solely indicate GSH deficiency or oxidative stress. Finally, we discuss the available literature and suggest OPH's role in metabolism as a GSH-regulating tripeptide; controlling both cellular and organelle influx and efflux of GSH, as well as modulating GSH-dependent reactions and signaling. Ultimately, we hope that this review reinvigorates and directs more research into this versatile metabolite.
Collapse
Affiliation(s)
- Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Sonia L Jillings
- Green Biotechnology, Inholland University of Applied Sciences, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Gajja S Salomons
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Amsterdam Cardiovascular Sciences, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Amsterdam Cardiovascular Sciences, The Netherlands
| |
Collapse
|
3
|
Zhang R, Yang J, Hu J, Yang F, Liang J, Xue H, Wei X, Fu B, Huang M, Du H, Wang C, Su Q, Yang X, Zhang Y. Glutathione S-transferase directly metabolizes imidacloprid in the whitefly, Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105863. [PMID: 38685216 DOI: 10.1016/j.pestbp.2024.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 05/02/2024]
Abstract
The whitefly Bemisia tabaci poses a significant threat to various crops and ornamental plants and causes severe damage to the agricultural industry. Over the past few decades, B. tabaci has developed resistance to several pesticides, including imidacloprid. Therefore, elucidating the mechanism that leads to insecticide detoxification is very important for controlling B. tabaci and managing whitefly resistance to neonicotinoid insecticides. Among insect detoxification enzymes, glutathione S-transferase (GST) is an important phase II detoxification enzyme that helps detoxify exogenous toxic substances. In this study, we cloned the BtGSTz1 gene and observed that its expression level was greater in imidacloprid-resistant populations than sensitive populations of B. tabaci. By silencing BtGSTz1 via RNA interference, we found a significant increase in the mortality of imidacloprid-resistant B. tabaci. Additionally, prokaryotic expression and in vitro metabolism studies revealed that the recombinant BtGSTz1 protein could metabolize 36.36% of the total imidacloprid, providing direct evidence that BtGSTz1 plays a crucial role in the detoxification of imidacloprid. Overall, our study elucidated the role of GSTs in physiological activities related to insecticide resistance, which helps clarify the resistance mechanisms conferred by GSTs and provides useful insights for sustainable integrated pest management.
Collapse
Affiliation(s)
- Rong Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinyu Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengbo Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, China
| | - Xuegao Wei
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, China
| | - Chao Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Haeggström JZ, Newcomer ME. Structures of Leukotriene Biosynthetic Enzymes and Development of New Therapeutics. Annu Rev Pharmacol Toxicol 2023; 63:407-428. [PMID: 36130059 DOI: 10.1146/annurev-pharmtox-051921-085014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Leukotrienes are potent immune-regulating lipid mediators with patho-genic roles in inflammatory and allergic diseases, particularly asthma. These autacoids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, metabolic, and tumor diseases. Biosynthesis of leukotrienes involves release and oxidative metabolism of arachidonic acid and proceeds via a set of cytosolic and integral membrane enzymes that are typically expressed by cells of the innate immune system. In activated cells, these enzymes traffic and assemble at the endoplasmic and perinuclear membrane, together comprising a biosynthetic complex. Here we describe recent advances in our molecular understanding of the protein components of the leukotriene-synthesizing enzyme machinery and also briefly touch upon the leukotriene receptors. Moreover, we discuss emerging opportunities for pharmacological intervention and development of new therapeutics.
Collapse
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, Stockholm, Sweden;
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA;
| |
Collapse
|
5
|
Blockade of Platelet CysLT1R Receptor with Zafirlukast Counteracts Platelet Protumoral Action and Prevents Breast Cancer Metastasis to Bone and Lung. Int J Mol Sci 2022; 23:ijms232012221. [PMID: 36293074 PMCID: PMC9603002 DOI: 10.3390/ijms232012221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022] Open
Abstract
Metastases are the main cause of death in cancer patients, and platelets are largely known for their contribution in cancer progression. However, targeting platelets is highly challenging given their paramount function in hemostasis. Using a high-throughput screening and platelet-induced breast tumor cell survival (PITCS) assay as endpoint, we identified the widely used anti-asthmatic drugs and cysteinyl leukotriene receptor 1 (CysLT1R) antagonists, zafirlukast and montelukast, as new specific blockers of platelet protumoral action. Here, we show that human MDA-B02 breast cancer cells produce CysLT through mechanisms involving microsomal glutathione-S-transferase 1/2/3 (MGST1/2/3) and that can modulate cancer cell–platelet interactions via platelet–CysLT1R. CysLT1R blockade with zafirlukast decreased platelet aggregation and adhesion on cancer cells and inhibited PITCS, migration, and invasion in vitro. Zafirlukast significantly reduced, by 90%, MDA-B02 cell dissemination to bone in nude mice and reduced by 88% 4T1 spontaneous lung metastasis formation without affecting primary tumor growth. Combined treatment of zafirlukast plus paclitaxel totally inhibited metastasis of 4T1 cells to the lungs. Altogether, our results reveal a novel pathway mediating the crosstalk between cancer cells and platelets and indicate that platelet CysLT1R represents a novel therapeutic target to prevent metastasis without affecting hemostasis.
Collapse
|
6
|
Zhan H, Xiong Y, Wang Z, Dong W, Zhou Q, Xie S, Li X, Zhao S, Ma Y. Integrative analysis of transcriptomic and metabolomic profiles reveal the complex molecular regulatory network of meat quality in Enshi black pigs. Meat Sci 2021; 183:108642. [PMID: 34390898 DOI: 10.1016/j.meatsci.2021.108642] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023]
Abstract
Improving meat quality is a crucial purpose of commercial production and breeding systems. In this study, multiomics techniques were used to investigate the molecular mechanisms that impact the excessive diversity of meat quality in Enshi black pigs. The results suggest that 120 differentially expressed genes (DEGs) and 171 significantly changed metabolites (SCMs) contribute to the content of intramuscular fat (IMF) through the processes of fat accumulation and regulation of lipolysis. A total of 141 DEGs and 47 SCMs may regulate meat color through the processes of nicotinate and nicotinamide metabolism. Herein, we found some candidate genes associated with IMF and meat color. We also presented a series of metabolites that are potentially available biological indicators to measure meat quality. This research provides further insight into the detection of intramuscular fat accumulation and meat color variation and provides a reference for molecular mechanisms in the regulation of IMF and meat color.
Collapse
Affiliation(s)
- Huiwen Zhan
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Youcai Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zichang Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wenjun Dong
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qichao Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
7
|
Thulasingam M, Orellana L, Nji E, Ahmad S, Rinaldo-Matthis A, Haeggström JZ. Crystal structures of human MGST2 reveal synchronized conformational changes regulating catalysis. Nat Commun 2021; 12:1728. [PMID: 33741927 PMCID: PMC7979937 DOI: 10.1038/s41467-021-21924-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
Microsomal glutathione S-transferase 2 (MGST2) produces leukotriene C4, key for intracrine signaling of endoplasmic reticulum (ER) stress, oxidative DNA damage and cell death. MGST2 trimer restricts catalysis to only one out of three active sites at a time, but the molecular basis is unknown. Here, we present crystal structures of human MGST2 combined with biochemical and computational evidence for a concerted mechanism, involving local unfolding coupled to global conformational changes that regulate catalysis. Furthermore, synchronized changes in the biconical central pore modulate the hydrophobicity and control solvent influx to optimize reaction conditions at the active site. These unique mechanistic insights pertain to other, structurally related, drug targets. Microsomal glutathione S-transferase 2 (MGST2) produces leukotriene C4, an intracrine mediator of cell death. Structural, biochemical and computational analyses of human MGST2 suggest a mechanism employed by the enzyme to restrict catalysis to only one active site within the MGST2 trimer.
