1
|
Barchi A, Mandarino FV, Yacoub MR, Albarello L, Massimino L, Savarino EV, Ungaro F, Passaretti S, Masclee GMC, Danese S, Bredenoord AJ, Vespa E. From Pathogenesis to Treatment: Targeting Type-2 Inflammation in Eosinophilic Esophagitis. Biomolecules 2024; 14:1080. [PMID: 39334846 PMCID: PMC11429508 DOI: 10.3390/biom14091080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder of the esophagus. EoE shares a common pathogenetic mechanism with other chronic disorders pertaining to the type 2 inflammatory spectrum, such as atopic dermatitis (AD), allergic rhinitis (AR), asthma, and chronic rhinosinusitis with nasal polyps (CRSwNP). The recent advancements in EoE pathogenesis understanding have unveiled new molecular targets implied within the "atopic march" picture as well as specific to EoE. These discoveries have led to the clinical evaluation of several novel drugs (monoclonal antibodies and immune modulators), specifically aimed at the modulation of Th2 inflammation. In this comprehensive review, we have focused on the subtle mechanisms of type 2 inflammatory disorders, highlighting the similarities and differences with EoE, taking a deeper look into the evolving field of biologic therapies, already approved or under current investigation.
Collapse
Affiliation(s)
- Alberto Barchi
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Gastroenterology & Hepatology, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Francesco Vito Mandarino
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Mona-Rita Yacoub
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Massimino
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology, and Gastroenterology, University of Padua, 35128 Padua, Italy
- Gastroenterology Unit, Azienda Ospedale Università di Padova, 35128 Padua, Italy
| | - Federica Ungaro
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Sandro Passaretti
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Gwen M C Masclee
- Gastroenterology & Hepatology, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Silvio Danese
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Albert J Bredenoord
- Gastroenterology & Hepatology, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Edoardo Vespa
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
2
|
Tollenaere MA, Mølck C, Henderson I, Pollack S, Addis P, Petersen HH, Norsgaard H. Tralokinumab Effectively Disrupts the IL-13/IL-13Rα1/IL-4Rα Signaling Complex but Not the IL-13/IL-13Rα2 Complex. JID INNOVATIONS 2023; 3:100214. [PMID: 37554517 PMCID: PMC10405097 DOI: 10.1016/j.xjidi.2023.100214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 08/10/2023] Open
Abstract
Tralokinumab, a fully human mAb specifically targeting the IL-13 cytokine, has demonstrated clinical efficacy and safety in patients with moderate-to-severe atopic dermatitis. Tralokinumab binds IL-13 with high affinity, which prevents the interaction of IL-13 with IL-13Rα1 and subsequent signaling. Similarly, tralokinumab-bound IL-13 cannot bind to IL-13Rα2, a proposed decoy receptor that is reported to bind IL-13 with extraordinarily high affinity. It has however not been fully elucidated to what extent tralokinumab interferes with the endogenous regulation of IL-13 through IL-13Rα2. In this mechanistic study, we used biophysical, biochemical, and cellular assays to investigate the effect of tralokinumab on the interaction between IL-13 and IL-13Rα1 and IL-13Rα2, respectively, as well as the effects on IL-13Rα2-mediated IL-13 internalization. We demonstrate that IL-13Rα2 binds IL-13 with exceptionally high affinity and that tralokinumab is unable to displace IL-13 from IL-13Rα2. In contrast to this, tralokinumab is able to disrupt the IL-13/IL-13Rα1 and IL-13Rα1/IL-13/IL-4Rα complex. Furthermore, we demonstrate that whereas the IL-13/tralokinumab complex is unable to bind IL-13Rα2, any IL-13 that is not bound by tralokinumab (i.e., free IL-13) can be bound by IL-13Rα2 and subsequently internalized, regardless of the presence of tralokinumab. In summary, our study indicates that tralokinumab does not interfere with endogenous IL-13Rα2-mediated regulation of free IL-13.
Collapse
|
3
|
Barker KH, Higham JP, Pattison LA, Chessell IP, Welsh F, Smith ESJ, Bulmer DC. Sensitization of colonic nociceptors by IL-13 is dependent on JAK and p38 MAPK activity. Am J Physiol Gastrointest Liver Physiol 2023; 324:G250-G261. [PMID: 36749569 PMCID: PMC10010921 DOI: 10.1152/ajpgi.00280.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effective management of visceral pain is a significant unmet clinical need for those affected by gastrointestinal diseases, such as inflammatory bowel disease (IBD). The rational design of novel analgesics requires a greater understanding of the mediators and mechanisms underpinning visceral pain. Interleukin-13 (IL-13) production by immune cells residing in the gut is elevated in IBD, and IL-13 appears to be important in the development of experimental colitis. Furthermore, receptors for IL-13 are expressed by neurons innervating the colon, though it is not known whether IL-13 plays any role in visceral nociception per se. To resolve this, we used Ca2+ imaging of cultured sensory neurons and ex vivo electrophysiological recording from the lumbar splanchnic nerve innervating the distal colon. Ca2+ imaging revealed the stimulation of small-diameter, capsaicin-sensitive sensory neurons by IL-13, indicating that IL-13 likely stimulates nociceptors. IL-13-evoked Ca2+ signals were attenuated by inhibition of Janus (JAK) and p38 kinases. In the lumbar splanchnic nerve, IL-13 did not elevate baseline firing, nor sensitize the response to capsaicin application, but did enhance the response to distention of the colon. In line with Ca2+ imaging experiments, IL-13-mediated sensitization of the afferent response to colon distention was blocked by inhibition of either JAK or p38 kinase signaling. Together, these data highlight a potential role for IL-13 in visceral nociception and implicate JAK and p38 kinases in pronociceptive signaling downstream of IL-13.
Collapse
Affiliation(s)
- Katie H Barker
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - James P Higham
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Iain P Chessell
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Fraser Welsh
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Madeshiya AK, Pillai A. Innate lymphoid cells in depression: Current status and perspectives. Biomark Neuropsychiatry 2022; 7. [PMID: 37123464 PMCID: PMC10136288 DOI: 10.1016/j.bionps.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The recent discovery of innate lymphoid cells (ILCs) has provided new insights into our understanding of the pathogenesis of many disease conditions with immune dysregulation. Type 1 innate lymphoid cells (ILC1s) induce type I immunity and are characterized by the expression of signature cytokine IFN-γ and the master transcription factor T-bet; ILC2s stimulate type II immune responses and are defined by the expression of signature cytokines IL-5 and IL-13, and transcription factors ROR-α and GATA3; ILC3s requires the transcription factor RORγt and produce IL-22 and IL-17. ILCs are largely tissue-resident and are enriched at barrier surfaces of the mammalian body. Increasing evidence shows that inflammation is involved in the pathogenesis of depression. Although few studies have directly investigated the role of ILCs in depression, several studies have examined the levels of cytokines produced by ILCs in depressed subjects. This review summarizes the potential roles of ILCs in depression. A better understanding of the biology of ILCs may lead to the development of new therapeutic strategies for the management of depression.
Collapse
|
5
|
Ejima A, Abe S, Shimba A, Sato S, Uehata T, Tani-ichi S, Munakata S, Cui G, Takeuchi O, Hirai T, Kato S, Ikuta K. Androgens Alleviate Allergic Airway Inflammation by Suppressing Cytokine Production in Th2 Cells. THE JOURNAL OF IMMUNOLOGY 2022; 209:1083-1094. [DOI: 10.4049/jimmunol.2200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/12/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Asthma is more common in females than males after adolescence. However, the mechanism of the sex bias in the prevalence of asthma remains unknown. To test whether sex steroid hormones have some roles in T cells during development of asthma, we analyzed airway inflammation in T cell–specific androgen receptor (AR)– and estrogen receptor (ER)–deficient mice. T cell–specific AR-deficient male mice developed severer house dust mite–induced allergic airway inflammation than did control male mice, whereas T cell–specific ERα- and ERβ-deficient female mice exhibited a similar degree of inflammation as for control female mice. Furthermore, administration of dihydrotestosterone reduced cytokine production of Th2 cells from control, but not AR-deficient, naive T cells. Transfer of OT-II transgenic AR-deficient Th2 cells into wild-type mice induced severer allergic airway inflammation by OVA than transfer of control Th2 cells. Gene expression profiling suggested that the expression of genes related with cell cycle and Th2 differentiation was elevated in AR-deficient Th2 cells, whereas expression of dual specificity phosphatase (DUSP)-2, a negative regulator of p38, was downregulated. In addition, a chromatin immunoprecipitation assay suggested that AR bound to an AR motif in the 5′ untranslated region of the Dusp2 gene in Th2 cells. Furthermore, the Dusp2 promoter with a wild-type AR motif, but not a mutated motif, was transactivated by dihydrotestosterone in a reporter assay. Finally, forced expression of DUSP-2 by retrovirus vector reduced IL-4 expression in Th2 cells. Thus, these results suggest that androgen signaling suppresses cytokine production of Th2 cells by inducing DUSP-2, explaining, in part, the sex bias of asthma after adolescence.
Collapse
Affiliation(s)
- Aki Ejima
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- †Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- ‡Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- §Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Uehata
- ¶Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizue Tani-ichi
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- ‡Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Munakata
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- †Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- ¶Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- §Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeaki Kato
- ‖Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan
- #Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan; and
- **School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Koichi Ikuta
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
A novel TanCAR targeting IL13Rα2 and EphA2 for enhanced glioblastoma therapy. Mol Ther Oncolytics 2022; 24:729-741. [PMID: 35317513 PMCID: PMC8908045 DOI: 10.1016/j.omto.2022.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has been shown to be an effective strategy for combatting non-solid tumors; however, CAR-T therapy is still a challenge for solid tumors, such as glioblastoma. To improve CAR-T therapy for glioblastoma, a new TanCAR, comprising the tandem arrangement of IL13 (4MS) and EphA2 scFv, was generated and validated in vitro and in vivo. In vitro, the novel TanCAR-redirected T cells killed glioblastoma tumor cells by recognizing either IL-13 receptor α2 (IL13Rα2) or EphA2 alone or together upon simultaneous encounter of both targets, but did not kill normal cells bearing only the IL13Rα1/IL4Rα receptor. As further proof of principle, the novel TanCAR was tested in a subcutaneous glioma xenograft mouse model. The results indicated that the novel TanCAR-redirected T cells produced greater glioma tumor regression than single CAR-T cells. Thus, the novel TanCAR-redirected T cells kill gliomas more efficiently and selectively than a single IL13 CAR or EphA2 scFv CAR, with the potential for preventing antigen escape and reduced off-target cytotoxicity.
