1
|
Zhu J, Wu R, Yang T, Yuan Y, Liu G, Chen S, Chen Z, Liu S, Wang S, Li D, Yao H, He Y, He S, Qin CF, Dai J, Ma F. Harnessing ZIKV NS2A RNA for alleviating acute hepatitis and cytokine release storm by targeting translation machinery. Hepatology 2024:01515467-990000000-01033. [PMID: 39302977 DOI: 10.1097/hep.0000000000001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND AND AIMS Hyperactivated inflammatory responses induced by cytokine release syndrome are the primary causes of tissue damage and even death. The translation process is precisely regulated to control the production of proinflammatory cytokines. However, it is largely unknown whether targeting translation can effectively limit the hyperactivated inflammatory responses during acute hepatitis and graft-versus-host disease. APPROACH AND RESULTS By using in vitro translation and cellular overexpression systems, we have found that the nonstructural protein gene NS2A of Zika virus functions as RNA molecules to suppress the translation of both ectopic genes and endogenous proinflammatory cytokines. Mechanistically, results from RNA pulldown and co-immunoprecipitation assays have demonstrated that NS2A RNA interacts with the translation initiation factor eIF2α to disrupt the dynamic balance of the eIF2/eIF2B complex and translation initiation, which is the rate-limiting step of translation. In the acetaminophen-induced, lipopolysaccharide/D-galactosamine-induced, viral infection-induced acute hepatitis, and graft-versus-host disease mouse models, mice with myeloid cell-specific knock-in of NS2A show decreased levels of serum proinflammatory cytokines and reduced tissue damage. CONCLUSIONS Zika virus NS2A dampens the production of proinflammatory cytokines and alleviates inflammatory injuries by interfering translation process as RNA molecules, which suggests that NS2A RNA is potentially used to treat numerous acute inflammatory diseases characterized by cytokine release syndrome.
Collapse
Affiliation(s)
- Jingfei Zhu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Rongsheng Wu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Tao Yang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yi Yuan
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Guodi Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Shengchuan Chen
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Siying Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Shiyou Wang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Dapei Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Haiping Yao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yuanqing He
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Sudan He
- State Key Laboratory of Medical Molecular Biology and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| |
Collapse
|
2
|
Yoshida T, Latt KZ, Rosenberg AZ, Santo BA, Myakala K, Ishimoto Y, Zhao Y, Shrivastav S, Jones BA, Yang X, Wang XX, Tutino VM, Sarder P, Levi M, Okamoto K, Winkler CA, Kopp JB. PKR activation-induced mitochondrial dysfunction in HIV-transgenic mice with nephropathy. eLife 2024; 12:RP91260. [PMID: 39207915 PMCID: PMC11361708 DOI: 10.7554/elife.91260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
HIV disease remains prevalent in the USA and chronic kidney disease remains a major cause of morbidity in HIV-1-positive patients. Host double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a sensor for viral dsRNA, including HIV-1. We show that PKR inhibition by compound C16 ameliorates the HIV-associated nephropathy (HIVAN) kidney phenotype in the Tg26 transgenic mouse model, with reversal of mitochondrial dysfunction. Combined analysis of single-nucleus RNA-seq and bulk RNA-seq data revealed that oxidative phosphorylation was one of the most downregulated pathways and identified signal transducer and activator of transcription (STAT3) as a potential mediating factor. We identified in Tg26 mice a novel proximal tubular cell cluster enriched in mitochondrial transcripts. Podocytes showed high levels of HIV-1 gene expression and dysregulation of cytoskeleton-related genes, and these cells dedifferentiated. In injured proximal tubules, cell-cell interaction analysis indicated activation of the pro-fibrogenic PKR-STAT3-platelet-derived growth factor (PDGF)-D pathway. These findings suggest that PKR inhibition and mitochondrial rescue are potential novel therapeutic approaches for HIVAN.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| | - Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Briana A Santo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at BuffaloBuffaloUnited States
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown UniversityWashingtonUnited States
| | - Yu Ishimoto
- Polycystic Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| | - Yongmei Zhao
- Frederick National Laboratory for Cancer Research, NCI, NIHFrederickUnited States
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| | - Bryce A Jones
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown UniversityWashingtonUnited States
| | - Xiaoping Yang