Collapse
Affiliation(s)
- Madhuranayaki Thulasingam
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden.
| | - Laura Orellana
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Emmanuel Nji
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden.,BioStruct-Africa, Stockholm, Sweden
| | - Shabbir Ahmad
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Agnes Rinaldo-Matthis
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden.
| |
Collapse
|
8
|
Saier L, Peyruchaud O. Emerging role of cysteinyl LTs in cancer. Br J Pharmacol 2021; 179:5036-5055. [PMID: 33527344 DOI: 10.1111/bph.15402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 01/31/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are inflammatory lipid mediators that play a central role in the pathophysiology of several inflammatory diseases. Recently, there has been an increased interest in determining how these lipid mediators orchestrate tumour development and metastasis through promoting a pro-tumour micro-environment. Up-regulation of CysLTs receptors and CysLTs production is found in a number of cancers and has been associated with increased tumorigenesis. Understanding the molecular mechanisms underlying the role of CysLTs and their receptors in cancer progression will help investigate the potential of targeting CysLTs signalling for anti-cancer therapy. This review gives an overview of the biological effects of CysLTs and their receptors, along with current knowledge of their regulation and expression. It also provides a recent update on the molecular mechanisms that have been postulated to explain their role in tumorigenesis and on the potential of anti-CysLTs in the treatment of cancer.
Collapse
Affiliation(s)
- Lou Saier
- INSERM, Unit 1033, LYOS, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Peyruchaud
- INSERM, Unit 1033, LYOS, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
9
|
Structural considerations on lipoxygenase function, inhibition and crosstalk with nitric oxide pathways. Biochimie 2020; 178:170-180. [PMID: 32980463 DOI: 10.1016/j.biochi.2020.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
Lipoxygenases (LOX) are non-heme iron-containing enzymes that catalyze regio- and stereo-selective dioxygenation of polyunsaturated fatty acids (PUFA). Mammalian LOXs participate in the eicosanoid cascade during the inflammatory response, using preferentially arachidonic acid (AA) as substrate, for the synthesis of leukotrienes (LT) and other oxidized-lipid intermediaries. This review focus on lipoxygenases (LOX) structural and kinetic implications on both catalysis selectivity, as well as the basic and clinical implications of inhibition and interactions with nitric oxide (•NO) and nitroalkenes pathways. During inflammation •NO levels are increasingly favoring the formation of reactive nitrogen species (RNS). •NO may act itself as an inhibitor of LOX-mediated lipid oxidation by reacting with lipid peroxyl radicals. Besides, •NO may act as an O2 competitor in the LOX active site, thus displaying a protective role on lipid-peroxidation. Moreover, RNS such as nitrogen dioxide (•NO2) may react with lipid-derived species formed during LOX reaction, yielding nitroalkenes (NO2FA). NO2FA represents electrophilic compounds that could exert anti-inflammatory actions through the interaction with critical LOX nucleophilic amino acids. We will discuss how nitro-oxidative conditions may limit the availability of common LOX substrates, favoring alternative routes of PUFA metabolization to anti-inflammatory or pro-resolutive pathways.
Collapse
|
10
|
Thulasingam M, Haeggström JZ. Integral Membrane Enzymes in Eicosanoid Metabolism: Structures, Mechanisms and Inhibitor Design. J Mol Biol 2020; 432:4999-5022. [PMID: 32745470 DOI: 10.1016/j.jmb.2020.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Eicosanoids are potent lipid mediators involved in central physiological processes such as hemostasis, renal function and parturition. When formed in excess, eicosanoids become critical players in a range of pathological conditions, in particular pain, fever, arthritis, asthma, cardiovascular disease and cancer. Eicosanoids are generated via oxidative metabolism of arachidonic acid along the cyclooxygenase (COX) and lipoxygenase (LOX) pathways. Specific lipid species are formed downstream of COX and LOX by specialized synthases, some of which reside on the nuclear and endoplasmic reticulum, including mPGES-1, FLAP, LTC4 synthase, and MGST2. These integral membrane proteins are members of the family "membrane-associated proteins in eicosanoid and glutathione metabolism" (MAPEG). Here we focus on this enzyme family, which encompasses six human members typically catalyzing glutathione dependent transformations of lipophilic substrates. Enzymes of this family have evolved to combat the topographical challenge and unfavorable energetics of bringing together two chemically different substrates, from cytosol and lipid bilayer, for catalysis within a membrane environment. Thus, structural understanding of these enzymes are of utmost importance to unravel their molecular mechanisms, mode of substrate entry and product release, in order to facilitate novel drug design against severe human diseases.
Collapse
Affiliation(s)
- Madhuranayaki Thulasingam
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Systematic characterization of glutathione S-transferases in common marmosets. Biochem Pharmacol 2020; 174:113835. [PMID: 32027883 DOI: 10.1016/j.bcp.2020.113835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
The common marmoset is an important primate species used in drug metabolism studies. However, glutathione S-transferases (GSTs), essential drug-metabolizing enzymes involved in the conjugation of various endogenous and exogenous substrates, have not been identified or characterized in this species. In this study, 20 GSTs [including 3 microsomal GSTs (MGSTs)] were identified and characterized in marmosets. Marmoset GSTs had amino acid sequences highly identical (86-99%) to human GSTs, except for GSTA4L, which had lower identities (59-62%) with human GSTAs. Phylogenetic analysis revealed that marmoset GSTs were closely clustered with their human counterparts. Marmoset GSTs had gene and genomic structures generally similar to their human counterparts, with some differences in GSTA, GSTM, and GSTT clusters. Marmoset GST mRNAs exhibited distinct tissue expression patterns: GSTA1, GSTA3, GSTA4L, GSTK1, GSTT1, GSTZ1, and MGST1 mRNAs were expressed most abundantly in liver. Other GST mRNAs were expressed most abundantly in small intestine, lung, brain, or kidney. Expression of GSTT4 and GSTT4L mRNAs was detected only in testis. Among all 20 marmoset GST mRNAs, the most abundant mRNAs were GSTA1 mRNA in liver, small intestine, and kidney; GSTM3 mRNA in testis; and MSGT3 mRNA in brain and lung. All 20 GSTs mediated the conjugation of GST substrates 1-chloro-2,4-dinitrobenzene; 1,2-epoxy-3-(p-nitrophenoxy)propane; styrene 7,8-oxide; and/or 1-iodohexane, but with different activity levels. Kinetic analyses showed that marmoset GSTM2/GSTM5 and GSTM5/GSTT1 effectively conjugated styrene 7,8-oxide and 1-iodohexane, respectively, with the highest affinity. These results suggest that the 20 newly identified marmoset GSTs were functional drug-metabolizing enzymes able to conjugate typical GST substrates.
Collapse
|
12
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
13
|
Meng LW, Yuan GR, Lu XP, Jing TX, Zheng LS, Yong HX, Wang JJ. Two delta class glutathione S-transferases involved in the detoxification of malathion in Bactrocera dorsalis (Hendel). PEST MANAGEMENT SCIENCE 2019; 75:1527-1538. [PMID: 30610767 DOI: 10.1002/ps.5318] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/25/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The oriental fruit fly Bactrocera dorsalis (Hendel), a widespread agricultural pest, has evolved resistance to many insecticides, including organophosphorus compounds. Glutathione S-transferases (GSTs) are involved in xenobiotic detoxification and insecticide resistance in many insects. However, the role of delta class GSTs in detoxifying malathion in B. dorsalis is unknown. Here, we evaluated the roles of two delta class GSTs in malathion detoxification in this species. RESULTS Two delta class GSTs genes, BdGSTd1 and BdGSTd10, were characterized in B. dorsalis. They were highly expressed in 5-day-old adults, as well as in midgut and Malpighian tubules. Upon malathion exposure, the two genes were upregulated by 2.63- and 2.85-fold, respectively. Injection of double-stranded RNA targeting BdGSTd1 or BdGSTd10 significantly reduced their mRNA levels in adults and also significantly increased adult susceptibility to malathion. The expression of these two GSTs in Escherichia coli helped the host to endure malathion stress at a concentration of 10 µg mL-1 according to a Cell Counting Kit-8 assay. High-performance liquid chromatography analyses indicated that malathion could be significantly depleted by the two delta GSTs. The role of BdGSTd10 in malathion sequestration was also discussed. CONCLUSION BdGSTd1 and BdGSTd10 play important roles in the detoxification of malathion in B. dorsalis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xue-Ping Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tian-Xing Jing
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li-Sha Zheng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Han-Xiao Yong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Lee BY, Choi BS, Kim MS, Park JC, Jeong CB, Han J, Lee JS. The genome of the freshwater water flea Daphnia magna: A potential use for freshwater molecular ecotoxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:69-84. [PMID: 30826642 DOI: 10.1016/j.aquatox.2019.02.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
The water flea Daphnia magna is a small planktonic cladoceran. D. magna has been used as a model species for ecotoxicology, as it is sensitive to environmental stressors and environmental changes. Since Daphnia is affected by culture environment and each population/strain has its own ecological and genetic characteristics, its population/strain-based genome information is useful for environmental genomic studies. In this study, we assembled and characterized the genome of D. magna. Using a high-density genetic map of D. magna xinb3, the draft genome was integrated to 10 linkage groups (LGs). The total length of the integrated genome was about 123 Mb with N50 = 10.1 Mb, and the number of scaffolds was 4193 including 10 LGs. A total of 15,721 genes were annotated after manual curation. Orthologous genes were characterized in the genome and compared with other genomes of Daphnia. In addition, we identified defense related genes such as cytochrome P450 (CYP) genes, glutathione S-transferase (GST) genes, and ATP-binding cassette (ABC) genes from the assembled D. magna genome for its potential use in molecular ecotoxicological studies in the freshwater environment. This genomic resource will be helpful to study for a better understanding on molecular mechanism in response to various pollutants.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
15
|
Kanaoka Y, Austen KF. Roles of cysteinyl leukotrienes and their receptors in immune cell-related functions. Adv Immunol 2019; 142:65-84. [PMID: 31296303 DOI: 10.1016/bs.ai.2019.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cysteinyl leukotrienes (cys-LTs), leukotriene C4, (LTC4), LTD4, and LTE4, are lipid mediators of inflammation. LTC4 is the only intracellularly synthesized cys-LT through the 5-lipoxygenase and LTC4 synthase pathway and after transport is metabolized to LTD4 and LTE4 by specific extracellular peptidases. Each cys-LT has a preferred functional receptor in vivo; LTD4 to the type 1 cys-LT receptor (CysLT1R), LTC4 to CysLT2R, and LTE4 to CysLT3R (OXGR1 or GPR99). Recent studies in mouse models revealed that there are multiple regulatory mechanisms for these receptor functions and each receptor plays a distinct role as observed in different mouse models of inflammation and immune responses. This review focuses on the integrated host responses to the cys-LT/CysLTR pathway composed of sequential ligands with preferred receptors as seen from mouse models. It also discusses potential therapeutic targets for LTC4 synthase, CysLT2R, and CysLT3R.