Collapse
|
7
|
Gevenois PJLY, De Pauw P, Schoonooghe S, Delporte C, Sebti T, Amighi K, Muyldermans S, Wauthoz N. Development of Neutralizing Multimeric Nanobody Constructs Directed against IL-13: From Immunization to Lead Optimization. THE JOURNAL OF IMMUNOLOGY 2021; 207:2608-2620. [PMID: 34645688 DOI: 10.4049/jimmunol.2100250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
IL-13 is a pleiotropic cytokine mainly secreted by Th2 cells. It reacts with many different types of cells involved in allergy, inflammation, and fibrosis, e.g., mastocytes, B cells, and fibroblasts. The role of IL-13 in conditions involving one or several of these phenotypes has therefore been extensively investigated. The inhibition of this cytokine in animal models for various pathologies yielded highly promising results. However, most human trials relying on anti-IL-13 conventional mAbs have failed to achieve a significant improvement of the envisaged disorders. Where some studies might have suffered from several weaknesses, the strategies themselves, such as targeting only IL-13 using conventional mAbs or employing a systemic administration, could be questioned. Nanobodies are recombinant Ag-binding fragments derived from the variable part of H chain-only Abs occurring in Camelidae. Thanks to their single-domain structure, small size (≈15 kDa), good stability, and solubility, they can be engineered into multispecific constructs for combined therapies or for use in new strategies such as formulations for local administration, e.g., pulmonary administration. In this study, we describe the generation of 38 nanobodies that can be subdivided into five CDR3 families. Nine nanobodies were found to have a good affinity profile (KD = 1-200 nM), but none were able to strongly inhibit IL-13 biological activity in vitro (IC50 > 50 µM: HEK-Blue IL-13/IL-4 cells). Multimeric constructs were therefore designed from these inhibitors and resulted in an up to 36-fold improvement in affinity and up to 300-fold enhancement of the biological activity while conserving a high specificity toward IL-13.
Collapse
Affiliation(s)
- Philippe J-L Y Gevenois
- Unit of Pharmaceutics and Biopharmaceutics, Free University of Brussels, Faculty of Pharmacy, Brussels, Belgium;
| | - Pieter De Pauw
- Laboratory of Cellular and Molecular Immunology, Free University of Brussels, Ixelles, Belgium
| | - Steve Schoonooghe
- Flemish Institute for Biotechnology Nanobody Core, Free University of Brussels, Brussels, Belgium
| | - Cédric Delporte
- Unit of Pharmacognosy, Bioanalysis and Drug Discovery, RD3 and Analytical Platform of the Faculty of Pharmacy, Free University of Brussels, Brussels, Belgium; and
| | | | - Karim Amighi
- Unit of Pharmaceutics and Biopharmaceutics, Free University of Brussels, Faculty of Pharmacy, Brussels, Belgium
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Free University of Brussels, Ixelles, Belgium
| | - Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Free University of Brussels, Faculty of Pharmacy, Brussels, Belgium
| |
Collapse
|
8
|
Iwaszko M, Biały S, Bogunia-Kubik K. Significance of Interleukin (IL)-4 and IL-13 in Inflammatory Arthritis. Cells 2021; 10:cells10113000. [PMID: 34831223 PMCID: PMC8616130 DOI: 10.3390/cells10113000] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-4 and IL-13 belong to the T helper 2 (Th2) cytokine family, along with IL-3, IL-5, and IL-9. These cytokines are key mediators of allergic inflammation. They have important immunomodulatory activities and exert influence on a wide variety of immune cells, such as B cells, eosinophils, basophils, monocytes, fibroblasts, endothelial cells, airway epithelial cells, smooth muscle cells, and keratinocytes. Recent studies have implicated IL-4 and IL-13 in the development of various autoimmune diseases. Additionally, these cytokines have emerged as potential players in pathogenesis of inflammatory arthritis. Recent findings suggest that the IL-4 and IL-13 might play a significant role in the downregulation of inflammatory processes underlying RA pathology, and beneficially modulate the course of the disease. This review summarizes the biological features of the IL-4 and IL-13 and provides current knowledge regarding the role of these cytokines in inflammatory arthritis.
Collapse
|
9
|
Abstract
Interleukin-4 (IL-4) is a four-α-helical bundle type I cytokine with broad pleiotropic actions on multiple lineages. Major actions of IL-4 were initially discovered for B and T cells, but this cytokine acts on more than a dozen different target cells spanning the innate and adaptive immune systems and is produced by multiple different cellular sources. While IL-4 was discovered just under 40 years ago in 1982, the interest in and discoveries related to this cytokine continue to markedly expand. There are important new advances related to its biological actions and to its mechanisms of signaling, including critical genes and downstream targets in a range of cell types. IL-4 is critical not only for careful control of immunoglobulin production but also related to inflammation, fibrosis, allergic reactions, and antitumor activity, with actions of IL-4 occurring through two different types of receptors, one of which is also used by IL-13, a closely related cytokine with partially overlapping actions. In this review, we cover critical older information but also highlight newer advances. An area of evolving interest relates to the therapeutic blockade of IL-4 signaling pathway to treat atopic dermatitis and asthma. Thus, this cytokine is historically important, and research in this area has both elucidated major biological pathways and led to therapeutic advances for diseases that affect millions of individuals.
Collapse
Affiliation(s)
- Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, and Veterans Affairs Maryland Health Care System, Baltimore Veterans Affairs Medical Center, Baltimore, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| |
Collapse
|
10
|
Possible Roles of Interleukin-4 and -13 and Their Receptors in Gastric and Colon Cancer. Int J Mol Sci 2021; 22:ijms22020727. [PMID: 33450900 PMCID: PMC7828336 DOI: 10.3390/ijms22020727] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
Interleukin (IL)-4 and -13 are structurally and functionally related cytokines sharing common receptor subunits. They regulate immune responses and, moreover, are involved in the pathogenesis of a variety of human neoplasms. Three different receptors have been described for IL-4, but only IL-4 receptor type II (IL-4Rα/IL-13Rα1) is expressed in solid tumors. While IL-13 can also bind to three different receptors, IL-13 receptor type I (IL-4Rα/IL-13Rα1/IL-13Rα2) and type II (IL-4Rα/IL-13Rα1) are expressed in solid tumors. After receptor binding, IL-4 and IL-13 can mediate tumor cell proliferation, survival, and metastasis in gastric or colon cancer. This review summarizes the results about the role of IL-4/IL-13 and their receptors in gastric and colon cancer.
Collapse
|
11
|
Garrido-Trigo A, Salas A. Molecular Structure and Function of Janus Kinases: Implications for the Development of Inhibitors. J Crohns Colitis 2020; 14:S713-S724. [PMID: 32083640 PMCID: PMC7395311 DOI: 10.1093/ecco-jcc/jjz206] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytokines can trigger multiple signalling pathways, including Janus tyrosine kinases [JAK] and signal transducers and activators of transcription [STATS] pathways. JAKs are cytoplasmic proteins that, following the binding of cytokines to their receptors, transduce the signal by phosphorylating STAT proteins which enter the nuclei and rapidly target gene promoters to regulate gene transcription. Due to the critical involvement of JAK proteins in mediating innate and adaptive immune responses, these family of kinases have become desirable pharmacological targets in inflammatory diseases, including ulcerative colitis and Crohn's disease. In this review we provide an overview of the main cytokines that signal through the JAK/STAT pathway and the available in vivo evidence on mutant or deleted JAK proteins, and discuss the implications of pharmacologically targeting this kinase family in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Alba Garrido-Trigo
- Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Barcelona, Spain
| | - Azucena Salas
- Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Barcelona, Spain,Corresponding author: Azucena Salas, PhD, Inflammatory Bowel Disease Unit, Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Rosselló 149-153, Barcelona 08036, Spain.
| |
Collapse
|
12
|
Zhou J, Zhao H, Zhang L, Ye X, Wang Z, Li Q, Ke H, Zhao G, Du J, Yang S, Zhao L. Effects of bacterial haemorrhagic septicemia on the immune response of Leiocassis longirostris by RNA-Seq and microRNA-Seq. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100659. [PMID: 32070936 DOI: 10.1016/j.cbd.2020.100659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022]
Abstract
Leiocassis longirostris is a common fish variety that is widely cultivated in China, during the breeding process however, it is highly susceptible to bacterial haemorrhagic septicemia, which can cause great economic loss for farmers. To understand the immune responses of L. longirostris to Aeromonas hydrophila infection, Illumina sequencing was employed to identify changes in the mRNA and miRNA in spleen tissue. In this study, a total of 92.16 and 95.61 million (M) high-quality transcriptome reads were generated from the control group (CG) and experimental group (EG) spleen samples, respectively, and 207 up-regulated and 185 down-regulated genes were identified. These genes were enriched in 29 GO terms and 30 KEGG pathways (P ≤ 0.05), including cytokine-cytokine receptor interaction and complement and coagulation cascades, with 17 up-regulated genes and 12 down-regulated genes related to immune responses in the EG relative to the CG. Based on the zebrafish genome, miRNA-seq identified a total of 343 miRNAs, of which 15 were up-regulated and 10 were down-regulated (fold-change ≥2 or ≤0.5 and P ≤ 0.05). Target gene prediction and KEGG enrichment analysis revealed that all of the target genes were concentrated in 13 pathways associated with immune response, including the mTOR signaling pathway and the TGF-beta signaling pathway. The expression patterns of 8 differentially expressed genes and 4 miRNAs involved in immune response were validated by quantitative real-time RT-PCR. These results have provided valuable insights into the molecular mechanisms underlying the immune response of L. longirostris to bacterial haemorrhagic septicemia.
Collapse
Affiliation(s)
- Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Lu Zhang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Xianlin Ye
- Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Zhipeng Wang
- Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Hongyu Ke
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Gang Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
13
|
Penke LR, Ouchi H, Speth JM, Lugogo N, Huang YJ, Huang SK, Peters-Golden M. Transcriptional regulation of the IL-13Rα2 gene in human lung fibroblasts. Sci Rep 2020; 10:1083. [PMID: 31974428 PMCID: PMC6978327 DOI: 10.1038/s41598-020-57972-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023] Open
Abstract
Interleukin (IL)-13 is a type 2 cytokine with important roles in allergic diseases, asthma, and tissue fibrosis. Its receptor (R) α1 is primarily responsible for the biological actions of this cytokine, while Rα2 possesses a decoy function which can block IL-13 signaling. Although the expression of Rα2 is known to be subject to modulation, information about its transcriptional regulation is limited. In this study, we sought to expand the understanding of transcriptional control of Rα2 in lung fibroblasts. We confirmed previous reports that IL-13 elicited modest induction of Rα2 in normal adult human lung fibroblasts, but found that prostaglandin E2 (PGE2) and fibroblast growth factor 2 (FGF-2) -mediators known to influence fibroblast activation in tissue fibrosis but not previously investigated in this regard - led to a much greater magnitude of Rα2 induction. Although both PGE2 (via protein kinase A) and FGF-2 (via protein kinase B, also known as AKT) depended on activation of cAMP-responsive element-binding protein (CREB) for induction of Rα2 expression, they nevertheless demonstrated synergy in doing so, likely attributable to their differential utilization of distinct transcriptional start sites on the Rα2 promoter. Our data identify CREB activation via PGE2 and FGF-2 as a previously unrecognized molecular controller of Rα2 gene induction and provide potential new insights into strategies for therapeutic manipulation of this endogenous brake on IL-13 signaling.