- Department of Pathology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown UniversityWashingtonUnited States
| | - Vincent M Tutino
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at BuffaloBuffaloUnited States
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at BuffaloBuffaloUnited States
- College of Medicine, University of FloridaGainesvilleUnited States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown UniversityWashingtonUnited States
| | - Koji Okamoto
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
- Nephrology Endocrinology and Vascular Medicine, Tohoku University HospitalSendaiJapan
| | - Cheryl A Winkler
- Frederick National Laboratory for Cancer Research, NCI, NIHFrederickUnited States
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| |
Collapse
|
3
|
Corne A, Adolphe F, Estaquier J, Gaumer S, Corsi JM. ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor. BIOLOGY 2024; 13:146. [PMID: 38534416 PMCID: PMC10968437 DOI: 10.3390/biology13030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino acid metabolism, protein misfolding, autophagy, and apoptosis. The precise role of ATF4 during viral infection is unclear and depends on cell hosts, viral agents, and models. Furthermore, ATF4 signaling can be hijacked by pathogens to favor viral infection and replication. In this review, we summarize the ATF4-mediated signaling pathways in response to viral infections, focusing on human immunodeficiency virus 1 (HIV-1). We examine the consequences of ATF4 activation for HIV-1 replication and reactivation. The role of ATF4 in autophagy and apoptosis is explored as in the context of HIV-1 infection programmed cell deaths contribute to the depletion of CD4 T cells. Furthermore, ATF4 can also participate in the establishment of innate and adaptive immunity that is essential for the host to control viral infections. We finally discuss the putative role of the ATF4 paralogue, named ATF5, in HIV-1 infection. This review underlines the role of ATF4 at the crossroads of multiple processes reflecting host-pathogen interactions.
Collapse
Affiliation(s)
- Adrien Corne
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Florine Adolphe
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
- INSERM U1124, Université Paris Cité, 75006 Paris, France
| | - Sébastien Gaumer
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jean-Marc Corsi
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| |
Collapse
|
4
|
The Dilemma of HSV-1 Oncolytic Virus Delivery: The Method Choice and Hurdles. Int J Mol Sci 2023; 24:ijms24043681. [PMID: 36835091 PMCID: PMC9962028 DOI: 10.3390/ijms24043681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as effective gene therapy and immunotherapy drugs. As an important gene delivery platform, the integration of exogenous genes into OVs has become a novel path for the advancement of OV therapy, while the herpes simplex virus type 1 (HSV-1) is the most commonly used. However, the current mode of administration of HSV-1 oncolytic virus is mainly based on the tumor in situ injection, which limits the application of such OV drugs to a certain extent. Intravenous administration offers a solution to the systemic distribution of OV drugs but is ambiguous in terms of efficacy and safety. The main reason is the synergistic role of innate and adaptive immunity of the immune system in the response against the HSV-1 oncolytic virus, which is rapidly cleared by the body's immune system before it reaches the tumor, a process that is accompanied by side effects. This article reviews different administration methods of HSV-1 oncolytic virus in the process of tumor treatment, especially the research progress in intravenous administration. It also discusses immune constraints and solutions of intravenous administration with the intent to provide new insights into HSV-1 delivery for OV therapy.
Collapse
|
5
|
Stunnenberg M, van Hamme JL, Trimp M, Gringhuis SI, Geijtenbeek TB. Abortive HIV-1 RNA induces pro-IL-1β maturation via protein kinase PKR and inflammasome activation in humans. Eur J Immunol 2021; 51:2464-2477. [PMID: 34223639 PMCID: PMC8518791 DOI: 10.1002/eji.202149275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
The proinflammatory cytokine IL-1β mediates high levels of immune activation observed during acute and chronic human immunodeficiency virus 1 (HIV-1) infection. Little is known about the mechanisms that drive IL-1β activation during HIV-1 infection. Here, we have identified a crucial role for abortive HIV-1 RNAs in inducing IL-1β in humans. Abortive HIV-1 RNAs were sensed by protein kinase RNA-activated (PKR), which triggered activation of the canonical NLRP3 inflammasome and caspase-1, leading to pro-IL-1β processing and secretion. PKR activated the inflammasome via ROS generation and MAP kinases ERK1/2, JNK, and p38. Inhibition of PKR during HIV-1 infection blocked IL-1β production. As abortive HIV-1 RNAs are produced during productive infection and latency, our data strongly suggest that targeting PKR signaling might attenuate immune activation during acute and chronic HIV-1 infection.