Collapse
Affiliation(s)
- Yoshihide Kanaoka
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, United States.
| | - K Frank Austen
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
16
|
Genome-wide identification of the entire 90 glutathione S-transferase (GST) subfamily genes in four rotifer Brachionus species and transcriptional modulation in response to endocrine disrupting chemicals. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:183-195. [PMID: 30290366 DOI: 10.1016/j.cbd.2018.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 02/08/2023]
Abstract
Genome-wide identification of glutathione S-transferase (GST), a major phase II detoxification enzyme, was investigated in four different aquatic model rotifer species Brachionus koreanus, B. plicatilis, B. rotundiformis, and B. calyciflorus. GSTs are ubiquitous antioxidant enzymes that play versatile function including cellular detoxification, stress alleviation, and production of the radical conjugates. Among the four rotifers, B. rotundiformis was found with the least number of GST genes (total 19 GST genes), whereas the other three species shared 23 to 24 GST genes. Among the identified GST genes, belonging to the cytosolic GST superfamily, the expansion of GST sigma classes mainly occurs through tandem duplication, resulting in tandem-arrayed gene clusters on the chromosomes. Overall, the number of genes discovered in this study was highest in the sigma class, zeta, alpha, and omega in descending order. With integration of phylogenetic analysis and xenobiotic-mediated GST mRNA expression patterns along with previous enzymatic activities, the functional divergence among species-specific GST genes was clearly observed. This study covers full identification of GST classes in three marine rotifer and one fresh-water rotifer species and their important role in marine environmental ecotoxicology.
Collapse
|
17
|
Abstract
Leukotrienes are powerful immune-regulating lipid mediators with established pathogenic roles in inflammatory allergic diseases of the respiratory tract - in particular, asthma and hay fever. More recent work indicates that these lipids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, and metabolic diseases as well as cancer. Biosynthesis of leukotrienes involves oxidative metabolism of arachidonic acid and proceeds via a set of soluble and membrane enzymes that are primarily expressed by cells of myeloid origin. In activated immune cells, these enzymes assemble at the endoplasmic and perinuclear membrane, constituting a biosynthetic complex. This Review describes recent advances in our understanding of the components of the leukotriene-synthesizing enzyme machinery, emerging opportunities for pharmacological intervention, and the development of new medicines exploiting both antiinflammatory and pro-resolving mechanisms.
Collapse
|
18
|
Abstract
Purpose of review This review will critically highlight the role of leukotrienes as mediators of renal diseases and drug nephrotoxicity. It will also discuss the recently identified mechanism of cysteinyl leukotrienes induction and action, and will propose clinical implementation of these findings. Recent findings Since last reviewed in 1994, leukotrienes were shown to mediate drug-associated nephrotoxicity, transplant rejection and morbidity in several models of renal diseases. Although leukotrienes may be released by various infiltrating leukocytes, a recent study demonstrated that cytotoxic agents trigger production of leukotriene C4 (LTC4) in mouse kidney cells by activating a biosynthetic pathway based on microsomal glutathione-S-transferase 2 (MGST2). LTC4 then elicits nuclear accumulation of hydrogen peroxide-generating NADPH oxidase 4, leading to oxidative DNA damage and cell death. LTC4 inhibitors, commonly used as systemic asthma drugs, alleviated drug-associated damage to proximal tubular cells and attenuated mouse morbidity. Summary Cysteinyl leukotrienes released by mast cells trigger the symptoms of asthma, including bronchoconstriction and vasoconstriction. Therefore, effective leukotriene inhibitors were approved as orally administered asthma drugs. The findings that leukotrienes mediate the cytotoxicity of nephrotoxic drugs, and are involved in numerous renal diseases, suggest that such asthma drugs may ameliorate drug-induced nephrotoxicity, as well as some renal diseases.
Collapse
|
19
|
Zhang J, Matsuo T. MGST2 and WNT2 are candidate genes for comitant strabismus susceptibility in Japanese patients. PeerJ 2017; 5:e3935. [PMID: 29062608 PMCID: PMC5649647 DOI: 10.7717/peerj.3935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/AIM Strabismus is a common condition with misalignment between two eyes that may lead to decrease of visual acuity, lack of binocularity, and diplopia. It is caused by heterogeneous environmental and genetic risk factors. Our previous research has identified new chromosomal susceptibility loci in 4q28.3 and 7q31.2 regions for comitant strabismus in Japanese families. We conducted a verification study by linkage analysis to narrow the chromosomal loci down to a single gene. METHODS From Japanese and U.S. databases, 24 rsSNPs and 233 rsSNPs were chosen from the 4q28.3 and 7q31.2 region, respectively, and were typed in 108 affected subjects and 96 unaffected subjects of 58 families with primary and non-syndromic comitant strabismus. Three major analytical methods were used: transmission disequilibrium test (TDT), TDT allowing for errors (TDTae), and linkage analysis under dominant and recessive inheritance. RESULTS The SNPs with significant P values in TDT and TDTae were located solely at the gene, microsomal glutathione S-transferase 2 (MGST2), on chromosome 4q28.3 locus. In contrast, significant SNPs were dispersed in a few genes, containing wingless-type MMTV integration site family member 2 (WNT2), on chromosome 7q31.2 locus. The distribution of significant SNPs on the 7q31.2 locus showed that only the ST7 to WNT2 region in the same big haplotype block contained significant SNPs for all three methods of linkage analysis. CONCLUSIONS This study suggests that MGST2 and WNT2 are potential candidates for comitant strabismus in Japanese population.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Toshihiko Matsuo
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| |
Collapse
|
20
|
Han JB, Li GQ, Wan PJ, Zhu TT, Meng QW. Identification of glutathione S-transferase genes in Leptinotarsa decemlineata and their expression patterns under stress of three insecticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 133:26-34. [PMID: 27742358 DOI: 10.1016/j.pestbp.2016.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 05/20/2023]
Abstract
Glutathione S-transferases (GSTs) is a family of multifunctional enzymes that are involved in detoxification of poisonous compounds. In the present paper, the Leptinotarsa decemlineata genome and transcriptome dataset were mined and 30 GST genes were identified. These GSTs belonged to cytosolic (29 genes) and microsomal (1 gene) classes. Among them 3 GSTs (LdGSTe2, LdGSTs4, and LdGSTo3) possessed splice variants. Of the 29 cytosolic LdGSTs, 3, 10, 5, 4, 4, and 1 members were classified as delta, epsilon, omega, sigma, theta, and zeta subclasses respectively, along with 2 unclassified genes. Phylogenetic analysis suggest that epsilon, omega and sigma subclasses appear to undergo species-specific bloom. Moreover, most epsilon, omega and sigma GSTs are tandemly arranged in three chromosome scaffolds. To find GST candidates involving in insecticide detoxification, we tested the mRNA levels of 20 GST transcripts under stress of cyhalothrin, fipronil or endosulfan. Out of them, LdGSTe2a, LdGSTe2b, LdGSTo5 and LdGSTt1 were significantly overexpressed after exposure to each of the three insecticides. Two other genes were respectively upregulated after cyhalothrin (LdGSTe10 and LdGSTu2) or endosulfan (LdGSTd1 and LdGSTu2) treatment. The diversified expression responses to insecticide exposure suggest that the LdGSTs may depend on a functionally complex system to detoxify different classes of insecticides. In addition, our findings provide a base for a better understanding of the evolution of insecticide resistance, and functional research on specific GST genes.