Collapse
Affiliation(s)
- Loka R Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hideyasu Ouchi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer M Speth
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Njira Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Mrowczynski OD, Payne RA, Bourcier AJ, Mau CY, Slagle-Webb B, Shenoy G, Madhankumar AB, Abramson SB, Wolfe D, Harbaugh KS, Rizk EB, Connor JR. Targeting IL-13Rα2 for effective treatment of malignant peripheral nerve sheath tumors in mouse models. J Neurosurg 2019; 131:1369-1379. [PMID: 30544352 DOI: 10.3171/2018.7.jns18284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/16/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas that harbor a high potential for metastasis and have a devastating prognosis. Combination chemoradiation aids in tumor control and decreases tumor recurrence but causes deleterious side effects and does not extend long-term survival. An effective treatment with limited toxicity and enhanced efficacy is critical for patients suffering from MPNSTs. METHODS The authors recently identified that interleukin-13 receptor alpha 2 (IL-13Rα2) is overexpressed on MPNSTs and could serve as a precision-based target for delivery of chemotherapeutic agents. In the work reported here, a recombinant fusion molecule consisting of a mutant human IL-13 targeting moiety and a point mutant variant of Pseudomonas exotoxin A (IL-13.E13 K-PE4E) was utilized to treat MPNST in vitro in cell culture and in an in vivo murine model. RESULTS IL-13.E13 K-PE4E had a potent cytotoxic effect on MPNST cells in vitro. Furthermore, intratumoral administration of IL-13.E13 K-PE4E to orthotopically implanted MPNSTs decreased tumor burden 6-fold and 11-fold in late-stage and early-stage MPNST models, respectively. IL-13.E13 K-PE4E treatment also increased survival by 23 days in the early-stage MPNST model. CONCLUSIONS The current MPNST treatment paradigm consists of 3 prongs: surgery, chemotherapy, and radiation, none of which, either singly or in combination, are curative or extend survival to a clinically meaningful degree. The results presented here provide the possibility of intratumoral therapy with a potent and highly tumor-specific cytotoxin as a fourth treatment prong with the potential to yield improved outcomes in patients with MPNSTs.
Collapse
Affiliation(s)
- Oliver D Mrowczynski
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - Russell A Payne
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - Alexandre J Bourcier
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - Christine Y Mau
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - Becky Slagle-Webb
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - Ganesh Shenoy
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | | | - Stephan B Abramson
- 2Targepeutics, Inc., Hershey, Pennsylvania; and
- 3LifeSci Partners, LLC, Vancouver, Washington
| | | | - Kimberly S Harbaugh
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - Elias B Rizk
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| | - James R Connor
- 1Penn State University Department of Neurosurgery, Milton S. Hershey Medical Center
| |
Collapse
|
15
|
Estrada-Reyes ZM, Tsukahara Y, Amadeu RR, Goetsch AL, Gipson TA, Sahlu T, Puchala R, Wang Z, Hart SP, Mateescu RG. Signatures of selection for resistance to Haemonchus contortus in sheep and goats. BMC Genomics 2019; 20:735. [PMID: 31615414 PMCID: PMC6792194 DOI: 10.1186/s12864-019-6150-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/29/2019] [Indexed: 11/20/2022] Open
Abstract
Background Gastrointestinal nematode infection (GNI) is the most important disease affecting the small ruminant industry in U.S. The environmental conditions in the southern United States are ideal for the survival of the most pathogenic gastrointestinal nematode, Haemonchus contortus. Host genetic variation for resistance to H. contortus allows selective breeding for increased resistance of animals. This selection process increases the prevalence of particular alleles in sheep and goats and creates unique genetic patterns in the genome of these species. The aim of this study was to identify loci with divergent allelic frequencies in a candidate gene panel of 100 genes using two different approaches (frequentist and Bayesian) to estimate Fst outliers in three different breeds of sheep and goats exposed to H. contortus. Results Our results for sheep populations showed SNPs under selection in C3AR1, CSF3, SOCS2, NOS2, STAT5B, TGFB2 and IL2RA genes using frequentist and Bayesian approaches. For goats, SNPs in CD1D, ITGA9, IL12A, IL13RA1, CD86 and TGFB2 genes were under selection. Common signatures of selection in both species were observed in NOS2, TGFB2 and TLR4 genes. Directional selection was present in all SNPs evaluated in the present study. Conclusions A total of 13 SNPs within 7 genes of our candidate gene panel related to H. contortus exposure were identified under selection in sheep populations. For goats, 11 SNPs within 7 genes were identified under selection. Results from this study support the hypothesis that resistance to H. contortus is likely to be controlled by many loci. Shared signatures of selection related to mechanisms of immune protection against H. contortus infection in sheep and goats could be useful targets in breeding programs aimed to produce resistant animals with low FEC.
Collapse
Affiliation(s)
| | - Yoko Tsukahara
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Rodrigo R Amadeu
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Arthur L Goetsch
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Terry A Gipson
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Tilahun Sahlu
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Richard Puchala
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Zaisen Wang
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Steve P Hart
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Raluca G Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Leonard WJ, Lin JX, O'Shea JJ. The γ c Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity 2019; 50:832-850. [PMID: 30995502 DOI: 10.1016/j.immuni.2019.03.028] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
The common cytokine receptor γ chain, γc, is a component of the receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21. Mutation of the gene encoding γc results in X-linked severe combined immunodeficiency in humans, and γc family cytokines collectively regulate development, proliferation, survival, and differentiation of immune cells. Here, we review the basic biology of these cytokines, highlighting mechanisms of signaling and gene regulation that have provided insights for immunodeficiency, autoimmunity, allergic diseases, and cancer. Moreover, we discuss how studies of this family stimulated the development of JAK3 inhibitors and present an overview of current strategies targeting these pathways in the clinic, including novel antibodies, antagonists, and partial agonists. The diverse roles of these cytokines on a range of immune cells have important therapeutic implications.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Metabolic, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| |
Collapse
|
17
|
Bhardwaj R, Suzuki A, Leland P, Joshi BH, Puri RK. Identification of a novel role of IL-13Rα2 in human Glioblastoma multiforme: interleukin-13 mediates signal transduction through AP-1 pathway. J Transl Med 2018; 16:369. [PMID: 30572904 PMCID: PMC6302477 DOI: 10.1186/s12967-018-1746-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
Background Previously, we have demonstrated that Interleukin 13 receptor alpha 2 (IL-13Rα2) is overexpressed in approximate 78% Glioblastoma multiforme (GBM) samples. We have also demonstrated that IL-13Rα2 can serve as a target for cancer immunotherapy in several pre-clinical and clinical studies. However, the significance of overexpression of IL-13Rα2 in GBM and astrocytoma and signaling through these receptors is not known. IL-13 can signal through IL-13R via JAK/STAT and AP-1 pathways in certain cell lines including some tumor cell lines. Herein, we have investigated a role of IL-13/IL-13Rα2 axis in signaling through AP-1 transcription factors in human glioma samples in situ. Methods We examined the activation of AP-1 family of transcription factors (c-Jun, Fra-1, Jun-D, c-Fos, and Jun-B) after treating U251, A172 (IL-13Rα2 +ve) and T98G (IL-13Rα2 −ve) glioma cell lines with IL-13 by RT-qPCR, and immunocytochemistry (ICC). We also performed colorimetric ELISA based assay to determine AP-1 transcription factor activation in glioma cell lines. Furthermore, we examined the expression of AP-1 transcription factors in situ in GBM and astrocytoma specimens by multiplex-immunohistochemistry (IHC). Student t test and ANOVA were used for statistical analysis of the results. Results We have demonstrated up-regulation of two AP-1 transcription factors (c-Jun and Fra-1) at mRNA and protein levels upon treatment with IL-13 in IL-13Rα2 positive but not in IL-13Rα2 negative glioma cell lines. Both transcription factors were also overexpressed in patient derived GBM specimens, however, in contrast to GBM cell lines, c-Fos is also overexpressed in patient derived specimens. Astrocytoma specimens showed lesser extent of immunostaining for IL-13Rα2 and three AP-1 factors compared to GBM specimens. By transcription factor activation assay, we demonstrated that AP-1 transcription factors (C-Jun and Fra-1) were activated upon treatment of IL-13Rα2 + GBM cell lines but not IL-13Rα2 − GBM cell line with IL-13. Our results demonstrate functional activity of AP-1 transcription factor in GBM cell lines in response to IL-13. Conclusions These results indicate that IL-13/IL-13Rα2 axis can mediate signal transduction in situ via AP-1 pathway in GBM and astrocytoma and may serve as a new target for GBM immunotherapy. Electronic supplementary material The online version of this article (10.1186/s12967-018-1746-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rukmini Bhardwaj
- Division of Cellular and Gene Therapies (DCGT) Office of Tissues and Advanced Therapies (OTAT), Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Akiko Suzuki
- Division of Cellular and Gene Therapies (DCGT) Office of Tissues and Advanced Therapies (OTAT), Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Pamela Leland
- Division of Cellular and Gene Therapies (DCGT) Office of Tissues and Advanced Therapies (OTAT), Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Bharat H Joshi
- Division of Cellular and Gene Therapies (DCGT) Office of Tissues and Advanced Therapies (OTAT), Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Raj K Puri
- Division of Cellular and Gene Therapies (DCGT) Office of Tissues and Advanced Therapies (OTAT), Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA.
| |
Collapse
|
18
|
Human lung tissue provides highly relevant data about efficacy of new anti-asthmatic drugs. PLoS One 2018; 13:e0207767. [PMID: 30500834 PMCID: PMC6267969 DOI: 10.1371/journal.pone.0207767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Subgroups of patients with severe asthma are insensitive to inhaled corticosteroids and require novel therapies on top of standard medical care. IL-13 is considered one of the key cytokines in the asthma pathogenesis, however, the effect of IL-13 was mostly studied in rodents. This study aimed to assess IL-13 effect in human lung tissue for the development of targeted therapy approaches such as inhibition of soluble IL-13 or its receptor IL-4Rα subunit. Precision-cut lung slices (PCLS) were prepared from lungs of rodents, non-human primates (NHP) and humans. Direct effect of IL-13 on human lung tissue was observed on inflammation, induction of mucin5AC, and airway constriction induced by methacholine and visualized by videomicroscopy. Anti-inflammatory treatment was evaluated by co-incubation of IL-13 with increasing concentrations of IL-13/IL-13 receptor inhibitors. IL-13 induced a two-fold increase in mucin5AC secretion in human bronchial tissue. Additionally, IL-13 induced release of proinflammatory cytokines eotaxin-3 and TARC in human PCLS. Anti-inflammatory treatment with four different inhibitors acting either on the IL-13 ligand itself (anti-IL-13 antibody, similar to Lebrikizumab) or the IL-4Rα chain of the IL-13/IL-4 receptor complex (anti-IL-4Rα #1, similar to AMG 317, and #2, similar to REGN668) and #3 PRS-060 (a novel anticalin directed against this receptor) could significantly attenuate IL-13 induced inflammation. Contrary to this, IL-13 did not induce airway hyperresponsiveness (AHR) in human and NHP PCLS, although it was effective in rodent PCLS. Overall, this study demonstrates that IL-13 stimulation induces production of mucus and biomarkers of allergic inflammation in human lung tissue ex-vivo but no airway hyperresponsiveness. The results of this study show a more distinct efficacy than known from animals models and a clear discrepancy in AHR induction. Moreover, it allows a translational approach in inhibitor profiling in human lung tissue.