Collapse
Affiliation(s)
- Melissa Stunnenberg
- Amsterdam UMCDepartment of Experimental ImmunologyUniversity of AmsterdamAmsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
| | - John L. van Hamme
- Amsterdam UMCDepartment of Experimental ImmunologyUniversity of AmsterdamAmsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
| | - Marjolein Trimp
- Amsterdam UMCDepartment of Experimental ImmunologyUniversity of AmsterdamAmsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
| | - Sonja I. Gringhuis
- Amsterdam UMCDepartment of Experimental ImmunologyUniversity of AmsterdamAmsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
| | - Teunis B.H. Geijtenbeek
- Amsterdam UMCDepartment of Experimental ImmunologyUniversity of AmsterdamAmsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
| |
Collapse
|
6
|
Variations in the Abortive HIV-1 RNA Hairpin Do Not Impede Viral Sensing and Innate Immune Responses. Pathogens 2021; 10:pathogens10070897. [PMID: 34358047 PMCID: PMC8308900 DOI: 10.3390/pathogens10070897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
The highly conserved trans-acting response element (TAR) present in the RNA genome of human immunodeficiency virus 1 (HIV-1) is a stably folded hairpin structure involved in viral replication. However, TAR is also sensed by viral sensors, leading to antiviral immunity. While high variation in the TAR RNA structure renders the virus replication-incompetent, effects on viral sensing remain unclear. Here, we investigated the role of TAR RNA structure and stability on viral sensing. TAR mutants with deletions in the TAR hairpin that enhanced thermodynamic stability increased antiviral responses. Strikingly, TAR mutants with lower stability due to destabilization of the TAR hairpin also increased antiviral responses without affecting pro-inflammatory responses. Moreover, mutations that affected the TAR RNA sequence also enhanced specific antiviral responses. Our data suggest that mutations in TAR of replication-incompetent viruses can still induce immune responses via viral sensors, hereby underscoring the robustness of HIV-1 RNA sensing mechanisms.
Collapse
|
7
|
Khoury G, Mackenzie C, Ayadi L, Lewin SR, Branlant C, Purcell DFJ. Tat IRES modulator of tat mRNA (TIM-TAM): a conserved RNA structure that controls Tat expression and acts as a switch for HIV productive and latent infection. Nucleic Acids Res 2020; 48:2643-2660. [PMID: 31875221 PMCID: PMC7049722 DOI: 10.1093/nar/gkz1181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
Tat protein is essential to fully activate HIV transcription and processing of viral mRNA, and therefore determines virus expression in productive replication and the establishment and maintenance of latent infection. Here, we used thermodynamic and structure analyses to define a highly conserved sequence-structure in tat mRNA that functions as Tat IRES modulator of tat mRNA (TIM-TAM). By impeding cap-dependent ribosome progression during authentic spliced tat mRNA translation, TIM-TAM stable structure impacts on timing and level of Tat protein hence controlling HIV production and infectivity along with promoting latency. TIM-TAM also adopts a conformation that mediates Tat internal ribosome entry site (IRES)-dependent translation during the early phases of infection before provirus integration. Our results document the critical role of TIM-TAM in Tat expression to facilitate virus reactivation from latency, with implications for HIV treatment and drug development.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia.,Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Lilia Ayadi
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3010, Australia
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
8
|
Sharma NK. Exosomal packaging of trans-activation response element (TAR) RNA by HIV-1 infected cells: a pro-malignancy message delivery to cancer cells. Mol Biol Rep 2019; 46:3607-3612. [PMID: 30903574 DOI: 10.1007/s11033-019-04770-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
Abstract
Driven by the heterogeneous and complex nature of HIV-1 infection and tumors, the possibilities of viable cross-talk are facilitated by the intra-cellular and inter-cellular signaling regimens. There are evidences that support the clear role of exosomes containing TAR RNAs that are secreted by HIV-1 infected cells and these TAR RNA brings pro-growth and pro-survival effects upon cancer cells. Recently, the regulatory role of TAR RNAs in the intra-cellular signaling network is shown that augments cancer cells to achieve tremendous progression and malignancy. In this paper, author highlights the role of HIV-1 infected cells secreted exosomes containing TAR RNA in tumor hallmarks. Further, this paper provides future insights on new classes of cancer therapeutics centered on disrupting exosomes and TAR RNA.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India.