Collapse
Affiliation(s)
- Jin-Bo Han
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pin-Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Tao-Tao Zhu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qing-Wei Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
21
|
Hong FF, Wang YF, Liu H, Yang MW, Yang SL. V-PYRRO/NO downregulates mRNA expression levels of leukotriene C4 synthase during hepatic ischemia reperfusion injury in rats via inhibition of the nuclear factor-κB activation pathway. Biomed Rep 2016; 4:112-116. [PMID: 26870346 DOI: 10.3892/br.2015.533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to explore the mechanism underlying the effects of a selective liver nitric oxide (NO) donor, O2-vinyl1-(pyrrolidin-1-yl)-diazen-1-ium-1,2-diolate (V-PYRRO/NO), on the gene expression of leukotriene C4 synthase (LTC4S) during hepatic ischemia/reperfusion (I/R). Adult male Sprague-Dawley rats were divided into 3 groups: Sham (control), I/R and V-PYRRO/NO + I/R groups. The liver was subjected to 1 h of partial hepatic ischemia followed by 5 h of reperfusion, saline or V-PYRRO/NO (1.06 µmol/kg/h) administered intravenously. The mRNA expression levels of LTC4S in rat liver tissue were examined by the reverse transcription-polymerase chain reaction method, the protein expression levels of nuclear factor-κB (NF-κB) p65, p50 and IκBα in liver cell lysates and nuclear extracts were detected by western blot analysis. Hepatic mRNA expression of LTC4S was lower in V-PYRRO/NO + I/R group compared to the I/R group. In addition, the protein expression levels of NF-κB p65 and p50 in the nucleus extract were lower in the V-PYRRO/NO + I/R group when compared with the I/R group. However, the IκBα protein in the 3 groups was not changed. Immunohistochemistry staining revealed that the I/R liver exhibited strong cytoplasmic and nuclear staining for NF-κB p65; however, the V-PYRRO/NO + I/R group liver presented slight cytoplasmic and nuclear staining. In conclusion, V-PYRRO/NO may downregulate LTC4S mRNA expression by inhibiting NF-κB activation independent of IκBα during hepatic I/R injury.
Collapse
Affiliation(s)
- Feng-Fang Hong
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China; Department of Medical Experimental Teaching, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi-Fan Wang
- Institute of Cancer Research, Jiangxi Academy of Medical Science, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Liu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mei-Wen Yang
- Fuzhou Medical College, Nanchang University, Fuzhou 344000, P.R. China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
22
|
Leukotriene C4 is the major trigger of stress-induced oxidative DNA damage. Nat Commun 2015; 6:10112. [PMID: 26656251 PMCID: PMC4682057 DOI: 10.1038/ncomms10112] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and major chemotherapeutic agents damage DNA by generating reactive oxygen species (ROS). Here we show that ER stress and chemotherapy induce leukotriene C4 (LTC4) biosynthesis by transcriptionally upregulating and activating the enzyme microsomal glutathione-S-transferase 2 (MGST2) in cells of non-haematopoietic lineage. ER stress and chemotherapy also trigger nuclear translocation of the two LTC4 receptors. Acting in an intracrine manner, LTC4 then elicits nuclear translocation of NADPH oxidase 4 (NOX4), ROS accumulation and oxidative DNA damage. Mgst2 deficiency, RNAi and LTC4 receptor antagonists abolish ER stress- and chemotherapy-induced ROS and oxidative DNA damage in vitro and in mouse kidneys. Cell death and mouse morbidity are also significantly attenuated. Hence, MGST2-generated LTC4 is a major mediator of ER stress- and chemotherapy-triggered oxidative stress and oxidative DNA damage. LTC4 inhibitors, commonly used for asthma, could find broad clinical use in major human pathologies associated with ER stress-activated NOX4. Chemotherapeutic agents elicit ER and oxidative stress as part of their mode of action. Here the authors show that chemotherapy and ER stress trigger MGST2-based biosynthesis of LTC4, whose inhibition abolishes chemotherapy- and ER stress-triggered oxidative stress and DNA damage, resulting in the attenuation of cell death.
Collapse
|
23
|
Ammar M, Souissi-Bouchlaka C, Gati A, Zaraa I, Bouhaha R, Kouidhi S, Ben Ammar-Gaied A, Doss N, Mokni M, Marrakchi R. [Psoriasis: physiopathology and immunogenetics]. ACTA ACUST UNITED AC 2013; 62:10-23. [PMID: 24589075 DOI: 10.1016/j.patbio.2013.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 07/05/2013] [Indexed: 01/17/2023]
Abstract
Psoriasis is a multifactorial disease that involves genetic, immunological and environmental factors. During the last decade, several studies by genome scan on families or cases/controls helped to highlight more than ten loci "PSORS" located on different chromosomes and containing several candidate genes. Psoriasis appears as a genetic disease that follows the mixed model with the involvement of a major gene (PSORS1) and a set of minor genes with a variable penetrance depending on the locus. Genetic data have focused on the involvement of the immune system in the pathogenesis of psoriasis. It is now accepted that psoriasis is an immunological disease involving the response profiles TH1 and TH17. Much remains to be done to better elucidate the mechanisms involved in the genesis of psoriatic lesions to find new therapeutic targets.
Collapse
Affiliation(s)
- M Ammar
- Laboratoire de génétique, d'immunologie et de pathologies humaines, faculté des sciences de Tunis, université El Manar II, 2092 Tunis, Tunisie.