Collapse
|
19
|
Lin JX, Leonard WJ. The Common Cytokine Receptor γ Chain Family of Cytokines. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028449. [PMID: 29038115 DOI: 10.1101/cshperspect.a028449] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 form a family of cytokines based on their sharing the common cytokine receptor γ chain (γc), which was originally discovered as the third receptor component of the IL-2 receptor, IL-2Rγ. The IL2RG gene is located on the X chromosome and is mutated in humans with X-linked severe combined immunodeficiency (XSCID). The breadth of the defects in XSCID could not be explained solely by defects in IL-2 signaling, and it is now clear that γc is a shared receptor component of the six cytokines noted above, making XSCID a disease of defective cytokine signaling. Janus kinase (JAK)3 associates with γc, and JAK3-deficient SCID phenocopies XSCID, findings that served to stimulate the development of JAK3 inhibitors as immunosuppressants. γc family cytokines collectively control broad aspects of lymphocyte development, growth, differentiation, and survival, and these cytokines are clinically important, related to allergic and autoimmune diseases and cancer as well as immunodeficiency. In this review, we discuss the actions of these cytokines, their critical biological roles and signaling pathways, focusing mainly on JAK/STAT (signal transducers and activators of transcription) signaling, and how this information is now being used in clinical therapeutic efforts.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674
| |
Collapse
|
20
|
Interleukin-4 and interleukin-13 increase NADPH oxidase 1-related proliferation of human colon cancer cells. Oncotarget 2018; 8:38113-38135. [PMID: 28498822 PMCID: PMC5503519 DOI: 10.18632/oncotarget.17494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/17/2017] [Indexed: 01/01/2023] Open
Abstract
Human colon cancers express higher levels of NADPH oxidase 1 [NOX1] than adjacent normal epithelium. It has been suggested that reactive oxygen species [ROS] derived from NOX1 contribute to DNA damage and neoplastic transformation in the colon, particularly during chronic inflammatory stress. However, the mechanism(s) underlying increased NOX1 expression in malignant tumors or chronic inflammatory states involving the intestine are poorly characterized. We examined the effects of two pro-inflammatory cytokines, IL-4 and IL-13, on the regulation of NOX1. NOX1 expression was increased 4- to 5-fold in a time- and concentration-dependent manner by both cytokines in human colon cancer cell lines when a functional Type II IL-4 receptor was present. Increased NOX1 transcription following IL-4/IL-13 exposure was mediated by JAK1/STAT6 signaling, was associated with a ROS-related inhibition of protein tyrosine phosphatase activity, and was dependent upon activation and specific binding of GATA3 to the NOX1 promoter. NOX1-mediated ROS production increased cell cycle progression through S-phase leading to a significant increase in cellular proliferation. Evaluation of twenty pairs of surgically-resected colon cancers and their associated uninvolved adjacent colonic epithelium demonstrated a significant increase in the active form of NOX1, NOX1-L, in tumors compared to normal tissues, and a significant correlation between the expression levels of NOX1 and the Type II IL-4 receptor in tumor and the uninvolved colon. These studies imply that NOX1 expression, mediated by IL-4/IL-13, could contribute to an oxidant milieu capable of supporting the initiation or progression of colonic cancer, suggesting a role for NOX1 as a therapeutic target.
Collapse
|
21
|
Abstract
Cytokines signal through specific cell surface receptors to broadly regulate immune development, differentiation, proliferation, and survival, thereby influencing cellular fate and function. Accordingly, cytokines are potential therapeutic targets for modulation of immune responses. Indeed, over the last several decades, an increasing number of cytokine-based clinical trials have been performed, collectively using either recombinant forms of cytokines or blocking agents that modulate the actions of cytokines. The pleiotropic actions of cytokines, including their abilities to mediate both inflammatory and protective immune responses, indicate that using or targeting cytokines can have desired but also potentially undesirable effects. Here, we focus on the immunomodulatory cytokine, IL-2. We review the underlying basic science related to IL-2 and its biologic actions, discuss the current state of IL-2-based immunotherapy, and focus on emerging concepts of modulating the activities of this cytokine, including the generation of novel partial cytokine agonists as new potential therapeutics.
Collapse
Affiliation(s)
- Suman Mitra
- Respiratory, Inflammatory and Autoimmune Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Lee SE, Kang SG, Choi MJ, Jung SB, Ryu MJ, Chung HK, Chang JY, Kim YK, Lee JH, Kim KS, Kim HJ, Lee HK, Yi HS, Shong M. Growth Differentiation Factor 15 Mediates Systemic Glucose Regulatory Action of T-Helper Type 2 Cytokines. Diabetes 2017; 66:2774-2788. [PMID: 28874416 DOI: 10.2337/db17-0333] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/24/2017] [Indexed: 11/13/2022]
Abstract
T-helper type 2 (Th2) cytokines, including interleukin (IL)-13 and IL-4, produced in adipose tissue, are critical regulators of intra-adipose and systemic lipid and glucose metabolism. Furthermore, IL-13 is a potential therapy for insulin resistance in obese mouse models. Here, we examined mediators produced by adipocytes that are responsible for regulating systemic glucose homeostasis in response to Th2 cytokines. We used RNA sequencing data analysis of cultured adipocytes to screen factors secreted in response to recombinant IL-13. Recombinant IL-13 induced expression of growth differentiation factor 15 (GDF15) via the Janus kinase-activated STAT6 pathway. In vivo administration of α-galactosylceramide or IL-33 increased IL-4 and IL-13 production, thereby increasing GDF15 levels in adipose tissue and in plasma of mice; however, these responses were abrogated in STAT6 knockout mice. Moreover, administration of recombinant IL-13 to wild-type mice fed a high-fat diet (HFD) improved glucose intolerance; this was not the case for GDF15 knockout mice fed the HFD. Taken together, these data suggest that GDF15 is required for IL-13-induced improvement of glucose intolerance in mice fed an HFD. Thus, beneficial effects of Th2 cytokines on systemic glucose metabolism and insulin sensitivity are mediated by GDF15. These findings open up a potential pharmacological route for reversing insulin resistance associated with obesity.
Collapse
Affiliation(s)
- Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
23
|
Spolski R, Gromer D, Leonard WJ. The γ c family of cytokines: fine-tuning signals from IL-2 and IL-21 in the regulation of the immune response. F1000Res 2017; 6:1872. [PMID: 29123649 PMCID: PMC5657018 DOI: 10.12688/f1000research.12202.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 01/08/2023] Open
Abstract
Interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 form a family of cytokines based on the sharing of a receptor component, the common cytokine receptor γ chain, γ
c, which is encoded by the gene mutated in humans with X-linked severe combined immunodeficiency (XSCID). Together, these cytokines play critical roles in lymphoid development, differentiation, growth, and survival as well as mediating effector function. Here, we provide an overview of the main actions of members of this cytokine family but then primarily focus on IL-2 and IL-21, discussing their dynamic interplay and contributions to a fine-tuned immune response. Moreover, we discuss the therapeutic utility of modulating their actions, particularly for autoimmunity and cancer.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Gromer
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Tripp CS, Cuff C, Campbell AL, Hendrickson BA, Voss J, Melim T, Wu C, Cherniack AD, Kim K. RPC4046, A Novel Anti-interleukin-13 Antibody, Blocks IL-13 Binding to IL-13 α1 and α2 Receptors: A Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation First-in-Human Study. Adv Ther 2017; 34:1364-1381. [PMID: 28455782 PMCID: PMC5487860 DOI: 10.1007/s12325-017-0525-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 11/27/2022]
Abstract
Introduction A unique anti-interleukin (IL)-13 monoclonal antibody, RPC4046, was generated on the basis of differential IL-13 receptor (R) blockade as assessed in a murine asthma model; the safety, tolerability, pharmacokinetics, and pharmacodynamics of RPC4046 were evaluated in a first-in-human study. Methods Anti-IL-13 antibodies with varying receptor blocking specificity were evaluated in the ovalbumin-induced murine asthma model. A randomized, double-blind, placebo-controlled, dose-escalation first-in-human study (NCT00986037) was conducted with RPC4046 in healthy adults and patients with mild to moderate controlled asthma. Results In the ovalbumin model, blocking IL-13 binding to both IL-13Rs (IL-13Rα1 and IL-13Rα2) inhibited more asthma phenotypic features and more fully normalized the distinct IL-13 gene transcription associated with asthma compared with blocking IL-13Rα1 alone. In humans, RPC4046 exposure increased dose-dependently; pharmacokinetics were similar in healthy and asthmatic subjects, and blockade of both IL-13Rs uniquely affected IL-13 gene transcription. A minority of participants (28%) had antidrug antibodies, which were transient and appeared not to affect pharmacokinetics. Adverse event profiles were similar in healthy and asthmatic subjects, without dose-related or administration route differences, systemic infusion-related reactions, or asthma symptom worsening. Adverse events were mild to moderate, with none reported as probably related to RPC4046 or leading to discontinuations. Non-serious upper respiratory tract infections were more frequent with RPC4046 versus placebo. Conclusion RPC4046 is a novel anti-IL-13 antibody that blocks IL-13 binding to both receptors and more fully blocks the asthma phenotype. These results support further investigation of RPC4046 for IL-13-related allergic/inflammatory diseases (e.g., asthma and eosinophilic esophagitis). Funding AbbVie Inc. sponsored the studies and contributed to the design and conduct of the studies, data management, data analysis, interpretation of the data, and in the preparation and approval of the manuscript.
Electronic supplementary material The online version of this article (doi:10.1007/s12325-017-0525-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Carolyn Cuff
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA.
| | | | | | - Jeff Voss
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
| | - Terry Melim
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
| | - Chengbin Wu
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
- EpimAb Biotherapeutics Inc., Shanghai, China
| | - Andrew D Cherniack
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | |
Collapse
|
25
|
Deepak P, Kumar S, Acharya A. IL-13 Neutralization Modulates Function of Type II Polarized Macrophages in vivo in a Murine T-Cell Lymphoma. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x0700500107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IL-13 is a Th2 cytokine that suppresses the effector function and alters the phenotype and function of macrophages switching to alternatively activated or type II polarized macrophages. The type II polarized macrophages or M2 phenotype differ from normal macrophages greatly in terms of receptor expression, cytokine and NO production, that show tumor promoting function rather than tumoricidal function of classically activated macrophages. The chemokines CCL-22 and CCL-17 produced by either tumor cells or alternatively activated macrophages attract Th2 cells preferentially, which increase the local concentration of Th2 cytokines including IL-13 that further skewed the normal phenotype of macrophages at the site of the tumor micro-environment. Therefore, it is possible to restore the phenotype and function of alternatively activated macrophages by eliminating or blocking the activities of these cytokines. In the present investigation, we show that by blocking the activity/signaling of one of its major constituents IL-13, the iNOS expression and correspondingly NO production increases. The observation signifies its efficacy towards a novel approach for cancer therapy by modulating the function of tumor-associated macrophages (TAM) in vivo for the first time.
