1
|
Maurya P, Rawat RS, Gupta S, Krishna S, Siddiqi MI, Sashidhara KV, Banerjee D. Synergy between human DNA ligase I and topoisomerase 1 unveils new therapeutic strategy for the management of colorectal cancer. J Biomol Struct Dyn 2025; 43:3390-3405. [PMID: 38179981 DOI: 10.1080/07391102.2023.2297817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
DNA topoisomerase 1 (Topo 1) is a pivotal player in various DNA processes, including replication, repair, and transcription. It serves as a target for anticancer drugs like camptothecin and its derivatives (Topotecan and SN-38/Irinotecan). However, the emergence of drug resistance and the associated adverse effects, such as alopecia, anemia, dyspnea, fever, chills, and painful or difficult urination, pose significant challenges in Topo 1-targeted therapy, necessitating urgent attention. Human DNA Ligase 1 (hLig I), recognized primarily for its role in DNA replication and repair of DNA breaks, intriguingly exhibits a DNA relaxation activity akin to Topo 1. This raised the hypothesis that hLig I might compensate for Topo 1 inhibition, contributing to resistance against Topo 1 inhibitors. To explore this hypothesis, we assessed the efficacy of hLig I inhibition alone and in combination with Topo 1 in cancer cells. As anticipated, the overexpression of hLig I was observed after Topo 1 inhibition in colorectal cancer cells, affirming our hypothesis. Previously identified as an inhibitor of hLig I's DNA relaxation activity, compound 27 (C 27), when combined with Topotecan, demonstrated a synergistic antiproliferative effect on colorectal cancer cells. Notably, cells with downregulated hLig I (via siRNA, inhibitors, or genetic manipulation) exhibited significantly heightened sensitivity to Topotecan. This observation strongly supports the concept that hLig I contribute to resistance against clinically relevant Topo 1 inhibitors in colorectal cancers. In conclusion, our findings offer evidence for the synergistic impact of combining hLig I inhibitors with Topotecan in the treatment of colorectal cancers, providing a promising strategy to overcome resistance to Topo 1 inhibitors.
Collapse
Affiliation(s)
- Pooja Maurya
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Rohit Singh Rawat
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sampa Gupta
- Jawaharlal Nehru University, New Delhi, India
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shagun Krishna
- Jawaharlal Nehru University, New Delhi, India
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Dibyendu Banerjee
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
2
|
Sharma V, Arora A, Bansal S, Semwal A, Sharma M, Aggarwal A. Role of bio-flavonols and their derivatives in improving mitochondrial dysfunctions associated with pancreatic tumorigenesis. Cell Biochem Funct 2024; 42:e3920. [PMID: 38269510 DOI: 10.1002/cbf.3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria, a cellular metabolic center, efficiently fulfill cellular energy needs and regulate crucial metabolic processes, including cellular proliferation, differentiation, apoptosis, and generation of reactive oxygen species. Alteration in the mitochondrial functions leads to metabolic imbalances and altered extracellular matrix dynamics in the host, utilized by solid tumors like pancreatic cancer (PC) to get energy benefits for fast-growing cancer cells. PC is highly heterogeneous and remains unidentified for a longer time because of its complex pathophysiology, retroperitoneal position, and lack of efficient diagnostic approaches, which is the foremost reason for accounting for the seventh leading cause of cancer-related deaths worldwide. PC cells often respond poorly to current therapeutics because of dense stromal barriers in the pancreatic tumor microenvironment, which limit the drug delivery and distribution of antitumor immune cell populations. As an alternative approach, various natural compounds like flavonoids are reported to possess potent antioxidant and anticancerous properties and are less toxic than current chemotherapeutic drugs. Therefore, we aim to summarize the current state of knowledge regarding the pharmacological properties of flavonols in PC in this review from the perspective of mitigating mitochondrial dysfunctions associated with cancer cells. Our literature survey indicates that flavonols efficiently regulate cellular metabolism by scavenging reactive oxygen species, mitigating inflammation, and arresting the cell cycle to promote apoptosis in tumor cells via intrinsic mitochondrial pathways. In particular, flavonols proficiently inhibit the cancer-associated proliferation and inflammatory pathways such as EGFR/MAPK, PI3K/Akt, and nuclear factor κB in PC. Overall, this review provides in-depth evidence about the therapeutic potential of flavonols for future anticancer strategies against PC; still, more multidisciplinary human interventional studies are required to dissect their pharmacological effect accurately.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Arora
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sakshi Bansal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Semwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mayank Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
3
|
Kumari K, Kumar A, Manjur AT, Rakshit S. Bioactives Promiscuity of Mucin: Insight from Multi-Spectroscopic, Thermodynamic, and Molecular Dynamic Simulation Analyses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4589-4600. [PMID: 36917549 DOI: 10.1021/acs.langmuir.2c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mucosal drug delivery plays an increasing role in the clinical setting owing to mucin's advantageous biochemical and pharmacological properties. However, how this transport system recognizes different substrates remains unclear. In this study, we explore the mechanism of bioactive (quercetin and berberine) promiscuity of mucin using various spectroscopic techniques and molecular dynamics simulations. The UV-visible spectroscopy results and the decreased fluorescence intensity of mucin in the presence of the bioactive compounds via a static quenching mechanism confirmed ground-state complex formation between the bioactives and mucin. The binding constants (Kb) were evaluated at different temperatures to afford Kb values of ∼104 Lmol-1, demonstrating the moderate and reasonable affinity of the bioactives for mucin, yielding greater diffusion into the tissues. Thermodynamic analysis and molecular dynamics (MD) simulations demonstrate that mucin-bioactive complex formation occurs primarily because of electrostatic/ionic interactions, while hydrophobic interactions were also crucial in stabilizing the complex. Far-UV circular dichroism spectroscopy showed that bioactive binding induced secondary structural changes in mucin. Sitemap and MD simulation indicated the principal binding site of mucin for the bioactives. This study also provides insight into the bioactives promiscuity of mucin in the presence of a crowded environment, which is relevant to the biological activity of mucin in vivo. An in vitro drug release study revealed that crowding assisted drug release in an enhanced burst manner compared with that in a dilute buffer system. This work thus provides fresh insight into drug absorption and distribution in the native cellular environment and helps direct new drug design and use in pharmaceutical and pharmacological fields.
Collapse
Affiliation(s)
- Komal Kumari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, MAHE, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Ahamad Tamanna Manjur
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Surajit Rakshit
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
4
|
Halevas E, Matsia S, Hatzidimitriou A, Geromichalou E, Papadopoulos T, Katsipis G, Pantazaki A, Litsardakis G, Salifoglou A. A unique ternary Ce(III)-quercetin-phenanthroline assembly with antioxidant and anti-inflammatory properties. J Inorg Biochem 2022; 235:111947. [DOI: 10.1016/j.jinorgbio.2022.111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
|
5
|
Abstract
![]()
Sirtuin 6 (SIRT6)
is an NAD+-dependent protein deacylase
and mono-ADP-ribosyltransferase of the sirtuin family with a wide
substrate specificity. In vitro and in vivo studies have indicated that SIRT6 overexpression or activation has
beneficial effects for cellular processes such as DNA repair, metabolic
regulation, and aging. On the other hand, SIRT6 has contrasting roles
in cancer, acting either as a tumor suppressor or promoter in a context-specific
manner. Given its central role in cellular homeostasis, SIRT6 has
emerged as a promising target for the development of small-molecule
activators and inhibitors possessing a therapeutic potential in diseases
ranging from cancer to age-related disorders. Moreover, specific modulators
allow the molecular details of SIRT6 activity to be scrutinized and
further validate the enzyme as a pharmacological target. In this Perspective,
we summarize the current knowledge about SIRT6 pharmacology and medicinal
chemistry and describe the features of the activators and inhibitors
identified so far.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, P.le A Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, P.le A Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Reviews on mechanisms of in vitro antioxidant, antibacterial and anticancer activities of water-soluble plant polysaccharides. Int J Biol Macromol 2021; 183:2262-2271. [PMID: 34062158 DOI: 10.1016/j.ijbiomac.2021.05.181] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
Degenerative diseases such as cancer and cardiovascular diseases, and antimicrobial resistance are becoming prominent health problems needing utmost public health attention. Curative interventions such as the use of pharmaceutical drugs and alternative plant medicines are increasingly being explored. Plant polysaccharides have gained attention for their promising bioactivities such as antioxidant, antimicrobial and anticancer activities. Bioactive plant polysaccharides are also being preferred for their relatively few side effects compared to conventional pharmaceuticals. The elucidation of the bioactive potential of plant polysaccharides in disease treatment entails an understanding of the factors that determine their biofunctional properties using functional and mechanistic assays. This review summarizes the literature on the composition, structural, functional, and mechanistic determinations of the antioxidant, anticancer and antimicrobial activities of plant polysaccharides. The outcome of this review highlights the leading trends in the elucidation of the antioxidant, anticancer and antimicrobial activities of plant polysaccharides and underscores the promising health benefits of plant polysaccharides.