| |
Collapse
|
9
|
Yamada KE, Eckhert CD. Boric Acid Activation of eIF2α and Nrf2 Is PERK Dependent: a Mechanism that Explains How Boron Prevents DNA Damage and Enhances Antioxidant Status. Biol Trace Elem Res 2019; 188:2-10. [PMID: 30196486 DOI: 10.1007/s12011-018-1498-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Boron is abundant in vegetables, nuts, legumes, and fruit and intake is associated with reduced risk of cancer and DNA damage and increased antioxidant status. Blood boric acid (BA) levels are approximately 10 μM BA in men at the mean US boron intake. Treatment of DU-145 human prostate cancer cells with 10 μM BA stimulates phosphorylation of elongation initiation factor 2α (eIF2α) at Ser51 leading to activation of the eIF2α/ATF4 pathway which activates the DNA damage-inducible protein GADD34. In the present study, we used MEF WT and MEF PERK (±) cells to test the hypothesis that BA-activated eIF2α phosphorylation requires protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activates Nrf2 and the antioxidant response element (ARE). BA (10 μM) increased phosphorylation of eIF2α Ser51 in MEF WT cells at 1 h, but not in MEF Perk -/- cells exposed for as long as 6 h. GCN2 kinase-dependent phosphorylation of eIF2α Ser51 was activated in MEF PERK -/- cells by amino acid starvation. Nrf2 phosphorylation is PERK dependent and when activated is translocated from the cytoplasm to the nucleus where it acts as a transcription factor for ARE. DU-145 cells were treated with 10 μM BA and Nrf2 measured by immunofluorescence. Cytoplasmic Nrf2 was translocated to the nucleus at 1.5-2 h in DU-145 and MEF WT cells, but not MEF PERK -/- cells. Real-time PCR was used to measure mRNA levels of three ARE genes (HMOX-1, NQO1, and GCLC). Treatment with 10 μM BA increased the mRNA levels of all three genes at 1-4 h in DU-145 cells and HMOX1 and GCLC in MEF WT cells. These results extend the known boric acid signaling pathway to ARE-regulated genes. The BA signaling pathway can be expressed using the schematic [BA + cADPR → cADPR-BA → [[ER]i Ca2+↓] → 3 pathways: PERK/eIF2αP → pathways ATF4 and Nrf2; and [[ER]i Ca2+↓] → ER stress → ATF6 pathway. This signaling pathway provides a framework that links many of the molecular changes that underpin the biological effects of boron intake.
Collapse
Affiliation(s)
- Kristin E Yamada
- Interdepartmental Program in Molecular Toxicology, University of California, Los Angeles, 90095, CA, USA
| | - Curtis D Eckhert
- Interdepartmental Program in Molecular Toxicology, University of California, Los Angeles, 90095, CA, USA.
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, 650 Charles E. Young Dr., Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Impact of the structural integrity of the three-way junction of adenovirus VAI RNA on PKR inhibition. PLoS One 2017; 12:e0186849. [PMID: 29053745 PMCID: PMC5650172 DOI: 10.1371/journal.pone.0186849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023] Open
Abstract
Highly structured RNA derived from viral genomes is a key cellular indicator of viral infection. In response, cells produce the interferon inducible RNA-dependent protein kinase (PKR) that, when bound to viral dsRNA, phosphorylates eukaryotic initiation factor 2α and attenuates viral protein translation. Adenovirus can evade this line of defence through transcription of a non-coding RNA, VAI, an inhibitor of PKR. VAI consists of three base-paired regions that meet at a three-way junction; an apical stem responsible for the interaction with PKR, a central stem required for inhibition, and a terminal stem. Recent studies have highlighted the potential importance of the tertiary structure of the three-way junction to PKR inhibition by enabling interaction between regions of the central and terminal stems. To further investigate the role of the three-way junction, we characterized the binding affinity and inhibitory potential of central stem mutants designed to introduce subtle alterations. These results were then correlated with small-angle X-ray scattering solution studies and computational tertiary structural models. Our results demonstrate that while mutations to the central stem have no observable effect on binding affinity to PKR, mutations that appear to disrupt the structure of the three-way junction prevent inhibition of PKR. Therefore, we propose that instead of simply sequestering PKR, a specific structural conformation of the PKR-VAI complex may be required for inhibition.