Collapse
Affiliation(s)
- P. Deepak
- Immunology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - S. Kumar
- Immunology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - A. Acharya
- Immunology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
26
|
Neuroimmunology of the Interleukins 13 and 4. Brain Sci 2016; 6:brainsci6020018. [PMID: 27304970 PMCID: PMC4931495 DOI: 10.3390/brainsci6020018] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/20/2022] Open
Abstract
The cytokines interleukin 13 and 4 share a common heterodimeric receptor and are important modulators of peripheral allergic reactions. Produced primarily by T-helper type 2 lymphocytes, they are typically considered as anti-inflammatory cytokines because they can downregulate the synthesis of T-helper type 1 pro-inflammatory cytokines. Their presence and role in the brain is only beginning to be investigated and the data collected so far shows that these molecules can be produced by microglial cells and possibly by neurons. Attention has so far been given to the possible role of these molecules in neurodegeneration. Both neuroprotective or neurotoxic effects have been proposed based on evidence that interleukin 13 and 4 can reduce inflammation by promoting the M2 microglia phenotype and contributing to the death of microglia M1 phenotype, or by potentiating the effects of oxidative stress on neurons during neuro-inflammation. Remarkably, the heterodimeric subunit IL-13Rα1 of their common receptor was recently demonstrated in dopaminergic neurons of the ventral tegmental area and the substantia nigra pars compacta, suggesting the possibility that both cytokines may affect the activity of these neurons regulating reward, mood, and motor coordination. In mice and man, the gene encoding for IL-13Rα1 is expressed on the X chromosome within the PARK12 region of susceptibility to Parkinson’s disease (PD). This, together with finding that IL-13Rα1 contributes to loss of dopaminergic neurons during inflammation, indicates the possibility that these cytokines may contribute to the etiology or the progression of PD.
Collapse
|
27
|
Interleukin-4 receptor signaling and its binding mechanism: A therapeutic insight from inhibitors tool box. Cytokine Growth Factor Rev 2016; 32:3-15. [PMID: 27165851 DOI: 10.1016/j.cytogfr.2016.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/23/2016] [Accepted: 04/15/2016] [Indexed: 01/23/2023]
Abstract
Studies on Interlukin-4 (IL-4) disclosed great deal of information about its various physiological and pathological roles. All these roles depend upon its interaction and signaling through either type-I (IL-4Rα/common γ-chain) or type-II (IL-4Rα/IL-13Rα) receptors. Another cytokine, IL-13, shares some of the functions of IL-4, because both cytokines use a common receptor subunit, IL-4Rα. Here in this review, we discuss the structural details of IL-4 and IL-4Rα subunit and the structural similarities between IL-4 and IL-13. We also describe detailed chemistry of type-I and type-II receptor complexes and their signaling pathways. Furthermore, we elaborate the strength of type-II hetero dimer signals in response to IL-4 and IL-13. These cytokines are prime players in pathogenesis of allergic asthma, allergic hypersensitivity, different cancers, and HIV infection. Recent advances in the structural and binding chemistry of these cytokines various types of inhibitors were designed to block the interaction of IL-4 and IL-13 with their receptor, including several IL-4 mutant analogs and IL-4 antagonistic antibodies. Moreover, different targeted immunotoxins, which is a fusion of cytokine protein with a toxin or suicidal gene, are the new class of inhibitors to prevent cancer progression. In addition few small molecular inhibitors such as flavonoids have also been developed which are capable of binding with high affinity to IL-4Rα and, therefore, can be very effective in blocking IL-4-mediated responses.
Collapse
|
28
|
Karo-Atar D, Bordowitz A, Wand O, Pasmanik-Chor M, Fernandez IE, Itan M, Frenkel R, Herbert DR, Finkelman FD, Eickelberg O, Munitz A. A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair. Mucosal Immunol 2016; 9:240-53. [PMID: 26153764 PMCID: PMC4703942 DOI: 10.1038/mi.2015.56] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/14/2015] [Indexed: 02/04/2023]
Abstract
Molecular mechanisms that regulate lung repair vs. progressive scarring in pulmonary fibrosis remain elusive. Interleukin (IL)-4 and IL-13 are pro-fibrotic cytokines that share common receptor chains including IL-13 receptor (R) α1 and are key pharmacological targets in fibrotic diseases. However, the roles of IL-13Rα1 in mediating lung injury/repair are unclear. We report dysregulated levels of IL-13 receptors in the lungs of bleomycin-treated mice and to some extent in idiopathic pulmonary fibrosis patients. Transcriptional profiling demonstrated an epithelial cell-associated gene signature that was homeostatically dependent on IL-13Rα1 expression. IL-13Rα1 regulated a striking array of genes in the lung following bleomycin administration and Il13ra1 deficiency resulted in exacerbated bleomycin-induced disease. Increased pathology in bleomycin-treated Il13ra1(-/-) mice was due to IL-13Rα1 expression in structural and hematopoietic cells but not due to increased responsiveness to IL-17, IL-4, IL-13, increased IL-13Rα2 or type 1 IL-4R signaling. These data highlight underappreciated protective roles for IL-13Rα1 in lung injury and homeostasis.
Collapse
Affiliation(s)
- D Karo-Atar
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - A Bordowitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - O Wand
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - M Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - I E Fernandez
- Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - M Itan
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - R Frenkel
- Department of Math, Physics and Computer Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - D R Herbert
- Division of Experimental Medicine, University of California, San Francisco, California, USA
| | - F D Finkelman
- Division of Allergy, Immunology and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA,Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - O Eickelberg
- Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - A Munitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel,()
| |
Collapse
|
29
|
Abstract
Obesity is one of the most serious pandemic health problems in modern society and the predisposing factor for the type 2 diabetes mellitus. Chronic low-grade inflammation mediates the pathogenesis of insulin resistance in obese humans and rodents, and white adipose tissue is one of major tissues to modulate inflammation. Obese humans and rodents show dynamic changes of immunocellular compositions in white adipose tissue to induce inflammatory responses. Innate and adaptive immune responses mainly mediated by macrophages and T cells contribute insulin resistance. Recently, it has been shown that adipose tissue fibrosis is also enhanced in obese humans and rodents along with inflammatory responses, and suppression of adipose tissue fibrosis shows improved insulin sensitivity in rodent models, suggesting that adipose tissue fibrosis is involved in insulin resistance.
Collapse
Affiliation(s)
- Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
30
|
IL-13Rα2 mediates PNR-induced migration and metastasis in ERα-negative breast cancer. Oncogene 2014; 34:1596-607. [PMID: 24747967 DOI: 10.1038/onc.2014.53] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/30/2014] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
Emerging evidence has linked photoreceptor cell-specific nuclear receptor (PNR/NR2E3), an orphan nuclear hormone receptor, to human breast cancer. PNR was shown to be a transcriptional activator of estrogen receptor-α (ERα) in ERα-positive breast cancer cell lines and high-level expression of PNR correlates with favorable response of ERα-positive breast cancer patients to tamoxifen. Interestingly, gene expression microarray study shows that PNR regulates distinct genes from those regulated by ERα, suggesting that PNR could have ERα-independent functions. Herein, we investigated the function of PNR in ERα-negative breast cancer cells. Our results showed that PNR-induced cell migration and metastasis of ERα-negative breast cancer cells both in vitro and in vivo, and the effect was attributed to the upregulation of interleukin (IL)-13Rα2, a high-affinity receptor for IL-13 that regulates tumor growth, invasion and metastasis of various human cancers. Mechanistically, PNR activated transcription of IL-13Rα2 through direct recruitment to IL-13Rα2 promoter. Upon stimulation with IL-13, IL-13Rα2 increased the extracellular signal-regulated kinases 1 and 2 phosphorylation, which led to breast cancer migration and metastasis. The IL-13 triggered signal cascade was specific to IL-13Rα2, as the closely related IL-13Rα1 was not regulated by PNR. IL-13Rα2 is a novel tumor antigen that is overexpressed in a variety of solid tumor types. This study presents the first evidence that PNR could promote ERα-negative breast cancer metastasis through activation of IL-13Rα2-mediated signaling pathway.
Collapse
|
31
|
Thaci B, Brown CE, Binello E, Werbaneth K, Sampath P, Sengupta S. Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro Oncol 2014; 16:1304-12. [PMID: 24723564 DOI: 10.1093/neuonc/nou045] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) remains one of the most lethal primary brain tumors despite surgical and therapeutic advancements. Targeted therapies of neoplastic diseases, including GBM, have received a great deal of interest in recent years. A highly studied target of GBM is interleukin-13 receptor α chain variant 2 (IL13Rα2). Targeted therapies against IL13Rα2 in GBM include fusion chimera proteins of IL-13 and bacterial toxins, nanoparticles, and oncolytic viruses. In addition, immunotherapies have been developed using monoclonal antibodies and cell-based strategies such as IL13Rα2-pulsed dendritic cells and IL13Rα2-targeted chimeric antigen receptor-modified T cells. Advanced therapeutic development has led to the completion of phase I clinical trials for chimeric antigen receptor-modified T cells and phase III clinical trials for IL-13-conjugated bacterial toxin, with promising outcomes. Selective expression of IL13Rα2 on tumor cells, while absent in the surrounding normal brain tissue, has motivated continued study of IL13Rα2 as an important candidate for targeted glioma therapy. Here, we review the preclinical and clinical studies targeting IL13Rα2 in GBM and discuss new advances and promising applications.