Collapse
|
7
|
Zhao Z, Wu X, He F, Xiang C, Feng X, Bai X, Liu X, Zhao J, Takeda S, Qing Y. Critical roles of Rad54 in tolerance to apigenin-induced Top1-mediated DNA damage. Exp Ther Med 2021; 21:505. [PMID: 33791014 DOI: 10.3892/etm.2021.9936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/07/2020] [Indexed: 02/05/2023] Open
Abstract
Apigenin (APG), a flavone sub-class of flavonoids, possesses a diverse range of biological activities, including anti-cancer and anti-inflammatory effects. Previous studies identified the genotoxicity of APG in certain cancer cells, which may be associated with its anticancer effect. However, the DNA damage repair mechanism induced by APG has remained elusive. In order to clarify the molecular mechanisms, the present study determined the toxicity of APG to the wild-type (WT) DT40 chicken B-lymphocyte cell line, as well as to DT40 cells with deletions in various DNA repair genes, and their sensitivities were compared. It was demonstrated that cells deficient of Rad54, a critical homologous recombination gene, were particularly sensitive to APG. Cell-cycle analysis demonstrated that APG caused an increase in the G2/M-phase population of Rad54- / - cells that was greater than that in WT cells. Furthermore, it was demonstrated by immunofluorescence assay that Rad54- / - cells exhibited significantly increased numbers of γ-phosphorylated H2AX variant histone foci and chromosomal aberrations compared to the WT cells in response to APG. Of note, the in vitro complex of enzyme assay indicated that APG induced increased topoisomerase I (Top1) covalent protein DNA complex in Rad54- / - cells compared to WT cells. Finally, these results were verified using the TK6 human lymphoblastoid cell line and it was demonstrated that, as for DT40 cells, Rad54 deficiency sensitized TK6 cells to APG. The present study demonstrated that Rad54 was involved in the repair of APG-induced DNA damage, which was associated with Top1 inhibition.
Collapse
Affiliation(s)
- Zilu Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaohua Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fang He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Cuifang Xiang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoyu Feng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin Bai
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jingxia Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yong Qing
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
8
|
Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders. Food Chem Toxicol 2020; 145:111708. [PMID: 32866514 DOI: 10.1016/j.fct.2020.111708] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Acacetin is a di-hydroxy and mono-methoxy flavone present in various plants, including black locust, Damiana, Silver birch. Literature information revealed that acacetin exhibits an array of pharmacological potential including chemopreventive and cytotoxic properties in cancer cell lines, prevents ischemia/reperfusion/myocardial infarction-induced cardiac injury, lipopolysaccharide (LPS), 1-methyl-4-phenyl pyridinium ion (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced neuroinflammation, LPS and sepsis-induced lung injury, rheumatoid and collagen-induced arthritis, inhibit the microbial growth, obesity, viral-mediated infections as well as hepatic protection. PURPOSE This review highlights the therapeutic potential of acacetin, with updated and comprehensive information on the biological sources, chemistry, and pharmacological properties along with the possible mechanism of action, safety aspects, and future research opportunities. STUDY DESIGN The information was retrieved from various search engines, including Pubmed, SciFinder, Science direct, Inxight:drugs, Google scholar, and Meta cyc. RESULT The first section of this review focuses on the detailed biological source of acacetin, chromatographic techniques used for isolation, chemical characteristics, the method for the synthesis of acacetin, and the available natural and synthetic derivatives. Subsequently, the pharmacological activities, including anti-cancer, anti-inflammatory, anti-viral, anti-microbial, anti-obesity, have been discussed. The pharmacokinetics data and toxicity profile of acacetin are also discussed. CONCLUSION Acacetin is a potent molecule reported for its strong anti-inflammatory and anti-cancer activity, however further scientific evidence is essential to validate its potency in disease models associated with inflammation and cancer. There is limited information available for toxicity profiling of acacetin; therefore, further studies would aid in establishing this natural flavone as a potent candidate for research studies at clinical setup.
Collapse
|
9
|
Sett R, Paul BK, Guchhait N. Suppression of ESIPT Phenomenon of Flavonoids on Binding Interaction with Double Stranded RNA. ChemistrySelect 2020. [DOI: 10.1002/slct.202000402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Riya Sett
- Department of ChemistryUniversity of Calcutta 92 A. P. C. Road Kolkata 700009 India
| | - Bijan K. Paul
- Department of Chemistry Mahadevananda Mahavidyalaya Barrackpore Kolkata 700120 India
| | - Nikhil Guchhait
- Department of ChemistryUniversity of Calcutta 92 A. P. C. Road Kolkata 700009 India
| |
Collapse
|
10
|
Ibric A, Battisti V, Deckardt S, Haller AV, Lee C, Prötsch C, Langer T, Heffeter P, Schueffl HH, Marian B, Haider N. A-ring and E-ring modifications of the cytotoxic alkaloid Luotonin A: Synthesis, computational and biological studies. Bioorg Med Chem 2020; 28:115443. [PMID: 32201190 DOI: 10.1016/j.bmc.2020.115443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 11/15/2022]
Abstract
A series of new Luotonin A derivatives with substituents at rings A and E was synthesized, together with some E-ring-unsubstituted derivatives. Subsequently, the compound library was examined in silico for their binding into a previously proposed site in the DNA/topoisomerase I binary complex. Whereas no convincing correlation between docking scores and biological data from in vitro assays could be found, one novel 4,9-diamino Luotonin A derivative had strong antiproliferative activity based on massive G2/M phase arrest. As this biological activity clearly differs from the reference compound Camptothecin, this strongly indicates that at least some Luotonin A derivatives may be potent antiproliferative agents, however with a different mode of action.
Collapse
Affiliation(s)
- Amra Ibric
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Verena Battisti
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Sophie Deckardt
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Anna Veronika Haller
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Calvin Lee
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Corinna Prötsch
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Hemma Henrike Schueffl
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Brigitte Marian
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Norbert Haider
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria.
| |
Collapse
|
11
|
Fungal Seed Pathogens of Wild Chili Peppers Possess Multiple Mechanisms To Tolerate Capsaicinoids. Appl Environ Microbiol 2020; 86:AEM.01697-19. [PMID: 31732572 DOI: 10.1128/aem.01697-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/16/2019] [Indexed: 11/20/2022] Open
Abstract
The wild chili pepper Capsicum chacoense produces the spicy defense compounds known as capsaicinoids, including capsaicin and dihydrocapsaicin, which are antagonistic to the growth of fungal pathogens. Compared to other microbes, fungi isolated from infected seeds of C. chacoense possess much higher levels of tolerance of these spicy compounds, having their growth slowed but not entirely inhibited. Previous research has shown capsaicinoids inhibit microbes by disrupting ATP production by binding NADH dehydrogenase in the electron transport chain (ETC) and, thus, throttling oxidative phosphorylation (OXPHOS). Capsaicinoids may also disrupt cell membranes. Here, we investigate capsaicinoid tolerance in fungal seed pathogens isolated from C. chacoense We selected 16 fungal isolates from four ascomycete genera (Alternaria, Colletotrichum, Fusarium, and Phomopsis). Using relative growth rate as a readout for tolerance, fungi were challenged with ETC inhibitors to infer whether fungi possess alternative respiratory enzymes and whether effects on the ETC fully explained inhibition by capsaicinoids. In all isolates, we found evidence for at least one alternative NADH dehydrogenase. In many isolates, we also found evidence for an alternative oxidase. These data suggest that wild-plant pathogens may be a rich source of alternative respiratory enzymes. We further demonstrate that these fungal isolates are capable of the breakdown of capsaicinoids. Finally, we determine that the OXPHOS theory may describe a weak primary mechanism by which dihydrocapsaicin, but not capsaicin, slows fungal growth. Our findings suggest that capsaicinoids likely disrupt membranes, in addition to energy poisoning, with implications for microbiology and human health.IMPORTANCE Plants make chemical compounds to protect themselves. For example, chili peppers produce the spicy compound capsaicin to inhibit pathogen damage and animal feeding. In humans, capsaicin binds to a membrane channel protein, creating the sensation of heat, while in microbes, capsaicin limits energy production by binding respiratory enzymes. However, some data suggest that capsaicin also disrupts membranes. Here, we studied fungal pathogens (Alternaria, Colletotrichum, Fusarium, and Phomopsis) isolated from a wild chili pepper, Capsicum chacoense By measuring growth rates in the presence of antibiotics with known respiratory targets, we inferred that wild-plant pathogens might be rich in alternative respiratory enzymes. A zone of clearance around the colonies, as well as liquid chromatography-mass spectrometry data, further indicated that these fungi can break down capsaicin. Finally, the total inhibitory effect of capsaicin was not fully explained by its effect on respiratory enzymes. Our findings lend credence to studies proposing that capsaicin may disrupt cell membranes, with implications for microbiology, as well as human health.