Collapse
|
11
|
ADAR1 and PACT contribute to efficient translation of transcripts containing HIV-1 trans-activating response (TAR) element. Biochem J 2017; 474:1241-1257. [PMID: 28167698 PMCID: PMC5363390 DOI: 10.1042/bcj20160964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) has evolved various measures to counter the host cell's innate antiviral response during the course of infection. Interferon (IFN)-stimulated gene products are produced following HIV-1 infection to limit viral replication, but viral proteins and RNAs counteract their effect. One such mechanism is specifically directed against the IFN-induced Protein Kinase PKR, which is centrally important to the cellular antiviral response. In the presence of viral RNAs, PKR is activated and phosphorylates the translation initiation factor eIF2α. This shuts down the synthesis of both host and viral proteins, allowing the cell to mount an effective antiviral response. PACT (protein activator of PKR) is a cellular protein activator of PKR, primarily functioning to activate PKR in response to cellular stress. Recent studies have indicated that during HIV-1 infection, PACT's normal cellular function is compromised and that PACT is unable to activate PKR. Using various reporter systems and in vitro kinase assays, we establish in this report that interactions between PACT, ADAR1 and HIV-1-encoded Tat protein diminish the activation of PKR in response to HIV-1 infection. Our results highlight an important pathway by which HIV-1 transcripts subvert the host cell's antiviral activities to enhance their translation.
Collapse
|
12
|
Short Intracellular HIV-1 Transcripts as Biomarkers of Residual Immune Activation in Patients on Antiretroviral Therapy. J Virol 2016; 90:5665-5676. [PMID: 27030274 DOI: 10.1128/jvi.03158-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED HIV-1 patients continue to remain at an abnormal immune status despite prolonged combination antiretroviral therapy (cART), which results in an increased risk of non-AIDS-related diseases. Given the growing recognition of the importance of understanding and controlling the residual virus in patients, additional virological markers to monitor infected cells are required. However, viral replication in circulating cells is much poorer than that in lymph nodes, which results in the absence of markers to distinguish these cells from uninfected cells in the blood. In this study, we identified prematurely terminated short HIV-1 transcripts (STs) in peripheral blood mononuclear cells (PBMCs) as an efficient intracellular biomarker to monitor viral activation and immune status in patients with cART-mediated full viral suppression in plasma. STs were detected in PBMCs obtained from both treated and untreated patients. ST levels in untreated patients generally increased with disease progression and decreased after treatment initiation. However, some patients exhibited sustained high levels of ST and low CD4(+) cell counts despite full viral suppression by treatment. The levels of STs strongly reflected chronic immune activation defined by coexpression of HLA-DR and CD38 on CD8(+) T cells, rather than circulating proviral load. These observations represent evidence for a relationship between viral persistence and host immune activation, which in turn results in the suboptimal increase in CD4(+) cells despite suppressive antiretroviral therapy. This cell-based measurement of viral persistence contributes to an improved understanding of the dynamics of viral persistence in cART patients and will guide therapeutic approaches targeting viral reservoirs. IMPORTANCE Combination antiretroviral therapy (cART) suppresses HIV-1 load to below the detectable limit in plasma. However, the virus persists, and patients remain at an abnormal immune status, which results in an increased risk of non-AIDS-related complications. To achieve a functional cure for HIV-1 infection, activities of viral reservoirs must be quantified and monitored. However, latently infected cells are difficult to be monitored. Here, we identified prematurely terminated short HIV-1 transcripts (STs) as an efficient biomarker for monitoring viral activation and immune status in patients with cART-mediated full viral suppression in plasma. This cell-based measurement of viral persistence will contribute to our understanding of the impact of residual virus on chronic immune activation in HIV-1 patients during cART.
Collapse
|
13
|
Kohlhapp FJ, Kaufman HL. Molecular Pathways: Mechanism of Action for Talimogene Laherparepvec, a New Oncolytic Virus Immunotherapy. Clin Cancer Res 2015; 22:1048-54. [PMID: 26719429 DOI: 10.1158/1078-0432.ccr-15-2667] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses are native or engineered viruses that preferentially replicate in and lyse cancer cells. Selective tumor cell replication is thought to depend on infection of neoplastic cells, which harbor low levels of protein kinase R (PKR) and dysfunctional type I IFN signaling elements. These changes allow more efficient viral replication, and with selected deletion of specific viral genes, replication in normal cells with activated PKR may not be possible. Direct tumor cell lysis, release of soluble tumor antigens, and danger-associated molecular factors are all thought to help prime and promote tumor-specific immunity. Talimogene laherparepvec (T-VEC) is a genetically modified herpes simplex virus, type I and is the first oncolytic virus to demonstrate a clinical benefit in patients with melanoma. T-VEC has also been evaluated for the treatment of head and neck cancer, pancreatic cancer, and likely other types of cancer will be targeted in the near future. T-VEC has been modified for improved safety, tumor-selective replication, and induction of host immunity by deletion of several viral genes and expression of human granulocyte-macrophage colony stimulating factor. Although the mechanism of action for T-VEC is incompletely understood, the safety profile of T-VEC and ability to promote immune responses suggest future combination studies with other immunotherapy approaches including checkpoint blockade through PD-1, PD-L1, and CTLA-4 to be a high priority for clinical development. Oncolytic viruses also represent unique regulatory and biosafety challenges but offer a potential new class of agents for the treatment of cancer.