| | - C Souissi-Bouchlaka
- Laboratoire de génétique, d'immunologie et de pathologies humaines, faculté des sciences de Tunis, université El Manar II, 2092 Tunis, Tunisie
| | - A Gati
- Laboratoire de génétique, d'immunologie et de pathologies humaines, faculté des sciences de Tunis, université El Manar II, 2092 Tunis, Tunisie
| | - I Zaraa
- Service de dermatologie, hôpital la Rabta, 1007 Tunis, Tunisie
| | - R Bouhaha
- Laboratoire de génétique, d'immunologie et de pathologies humaines, faculté des sciences de Tunis, université El Manar II, 2092 Tunis, Tunisie
| | - S Kouidhi
- Laboratoire de génétique, d'immunologie et de pathologies humaines, faculté des sciences de Tunis, université El Manar II, 2092 Tunis, Tunisie
| | - A Ben Ammar-Gaied
- Laboratoire de génétique, d'immunologie et de pathologies humaines, faculté des sciences de Tunis, université El Manar II, 2092 Tunis, Tunisie
| | - N Doss
- Service de dermatologie, hôpital militaire de Tunis, rue Raouth Ibnou Hatem, Tunis, Tunisie
| | - M Mokni
- Service de dermatologie, hôpital la Rabta, 1007 Tunis, Tunisie
| | - R Marrakchi
- Laboratoire de génétique, d'immunologie et de pathologies humaines, faculté des sciences de Tunis, université El Manar II, 2092 Tunis, Tunisie
| |
Collapse
|
24
|
|
25
|
Uno Y, Murayama N, Kunori M, Yamazaki H. Characterization of Microsomal Glutathione S-Transferases MGST1, MGST2, and MGST3 in Cynomolgus Macaque. Drug Metab Dispos 2013; 41:1621-5. [DOI: 10.1124/dmd.113.052977] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Ahmad S, Niegowski D, Wetterholm A, Haeggström JZ, Morgenstern R, Rinaldo-Matthis A. Catalytic Characterization of Human Microsomal Glutathione S-Transferase 2: Identification of Rate-Limiting Steps. Biochemistry 2013; 52:1755-64. [DOI: 10.1021/bi3014104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shabbir Ahmad
- Department of Medical Biochemistry
and Biophysics, Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Damian Niegowski
- Department of Medical Biochemistry
and Biophysics, Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Anders Wetterholm
- Department of Medical Biochemistry
and Biophysics, Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z. Haeggström
- Department of Medical Biochemistry
and Biophysics, Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Ralf Morgenstern
- Institute
of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agnes Rinaldo-Matthis
- Department of Medical Biochemistry
and Biophysics, Chemistry II, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Di Gennaro A, Haeggström JZ. The leukotrienes: immune-modulating lipid mediators of disease. Adv Immunol 2013; 116:51-92. [PMID: 23063073 DOI: 10.1016/b978-0-12-394300-2.00002-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The leukotrienes are important lipid mediators with immune modulatory and proinflammatory properties. Classical bioactions of leukotrienes include chemotaxis, endothelial adherence, and activation of leukocytes, chemokine production, as well as contraction of smooth muscles in the microcirculation and respiratory tract. When formed in excess, these compounds play a pathogenic role in several acute and chronic inflammatory diseases, such as asthma, rheumatoid arthritis, and inflammatory bowel disease. An increasing number of diseases have been linked to inflammation implicating the leukotrienes as potential mediators. For example, recent investigations using genetic, morphological, and biochemical approaches have pointed to the involvement of leukotrienes in cardiovascular diseases including atherosclerosis, myocardial infarction, stroke, and abdominal aortic aneurysm. Moreover, new insights have changed our previous notion of leukotrienes as mediators of inflammatory reactions to molecules that can fine-tune the innate and adaptive immune response. Here, we review the most recent understanding of the leukotriene cascade with emphasis on recently identified roles in immune reactions and pathophysiology.
Collapse
Affiliation(s)
- Antonio Di Gennaro
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
28
|
Ischemic preconditioning decreased leukotriene C4 formation by depressing leukotriene C4 synthase expression and activity during hepatic I/R injury in rats. J Surg Res 2012; 178:1015-21. [DOI: 10.1016/j.jss.2012.07.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 12/11/2022]
|
29
|
Shi H, Pei L, Gu S, Zhu S, Wang Y, Zhang Y, Li B. Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects. Genomics 2012; 100:327-35. [DOI: 10.1016/j.ygeno.2012.07.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/09/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
|
30
|
Chen J, Xiao S, Deng Y, Du X, Yu Z. Cloning of a novel glutathione S-transferase 3 (GST3) gene and expressionanalysis in pearl oyster, Pinctada martensii. FISH & SHELLFISH IMMUNOLOGY 2011; 31:823-830. [PMID: 21807100 DOI: 10.1016/j.fsi.2011.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 05/26/2011] [Accepted: 07/20/2011] [Indexed: 05/31/2023]
Abstract
Microsomal glutathione S-transferase (MGST) functions in cellular defense against xenobiotics and provides protection against the action of lipid hydroperoxides produced as a consequence of oxidative stress. In this study, a full-length cDNA encoding MGST3 (referred to as PmMGST3) was identified from the pearl oyster, Pinctada martensii by a combination of expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE). The full-length cDNA of PmMGST3 is 971 bp and contains a 5' UTR of 39 bp, a 3' UTR of 491 bp with a canonical polyadenylation signal sequence (AATAAA), and an open reading frame (ORF) of 447 bp encoding a polypeptide of 146 residues. The deduced polypeptide contains a conserved motif (FNCx(1)QRx(2)H) characteristic of the MGST3 subfamily. The PmMGST3 transcript could be detected in all tissues tested, with highest transcript level seen in hepatopancreas. Cadmium treatment significantly increased PmMGST3 mRNA levels in gill and hepatopancreas, while bacterial challenge initially depressed mRNA levels and then increased its level in haemocytes, gill and hepatopancreas in a time-dependent manner. In an assay using cumene hydroperoxide as a substrate, we demonstrated that PmMGST3 possesses glutathione-dependent peroxidase activity. These results suggest that PmMGST3 plays an important role in cellular defense against oxidative stress caused by cadmium and bacteria.
Collapse
Affiliation(s)
- Jinhui Chen
- Key Laboratory of Marine Bio-resources Sustainable Utilization, CAS, Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | | | | | | | | |
Collapse
|
31
|
Luo W, Kinsey M, Schiffman JD, Lessnick SL. Glutathione s-transferases in pediatric cancer. Front Oncol 2011; 1:39. [PMID: 22655244 PMCID: PMC3356086 DOI: 10.3389/fonc.2011.00039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/03/2011] [Indexed: 12/15/2022] Open
Abstract
The glutathione S-transferases (GSTs) are a family of ubiquitously expressed polymorphic enzymes important for detoxifying endogenous and exogenous compounds. In addition to their classic activity of detoxification by conjugation of compounds with glutathione, many other functions are now found to be associated with GSTs. The associations between GST polymorphisms/functions and human disease susceptibility or treatment outcome, mostly in adults, have been extensively studied and reviewed. This mini review focuses on studies related to GST epidemiology and functions related to pediatric cancer. Opportunities to exploit GST in pediatric cancer therapy are also discussed.
Collapse
Affiliation(s)
- Wen Luo
- The Department of Oncological Sciences, University of Utah School of Medicine Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
32
|
Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 2011; 111:5821-65. [PMID: 21942677 PMCID: PMC3285496 DOI: 10.1021/cr2002992] [Citation(s) in RCA: 346] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, 5301 MSRB III, Ann Arbor, Michigan 48109-5606, USA.
| | | | | |
Collapse
|
33
|
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011; 111:5866-98. [PMID: 21936577 DOI: 10.1021/cr200246d] [Citation(s) in RCA: 609] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
34
|
Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev 2011; 43:92-137. [PMID: 21495793 DOI: 10.3109/03602532.2011.567391] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutathione transferase (GST) isoezymes are encoded by three separate families of genes (designated cytosolic, microsomal and mitochondrial transferases), with distinct evolutionary origins, that provide mammalian species with protection against electrophiles and oxidative stressors in the environment. Members of the cytosolic class Alpha, Mu, Pi and Theta GST, and also certain microsomal transferases (MGST2 and MGST3), are up-regulated by a diverse spectrum of foreign compounds typified by phenobarbital, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, pregnenolone-16α-carbonitrile, 3-methylcholanthrene, 2,3,7,8-tetrachloro-dibenzo-p-dioxin, β-naphthoflavone, butylated hydroxyanisole, ethoxyquin, oltipraz, fumaric acid, sulforaphane, coumarin, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole, 12-O-tetradecanoylphorbol-13-acetate, dexamethasone and thiazolidinediones. Collectively, these compounds induce gene expression through the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), the aryl hydrocarbon receptor (AhR), NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ) and CAATT/enhancer binding protein (C/EBP) β. The microsomal T family includes 5-lipoxygenase activating protein (FLAP), leukotriene C(4) synthase (LTC4S) and prostaglandin E(2) synthase (PGES-1), and these are up-regulated by tumour necrosis factor-α, lipopolysaccharide and transforming growth factor-β. Induction of genes encoding FLAP, LTC4S and PGES-1 is mediated by the transcription factors C/EBPα, C/EBPδ, C/EBPϵ, nuclear factor-κB and early growth response-1. In this article we have reviewed the literature describing the mechanisms by which cytosolic and microsomal GST are up-regulated by xenobiotics, drugs, cytokines and endotoxin. We discuss cross-talk between the different induction mechanisms, and have employed bioinformatics to identify cis-elements in the upstream regions of GST genes to which the various transcription factors mentioned above may be recruited.
Collapse
Affiliation(s)
- Larry G Higgins
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | |
Collapse
|
35
|
Morgenstern R, Zhang J, Johansson K. Microsomal glutathione transferase 1: mechanism and functional roles. Drug Metab Rev 2011; 43:300-6. [PMID: 21495795 DOI: 10.3109/03602532.2011.558511] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microsomal glutathione transferase 1 (MGST1) belongs to a superfamily named MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism). This family is represented in all life forms, except archae. Of the six human members, three are specialized in the synthesis of leukotrienes and prostaglandin E, whereas the others (MGST1-3) have potential roles in drug metabolism. MGST1 has a well-established role in the conjugation of electrophiles and oxidative stress protection, whereas MGST2 and 3 have been less studied. Here, we review the recent advances regarding the structure, mechanism, and functional roles of MGST1. Emerging data show that the enzyme is overexpressed in certain tumors and support a role for the enzyme in protecting cells from cytostatic drugs.