Collapse
Affiliation(s)
- Bart Thaci
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island (P.S., S.S.); Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts (B.T., K.W., E.B., P.S., S.S.); Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Hospital, Duarte, California (C.E.B.)
| | - Christine E Brown
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island (P.S., S.S.); Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts (B.T., K.W., E.B., P.S., S.S.); Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Hospital, Duarte, California (C.E.B.)
| | - Emanuela Binello
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island (P.S., S.S.); Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts (B.T., K.W., E.B., P.S., S.S.); Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Hospital, Duarte, California (C.E.B.)
| | - Katherine Werbaneth
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island (P.S., S.S.); Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts (B.T., K.W., E.B., P.S., S.S.); Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Hospital, Duarte, California (C.E.B.)
| | - Prakash Sampath
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island (P.S., S.S.); Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts (B.T., K.W., E.B., P.S., S.S.); Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Hospital, Duarte, California (C.E.B.)
| | - Sadhak Sengupta
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island (P.S., S.S.); Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts (B.T., K.W., E.B., P.S., S.S.); Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Hospital, Duarte, California (C.E.B.)
| |
Collapse
|
32
|
IL-4 receptor-alpha-dependent control of Cryptococcus neoformans in the early phase of pulmonary infection. PLoS One 2014; 9:e87341. [PMID: 24475277 PMCID: PMC3903725 DOI: 10.1371/journal.pone.0087341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/20/2013] [Indexed: 12/28/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes lung inflammation and meningoencephalitis in immunocompromised people. Previously we showed that mice succumb to intranasal infection by induction of pulmonary interleukin (IL)-4Rα-dependent type 2 immune responses, whereas IL-12-dependent type 1 responses confer resistance. In the experiments presented here, IL-4Rα⁻/⁻ mice unexpectedly show decreased fungal control early upon infection with C. neoformans, whereas wild-type mice are able to control fungal growth accompanied by enhanced macrophage and dendritic cell recruitment to the site of infection. Lower pulmonary recruitment of macrophages and dendritic cells in IL-4Rα⁻/⁻ mice is associated with reduced pulmonary expression of CCL2 and CCL20 chemokines. Moreover, IFN-γ and nitric oxide production are diminished in IL-4Rα⁻/⁻ mice compared to wild-type mice. To directly study the potential mechanism(s) responsible for reduced production of IFN-γ, conventional dendritic cells were stimulated with C. neoformans in the presence of IL-4 which results in increased IL-12 production and reduced IL-10 production. Together, a beneficial role of early IL-4Rα signaling is demonstrated in pulmonary cryptococcosis, which contrasts with the well-known IL-4Rα-mediated detrimental effects in the late phase.
Collapse
|
33
|
Linking GATA-3 and interleukin-13: implications in asthma. Inflamm Res 2013; 63:255-65. [PMID: 24363163 DOI: 10.1007/s00011-013-0700-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/02/2013] [Accepted: 12/12/2013] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Asthma is one of the serious global health problems and cause of huge mortality and morbidity. It is characterized by persistent airway inflammation, airway hyperresponsiveness, increased IgE levels and mucus hypersecretion. Asthma is mediated by dominant Th2 immune response, causing enhanced expression of Th2 cytokines. These cytokines are responsible for the various pathological changes associated with allergic asthma. MATERIALS AND METHODS The role of Th2 cells in the pathogenesis of the asthma is primarily mediated through the cytokine IL-13, also produced by type 2 innate lymphoid cells, that comes under the transcriptional regulation of GATA3. In this review we will try to explore the link between IL-13 and GATA3 in the progression and regulation of asthma and its possible role as a therapeutic target. CONCLUSION Inhibition of GATA3 activity or blockade of GATA3 expression may attenuate the interleukin-13 mediated asthma phenotypes. So, GATA3 might be a potential therapeutic target for the treatment of allergic asthma.
Collapse
|
34
|
Zhou R, Qian S, Gu X, Chen Z, Xiang J. Interleukin-13 and its receptors in colorectal cancer (Review). Biomed Rep 2013; 1:687-690. [PMID: 24649010 DOI: 10.3892/br.2013.132] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-13 is an immunoregulatory cytokine secreted by numerous immune cells. Its functions are similar to those of IL-4 and they share a common receptor. This cytokine has been included in recent studies on human tumors and malignant diseases, evoking a scientific interest to investigate the role of IL-13 and its receptors as novel biomarkers and targets for therapy. Colorectal cancer is one of the most common human malignancies, its prognosis is not promising and the efficacy of molecular-targeted therapy has not been established. This review summarizes the currently available data on the role of IL-13 and its receptors in colorectal cancer, including the signaling pathways involved in mediating the effects of IL-13, the role of IL-13 and/or its receptors in the prediction of cancer and several drugs targeting IL-13 or its receptors that are currently under evaluation.
Collapse
Affiliation(s)
- Ru Zhou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Shiguang Qian
- Department of Immunology and General Surgery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Xiaodong Gu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zongyou Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianbin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
35
|
Single nucleotide polymorphism in the promoter of the human interleukin-13 gene is associated with asthma in Malaysian adults. BIOMED RESEARCH INTERNATIONAL 2013; 2013:981012. [PMID: 23865080 PMCID: PMC3707285 DOI: 10.1155/2013/981012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/03/2013] [Indexed: 11/17/2022]
Abstract
Asthma susceptibility genes are mapped to a region on human chromosome 5q31-q33, which contains a cluster of proinflammatory cytokine genes such as interleukin-13 (IL-13), which is associated with asthma. This study investigated the allele frequencies of two single nucleotide polymorphisms (SNPs) (−1111C>T and 4257C>A) in the IL-13 gene between asthmatics and healthy volunteers as well as the relationship between these SNPs and IL-13 production. DNA extracted from buffy coat of asthmatic and control subjects was genotyped using the PCR-RFLP method. Amount of IL-13 produced by mitogen-stimulated peripheral blood leucocytes PBLs (PBLs) was determined by ELISA. The frequencies of the −1111C and 4257G wild-type alleles were 0.52 and 0.55 in asthmatics and were 0.67 and 0.56 in controls. A significant (P < 0.05) association was found between genotype and allele frequencies of SNP at position −1111C>T between asthmatic and control groups (OR, 1.810; 95% CI = 1.184 to 2.767; P < 0.05). The mitogen-stimulated PBLs from asthmatics produced higher amounts of IL-13 production (P < 0.001). The 4257GA heterozygous and 4257AA homozygous mutant alleles were associated with higher IL-13 production in asthmatics (P < 0.05). Our results show that the −1111T mutant allele are associated with asthma and the 4257A mutant alleles are associated with elevated IL-13 production.
Collapse
|
36
|
Chen W, Sivaprasad U, Gibson AM, Ericksen MB, Cunningham CM, Bass SA, Kinker KG, Finkelman FD, Wills-Karp M, Khurana Hershey GK. IL-13 receptor α2 contributes to development of experimental allergic asthma. J Allergy Clin Immunol 2013; 132:951-8.e1-6. [PMID: 23763980 DOI: 10.1016/j.jaci.2013.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 03/21/2013] [Accepted: 04/05/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND IL-13 receptor α2 (IL-13Rα2) binds IL-13 with high affinity and modulates IL-13 responses. There are soluble and membrane forms of IL-13Rα2 generated by alternative splicing in mice, but human subjects express only the membrane form of IL-13Rα2 (memIL-13Rα2). OBJECTIVE We determined the role of memIL-13Rα2 in the development of allergic inflammation in mouse models of asthma. METHODS IL-13Rα2-deficient and memIL-13Rα2 lung epithelium-specific transgenic mice were challenged with house dust mite (HDM). Airway hyperresponsiveness (AHR) and inflammation were assessed based on the airway pressure-time index, bronchoalveolar lavage (BAL) cell counts, and lung histology. Mucus production was determined by means of periodic acid-Schiff staining of lung sections, Western blot analysis of chloride channel calcium activated 3 (CLCA3) expression in lung homogenates, and ELISA of Muc5ac in BAL fluid. The expression of cytokines and chemokines was determined by using RT-quantitative PCR. RESULTS In IL-13Rα2-deficient mice AHR and airway inflammation were attenuated compared with levels seen in wild-type mice after HDM challenge. Lung epithelial overexpression of memIL-13Rα2 in the IL-13Rα2-deficient mice reconstituted AHR and inflammation to levels similar to those observed in HDM-challenged wild-type mice. Mucus production was attenuated in lungs from HDM-treated IL-13Rα2-deficient mice, whereas lung epithelial overexpression of memIL-13Rα2 increased mucus production. Lung epithelial overexpression of memIL-13Rα2 had no effect on levels of the soluble form of IL-13Rα2 in serum or BAL fluid and did not affect IL-13-dependent signal transducer and activator of transcription 6 activation in the lungs. CONCLUSION These data collectively support a distinct role for memIL-13Rα2 in the lung and suggest that memIL-13Rα2 might contribute to allergic inflammation.
Collapse
Affiliation(s)
- Weiguo Chen
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Production of a human neutralizing monoclonal antibody and its crystal structure in complex with ectodomain 3 of the interleukin-13 receptor α1. Biochem J 2013; 451:165-75. [PMID: 23384096 DOI: 10.1042/bj20121819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gene deletion studies in mice have revealed critical roles for IL (interleukin)-4 and -13 in asthma development, with the latter controlling lung airways resistance and mucus secretion. We have now developed human neutralizing monoclonal antibodies against human IL-13Rα1 (IL-13 receptor α1) subunit that prevent activation of the receptor complex by both IL-4 and IL-13. We describe the crystal structures of the Fab fragment of antibody 10G5H6 alone and in complex with D3 (ectodomain 3) of IL-13Rα1. Although the structure showed significant domain swapping within a D3 dimer, we showed that Arg(230), Phe(233), Tyr(250), Gln(252) and Leu(293) in each D3 monomer and Ser(32), Asn(102) and Trp(103) in 10G5H6 Fab are the key interacting residues at the interface of the 10G5H6 Fab-D3 complex. One of the most striking contacts is the insertion of the ligand-contacting residue Leu(293) of D3 into a deep pocket on the surface of 10G5H6 Fab, and this appears to be a central determinant of the high binding affinity and neutralizing activity of the antibody.
Collapse
|
38
|
Lightwood D, O'Dowd V, Carrington B, Veverka V, Carr MD, Tservistas M, Henry AJ, Smith B, Tyson K, Lamour S, Sarkar K, Turner A, Lawson AD, Bourne T, Gozzard N, Palframan R. The Discovery, Engineering and Characterisation of a Highly Potent Anti-Human IL-13 Fab Fragment Designed for Administration by Inhalation. J Mol Biol 2013; 425:577-93. [DOI: 10.1016/j.jmb.2012.11.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/20/2012] [Accepted: 11/22/2012] [Indexed: 01/13/2023]
|
39
|
Kong S, Sengupta S, Tyler B, Bais AJ, Ma Q, Doucette S, Zhou J, Sahin A, Carter BS, Brem H, Junghans RP, Sampath P. Suppression of human glioma xenografts with second-generation IL13R-specific chimeric antigen receptor-modified T cells. Clin Cancer Res 2012; 18:5949-60. [PMID: 22966020 PMCID: PMC4337849 DOI: 10.1158/1078-0432.ccr-12-0319] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) remains highly incurable, with frequent recurrences after standard therapies of maximal surgical resection, radiation, and chemotherapy. To address the need for new treatments, we have undertaken a chimeric antigen receptor (CAR) "designer T cell" (dTc) immunotherapeutic strategy by exploiting interleukin (IL)13 receptor α-2 (IL13Rα2) as a GBM-selective target. EXPERIMENTAL DESIGN We tested a second-generation IL13 "zetakine" CAR composed of a mutated IL13 extracellular domain linked to intracellular signaling elements of the CD28 costimulatory molecule and CD3ζ. The aim of the mutation (IL13.E13K.R109K) was to enhance selectivity of the CAR for recognition and killing of IL13Rα2(+) GBMs while sparing normal cells bearing the composite IL13Rα1/IL4Rα receptor. RESULTS Our aim was partially realized with improved recognition of tumor and reduced but persisting activity against normal tissue IL13Rα1(+) cells by the IL13.E13K.R109K CAR. We show that these IL13 dTcs were efficient in killing IL13Rα2(+) glioma cell targets with abundant secretion of cytokines IL2 and IFNγ, and they displayed enhanced tumor-induced expansion versus control unmodified T cells in vitro. In an in vivo test with a human glioma xenograft model, single intracranial injections of IL13 dTc into tumor sites resulted in marked increases in animal survivals. CONCLUSIONS These data raise the possibility of immune targeting of diffusely invasive GBM cells either via dTc infusion into resection cavities to prevent GBM recurrence or via direct stereotactic injection of dTcs to suppress inoperable or recurrent tumors. Systemic administration of these IL13 dTc could be complicated by reaction against normal tissues expressing IL13Ra1.