Collapse
|
12
|
Cytotoxic Properties of Damiana ( Turnera diffusa) Extracts and Constituents and A Validated Quantitative UHPLC-DAD Assay. Molecules 2019; 24:molecules24050855. [PMID: 30823394 PMCID: PMC6429218 DOI: 10.3390/molecules24050855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
In our continuing search for new cytotoxic agents, we assayed extracts, fractions, and pure compounds from damiana (Turnera diffusa) against multiple myeloma (NCI-H929, U266, and MM1S) cell lines. After a first liquid-liquid solvent extraction, the ethyl acetate layer of an acetone (70%) crude extract was identified as the most active fraction. Further separation of the active fraction led to the isolation of naringenin (1), three apigenin coumaroyl glucosides 2–4, and five flavone aglycones 5–9. Naringenin (1) and apigenin 7-O-(4″-O-p-E-coumaroyl)-glucoside (4) showed significant cytotoxic effects against the tested myeloma cell lines. Additionally, we established a validated ultra-high performance liquid chromatography diode array detector (UHPLC-DAD) method for the quantification of the isolated components in the herb and in traditional preparations of T. diffusa.
Collapse
|
13
|
Kirsanov KI, Vlasova OA, Fetisov TI, Zenkov RG, Lesovaya EA, Belitsky GA, Gurova K, Yakubovskaya MG. Influence of DNA-binding compounds with cancer preventive activity on the mechanisms of gene expression regulation. ADVANCES IN MOLECULAR ONCOLOGY 2019. [DOI: 10.17650/2313-805x-2018-5-4-41-63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- K. I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - O. A. Vlasova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - T. I. Fetisov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - R. G. Zenkov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - E. A. Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; I.P. Pavlov Ryazan State Medical University
| | - G. A. Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | | | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| |
Collapse
|
14
|
Phosphorylated flavonoids as selective carboxylesterase inhibitors. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Mizutani A, Tanaka M. Direct and quantitative electrophoretic detection of covalently closed DNA circles formed by in vitro ligation. Anal Biochem 2018; 553:54-56. [PMID: 29856979 DOI: 10.1016/j.ab.2018.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/27/2018] [Indexed: 11/24/2022]
Abstract
The typical products of enzymatic circularization of DNA, using DNA ligase or recombinase, are covalently closed and mostly relaxed DNA circles. Because they are difficult to analyze on conventional gels, they are often converted to nicked circles prior to electrophoresis. Herein, we present a sensitive and quantitative procedure for directly analyzing ligated closed circle DNA on agarose gels without additional treatments. Specifically, inclusion of GelStar dye in the gel allowed detection of ligated closed circle DNAs, which were likely super-twisted by being intercalated by GelStar, as discrete bands with good separation from linear DNA of the same sizes.
Collapse
Affiliation(s)
- Akiko Mizutani
- Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, Japan
| | - Masafumi Tanaka
- Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| |
Collapse
|
16
|
Castelli S, Gonçalves MB, Katkar P, Stuchi GC, Couto RAA, Petrilli HM, da Costa Ferreira AM. Comparative studies of oxindolimine-metal complexes as inhibitors of human DNA topoisomerase IB. J Inorg Biochem 2018; 186:85-94. [PMID: 29860208 DOI: 10.1016/j.jinorgbio.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Silvia Castelli
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Marcos Brown Gonçalves
- Departamento de Física, Universidade Tecnológica Federal do Paraná, 80230-901 Curitiba, PR, Brazil
| | - Prafulla Katkar
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Gabriela Cristina Stuchi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Ricardo Alexandre Alves Couto
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Helena Maria Petrilli
- Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Pandith SA, Dar RA, Lattoo SK, Shah MA, Reshi ZA. Rheum australe, an endangered high-value medicinal herb of North Western Himalayas: a review of its botany, ethnomedical uses, phytochemistry and pharmacology. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:573-609. [PMID: 32214920 PMCID: PMC7088705 DOI: 10.1007/s11101-018-9551-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/25/2018] [Indexed: 05/05/2023]
Abstract
Rheum australe (Himalayan Rhubarb) is a multipurpose, endemic and endangered medicinal herb of North Western Himalayas. It finds extensive use as a medicinal herb since antiquity in different traditional systems of medicine to cure a wide range of ailments related to the circulatory, digestive, endocrine, respiratory and skeletal systems as well as to treat various infectious diseases. The remedying properties of this plant species are ascribed to a set of diverse bioactive secondary metabolite constituents, particularly anthraquinones (emodin, chrysophanol, physcion, aloe-emodin and rhein) and stilbenoids (piceatannol, resveratrol), besides dietary flavonoids known for their putative health benefits. Recent studies demonstrate the pharmacological efficacy of some of these metabolites and/or their derivatives as lead molecules for the treatment of various human diseases. Present review comprehensively covers the literature available on R. australe from 1980 to early 2018. The review provides up-to-date information available on its botany for easy identification of the plant, and origin and historical perspective detailing its trade and commerce. Distribution, therapeutic potential in relation to traditional uses and pharmacology, phytochemistry and general biosynthesis of major chemical constituents are also discussed. Additionally, efficient and reproducible in vitro propagation studies holding vital significance in preserving the natural germplasm of the plant and for its industrial exploitation have also been highlighted. The review presents a detailed perspective for future studies to conserve and sustainably make use of this endangered plant species at a commercial scale.
Collapse
Affiliation(s)
- Shahzad A. Pandith
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Riyaz Ahmad Dar
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Surrinder K. Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India
| | - Manzoor A. Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Zafar A. Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| |
Collapse
|
18
|
Kong Y, Li K, Fu T, Wan C, Zhang D, Song H, Zhang Y, Liu N, Gan Z, Yuan L. Quercetin ameliorates Aβ toxicity in Drosophila AD model by modulating cell cycle-related protein expression. Oncotarget 2018; 7:67716-67731. [PMID: 27626494 PMCID: PMC5356514 DOI: 10.18632/oncotarget.11963] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/01/2016] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by β amyloid (Aβ) deposition and neurofibril tangles. It has been reported that a bioflavonoid, quercetin, could ameliorate AD phenotypes in C. elegans and mice. However, the mechanism underlying the ameliorative effect of quercetin is not fully understood yet. Drosophila models could recapitulate AD-like phenotypes, such as shortened lifespan, impaired locomotive ability as well as defects in learning and memory. So in this study, we investigated the effects of quercetin on AD in Drosophila model and explored the underlying mechanisms. We found quercetin could effectively intervene in AD pathogenesis in vivo. Mechanism study showed quercetin could restore the expression of genes perturbed by Aβ accumulation, such as those involved in cell cycle and DNA replication. Cyclin B, an important cell cycle protein, was chosen to test whether it participated in the AD ameliorative effects of quercetin. We found that cyclin B RNAi in the brain could alleviate AD phenotypes. Taken together, the current study suggested that the neuroprotective effects of quercetin were mediated at least partially by targeting cell cycle-related proteins.