Collapse
Affiliation(s)
- Ralf Morgenstern
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
36
|
Biosynthesis of 14,15-Hepoxilins in Human L1236 Hodgkin Lymphoma Cells and Eosinophils. Lipids 2010; 46:69-79. [DOI: 10.1007/s11745-010-3485-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 09/28/2010] [Indexed: 10/18/2022]
|
37
|
Li X, Zhang X, Zhang J, Zhang X, Starkey SR, Zhu KY. Identification and characterization of eleven glutathione S-transferase genes from the aquatic midge Chironomus tentans (Diptera: Chironomidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:745-754. [PMID: 19744561 DOI: 10.1016/j.ibmb.2009.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 08/25/2009] [Accepted: 08/28/2009] [Indexed: 05/28/2023]
Abstract
Eleven cDNAs encoding glutathione S-transferases (GSTs) were sequenced and characterized in Chironomus tentans, an ecologically important aquatic midge. Phylogenetic analysis revealed seven GSTs in three different cytosolic classes including 4 in sigma (CtGSTs1, CtGSTs2, CtGSTs3, CtGSTs4), 2 in delta (CtGSTd1, CtGSTd2), and 1 in omega (CtGSTo1). The remaining four GSTs (CtGSTu1, CtGSTu2, CtGSTu3, CtGSTu4) were unclassified due to their low relatedness to currently known classes of insect GSTs. Reverse-transcription (RT)-PCR analysis of the 11 GST genes showed that CtGSTd1, CtGSTu2, CtGSTu4, CtGSTs1, CtGSTs2, CtGSTs3, CtGSTs4 and CtGSTo1 were expressed in all tissues examined, including salivary glands, hemolymph, midgut, Malpighian tubules, fatbodies and carcass, whereas CtGSTd2 and CtGSTu1 were expressed in a limited number of tissues. CtGSTs1 and CtGSTs4 appeared to be the only two genes, of which expressions can be detected in eggs, whereas all the 11 GST genes showed various expression patterns in the four larval instars. However, expressions of CtGSTd2, CtGSTu1 and CtGSTu2 were not detectable in pupal and adult stages. Real-time quantitative PCR confirmed that the herbicide alachlor increased CtGSTd1, CtGSTs2 and CtGSTs3 gene expression by 2.1-, 2.8- and 4.3-fold, respectively, when fourth-instar midges were exposed to alachlor at 1000 microg/L for 72 h. Such increased gene expressions were associated with 2.2- and 1.8-fold decreases of total GST activities in vivo when CDNB and DCNB were used as substrates, respectively. Further studies showed that 65.5 and 73.5% of GST activities were inhibited in vitro by alachlor at 100 and 1000 microg/L, respectively. Because alachlor has been known as an electrophilic substrate that can be conjugated by glutathione (GSH), rapid in vitro inhibition of GST activities by alachlor suggested that decreased GST activities were likely caused by the depletion of GSH. However, alachlor may regulate different GST genes, as found in other organisms, leading to significantly increased transcriptional levels of CtGSTd1, CtGSTs2 and CtGSTs3 in out of 11 GST genes examined in this study.
Collapse
Affiliation(s)
- Xiuwei Li
- R&D Center of Biorational Pesticides, Northwest A & F University, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
38
|
Harkey MA, Czerwinski M, Slattery J, Kiem HP. Overexpression of Glutathione-S-Transferase, MGSTII, Confers Resistance to Busulfan and Melphalan. Cancer Invest 2009. [DOI: 10.1081/cnv-46508] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Transcellular biosynthesis of cysteinyl leukotrienes in vivo during mouse peritoneal inflammation. Proc Natl Acad Sci U S A 2009; 106:8296-301. [PMID: 19416808 DOI: 10.1073/pnas.0903851106] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leukotrienes (LTs) are lipid mediators of inflammation formed by enzymatic oxidation of arachidonic acid. One intriguing aspect of LT production is transcellular biosynthesis: cells expressing 5-lipoxygenase (5LO) form LTA(4) and transfer it to cells expressing LTA(4) hydrolase (LTA(4)H) or LTC(4) synthase (LTC(4)S) to produce LTB(4) or LTC(4). This process has been demonstrated in vivo for LTB(4), but not for cysteinyl LTs (cysLTs). We examined transcellular cysLT synthesis during zymosan-induced peritonitis, using bone marrow transplants with transgenic mice deficient in key enzymes of LT synthesis and analyzing all eicosanoids by liquid chromatography/tandem mass spectrometry. WT mice time-dependently produced LTB(4) and cysLTs (LTC(4), LTD(4), and LTE(4)). 5LO(-/-) mice were incapable of producing LTs. WT bone marrow cells restored this biosynthetic ability, but 5LO(-/-) bone marrow did not rescue LT synthesis in irradiated WT mice, demonstrating that bone marrow-derived cells are the ultimate source of all LTs in this model. Total levels of 5LO-derived products were comparable in LTA(4)H(-/-) and WT mice, but were reduced in LTC(4)S(-/-) animals. No differences in prostaglandin production were observed between these transgenic or chimeric mice. Bone marrow cells from LTA(4)H(-/-) or LTC(4)S(-/-) mice injected into 5LO(-/-) mice restored the ability to synthesize LTB(4) and cysLTs, providing unequivocal evidence of efficient transcellular biosynthesis of cysLTs. These results highlight the potential relevance of transcellular exchange of LTA(4) for the synthesis of LTs mediating biological activities during inflammatory events in vivo.
Collapse
|
40
|
Artali R, Beretta G, Morazzoni P, Bombardelli E, Meneghetti F. Green tea catechins in chemoprevention of cancer: A molecular docking investigation into their interaction with glutathione S-transferase (GST P1-1). J Enzyme Inhib Med Chem 2009; 24:287-95. [DOI: 10.1080/14756360802177282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Roberto Artali
- Faculty of Pharmacy, Istituto di Chimica Farmaceutica e Tossicologica “Pietro Pratesi”, University of Milan, Via Mangiagalli, 25I-20133, Milan, Italy
| | - Giangiacomo Beretta
- Faculty of Pharmacy, Istituto di Chimica Farmaceutica e Tossicologica “Pietro Pratesi”, University of Milan, Via Mangiagalli, 25I-20133, Milan, Italy
| | | | | | - Fiorella Meneghetti
- Faculty of Pharmacy, Istituto di Chimica Farmaceutica e Tossicologica “Pietro Pratesi”, University of Milan, Via Mangiagalli, 25I-20133, Milan, Italy
| |
Collapse
|
41
|
Ma K, Zhang Y, Zhu D, Lou Y. Protective effects of asiatic acid against D-galactosamine/lipopolysaccharide-induced hepatotoxicity in hepatocytes and kupffer cells co-cultured system via redox-regulated leukotriene C4 synthase expression pathway. Eur J Pharmacol 2008; 603:98-107. [PMID: 19087874 DOI: 10.1016/j.ejphar.2008.11.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 11/05/2008] [Accepted: 11/24/2008] [Indexed: 01/01/2023]
Abstract
Asiatic acid is a triterpenoid component possessing antioxidative, anti-inflammatory and hepatoprotective activity. In this issue, we explored the protective effects of asiatic acid and the relative mechanism in the D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced hepatotoxicity in hepatocytes and kupffer cells co-cultured system. The cultures were pretreated with asiatic acid for 12 h, followed by D-GalN/LPS exposure for 12 h. Asiatic acid reduced aspartate aminotransferase and lactate dehydrogenase generation and increased cell viability in a concentration-dependent manner. Meanwhile, the effects of asiatic acid in leukotriene C(4) synthase (LTC(4)S) expression and cellular redox status including reactive oxygen species and GSH content were detected. The results showed that D-GalN/LPS induced the increase of reactive oxygen species followed by extracellular signal-regulated kinase 1/2 (ERK 1/2) and nuclear factor-kappaB (NF-kappaB) activation. Treatment with ERK 1/2 specific inhibitor 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126) abolished the ERK1/2 protein phosphorylation and blunted LTC(4)S expression. Reactive oxygen species signaling pathway inhibitor pyrrolidine dithiocarbamate (PDTC) inhibited reactive oxygen species generation and NF-kappaB activation, which in turn blocked LTC(4)S expression and attenuated the injury. Asiatic acid can protect the hepatocytes against D-GalN/LPS-induced hepatotoxicity. During which, the cell redox was ameliorated and increased expression of LTC(4)S was reversed by the pretreatment of asiatic acid. Taken together, asiatic acid can protect against D-GalN/LPS-induced hepatotoxicity partly via redox-regulated LTC(4)S expression pathway.