Collapse
Affiliation(s)
- Seogkyoung Kong
- Brain Tumor Lab, Department of Neurosurgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Sadhak Sengupta
- Brain Tumor Lab, Department of Neurosurgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Betty Tyler
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anthony J. Bais
- Biotherapeutics Development Lab, Department of Medicine, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Qiangzhong Ma
- Biotherapeutics Development Lab, Department of Medicine, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Saryn Doucette
- Department of Pathology, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Jinyuan Zhou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ayguen Sahin
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Henry Brem
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard P. Junghans
- Biotherapeutics Development Lab, Department of Medicine, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Prakash Sampath
- Brain Tumor Lab, Department of Neurosurgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| |
Collapse
|
40
|
Expression of interleukin-4 and interleukin-13 and their receptors in colorectal cancer. Int J Colorectal Dis 2012; 27:1369-76. [PMID: 22441356 DOI: 10.1007/s00384-012-1456-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2012] [Indexed: 02/04/2023]
Abstract
PURPOSE Interleukin-4 (IL-4) and interleukin-13 (IL-13) are anti-inflammatory and immunomodulatory cytokines which can influence cancer-directed immunosurveillance. Nothing is presently known about expression of these cytokines and their receptors (IL-4R and IL-13R) in colorectal cancer. The aim of this study was to characterize their expression in primary colorectal cancer specimens and to evaluate possible functions for this disease. METHODS Expression of IL-4, IL-13, IL-4R, and IL-13R protein was characterized by immunohistochemistry in 359 patients with Union for International Cancer Control stage I-III colorectal cancer and evaluated by uni- and multivariate analysis for their prognostic relevance. RESULTS All four proteins were expressed in colorectal cancer specimens. In the cancer cells, high IL-4, IL-13, IL-4R, and IL-13R immunoreactivity were present in 33 % (118/359), 50 % (181/359), 36 % (129/359), and 42 % (152/359), respectively. Patients with high expression of IL-4, IL-4R, and IL-13R had a lower frequency of lymph node metastases. Expression of IL-13 did not influence the frequency of lymph node metastases. However, high IL-13-immunoreactivity was associated with a better overall survival (p = 0.041). Expression of IL-4, IL-4R, or IL-13R did not influence survival. Multivariate analysis revealed that besides pT classification and tumor recurrence, IL-13 expression was an independent prognostic factor for overall survival. CONCLUSIONS Expression of IL-4, IL-4R, and IL-13R are involved in the process of local metastases in colorectal cancer, while IL-13 expression has an impact on survival. These interleukins and their receptors may become attractive targets for the treatment of colorectal cancer.
Collapse
|
41
|
Balyasnikova IV, Wainwright DA, Solomaha E, Lee G, Han Y, Thaci B, Lesniak MS. Characterization and immunotherapeutic implications for a novel antibody targeting interleukin (IL)-13 receptor α2. J Biol Chem 2012; 287:30215-27. [PMID: 22778273 DOI: 10.1074/jbc.m112.370015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The high affinity interleukin-13 receptor α2 (IL13Rα2) is selectively expressed at a high frequency by glioblastoma multiforme (GBM) as well as several other tumor types. One approach for targeting this tumor-specific receptor utilizes the cognate ligand, IL-13, conjugated to cytotoxic molecules. However, this approach lacks specificity because the lower affinity receptor for IL-13, IL13Rα1, is widely expressed by normal tissues. Here, we aimed to develop and characterize a novel monoclonal antibody (mAb) specific to IL13Rα2 for the therapeutic purpose of targeting IL13Rα2-expressing tumors. Hybridoma cell lines were generated and compared for binding affinities to recombinant human IL13Rα2 (rhIL13Rα2). Clone 47 demonstrated binding to the native conformation of IL13Rα2 and was therefore chosen for further studies. Clone 47 bound specifically and with high affinity (K(D) = 1.39 × 10(-9) M) to rhIL13Rα2 but not to rhIL13Rα1 or murine IL13Rα2. Furthermore, clone 47 specifically recognized wild-type IL13Rα2 expressed on the surface of CHO and HEK cells as well as several glioma cell lines. Competitive binding assays revealed that clone 47 also significantly inhibited the interaction between human soluble IL-13 and IL13Rα2 receptor. Moreover, we found that N-linked glycosylation of IL13Rα2 contributes in part to the interaction of the antibody to IL13Rα2. In vivo, the IL13Rα2 mAb improved the survival of nude mice intracranially implanted with a human U251 glioma xenograft. Collectively, these data warrant further investigation of this novel IL13Rα2 mAb with an emphasis on translational implications for therapeutic use.
Collapse
|
42
|
Lacy ER. Equilibrium and kinetic analysis of human interleukin-13 and IL-13 receptor alpha-2 complex formation. J Mol Recognit 2012; 25:184-91. [PMID: 22407982 DOI: 10.1002/jmr.2150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin 13 (IL-13) is a pleiotropic cytokine secreted by activated T cells. Both IL-13 and its polymorphic variant (IL-13-R110Q) have been shown to be associated with multiple diseases such as asthma and allergy. Two IL-13 receptors have been identified, IL-13R alpha-1 receptor (IL-13Rα1) and IL-13R alpha-2 receptor (IL-13Rα2). It has been well established that IL-13 binds to IL-13Rα1 alone with low nM affinity while binding to the IL-13Rα1/IL-4R receptor complex is significantly tighter (pM). The affinity between IL-13 and IL-13Rα2, however, remains elusive. Several values have been reported in the literature varying from 20 pM to 2.5 nM. The affinities previously reported were obtained using surface plasmon resonance (SPR) or Scatchard analysis of (125) I-IL-13 binding data. This report presents the results for the kinetics and equilibrium binding analysis studies performed using label-free kinetic exclusion assay (KEA) for the interaction of human IL-13 and IL-13Rα2. KEA equilibrium analysis showed that the affinities of IL-13Rα2 are 107 and 56 pM for IL-13 and its variant (IL-13-R110Q), respectively. KEA kinetic analysis showed that a tight and very stable complex is formed between IL-13Rα2 and IL-13, as shown by calculated dissociation rate constants slower than 5 × 10(-5) per second. Kinetic analysis also showed significant differences in the kinetic behavior of wild type (wt) versus IL-13-R110Q. IL-13-R110Q not only associates to IL-13Rα2 slower than wt human IL-13 (wt-IL-13), as previously reported, but IL-13-R110Q also dissociates slower than wt-IL-13. These results show that IL-13Rα2 is a high affinity receptor and provide a new perspective on kinetic behavior that could have significant implications in the understanding of the role of IL-13-R110Q in the disease state.
Collapse
Affiliation(s)
- Eilyn R Lacy
- Biologics Research, Janssen Research & Development, LLC, Radnor, PA 19087, USA.
| |
Collapse
|
43
|
Barderas R, Bartolomé RA, Fernandez-Aceñero MJ, Torres S, Casal JI. High expression of IL-13 receptor α2 in colorectal cancer is associated with invasion, liver metastasis, and poor prognosis. Cancer Res 2012; 72:2780-90. [PMID: 22505647 DOI: 10.1158/0008-5472.can-11-4090] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autocrine secretion of cytokines by metastatic colorectal cancer cells and their role during invasion and liver homing has been poorly characterized. In this study, we used cytokine arrays to analyze the secretomes of poorly and highly metastatic colorectal cancer cells. Compared with poorly metastatic cancer cells, highly metastatic cells expressed increased levels of the immunosuppressive cytokines interleukin (IL)-4 and IL-13 in addition to increased surface expression of the high affinity IL-13 receptor IL-13Rα2, suggesting that IL-13Rα2 mediates IL-13 effects in colorectal cancer cells. Silencing of IL-13Rα2 in highly metastatic cells led to a decrease in adhesion capacity in vitro and a reduction in liver homing and increased survival in vivo, revealing a role for this receptor in cell adhesion, migration, invasion, and metastatic colonization. In support of this, IL-13 signaling activated the oncogenic signaling molecules phosphoinositide 3-kinase, AKT, and SRC in highly metastatic cells. Clinically, high expression of IL-13Rα2 was associated with later stages of disease progression and poor outcome in patients with colorectal cancer. Our findings therefore support a critical role for IL-13Rα2 expression in colon cancer invasion and metastasis.
Collapse
Affiliation(s)
- Rodrigo Barderas
- Functional Proteomics, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
44
|
Bao L, Shi VY, Chan LS. IL-4 regulates chemokine CCL26 in keratinocytes through the Jak1, 2/Stat6 signal transduction pathway: Implication for atopic dermatitis. Mol Immunol 2012; 50:91-7. [PMID: 22226123 DOI: 10.1016/j.molimm.2011.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 01/11/2023]
Abstract
Atopic dermatitis (AD), a chronic, pruritic, inflammatory skin disease, is histopathologically characterized by epidermal hyperplasia and infiltration of T cells, mast cells, and eosinophils. Clinical study and basic research have established that IL-4 plays an important role in the pathogenesis of AD. In this report, using HaCat cells, we show that CCL26, a chemokine for eosinophils, is up-regulated by IL-4 at both the mRNA and protein levels. IL-4 also enhances CCL26 promoter activity. Serial 5' deletion of the promoter and mutagenesis study reveal that the proximal Stat site is the key response element for IL-4 regulation of CCL26. Although IL-4 increases phosphorylation of both Stat3 and Stat6, it only activates Stat6 as shown by dominant negative studies. In addition, we found that IL-4 induces Stat6 nuclear translocation and stimulates phosphorylation of Jak1 and Jak2 but not Tyk2. IL-4 up-regulation of CCL26 can be suppressed by Jak inhibitors in a dose-dependent manner. Taken together, results of this investigation reveal that IL-4 signals through the Jak1, 2/Stat6 pathway in keratinocytes to stimulate CCL26 expression and this may provide an explanation for the pathogenesis of AD.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | | | | |
Collapse
|
45
|
Inagaki-Ohara K, Sakamoto Y, Dohi T, Smith AL. γδ T cells play a protective role during infection with Nippostrongylus brasiliensis by promoting goblet cell function in the small intestine. Immunology 2012; 134:448-58. [PMID: 22044210 DOI: 10.1111/j.1365-2567.2011.03503.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The intestinal epithelium is rich in γδ T cells and the gut is a site of residence for a wide variety of pathogens, including nematodes. Although CD4+ T-cell receptor (TCR) -αβ+ T helper type 2 T cells are essential for the expulsion of intestinal nematodes, little information is available on the function of γδ T cells in this type of infection. Here, we demonstrate two major functions of γδ T cells as a potently protective T-cell population against Nippostrongylus brasiliensis infection using γδ T-cell-deficient (TCR-δ(-/-) ) mice. First, γδ T cells are required to initiate rapid expulsion of adult worms from the intestine and to limit egg production. Second, γδ T cells prevent the pathological intestinal damage associated with nematode infection, evident by increased clinical disease and more severe microscopic lesions in infected TCR-δ(-/-) mice. γδ T-cell deficiency led to delayed goblet cell hyperplasia in association with reduced expression of phosphorylated STAT6, MUC2, Trefoil factor-3 (TFF3) and T helper type 2 cytokines including interleukin-13 (IL-13). TCR-δ(-/-) mice also produced more interferon-γ than wild-type mice. Within the intraepithelial lymphocyte compartment, γδ T cells produced IL-13. Adoptive transfer of γδ T cells or administration of recombinant IL-13 to TCR-δ(-/-) mice successfully reduced the egg production by N. brasiliensis. Collectively, these data provide strong evidence that γδ T cells play an important role in controlling infection with intestinal nematodes and limiting infection-induced pathology.