Collapse
Affiliation(s)
- Yan Kong
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Ke Li
- Gladstone Institute of Cardiovascular Disease and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Tingting Fu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Chao Wan
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Dongdong Zhang
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Hang Song
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Yao Zhang
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Na Liu
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Zhenji Gan
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Liudi Yuan
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu, China.,State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| |
Collapse
|
19
|
Cytochrome P450 CYP1 metabolism of hydroxylated flavones and flavonols: Selective bioactivation of luteolin in breast cancer cells. Food Chem Toxicol 2017; 110:383-394. [PMID: 29097115 DOI: 10.1016/j.fct.2017.10.051] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 12/16/2022]
Abstract
Natural flavonoids with methoxy substitutions are metabolized by CYP1 enzymes to yield the corresponding demethylated products. The present study aimed to characterize the metabolism and further antiproliferative activity of the hydroxylated flavonoids apigenin, luteolin, scutellarein, kaempferol and quercetin in CYP1 recombinant enzymes and in the CYP1 expressing cell lines MCF7 and MDA-MB-468, respectively. Apigenin was converted to luteolin and scutellarein, whereas kaempferol was metabolized only to quercetin by recombinant CYP1 enzymes. Luteolin metabolism yielded 6 hydroxyluteolin only by recombinant CYP1B1, whereas CYP1A1 and CYP1A2 were not capable of metabolizing this compound. Molecular modeling demonstrated that CYP1B1 favored the A ring orientation of apigenin and luteolin to the heme group compared with CYP1A1. The IC50 of the compounds luteolin, scutellarein and 6 hydroxyluteolin was significantly lower in MDA-MB-468, MCF7 and MCF10A cells compared with that of apigenin. Similarly, the IC50 of quercetin in MDA-MB-468 cells was significantly lower compared with that of kaempferol. The most potent compound was luteolin in MDA-MB-468 cells (IC50 = 2 ± 0.3 μM). In the presence of the CYP1-inhibitors α-napthoflavone and/or acacetin, luteolin activation was lessened. Taken collectively, the data demonstrate that the metabolism of hydroxylated flavonoids by cytochrome P450 CYP1 enzymes, notably CYP1A1 and CYP1B1, can enhance their antiproliferative activity in breast cancer cells. In addition, this antiproliferative activity is attributed to the combined action of the parent compound and the corresponding CYP1 metabolites.
Collapse
|
20
|
Chan MK, Lim SK, Miswan N, Chew AL, Noordin R, Khoo BY. Expression of stable and active human DNA topoisomerase I in Pichia pastoris. Protein Expr Purif 2017; 141:52-62. [PMID: 28893606 DOI: 10.1016/j.pep.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/11/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
This study described the isolation of the coding region of human topoisomerase I (TopoI) from MDA-MB-231 and the expression of multiple copy recombinant genes in four Pichia pastoris strains. First, polymerase chain reaction (PCR)-amplification of the enzyme coding region was performed. The PCR fragment was cloned into pPICZ-α-A vector and sequenced. It was then transformed into X33, GS115, SMD1168H and KM71H strains of Pichia. PCR-screening for positive clones was performed, and estimation of multiple copy integrants in each Pichia strain was carried out using agar plates containing increasing concentrations of Zeocin®. The selected clones of multiple copy recombinant genes were then induced for TopoI expression in shaker flasks. GS115 and SMD1168 were found to be better Pichia strains to accommodate the recombinant gene for the expression of TopoI extracellularly. However, the DNA relaxation activity revealed that only the target enzyme in the culture supernatants of GS115-pPICZ-α-A-TopoI exhibited consistent enzyme activity over the cultivation time-points. Active enzyme activity was inhibited by Camptothecin. The enzyme produced can be used for in-house gel-based DNA relaxation assay development in performing high throughput screening for target-specific growth inhibitors that display similar effect as the TopoI inhibitors. These inhibitors may contribute to the improvement of the treatment of cancer patients.
Collapse
Affiliation(s)
- Mooi Kwai Chan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Shern Kwok Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Noorizan Miswan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Ai Lan Chew
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Rahmah Noordin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
21
|
Peng CK, Zeng T, Xu XJ, Chang YQ, Hou W, Lu K, Lin H, Sun PH, Lin J, Chen WM. Novel 4-(4-substituted amidobenzyl)furan-2(5H)-one derivatives as topoisomerase I inhibitors. Eur J Med Chem 2017; 127:187-199. [DOI: 10.1016/j.ejmech.2016.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/13/2016] [Accepted: 12/17/2016] [Indexed: 11/29/2022]
|
22
|
Jadaun A, Subbarao N, Dixit A. Allosteric inhibition of topoisomerase I by pinostrobin: Molecular docking, spectroscopic and topoisomerase I activity studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:299-308. [PMID: 28122297 DOI: 10.1016/j.jphotobiol.2017.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/30/2016] [Accepted: 01/01/2017] [Indexed: 10/20/2022]
Abstract
Cancer, the second major cause of mortality trailing the cardiovascular diseases, is a multifactorial heterogeneous disease and growing public health problem worldwide. Owing to severe adverse effects of currently available therapies, there is a growing interest in natural compounds present in our daily diet. Among various natural products, flavonoids-polyphenolic compounds have attracted much attention and have been well-documented for their biological activities. Some flavonoids may inhibit cancer cell proliferation by modulating the action of different enzymes and signal transduction pathways. In the present study, we have evaluated the effect of pinostrobin, a natural flavonoid, on the catalytic activity of topoisomerase I, an essential enzyme for normal DNA replication. Catalytic inhibition of topoisomerase I activity would impair DNA replication of rapidly dividing cancer cells and hence inhibits tumor progression. Pinostrobin interaction with the topoisomerase I and DNA assessed in silico indicated it to form a ternary complex with both. In silico data also suggested pinostrobin to be an effective allosteric inhibitor for topoisomerase I. Further, in vitro investigations such as ethidium bromide displacement assay and spectroscopic studies supported in silico results on the binding of pinostrobin at the interface of topoisomerase I and DNA. Pinostrobin effectively inhibited topoisomerase I activity in vitro further confirming our in silico and in vitro findings. Since topoisomerase I is essential for DNA replication, inhibition of its activity by pinostrobin highlights the therapeutic potential of pinostrobin as an anti-proliferative agent.
Collapse
Affiliation(s)
- Alka Jadaun
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - N Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Aparna Dixit
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
23
|
Advances in the Chemistry of Natural and Semisynthetic Topoisomerase I/II Inhibitors. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00002-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Parveen S, Tabassum S, Arjmand F. Human Topoisomerase I mediated cytotoxicity profile of l-valine-quercetin diorganotin(IV) antitumor drug entities. J Organomet Chem 2016; 823:23-33. [DOI: 10.1016/j.jorganchem.2016.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Chaurasiya ND, Gogineni V, Elokely KM, León F, Núñez MJ, Klein ML, Walker LA, Cutler SJ, Tekwani BL. Isolation of Acacetin from Calea urticifolia with Inhibitory Properties against Human Monoamine Oxidase-A and -B. JOURNAL OF NATURAL PRODUCTS 2016; 79:2538-2544. [PMID: 27754693 DOI: 10.1021/acs.jnatprod.6b00440] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Calea urticifolia (Asteraceae: Asteroideae) has long been used as a traditional medicine in El Salvador to treat arthritis and fever, among other illnesses. The chloroform extract of the leaves of C. urticifolia showed potent inhibition of recombinant human monoamine oxidases (MAO-A and -B). Further bioassay-guided fractionation led to the isolation of a flavonoid, acacetin, as the most prominent MAO inhibitory constituent, with IC50 values of 121 and 49 nM for MAO-A and -B, respectively. The potency of MAO inhibition by acacetin was >5-fold higher for MAO-A (0.121 μM vs 0.640 μM) and >22-fold higher for MAO-B (0.049 μM vs 1.12 μM) as compared to apigenin, the closest flavone structural analogue. Interaction and binding characteristics of acacetin with MAO-A and -B were determined by enzyme-kinetic assays, enzyme-inhibitor complex binding, equilibrium-dialysis dissociation analyses, and computation analysis. Follow-up studies showed reversible binding of acacetin with human MAO-A and -B, resulting in competitive inhibition. Acacetin showed more preference toward MAO-B than to MAO-A, suggesting its potential for eliciting selective pharmacological effects that might be useful in the treatment of neurological and psychiatric disorders. In addition, the binding modes of acacetin at the enzymatic site of MAO-A and -B were predicted through molecular modeling algorithms, illustrating the high importance of ligand interaction with negative and positive free energy regions of the enzyme active site.