Collapse
Affiliation(s)
- Frederick J Kohlhapp
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Howard L Kaufman
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| |
Collapse
|
14
|
Sampey GC, Saifuddin M, Schwab A, Barclay R, Punya S, Chung MC, Hakami RM, Zadeh MA, Lepene B, Klase ZA, El-Hage N, Young M, Iordanskiy S, Kashanchi F. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA. J Biol Chem 2015; 291:1251-66. [PMID: 26553869 DOI: 10.1074/jbc.m115.662171] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/22/2022] Open
Abstract
HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5' and 3' stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART.
Collapse
Affiliation(s)
- Gavin C Sampey
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Mohammed Saifuddin
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Angela Schwab
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Robert Barclay
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Shreya Punya
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Myung-Chul Chung
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Ramin M Hakami
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Mohammad Asad Zadeh
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | | | - Zachary A Klase
- the Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Nazira El-Hage
- the Department of Immunology, Herbert Wertheim College of Medicine, Miami, Florida 33199, and
| | - Mary Young
- the Department of Medicine, Women's Intra-Agency HIV Study, Georgetown University, Washington, D. C. 20007
| | - Sergey Iordanskiy
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110,
| | - Fatah Kashanchi
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110,
| |
Collapse
|
15
|
Paquet C, Dumurgier J, Hugon J. Pro-Apoptotic Kinase Levels in Cerebrospinal Fluid as Potential Future Biomarkers in Alzheimer's Disease. Front Neurol 2015; 6:168. [PMID: 26300842 PMCID: PMC4523792 DOI: 10.3389/fneur.2015.00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of Aβ peptides, hyperphosphorylated tau proteins, and neuronal loss in the brain of affected patients. The causes of neurodegeneration in AD are not clear, but apoptosis could be one of the cell death mechanisms. According to the amyloid hypothesis, abnormal aggregation of Aβ leads to altered kinase activities inducing tau phosphorylation and neuronal degeneration. Several studies have shown that pro-apoptotic kinases could be a link between Aβ and tau anomalies. Here, we present recent evidences from AD experimental models and human studies that three pro-apoptotic kinases (double-stranded RNA kinase (PKR), glycogen synthase kinase-3β, and C-Jun terminal kinase (JNK) could be implicated in AD physiopathology. These kinases are detectable in human fluids and the analysis of their levels could be used as potential surrogate markers to evaluate cell death and clinical prognosis. In addition to current biomarkers (Aβ1–42, tau, and phosphorylated tau), these new evaluations could bring about valuable information on potential innovative therapeutic targets to alter the clinical evolution.
Collapse
Affiliation(s)
- Claire Paquet
- INSERM UMR-S942, Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile de France, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, AP-HP, Université Paris Diderot , Paris , France
| | - Julien Dumurgier
- INSERM UMR-S942, Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile de France, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, AP-HP, Université Paris Diderot , Paris , France
| | - Jacques Hugon
- INSERM UMR-S942, Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile de France, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, AP-HP, Université Paris Diderot , Paris , France
| |
Collapse
|
16
|
Boasso A. Type I Interferon at the Interface of Antiviral Immunity and Immune Regulation: The Curious Case of HIV-1. SCIENTIFICA 2013; 2013:580968. [PMID: 24455433 PMCID: PMC3885208 DOI: 10.1155/2013/580968] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
Type I interferon (IFN-I) play a critical role in the innate immune response against viral infections. They actively participate in antiviral immunity by inducing molecular mechanisms of viral restriction and by limiting the spread of the infection, but they also orchestrate the initial phases of the adaptive immune response and influence the quality of T cell immunity. During infection with the human immunodeficiency virus type 1 (HIV-1), the production of and response to IFN-I may be severely altered by the lymphotropic nature of the virus. In this review I consider the different aspects of virus sensing, IFN-I production, signalling, and effects on target cells, with a particular focus on the alterations observed following HIV-1 infection.