Collapse
Affiliation(s)
- Kyoko Inagaki-Ohara
- Parasitic Disease Unit, Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | | | | | | |
Collapse
|
46
|
Clinical investigation of the role of interleukin-4 and interleukin-13 in the evolution of prostate cancer. Cancers (Basel) 2011; 3:4281-93. [PMID: 24213139 PMCID: PMC3763424 DOI: 10.3390/cancers3044281] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/23/2011] [Accepted: 11/30/2011] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is the most common cancer in men, both in the USA and Europe. Although incurable, metastatic disease can often be controlled for years with anti-androgen therapy. Once the disease becomes castrate resistant, the median survival is 18 months. There is growing evidence that the immune system, and in particular cytokines, play an important role in prostate cancer immunosurveillance and progression. Here, we have undertaken a clinical investigation of the role of two closely related cytokines, IL-4 and IL-13 in prostate cancer. In the largest series studied to date, we show that serum IL-4, but not IL-13 is significantly elevated in castrate resistant, compared to androgen sensitive disease. Notably however, serum IL-4 levels are also raised in patients with benign prostatic disease. Analysis of benign and malignant prostate tissue demonstrates that the source of IL-4 is epithelial cells rather than infiltrating leukocytes. Together, our data are consistent with a dual role for IL-4 in prostate cancer development. In benign disease, our data add to the evidence that IL-4 serves a protective role. By contrast, the data support a direct role for IL-4 in the progression of prostate cancer from androgen responsive, to advanced castrate-resistant disease.
Collapse
|
47
|
Gene Therapy against Murine Melanoma B16F10-Nex2 Using IL-13Ralpha2-Fc Chimera and Interleukin 12 in Association with a Cyclopalladated Drug. Transl Oncol 2011; 1:110-20. [PMID: 18795121 DOI: 10.1593/tlo.08115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/20/2008] [Accepted: 06/23/2008] [Indexed: 02/02/2023] Open
Abstract
Interleukin 13 (IL-13) is immunoregulatory in many diseases, including cancer. The protective or suppressive role of CD1-restricted natural killer T cells (NKT cells) in tumor immunosurveillance and immunity is well documented. Interleukin 12 (IL-12) can activate type I NKT cells to produce interferon-gamma (IFN-gamma), whereas type II NKT cells may produce IL-13. The high-affinity chain of IL-13Ralpha2 may act as negative inhibitor, suppressing the action of IL-13 and helping to maintain tumor immunosurveillance. We constructed an mIL-13Ralpha2-Fc chimera in a eukaryotic expression vector and confirmed the identity of the recombinant protein by immunoblot analysis and binding to IL-13 in chemiluminescent ELISA. Such DNA vaccine was tested against syngeneic B16F10-Nex2 murine melanoma. In vivo experiments showed a protective effect mediated by high production of IFN-gamma and down-regulation of anti-inflammatory interleukins mainly by NKT 1.1(+) T cells. Biochemoterapy in vivo with plasmid encoding mIL-13Ralpha2-Fc in association with plasmid encoding IL-12 and the 7A cyclopalladated drug led to a significant reduction in the tumor evolution with 30% tumor-free mice. We conclude that IL-12 gene therapy, followed by continuous administration of IL-13Ralpha2-Fc gene along with 7A-drug has antitumor activity involving the high production of proinflammatory cytokines and low immune suppression, specifically by NK1.1(+)T cells producing IL-13 and IL-10.
Collapse
|
48
|
Reichert S, Stein JM, Klapproth J, Zimmermann U, Reichert Y, Gläser C, Schaller HG, Schulz S. The genetic impact of the Q551R interleukin-4 receptor alpha polymorphism for aggressive or chronic periodontitis and the occurrence of periodontopathic bacteria. Arch Oral Biol 2011; 56:1485-93. [PMID: 21733492 DOI: 10.1016/j.archoralbio.2011.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 06/06/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The Q551R polymorphism of the gene encoded for the α chain of the interleukin-4 receptor (IL-4RA) could influence both IL-4 and IL-13 signalling. Since both cytokines could be important in the pathogenesis of periodontitis the aim of this study was to evaluate putative associations of the Q551R polymorphism to generalized aggressive or chronic periodontitis and five periodontopathogens. DESIGN 154 patients with severe generalized periodontitis (chronic: n=68, mean age=48.7 ± 9.4 years; aggressive: n=86, mean age=40.4 ± 9.8 years) and controls without periodontitis (n=89, mean age=46.2 ± 10.8 years) were included. The Q551R polymorphism was analysed by PCR-SSP CTS-Kit, Heidelberg, Germany. Subgingival bacteria were determined molecular biologically using micro-Ident test (HainLifescience, Nehren, Germany). Distributions of single alleles and genotypes were calculated by Chi(2)-test with Yates correction or Fisher's exact test. Adjusted odds ratios were generated by logistic regression with respect to established cofactors for periodontitis. RESULTS The mutant allele R551 (p(Y)=0.013) and the genotypes QR+RR (p(B)=0.024) occurred more frequently amongst patients with chronic periodontitis vs. controls. Carriers of the Q551R polymorphism had an increased adjusted odds ratio for chronic periodontitis (OR=3.2, 95%CI 1.5-6.5, p=0.002) and severe periodontitis (chronic+aggressive) in general (OR=2.0, 95%CI 1.1-3.6, p=0.003). Moreover, in the total study cohort the Q551R polymorphism was associated with the presence of Tannerella forsythia (90.3% vs. 78.0%, p(Y)=0.01). CONCLUSIONS The Q551R IL-4RA polymorphism is a putative risk indicator for severe chronic periodontitis, but was not significant associated to AP.
Collapse
Affiliation(s)
- Stefan Reichert
- University School of Dental Medicine, Department of Operative Dentistry and Periodontology, Martin-Luther University Halle-Wittenberg, Grosse Steinstr. 19, D-06108 Halle (Saale), Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim YS, Choi SJ, Choi JP, Jeon SG, Oh SY, Lee BJ, Gho YS, Lee CG, Zhu Z, Elias JA, Kim YK. IL-12-STAT4-IFN-gamma axis is a key downstream pathway in the development of IL-13-mediated asthma phenotypes in a Th2 type asthma model. Exp Mol Med 2011; 42:533-46. [PMID: 20592486 DOI: 10.3858/emm.2010.42.8.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
IL-4 and IL-13 are closely related cytokines that are produced by Th2 cells. However, IL-4 and IL-13 have different effects on the development of asthma phenotypes. Here, we evaluated downstream molecular mechanisms involved in the development of Th2 type asthma phenotypes. A murine model of Th2 asthma was used that involved intraperitoneal sensitization with an allergen (ovalbumin) plus alum and then challenge with ovalbumin alone. Asthma phenotypes, including airway-hyperresponsiveness (AHR), lung inflammation, and immunologic parameters were evaluated after allergen challenge in mice deficient in candidate genes. The present study showed that methacholine AHR and lung inflammation developed in allergen-challenged IL-4-deficient mice but not in allergen-challenged IL-13-deficient mice. In addition, the production of OVA-specific IgG2a and IFN-gamma-inducible protein (IP)-10 was also impaired in the absence of IL-13, but not of IL-4. Lung-targeted IFN-gamma over-expression in the airways enhanced methacholine AHR and non-eosinophilic inflammation; in addition, these asthma phenotypes were impaired in allergen-challenged IFN-gamma-deficient mice. Moreover, AHR, non-eosinophilic inflammation, and IFN-gamma expression were impaired in allergen-challenged IL-12Rbeta2- and STAT4-deficient mice; however, AHR and non-eosinophilic inflammation were not impaired in allergen-challenged IL-4Ralpha-deficient mice, and these phenomena were accompanied by the enhanced expression of IL-12 and IFN-gamma. The present data suggest that IL-13-mediated asthma phenotypes, such as AHR and non-eosinophilic inflammation, in the Th2 type asthma are dependent on the IL-12-STAT4-IFN-gamma axis, and that these asthma phenotypes are independent of IL-4Ralpha-mediated signaling.
Collapse
Affiliation(s)
- You-Sun Kim
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Microarray analysis of immediate-type allergy in KU812 cells in response to fulvic acid. Cytotechnology 2011; 63:181-90. [PMID: 21331654 DOI: 10.1007/s10616-010-9333-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/27/2010] [Indexed: 01/14/2023] Open
Abstract
Fulvic acid (FA) is class of compounds of humic substances formed through the degradation of organic substances by chemical and biological processes. FA has been utilized in traditional Chinese medicine and possesses various pharmacological properties. Previously, we reported that FA extracted from solubilized excess sludge (SS-FA) had an inhibitory effect on β-hexosaminidase release in human leukemia basophilic (KU812) cells. In this study, we investigated the effects of SS-FA on the immediate-type allergic reaction and studied its possible mechanisms of action in KU812 cells following activation with phorbol myristate acetate (20 nmol L(-1)) plus calcium ionophore A23187 (1 μmol L(-1)) (PMACI). The inhibitory effect of SS-FA on degranulation in PMACI-stimulated KU812 cells was examined using histamine release assay. SS-FA significantly decreased the histamine release in KU812 cells at concentrations of 0.1-10.0 μg mL(-1). To gain more information regarding the mechanism of the suppression of degranulation following SS-FA treatment, microarray was conducted to determine which genes were differentially expressed in response to SS-FA in PMACI-activated KU812 cells. From a total of 201 genes in the DNA chip, 28 genes were up-regulated and 173 genes were down-regulated in cells pretreated with SS-FA for 15 min and stimulated with PMACI. From the 71 genes that showed more than two fold change in expression, 16 genes were significantly down-regulated that were subjected to hierarchical clustering. SS-FA affected the expression of genes that were involved in the following pathways: signal transduction, cytokine-cytokine receptor interaction, immune response, cell adhesion molecules and IgE receptor β subunit response.
Collapse
|