Collapse
Affiliation(s)
| | | | - Khaled M Elokely
- Institute for Computational Molecular Science and Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
- Department of Pharmaceutical Chemistry, Tanta University , Tanta 31527, Egypt
| | | | - Marvin J Núñez
- Laboratorio de Investigación en Productos Naturales, Facultad de Química y Farmacia, University of El Salvador , San Salvador, El Salvador
| | - Michael L Klein
- Institute for Computational Molecular Science and Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | | | | | | |
Collapse
|
26
|
Novel securinine derivatives as topoisomerase I based antitumor agents. Eur J Med Chem 2016; 122:149-163. [DOI: 10.1016/j.ejmech.2016.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/19/2022]
|
27
|
Pépin G, Nejad C, Thomas BJ, Ferrand J, McArthur K, Bardin PG, Williams BRG, Gantier MP. Activation of cGAS-dependent antiviral responses by DNA intercalating agents. Nucleic Acids Res 2016; 45:198-205. [PMID: 27694309 PMCID: PMC5224509 DOI: 10.1093/nar/gkw878] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/11/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
Acridine dyes, including proflavine and acriflavine, were commonly used as antiseptics before the advent of penicillins in the mid-1940s. While their mode of action on pathogens was originally attributed to their DNA intercalating activity, work in the early 1970s suggested involvement of the host immune responses, characterized by induction of interferon (IFN)-like activities through an unknown mechanism. We demonstrate here that sub-toxic concentrations of a mixture of acriflavine and proflavine instigate a cyclic-GMP-AMP (cGAMP) synthase (cGAS)-dependent type-I IFN antiviral response. This pertains to the capacity of these compounds to induce low level DNA damage and cytoplasmic DNA leakage, resulting in cGAS-dependent cGAMP-like activity. Critically, acriflavine:proflavine pre-treatment of human primary bronchial epithelial cells significantly reduced rhinovirus infection. Collectively, our findings constitute the first evidence that non-toxic DNA binding agents have the capacity to act as indirect agonists of cGAS, to exert potent antiviral effects in mammalian cells.
Collapse
Affiliation(s)
- Geneviève Pépin
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Charlotte Nejad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Belinda J Thomas
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.,Monash Lung and Sleep, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Jonathan Ferrand
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Kate McArthur
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Philip G Bardin
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Monash Lung and Sleep, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Bryan R G Williams
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia .,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
28
|
Marko D, Boege F. A possible link between nutritional uptake of ubiquitous topoisomerase inhibitors and autism? Int J Dev Neurosci 2016; 53:8-9. [DOI: 10.1016/j.ijdevneu.2016.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022] Open
Affiliation(s)
- Doris Marko
- University of ViennaFaculty of ChemistryDepartment of Food Chemistry and ToxicologyAustria
| | - Fritz Boege
- Central Institute of Clinical Chemistry and Laboratory DiagnosticsUniversity of DüsseldorfGermany
| |
Collapse
|
29
|
Lin CC, Hsieh MH, Teng SC. Genistein suppresses the proliferation of telomerase-negative cells. Food Sci Nutr 2016; 5:197-204. [PMID: 28265354 PMCID: PMC5332266 DOI: 10.1002/fsn3.382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 03/27/2016] [Accepted: 04/08/2016] [Indexed: 11/29/2022] Open
Abstract
In both tumor and yeast cells that lack telomerase, telomeres are maintained via an alternative recombination mechanism. In this study, we tested genistein, a potential TOP2 inhibitor required for telomere–telomere recombination, on the repression of telomere–telomere recombination. Genistein on the repression of type II recombination on a tlc1 yeast strain was examined by the telomeric DNA structures using Southern blot analysis. Telomere patterns of freshly dissected tlc1 spores containing an empty plasmid (pYES2) or a yeast TOP2 (yTOP2) plasmid were analyzed. The results indicated that the reintroduction of TOP2 recovered the type II pattern, implying genistein in the blockage of type II survivors in the tlc1 strain. The effects of genistein on both tlc1 and tlc1 rad 51 strains in liquid and solid mediums were also examined. Finally, treatment of 10 μmol/L of genistein showed inhibitory effect on the growth of telomerase‐negative U2OS alternative lengthening of telomere (ALT) cells, but not in telomerase‐positive HCT116 cells. These results provide evidences that the inhibitory effects of genistein on telomerase‐negative cells depend on type II recombination pathway in yeast and the ALT pathway in human tumors.
Collapse
Affiliation(s)
- Chuan-Chuan Lin
- Department of Food Science China University of Science and Technology Taipei 115 Taiwan
| | - Meng-Hsun Hsieh
- Department of Microbiology College of Medicine National Taiwan University Taipei 100 Taiwan
| | - Shu-Chun Teng
- Department of Microbiology College of Medicine National Taiwan University Taipei 100 Taiwan
| |
Collapse
|
30
|
Kaempferol Inhibits Pancreatic Cancer Cell Growth and Migration through the Blockade of EGFR-Related Pathway In Vitro. PLoS One 2016; 11:e0155264. [PMID: 27175782 PMCID: PMC4866780 DOI: 10.1371/journal.pone.0155264] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/26/2016] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer is one of the most appalling cancers with a pessimistic prognosis. Despite many therapies, there has been no improvement of survival rates. In this study, we assessed the anti-cancer effects of kaempferol, a well known flavonoid having functional bio-activity against various malignant tumors. Kaempferol had anti-cancer effects on Miapaca-2, Panc-1, and SNU-213 human pancreatic cancer cells. In a dose-dependent manner, kaempferol decreased viability of these pancreatic cancer cells by increasing apoptosis. In particular, kaempferol effectively inhibited the migratory activity of human pancreatic cancer cells at relatively low dosages without any toxicity. The anti-cancer effect of kaempferol was mediated by inhibition of EGFR related Src, ERK1/2, and AKT pathways. These results collectively indicate that kaempferol, a phytochemical ingredient reported to have anti-viability and anti-oxidant properties, can act as a safety anti-migration reagent in human pancreatic cancer cells, which provide the rationale for further investigation of kaempferol as a strong candidate for the potential clinical trial of malignant pancreatic cancers.
Collapse
|
31
|
León IE, Cadavid-Vargas JF, Tiscornia I, Porro V, Castelli S, Katkar P, Desideri A, Bollati-Fogolin M, Etcheverry SB. Oxidovanadium(IV) complexes with chrysin and silibinin: anticancer activity and mechanisms of action in a human colon adenocarcinoma model. J Biol Inorg Chem 2015; 20:1175-91. [PMID: 26404080 DOI: 10.1007/s00775-015-1298-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/07/2015] [Indexed: 12/16/2022]
Abstract
Vanadium compounds were studied during recent years to be considered as a representative of a new class of nonplatinum metal antitumor agents in combination to its low toxicity. On the other hand, flavonoids are a wide family of polyphenolic compounds synthesized by plants that display many interesting biological effects. Since coordination of ligands to metals can improve the pharmacological properties, we report herein, for the first time, a exhaustive study of the mechanisms of action of two oxidovanadium(IV) complexes with the flavonoids: silibinin Na₂[VO(silibinin)₂2]·6H₂O (VOsil) and chrysin [VO(chrysin)₂EtOH]₂(VOchrys) on human colon adenocarcinoma derived cell line HT-29. The complexes inhibited the cell viability of colon adenocarcinoma cells in a dose dependent manner with a greater potency than that the free ligands and free metal, demonstrating the benefit of complexation. The decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of both complexes. Besides, VOchrys caused cell cycle arrest in G2/M phase while VOsil activated caspase 3 and triggering the cells directly to apoptosis. Moreover, VOsil diminished the NF-kB activation via increasing the sensitivity of cells to apoptosis. On the other hand, VOsil inhibited the topoisomerase IB activity concluding that this is important target involved in the anticancer vanadium effects. As a whole, the results presented herein demonstrate that VOsil has a stronger deleterious action than VOchrys on HT-29 cells, whereby suggesting that Vosil is the potentially best candidate for future use in alternative anti-tumor treatments.