Collapse
Affiliation(s)
- Adriano Boasso
- Immunology Section, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| |
Collapse
|
17
|
Dey M, Mann BR, Anshu A, Mannan MAU. Activation of protein kinase PKR requires dimerization-induced cis-phosphorylation within the activation loop. J Biol Chem 2013; 289:5747-57. [PMID: 24338483 DOI: 10.1074/jbc.m113.527796] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Protein kinase R (PKR) functions in a plethora of cellular processes, including viral and cellular stress responses, by phosphorylating the translation initiation factor eIF2α. The minimum requirements for PKR function are homodimerization of its kinase and RNA-binding domains, and autophosphorylation at the residue Thr-446 in a flexible loop called the activation loop. We investigated the interdependence between dimerization and Thr-446 autophosphorylation using the yeast Saccharomyces cerevisiae model system. We showed that an engineered PKR that bypassed the need for Thr-446 autophosphorylation (PKR(T446∼P)-bypass mutant) could function without a key residue (Asp-266 or Tyr-323) that is essential for PKR dimerization, suggesting that dimerization precedes and stimulates activation loop autophosphorylation. We also showed that the PKR(T446∼P)-bypass mutant was able to phosphorylate eIF2α even without its RNA-binding domains. These two significant findings reveal that PKR dimerization and activation loop autophosphorylation are mutually exclusive yet interdependent processes. Also, we provide evidence that Thr-446 autophosphorylation during PKR activation occurs in a cis mechanism following dimerization.
Collapse
Affiliation(s)
- Madhusudan Dey
- From the Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | | | | | | |
Collapse
|
18
|
|
19
|
Trinh MA, Klann E. Translational control by eIF2α kinases in long-lasting synaptic plasticity and long-term memory. Neurobiol Learn Mem 2013; 105:93-9. [PMID: 23707798 DOI: 10.1016/j.nlm.2013.04.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 01/10/2023]
Abstract
Although the requirement for new protein synthesis in synaptic plasticity and memory has been well established, recent genetic, molecular, electrophysiological, and pharmacological studies have broadened our understanding of the translational control mechanisms that are involved in these processes. One of the critical translational control points mediating general and gene-specific translation depends on the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) by four regulatory kinases. Here, we review the literature highlighting the important role for proper translational control via regulation of eIF2α phosphorylation by its kinases in long-lasting synaptic plasticity and long-term memory.
Collapse
Affiliation(s)
- Mimi A Trinh
- Pharmaceutical Research Division, CNS Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | | |
Collapse
|
20
|
Dzananovic E, Patel TR, Deo S, McEleney K, Stetefeld J, McKenna SA. Recognition of viral RNA stem-loops by the tandem double-stranded RNA binding domains of PKR. RNA (NEW YORK, N.Y.) 2013; 19:333-344. [PMID: 23329698 PMCID: PMC3677244 DOI: 10.1261/rna.035931.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/12/2012] [Indexed: 05/30/2023]
Abstract
In humans, the double-stranded RNA (dsRNA)-activated protein kinase (PKR) is expressed in late stages of the innate immune response to viral infection by the interferon pathway. PKR consists of tandem dsRNA binding motifs (dsRBMs) connected via a flexible linker to a Ser/Thr kinase domain. Upon interaction with viral dsRNA, PKR is converted into a catalytically active enzyme capable of phosphorylating a number of target proteins that often results in host cell translational repression. A number of high-resolution structural studies involving individual dsRBMs from proteins other than PKR have highlighted the key features required for interaction with perfectly duplexed RNA substrates. However, viral dsRNA molecules are highly structured and often contain deviations from perfect A-form RNA helices. By use of small-angle X-ray scattering (SAXS), we present solution conformations of the tandem dsRBMs of PKR in complex with two imperfectly base-paired viral dsRNA stem-loops; HIV-1 TAR and adenovirus VA(I)-AS. Both individual components and complexes were purified by size exclusion chromatography and characterized by dynamic light scattering at multiple concentrations to ensure monodispersity. SAXS ab initio solution conformations of the individual components and RNA-protein complexes were determined and highlight the potential of PKR to interact with both stem and loop regions of the RNA. Excellent agreement between experimental and model-based hydrodynamic parameter determination heightens our confidence in the obtained models. Taken together, these data support and provide a framework for the existing biochemical data regarding the tolerance of imperfectly base-paired viral dsRNA by PKR.