Collapse
Affiliation(s)
- Kuifen Ma
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
42
|
Zhu DY, Du Y, Huang X, Guo MY, Ma KF, Yu YP, Lou YJ. MAPEG Expression in Mouse Embryonic Stem Cell-Derived Hepatic Tissue System. Stem Cells Dev 2008; 17:775-83. [DOI: 10.1089/scd.2007.0241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dan-Yan Zhu
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Yue Du
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Xin Huang
- Cancer Institute, College of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | - Mei-Yuan Guo
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Kui-Fen Ma
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Yong-Ping Yu
- Institute of Material Medica, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Jia Lou
- Institute of Pharmacology-Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
High-level expression, purification, and crystallization of recombinant rat leukotriene C4 synthase from the yeast Pichia pastoris. Protein Expr Purif 2008; 60:1-6. [DOI: 10.1016/j.pep.2008.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 02/19/2008] [Accepted: 03/05/2008] [Indexed: 11/21/2022]
|
44
|
Ma KF, Yang HY, Chen Z, Qi LY, Zhu DY, Lou YJ. Enhanced expressions and activations of leukotriene C4 synthesis enzymes in D-galactosamine/lipopolysaccharide-induced rat fulminant hepatic failure model. World J Gastroenterol 2008; 14:2748-56. [PMID: 18461660 PMCID: PMC2709038 DOI: 10.3748/wjg.14.2748] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and activity of leukotriene C4 (LTC4) synthesis enzymes and their underlying relationship with cysteinyl leukotriene (cys-LT) generation in a rat fulminant hepatic failure (FHF) model induced by D-galactosamine/lipopolysaccharide (D-GalN/ LPS).
METHODS: Rats were treated with D-GalN (300 mg/kg) plus LPS (0.1 mg/kg) for 1, 3, 6, and 12 h. Enzyme immunoassay was used to determine the hepatic cys-LT content. Reverse transcription-polymerase chain reaction (RT-PCR), Western blot or immunohistochemical assay were employed to assess the expression or location of LTC4 synthesis enzymes, which belong to membrane associated proteins in eicosanoid and glutathione (MAPEG) metabolism superfamily. Activity of LTC4 synthesis enzymes was evaluated by determination of the products of LTA4 after incubation with liver microsomes using high performance liquid chromatography (HPLC).
RESULTS: Livers were injured after treatment with D-GalN/LPS, accompanied by cys-LT accumulation at the prophase of liver injury. Both LTC4 synthase (LTC4S) and microsomal glutathione-S-transferase (mGST) 2 were expressed in the rat liver, while the latter was specifically located in hepatocytes. Their mRNA and protein expressions were up-regulated at an earlier phase after treatment with D-GalN/LPS. Meantime, a higher activity of LTC4 synthesis enzymes was detected, although the activity of LTC4S played the main role in this case.
CONCLUSION: The expression and activity of both LTC4S and mGST2 are up regulated in a rat FHF model, which are, at least, partly responsible for cys-LT hepatic accumulation.
Collapse
|
45
|
Farias SE, Zarini S, Precht T, Murphy RC, Heidenreich KA. Transcellular biosynthesis of cysteinyl leukotrienes in rat neuronal and glial cells. J Neurochem 2007; 103:1310-8. [PMID: 17711426 DOI: 10.1111/j.1471-4159.2007.04830.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leukotrienes are mediators of inflammation that belong to a family of lipids derived from arachidonic acid by the action of 5-lipoxygenase. Leukotrienes have been detected in the central nervous system in association with different pathological events, but little is known about their biosynthesis or function in the brain. When rat neurons and glial cells in primary culture were stimulated with the calcium ionophore, no significant biosynthesis of leukotrienes was detected using liquid chromatography/mass spectrometry (LC/MS) techniques. However, when exogenous LTA(4) was added to these cultured cells, both neurons and glia were able to synthesize LTC(4). Activated neutrophils are known to supply LTA(4) to other cells for transcellular biosynthesis of cysteinyl-leukotrienes. Since neutrophils can infiltrate brain tissue after stroke or traumatic brain injury, we examined whether neutrophils play a similar role in the central nervous system. When peripheral blood neutrophils were co-cultured with rat neurons, glia cells, and then stimulated with calcium ionophore, a robust production of LTC(4), LTD(4), and LTE(4) was observed, revealing that neurons and glia can participate in the transcellular mechanism of leukotriene biosynthesis. The formation of LTC(4) through this mechanism may be relevant in the genesis and progression of the inflammatory response as a result of brain injury.
Collapse
Affiliation(s)
- Santiago E Farias
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado, and the Denver VA Medical Center, Denver, Colorado, USA
| | | | | | | | | |
Collapse
|
46
|
Lumjuan N, Stevenson BJ, Prapanthadara LA, Somboon P, Brophy PM, Loftus BJ, Severson DW, Ranson H. The Aedes aegypti glutathione transferase family. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:1026-35. [PMID: 17785190 DOI: 10.1016/j.ibmb.2007.05.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 05/17/2007] [Accepted: 05/23/2007] [Indexed: 05/17/2023]
Abstract
In this report, we describe the glutathione transferase (GST) gene family in the dengue vector Aedes aegypti and suggest a novel role for a new class of mosquito GSTs. Twenty-six GST genes are present in Ae. aegypti, two of which are alternatively spliced to give a total of 29 transcripts for cytosolic GSTs. The six classes identified in other insect species are all represented and, as in Anopheles gambiae, the majority of the mosquito GSTs belong to the insect-specific Delta and Epsilon classes with eight members each. Sixteen secure 1:1 orthologs were identified between GSTs in Ae. aegypti and An. gambiae, but only four of these have recognisable orthologs in Drosophila melanogaster. Three mosquito-specific GSTs were identified which did not belong to any previously recognised GST classes. One of these, GSTx2, has been previously implicated in conferring 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT) resistance in Ae. aegypti from South America. However, we found no evidence for increased levels of this GST protein in DDT/pyrethroid-resistant populations from Thailand. Furthermore, we show that the recombinant GSTX2-2 protein is unable to metabolise DDT. Interestingly, GSTX2-2 showed an affinity for hematin, and this, together with the restricted distribution of this class to haematophagous insects, may indicate a role for these enzymes in protecting mosquitoes against heme toxicity during blood feeding.
Collapse
Affiliation(s)
- Nongkran Lumjuan
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Palace, Liverpool L3 5QA, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ago H, Kanaoka Y, Irikura D, Lam BK, Shimamura T, Austen KF, Miyano M. Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis. Nature 2007; 448:609-12. [PMID: 17632548 DOI: 10.1038/nature05936] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 05/17/2007] [Indexed: 11/09/2022]
Abstract
The cysteinyl leukotrienes, namely leukotriene (LT)C4 and its metabolites LTD4 and LTE4, the components of slow-reacting substance of anaphylaxis, are lipid mediators of smooth muscle constriction and inflammation, particularly implicated in bronchial asthma. LTC4 synthase (LTC4S), the pivotal enzyme for the biosynthesis of LTC4 (ref. 10), is an 18-kDa integral nuclear membrane protein that belongs to a superfamily of membrane-associated proteins in eicosanoid and glutathione metabolism that includes 5-lipoxygenase-activating protein, microsomal glutathione S-transferases (MGSTs), and microsomal prostaglandin E synthase 1 (ref. 13). LTC4S conjugates glutathione to LTA4, the endogenous substrate derived from arachidonic acid through the 5-lipoxygenase pathway. In contrast with MGST2 and MGST3 (refs 15, 16), LTC4S does not conjugate glutathione to xenobiotics. Here we show the atomic structure of human LTC4S in a complex with glutathione at 3.3 A resolution by X-ray crystallography and provide insights into the high substrate specificity for glutathione and LTA4 that distinguishes LTC4S from other MGSTs. The LTC4S monomer has four transmembrane alpha-helices and forms a threefold symmetric trimer as a unit with functional domains across each interface. Glutathione resides in a U-shaped conformation within an interface between adjacent monomers, and this binding is stabilized by a loop structure at the top of the interface. LTA4 would fit into the interface so that Arg 104 of one monomer activates glutathione to provide the thiolate anion that attacks C6 of LTA4 to form a thioether bond, and Arg 31 in the neighbouring monomer donates a proton to form a hydroxyl group at C5, resulting in 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic acid (LTC4). These findings provide a structural basis for the development of LTC4S inhibitors for a proinflammatory pathway mediated by three cysteinyl leukotriene ligands whose stability and potency are different and by multiple cysteinyl leukotriene receptors whose functions may be non-redundant.