Collapse
Affiliation(s)
- I E León
- Cátedra de Bioquímica Patológica, Facultad Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.,Centro de Química Inorgánica (CEQUINOR-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - J F Cadavid-Vargas
- Cátedra de Bioquímica Patológica, Facultad Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.,Centro de Química Inorgánica (CEQUINOR-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - I Tiscornia
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - V Porro
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - S Castelli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - P Katkar
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Desideri
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - M Bollati-Fogolin
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - S B Etcheverry
- Cátedra de Bioquímica Patológica, Facultad Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina. .,Centro de Química Inorgánica (CEQUINOR-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.
| |
Collapse
|
32
|
Sengupta B, Reilly S, Davis D, Harris K, Wadkins RM, Ward D, Gholar D, Hampton C. Excited state proton transfer of natural flavonoids and their chromophores in duplex and tetraplex DNAs. J Phys Chem B 2015; 119:2546-56. [PMID: 25393681 PMCID: PMC4329990 DOI: 10.1021/jp508599h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/27/2014] [Indexed: 01/23/2023]
Abstract
Fisetin (3,7,3',4'-tetrahydroxyflavone) and quercetin (3,5,7,3',4'-pentahydroxyflavone) are the bioactive plant flavonoids that are potentially useful therapeutic drugs for the treatment of a broad spectrum of diseases, including atherosclerosis, cardiovascular disease, obesity, hypertension, and cancer. 3-Hydroxyflavone (3HF) and 7-hydroxyflavone (7HF) are the synthetic chromophores of fisetin and quercetin. We have exploited dual luminescence properties of fisetin and quercetin along with 3-HF and 7HF to examine their efficacy of binding and compare their interactions with DNA, which is one of the macromolecular targets of flavonoids in physiological systems. Following the sequence of the human telomeric DNA 5'-d (CCCTAA-)n/(-TTAGGG)n-5', two single-stranded DNA oligonucleotides, 5'-d(C3TA2)3C3-3' and 5'-d(T2AG3)4-3', and their duplex were used as receptors to study binding by the ligands quercetin, fisetin, and their chromophores. Circular dichroism, differential absorption, UV thermal melting, and size exclusion chromatographic studies indicated the formation of unusual DNA structures (such as C4 and G4 tetraplexes) for both the C- and G-rich single-stranded DNAs. Upon binding to DNA, dramatic changes were observed in the intrinsic fluorescence behavior of the flavonoids. Molecular docking studies were performed to describe the likely binding sites for the ligands. The spectroscopic studies on flavonoid-DNA interactions described herein demonstrate a powerful approach for examining their DNA binding through exploiting the highly sensitive intrinsic fluorescence properties of the flavonoids as their own "reporter" for their interactions with macromolecular targets.
Collapse
Affiliation(s)
- Bidisha Sengupta
- Department
of Chemistry, Tougaloo College, Tougaloo, Mississippi, 39174, United States
| | - Samantha
M. Reilly
- Department
of Chemistry and Biochemistry, University
of Mississippi, University, Mississippi, 38677, United States
| | - Donald
E. Davis
- Department
of Chemistry, Tougaloo College, Tougaloo, Mississippi, 39174, United States
| | - Kisa Harris
- Department
of Chemistry, Tougaloo College, Tougaloo, Mississippi, 39174, United States
| | - Randy M. Wadkins
- Department
of Chemistry and Biochemistry, University
of Mississippi, University, Mississippi, 38677, United States
| | - Denise Ward
- Department
of Chemistry, Tougaloo College, Tougaloo, Mississippi, 39174, United States
| | - D’Asia Gholar
- Department
of Chemistry, Tougaloo College, Tougaloo, Mississippi, 39174, United States
| | - Cari Hampton
- Department
of Chemistry, Tougaloo College, Tougaloo, Mississippi, 39174, United States
| |
Collapse
|
33
|
Mitrasinovic PM. Sequence-dependent binding of flavonoids to duplex DNA. J Chem Inf Model 2015; 55:421-33. [PMID: 25580618 DOI: 10.1021/ci5006965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The whole family of structurally distinct flavonoids has been recognized as a valuable source of prospective anticancer agents. There is experimental evidence demonstrating that some flavonoids, like flavopiridol (FLP) and quercetin (QUE), bind to DNA influencing their key physiological function. FLP is involved in the combined mode of interaction (intercalation and minor groove binding), while QUE is viewed as a minor groove binder. From a physical standpoint, experimental and theoretical studies have not so far provided a sufficiently consistent picture of the nature of interaction with DNA. Herein the sequence-dependent binding of FLP and of QUE (two representative examples of the structurally different flavonoids) with duplex DNA, containing a variety of the sequences of eight nucleotides (I: GGGGCCCC, II: GGCCGGCC, III: AAAATTTT, IV: AAGCGCTT, V: GCGCGCGC) in the 5'-strand, is investigated using a sophisticated molecular dynamics (MD) approach. For various parts (helix, backbone, bases) of the DNA structure, the change of asymptotic (in terms of an infinite length of MD simulation) configurational entropy, being the thermodynamic consequence of DNA flexibility change due to ligand binding, is explored. As far as the sequence-dependent extent of DNA flexibility change upon QUE (or FLP) binding is concerned, for the entire double helix, increased flexibility is observed for I (or I ≈ II), while increased rigidity is found to be in the order of V > III > II > IV (or III > V > IV) for the rest of sequences. For the backbone, increased rigidity in the order of V > III > II > IV > I (or III > V > IV > I > II) is generally observed. For the nucleobases, increased flexibility is determined for I and II (I > II for both ligands), while increased rigidity in the order of V ≈ III > IV (or III > V > IV) is reported for the other sequences. Of the overall increased rigidity of the DNA structure upon ligand binding that is observed for the sequences III, IV, and V, about 50-70% comes from the sugar-phosphate backbone. Noteworthy is that the increased flexibility of the entire double helix and of the complete system of nucleobases upon ligand binding is only established for sequence I. The insights are further subtly substantiated by considering the configurational entropy contributions at the level of individual nucleobase pairs and of individual nucleo-base pair steps and by analyzing the sequence dependent estimates of intra-base pair entropy and inter-base pair entropy. The GGC triplet, which is part of the central tetramer (GGCC) of I, is concluded to be critical for binding of flavonoids, while the effect of the presence of ligand to the flexibility of nucleobases is localized through the intra-base pair motion of the intercalation site and its immediate vicinity. G-rich DNA sequences with consecutive Gs going before and/or after the critical GGC code (such as I: GGGGCCCC) are proposed to be uniquely specific for flavonoids. The configurational entropy contribution, as an upper bound of the true entropy contribution to the free energy in noncovalent binding, is demonstrated to influence the fundamental discrimination (intercalation vs groove binding) of DNA-flavonoid recognition modes. Some interesting implications for the structure-based design of optimal DNA binders are discussed.
Collapse
Affiliation(s)
- Petar M Mitrasinovic
- Department of Natural Sciences, Belgrade Institute of Science and Technology , 11060 Belgrade, Serbia
| |
Collapse
|
34
|
Hussain H, Al-Harrasi A, Al-Rawahi A, Green IR, Gibbons S. Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chem Rev 2014; 114:10369-428. [PMID: 25253511 DOI: 10.1021/cr400552x] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hidayat Hussain
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | | | | | | | | |
Collapse
|
35
|
Dellafiora L, Mena P, Del Rio D, Cozzini P. Modeling the effect of phase II conjugations on topoisomerase I poisoning: pilot study with luteolin and quercetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5881-5886. [PMID: 24869916 DOI: 10.1021/jf501548g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Topoisomerases are targeted by several drugs in cancer chemotherapy acting as key enzymes in cell viability. Some flavonoids and their glycosides may exert health protective effects through the poisoning of topoisomerases. However, previous studies did not consider the substantial modifications taking place after ingestion neglecting that only metabolites can interact with the internal compartments of the human body. Since the high number of possible metabolites hinders their systematic analysis, an in silico approach can be a valuable tool to prioritize compounds by identifying candidates for further characterization. Specifically focusing on luteolin and quercetin, among the most ubiquitous flavonoids in the human diet, this work reports a computational procedure to model the effect of hepatic phase II conjugative metabolism on poisoning of human Topoisomerase I. As a general effect, glucuronidation and sulphation might enhance and quench poisoning activity, respectively. Among all, quercetin-3-O-glucuronide represents a promising candidate to be analyzed more thoroughly.
Collapse
Affiliation(s)
- Luca Dellafiora
- Molecular Modeling Laboratory, Department of Food Science, ‡The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food Science, and §LS9 Bioactives and Health, Interlaboratory Group, Department of Food Science, University of Parma , 43125 Parma, Italy
| | | | | | | |
Collapse
|
36
|
Nimesh H, Sur S, Sinha D, Yadav P, Anand P, Bajaj P, Virdi JS, Tandon V. Synthesis and Biological Evaluation of Novel Bisbenzimidazoles as Escherichia coli Topoisomerase IA Inhibitors and Potential Antibacterial Agents. J Med Chem 2014; 57:5238-57. [DOI: 10.1021/jm5003028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hemlata Nimesh
- Department
of Chemistry, University of Delhi, Delhi 110 007, India
| | - Souvik Sur
- Department
of Chemistry, University of Delhi, Delhi 110 007, India
| | - Devapriya Sinha
- Department
of Chemistry, University of Delhi, Delhi 110 007, India
| | - Pooja Yadav
- Department
of Chemistry, University of Delhi, Delhi 110 007, India
| | - Prachi Anand
- Department of Chemistry & Biochemistry, CUNY−Hunter College, New York, New York 10065, United States
| | - Priyanka Bajaj
- Department
of Microbiology, University of Delhi, Delhi 110 021, India
| | | | - Vibha Tandon
- Department
of Chemistry, University of Delhi, Delhi 110 007, India
- Special
Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
37
|
Caenorhabditis elegans as model system in pharmacology and toxicology: effects of flavonoids on redox-sensitive signalling pathways and ageing. ScientificWorldJournal 2014; 2014:920398. [PMID: 24895670 PMCID: PMC4032668 DOI: 10.1155/2014/920398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/30/2013] [Indexed: 01/15/2023] Open
Abstract
Flavonoids are secondary plant compounds that mediate diverse biological activities, for example, by scavenging free radicals and modulating intracellular signalling pathways. It has been shown in various studies that distinct flavonoid compounds enhance stress resistance and even prolong the life span of organisms. In the last years the model organism C. elegans has gained increasing importance in pharmacological and toxicological sciences due to the availability of various genetically modified nematode strains, the simplicity of modulating genes by RNAi, and the relatively short life span. Several studies have been performed demonstrating that secondary plant compounds influence ageing, stress resistance, and distinct signalling pathways in the nematode. Here we present an overview of the modulating effects of different flavonoids on oxidative stress, redox-sensitive signalling pathways, and life span in C. elegans introducing the usability of this model system for pharmacological and toxicological research.
Collapse
|
38
|
Orozco-Nunnelly DA, Muhammad D, Mezzich R, Lee BS, Jayathilaka L, Kaufman LS, Warpeha KM. Pirin1 (PRN1) is a multifunctional protein that regulates quercetin, and impacts specific light and UV responses in the seed-to-seedling transition of Arabidopsis thaliana. PLoS One 2014; 9:e93371. [PMID: 24705271 PMCID: PMC3976398 DOI: 10.1371/journal.pone.0093371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 03/04/2014] [Indexed: 11/26/2022] Open
Abstract
Pirins are cupin-fold proteins, implicated in apoptosis and cellular stress in eukaryotic organisms. Pirin1 (PRN1) plays a role in seed germination and transcription of a light- and ABA-regulated gene under specific conditions in the model plant system Arabidopsis thaliana. Herein, we describe that PRN1 possesses previously unreported functions that can profoundly affect early growth, development, and stress responses. In vitro-translated PRN1 possesses quercetinase activity. When PRN1 was incubated with G-protein-α subunit (GPA1) in the inactive conformation (GDP-bound), quercetinase activity was observed. Quercetinase activity was not observed when PRN1 was incubated with GPA1 in the active form (GTP-bound). Dark-grown prn1 mutant seedlings produced more quercetin after UV (317 nm) induction, compared to levels observed in wild type (WT) seedlings. prn1 mutant seedlings survived a dose of high-energy UV (254 nm) radiation that killed WT seedlings. prn1 mutant seedlings grown for 3 days in continuous white light display disoriented hypocotyl growth compared to WT, but hypocotyls of dark-grown prn1 seedlings appeared like WT. prn1 mutant seedlings transformed with GFP constructs containing the native PRN1 promoter and full ORF (PRN1::PRN1-GFP) were restored to WT responses, in that they did not survive UV (254 nm), and there was no significant hypocotyl disorientation in response to white light. prn1 mutants transformed with PRN1::PRN1-GFP were observed by confocal microscopy, where expression in the cotyledon epidermis was largely localized to the nucleus, adjacent to the nucleus, and diffuse and punctate expression occurred within some cells. WT seedlings transformed with the 35S::PRN1-GFP construct exhibited widespread expression in the epidermis of the cotyledon, also with localization in the nucleus. PRN1 may play a critical role in cellular quercetin levels and influence light- or hormonal-directed early development.
Collapse
Affiliation(s)
- Danielle A. Orozco-Nunnelly
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - DurreShahwar Muhammad
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Raquel Mezzich
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Bao-Shiang Lee
- Protein Research Laboratory, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Lasanthi Jayathilaka
- Protein Research Laboratory, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Lon S. Kaufman
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Katherine M. Warpeha
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
39
|
Polyphenols as key players for the antileukaemic effects of propolis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:371730. [PMID: 24772179 PMCID: PMC3977507 DOI: 10.1155/2014/371730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/24/2014] [Accepted: 02/05/2014] [Indexed: 12/15/2022]
Abstract
Propolis (a bee product) which has a long history of medicinal use by humans has attracted a great deal of research interest in the recent time; this is due to its widely reported biological activities such as antiviral, antifungal, antibacterial, anti-inflammatory, antioxidant, and anticarcinogenic properties. Crude form of propolis and its phenolic contents have both been reported to exhibit antileukaemic effects in various leukaemia cell lines. The ability of the polyphenols found in propolis to arrest cell cycle and induce apoptosis and differentiation in addition to inhibition of cell growth and proliferation makes them promising antileukaemic agents, and hence, they are believed to be a key to the antileukaemic effects of propolis in different types of leukaemia. This paper reviews the molecular bases of antileukaemic activity of both crude propolis and individual polyphenols on various leukaemia cell lines, and it indicates that propolis has the potential to be used in both treatment and prevention of leukaemia. This however needs further evaluation by in vitro, in vivo, and epidemiological studies as well as clinical trials.
Collapse
|
40
|
Sobek S, Boege F. DNA topoisomerases in mtDNA maintenance and ageing. Exp Gerontol 2014; 56:135-41. [PMID: 24440386 DOI: 10.1016/j.exger.2014.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/26/2022]
Abstract
DNA topoisomerases pass DNA strands through each other, a function essential for all DNA metabolic processes that create supercoils or entanglements of DNA. Topoisomerases play an ambivalent role in nuclear genome maintenance: Deficiency compromises gene transcription, replication and chromosome segregation, while the inherent DNA-cleavage activity of the enzymes endangers DNA integrity. Indeed, many DNA-damaging agents act through enhancing topoisomerase DNA cleavage. Mitochondrial DNA (mtDNA) clearly requires topoisomerase activity for transcription and replication, because it is a closed, double-stranded DNA molecule. Three topoisomerases have so far been found in mammalian mitochondria (I, IIβ, IIIα), but their precise role in mtDNA metabolism, mitochondrial maintenance and respiratory function remains mostly unclear. It is a reasonable surmise that these enzymes exhibit similar ambiguity with respect to genome maintenance and gene transcription as their nuclear counterparts. Here, we review what is known about the physiological roles of mitochondrial topoisomerases and draft three scenarios of how these enzymes possibly contribute to ageing-related mtDNA attrition and respiratory chain dysfunction. These scenarios are: mtDNA attrition by exogenously stimulated topoisomerase DNA cleavage, unbalancing of mitochondrial and nuclear transcription by direct effects on mitochondrial transcription, and contributions to enhanced mtDNA entanglement and recombination.