Collapse
Affiliation(s)
- Hideo Ago
- Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Yang SL, Chen LJ, Kong Y, Xu D, Lou YJ. Sodium nitroprusside regulates mRNA expressions of LTC4 synthesis enzymes in hepatic ischemia/reperfusion injury rats via NF-kappaB signaling pathway. Pharmacology 2007; 80:11-20. [PMID: 17496435 DOI: 10.1159/000102595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 11/02/2006] [Indexed: 12/11/2022]
Abstract
Leukotriene (LT) C4 (LTC4) synthesis enzymes including LTC4 synthase (LTC4S), microsomal glutathione S-transferase (MGST) 2 and MGST3 can all conjugate LTA4 and reduced glutathione (GSH) to form LTC4, which is related to hepatic ischemia/reperfusion (I/R) injury. The relationship between nitric oxide (NO) and cysteinyl LTs has been shown in previous studies. However, the mechanisms of NO action on gene expression of LTC4 synthesis enzymes are still largely unclear during hepatic I/R. Adult male Sprague-Dawley rats were divided into 5 groups: a sham group (control), an I/R group, and sodium nitroprusside (SNP, 2.5, 5 and 10 microg/kg/min)+I/R groups. Livers were subjected to 60 min of partial hepatic ischemia followed by 5 h of reperfusion, saline or SNP (2.5, 5 and 10 microg/kg/min) administered intravenously. The mRNA levels of LTC4 synthesis enzymes, inducible NO synthase (iNOS) and endothelial No synthase (eNOS) in rat liver tissue were examined by RT-PCR; the protein expressions of NF-kappaB p65, p50 and IkappaBalpha in liver cell lysates and nuclear extracts were detected by Western blot analysis, and serum NO2. levels were also evaluated. Serum NO2. levels, the protein expressions of NF-kappaB p65 and p50 in the nucleus extract, and hepatic mRNA expressions of LTC4S and iNOS were decreased while hepatic mRNA of eNOS was increased in the SNP (5 and 10 microg/kg/min)+I/R groups when compared with those in the I/R group. SNP (2.5 microg/kg/min) promoted the mRNA expressions of both MGST2 and MGST3, whereas SNP (10 microg/kg/min) increased MGST2 mRNA but decreased MGST3 mRNA compared to those in I/R group. Compared with control, the mRNA expression of MGST2 and MGST3 were elevated in SNP (2.5 microg/kg/min)+I/R group, MGST3 mRNA was significantly declined in the SNP (5 and 10 microg/kg/min)+I/R groups. Immunohistochemistry staining revealed that I/R liver exhibited strong cytoplasmic and nuclear staining for NF-kappaB p65, but the livers of the SNP (2.5 microg/kg/min)+I/R group presented slight cytoplasmic and nuclear staining. But IkappaBalpha protein in all groups remains unchanged. It was concluded that SNP downregulated LTC4S mRNA expression by inhibiting NF-kappaB activation independent of IkappaBalpha, but appeared to have a dual influence on the mRNA expressions of MGST2 and MGST3 by other signaling pathways during hepatic I/R injury.
Collapse
Affiliation(s)
- Shu-Long Yang
- Institute of Pharmacology and Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
49
|
Yang SL, Huang X, Chen HF, Xu D, Chen LJ, Kong Y, Lou YJ. Increased leukotriene c4 synthesis accompanied enhanced leukotriene c4 synthase expression and activities of ischemia-reperfusion-injured liver in rats. J Surg Res 2007; 140:36-44. [PMID: 17397868 DOI: 10.1016/j.jss.2006.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 10/06/2006] [Accepted: 11/06/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is an important clinical issue and relates to cysteinyl leukotrienes (LTs), the first committed synthesis step of which is that LTC4 synthesis enzymes including leukotriene C4 synthase (LTC4S), microsomal glutathione-S-transferase (mGST)2, and mGST3-catalyzed LTA4 and reduced glutathione (GSH), to generate LTC4. However, the mechanisms of LTC4 generation during hepatic I/R are far from being elucidated. MATERIALS AND METHODS Adult male Sprague Dawley rats were divided into two groups: sham group (control) and I/R group. Liver was subjected to 60 min of partial hepatic ischemia followed by 5 h of reperfusion; saline was administered intravenously. LTC4 content, the activities, and expressions of LTC4 synthesis enzymes were examined with reversed phase high-performance liquid chromatography, reverse transcriptase-polymerase chain reaction, immunoblot, and immunohistochemistry, respectively. Liver damage was assessed by serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) measurements and histological observation. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in liver tissue were used to evaluate lipid peroxidation, and oxidative stress was estimated by the reduced GSH level in liver tissue in the pathological process. RESULTS Compared with control, LTC4 content, the LTC4 synthesis enzymes' activities, and the mRNA and protein expressions of LTC4S were significantly increased, while the mRNA expressions of mGST2 and mGST3 were declined obviously in rat liver during I/R (P < 0.05); most hepatocytes and sinusoidal endothelial cells expressed intensively LTC4S in an I/R-sensitive manner. This was accompanied by the increase in serum ALT and AST levels together with liver tissue MDA content (P < 0.05), the decrease in liver tissue GSH level, and SOD activity (P < 0.05), as well as histological damage. There were no differences in the protein expression of mGST3 between control and I/R groups. CONCLUSIONS These results demonstrated that hepatic I/R injury up-regulated the mRNA and protein expressions of LTC4S in hepatocytes and sinusoidal endothelial cells and enhanced the activities of the LTC4 synthesis enzymes. It suggests that LTC4 accumulation after hepatic I/R can be caused partially by LTC4S expression up-regulation and the LTC4 synthesis enzymes' activities augment to which LTC4S rather than mGST2 or mGST3 may mainly contribute.
Collapse
Affiliation(s)
- Shu-Long Yang
- Institute of Pharmacology--Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Yan KL, Huang W, Zhang XJ, Yang S, Chen YM, Xiao FL, Fan X, Gao M, Cui Y, Zhang GL, Sun LD, Wang PG, Chen JJ, Li W, Chen ZH, Wang ZM, Wang DZ, Zhang KY, Liu JJ. Follow-Up Analysis of PSORS9 in 151 Chinese Families Confirmed the Linkage to 4q31–32 and Refined the Evidence to the Families of Early-Onset Psoriasis. J Invest Dermatol 2007; 127:312-8. [PMID: 17139270 DOI: 10.1038/sj.jid.5700506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Psoriasis linkage to 4q28-32 (PSORS9) was initially identified by our genome-wide scan in 61 Chinese families and subsequently supported by a meta-analysis of five genome-wide linkage scans of European populations. In this study, we performed a follow-up analysis of PSORS9 using an additional 90 families and improved marker coverage. Joint analysis of all 151 families obtained significant linkage evidence (HLOD=4.53, nonparametric linkage (NPL)=4.03 (P=0.000003)) at the marker interval D4S2997-D4S3033, and the same was obtained for the analysis of the independent new families (HLOD=4.33, NPL=3.15 (P=0.00004)). The linkage evidences from the whole families and the new families exceeded the genome-wide criteria for significant linkage. Furthermore, by performing an ordered subset analysis using mean age at onset as a covariate, we demonstrated that evidence for linkage to PSORS9 is concentrated in the early-onset families and suggested that further study of PSORS9 should focus on early-onset patients. This finding is contradictory to what was found in the Icelandic population and, together with other linkage results, suggests that Chinese and European populations are genetically different for linkage to PSORS9, which may partially explain the influence of ethnic factors on the varying prevalence of psoriasis.
Collapse
Affiliation(s)
- Kai-Lin Yan
- Institute of Dermatology & Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|