Collapse
Affiliation(s)
- Stefan Sobek
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University, Med. Faculty, Düsseldorf, Germany
| | - Fritz Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University, Med. Faculty, Düsseldorf, Germany.
| |
Collapse
|
41
|
|
42
|
Czubinski J, Dwiecki K, Siger A, Neunert G, Lampart-Szczapa E. Characterisation of different digestion susceptibility of lupin seed globulins. Food Chem 2014; 143:418-26. [DOI: 10.1016/j.foodchem.2013.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/20/2013] [Accepted: 08/02/2013] [Indexed: 12/25/2022]
|
43
|
Maeda J, Roybal EJ, Brents CA, Uesaka M, Aizawa Y, Kato TA. Natural and glucosyl flavonoids inhibit poly(ADP-ribose) polymerase activity and induce synthetic lethality in BRCA mutant cells. Oncol Rep 2013; 31:551-6. [PMID: 24317580 PMCID: PMC3896521 DOI: 10.3892/or.2013.2902] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/26/2013] [Indexed: 12/23/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have been proven to represent superior clinical agents targeting DNA repair mechanisms in cancer therapy. We investigated PARP inhibitory effects of the natural and synthetic flavonoids (quercetin, rutin, monoglucosyl rutin and maltooligosyl rutin) and tested the synthetic lethality in BRCA2 mutated cells. In vitro ELISA assay suggested that the flavonoids have inhibitory effects on PARP activity, but glucosyl modifications reduced the inhibitory effect. Cytotoxicity tests of Chinese hamster cells defective in BRCA2 gene (V-C8) and its parental V79 cells showed BRCA2-dependent synthetic lethality when treated with the flavonoids. BRCA2 mutated cells were three times more sensitive to the flavonoids than the wild-type and gene complemented cells. Reduced toxicity was observed in a glucosyl modification-dependent manner. The present study provides support for the clinical use of new treatment drugs, and is the beginning of the potential application of flavonoids in cancer prevention and the periodic consumption of appropriate flavonoids to reduce cancer risk in individuals carrying a mutant allele of the BRCA2 gene.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Erica J Roybal
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Colleen A Brents
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mitsuru Uesaka
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yasushi Aizawa
- Research and Development Group, Toyo Sugar Refining Co., Ltd., Tokyo 103-0046, Japan
| | - Takamitsu A Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
44
|
Ravishankar D, Rajora AK, Greco F, Osborn HM. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 2013; 45:2821-31. [DOI: 10.1016/j.biocel.2013.10.004] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 12/11/2022]
|
45
|
Li Q, Wei Q, Yuan E, Yang J, Ning Z. Interaction between four flavonoids and trypsin: effect on the characteristics of trypsin and antioxidant activity of flavonoids. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12401] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Qiong Li
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510641 China
| | - Qingyi Wei
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou Guangdong Province 510641 China
| | - Erdong Yuan
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou Guangdong Province 510641 China
| | - Jiguo Yang
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou Guangdong Province 510641 China
| | - Zhengxiang Ning
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou Guangdong Province 510641 China
| |
Collapse
|
46
|
Bensasson RV, Sowlati-Hashjin S, Zoete V, Dauzonne D, Matta CF. Physicochemical properties of exogenous molecules correlated with their biological efficacy as protectors against carcinogenesis and inflammation. INT REV PHYS CHEM 2013. [DOI: 10.1080/0144235x.2013.767669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Acacetin and chrysin, two polyphenolic compounds, alleviate telomeric position effect in human cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e116. [PMID: 23962900 PMCID: PMC3759739 DOI: 10.1038/mtna.2013.42] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 06/04/2013] [Indexed: 12/28/2022]
Abstract
We took advantage of the ability of human telomeres to silence neighboring genes (telomere position effect or TPE) to design a high-throughput screening assay for drugs altering telomeres. We identified, for the first time, that two dietary flavones, acacetin and chrysin, are able to specifically alleviate TPE in human cells. We further investigated their influence on telomere integrity and showed that both drugs drastically deprotect telomeres against DNA damage response. However, telomere deprotection triggered by shelterin dysfunction does not affect TPE, indicating that acacetin and chrysin target several functions of telomeres. These results show that TPE-based screening assays represent valuable methods to discover new compounds targeting telomeres.
Collapse
|
48
|
3EZ,20Ac-ingenol, a catalytic inhibitor of topoisomerases, downregulates p-Akt and induces DSBs and apoptosis of DT40 cells. Arch Pharm Res 2013; 36:1029-38. [PMID: 23595550 PMCID: PMC3731510 DOI: 10.1007/s12272-013-0108-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 03/21/2013] [Indexed: 11/24/2022]
Abstract
We have previously reported that many ingenol compounds derived from Euphorbia kansui exhibit topoisomerase (topo) II inhibitory activity. Of these compounds, 3EZ,20Ac-ingenol inhibited topo I activity. Camptothecin, which inhibits the religation activity of topo I without interfering with the binding of topo I to DNA and induces topo I-mediated DNA cleavage, was used as a positive control. In this study, we found that 3EZ,20Ac-ingenol did not hamper the binding of topo I to DNA in the same manner as camptothecin but affected the inhibition of cleavage of one DNA strand. 3EZ,20Ac-ingenol inhibited cell proliferation by blocking cell cycle progression in the G2/M phase. To define the mechanism of inhibition of DT40 cell proliferation, the change in Akt activity was observed because Akt activity is regulated in response to DNA damage. Western blot analysis revealed that 3EZ,20Ac-ingenol downregulated the expression of p-Akt, and apoptosis was detected by the presence of DNA double-strand breaks and caspase 3 activation.
Collapse
|
49
|
A small organic compound enhances the religation reaction of human topoisomerase I and identifies crucial elements for the religation mechanism. Biosci Rep 2013; 33:e00025. [PMID: 23368812 PMCID: PMC3590572 DOI: 10.1042/bsr20120118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The different steps of the human Top1 (topoisomerase I) catalytic cycle have been analysed in the presence of a pentacyclic-diquinoid synthetic compound. The experiments indicate that it efficiently inhibits the cleavage step of the enzyme reaction, fitting well into the catalytic site. Surprisingly the compound, when incubated with the binary topoisomerase-DNA cleaved complex, helps the enzyme to remove itself from the cleaved DNA and close the DNA gap, increasing the religation rate. The compound also induces the religation of the stalled enzyme-CPT (camptothecin)-DNA ternary complex. Analysis of the molecule docked over the binary complex, together with its chemical properties, suggests that the religation enhancement is due to the presence on the compound of two oxygen atoms that act as hydrogen acceptors. This property facilitates the deprotonation of the 5' DNA end, suggesting that this is the limiting step in the topoisomerase religation mechanism.
Collapse
|
50
|
Lee MS, Moon KY, Bae DJ, Park MK, Jang AS. The effects of pycnogenol on antioxidant enzymes in a mouse model of ozone exposure. Korean J Intern Med 2013; 28:216-23. [PMID: 23526176 PMCID: PMC3604612 DOI: 10.3904/kjim.2013.28.2.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND/AIMS Ozone is an environmentally reactive oxidant, and pycnogenol is a mixture of flavonoid compounds extracted from pine tree bark that have antioxidant activity. We investigated the effects of pycnogenol on reactive nitrogen species, antioxidant responses, and airway responsiveness in BALB/c mice exposed to ozone. METHODS Antioxidant levels were determined using high performance liquid chromatography with electrochemical detection. Nitric oxide (NO) metabolites in bronchoalveolar lavage (BAL) fluid from BALB/c mice in filtered air and 2 ppm ozone with pycnogenol pretreatment before ozone exposure (n = 6) were quantified colorimetrically using the Griess reaction. RESULTS Uric acid and ascorbic acid concentrations were significantly higher in BAL fluid following pretreatment with pycnogenol, whereas γ-tocopherol concentrations were higher in the ozone exposed group but were similar in the ozone and pycnogenol pretreatment groups. Retinol and γ-tocopherol concentrations tended to increase in the ozone exposure group but were similar in the ozone and pycnogenol pretreatment groups following ozone exposure. Malonylaldehyde concentrations increased in the ozone exposure group but were similar in the ozone and pycnogenol plus ozone groups. The nitrite and total NO metabolite concentrations in BAL fluid, which parallel the in vivo generation of NO in the airways, were significantly greater in the ozone exposed group than the group exposed to filtered air, but decreased with pycnogenol pretreatment. CONCLUSIONS Pycnogenol may increase levels of antioxidant enzymes and decrease levels of nitrogen species, suggesting that antioxidants minimize the effects of acute ozone exposure via a protective mechanism.
Collapse
Affiliation(s)
- Min-Sung Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Kuk-Young Moon
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Da-Jeong Bae
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Moo-Kyun Park
- Department of Otolaryngology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|