Collapse
Affiliation(s)
- Edis Dzananovic
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Trushar R. Patel
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Soumya Deo
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Kevin McEleney
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- Manitoba Group in Protein Structure and Function, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- Manitoba Group in Protein Structure and Function, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
21
|
The cellular TAR RNA binding protein, TRBP, promotes HIV-1 replication primarily by inhibiting the activation of double-stranded RNA-dependent kinase PKR. J Virol 2011; 85:12614-21. [PMID: 21937648 DOI: 10.1128/jvi.05240-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TAR RNA binding protein, TRBP, is a cellular double-stranded RNA (dsRNA) binding protein that can promote the replication of HIV-1 through interactions with the viral TAR element as well as with cellular proteins that affect the efficiency of translation of viral transcripts. The structured TAR element, present on all viral transcripts, can impede efficient translation either by sterically blocking access of translation initiation factors to the 5'-cap or by activating the dsRNA-dependent kinase, PKR. Several mechanisms by which TRBP can facilitate translation of viral transcripts have been proposed, including the binding and unwinding of TAR and the suppression of PKR activation. Further, TRBP has been identified as a cofactor of Dicer in the processing of microRNAs (miRNAs), and sequestration of TRBP by TAR in infected cells has been proposed as a viral countermeasure to potential host cell RNA interference-based antiviral activities. Here, we have addressed the relative importance of these various roles for TRBP in HIV-1 replication. Using Jurkat T cells, primary human CD4(+) T cells, and additional cultured cell lines, we show that depletion of TRBP has no effect on viral replication when PKR activation is otherwise blocked. Moreover, the presence of TAR-containing mRNAs does not affect the efficacy of cellular miRNA silencing pathways. These results establish that TRBP, when expressed at physiological levels, promotes HIV-1 replication mainly by suppressing the PKR-mediated antiviral response, while its contribution to HIV-1 replication through PKR-independent pathways is minimal.
Collapse
|
22
|
Clerzius G, Gélinas JF, Gatignol A. Multiple levels of PKR inhibition during HIV-1 replication. Rev Med Virol 2010; 21:42-53. [PMID: 21294215 DOI: 10.1002/rmv.674] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/13/2010] [Accepted: 09/20/2010] [Indexed: 12/15/2022]
Abstract
Recent therapeutic approaches against HIV-1 include IFN in combination therapy for patients with coinfections or as an alternative strategy against the virus. These treatment options require a better understanding of the weak efficacy of the IFN-stimulated genes, such as the protein kinase RNA-activated (PKR), which results in viral progression. Activated PKR has a strong antiviral activity on HIV-1 expression and production in cell culture. However, PKR is not activated upon HIV-1 infection when the virus reaches high levels of replication, due to viral and cellular controls. PKR is activated by low levels of the HIV-1 trans-activation response (TAR) RNA element, but is inhibited by high levels of this double-stranded RNA. The viral Tat protein also counteracts PKR activation by several mechanisms. In addition, HIV-1 replicates only in cells that have a high level of the TAR RNA binding protein (TRBP), a strong inhibitor of PKR activation. Furthermore, increased levels of adenosine deaminase acting on RNA (ADAR1) are observed when HIV-1 replicates at high levels and the protein binds to PKR and inhibits its activation. Finally, the PKR activator (PACT) also binds to PKR during HIV-1 replication with no subsequent kinase activation. The combination of all the inhibiting pathways that prevent PKR phosphorylation contributes to a high HIV-1 production in permissive cells. Enhancing PKR activation by counteracting its inhibitory partners could establish an increased innate immune antiviral pathway against HIV-1 and could enhance the efficacy of the IFN treatment.
Collapse
|
23
|
Akhtar LN, Qin H, Muldowney MT, Yanagisawa LL, Kutsch O, Clements JE, Benveniste EN. Suppressor of cytokine signaling 3 inhibits antiviral IFN-beta signaling to enhance HIV-1 replication in macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 185:2393-404. [PMID: 20631305 DOI: 10.4049/jimmunol.0903563] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HIV-1 replication within macrophages of the CNS often results in cognitive and motor impairment, which is known as HIV-associated dementia (HAD) in its most severe form. IFN-beta suppresses viral replication within these cells during early CNS infection, but the effect is transient. HIV-1 eventually overcomes this protective innate immune response to resume replication through an unknown mechanism, initiating the progression toward HAD. In this article, we show that Suppressor of Cytokine Signaling (SOCS)3, a molecular inhibitor of IFN signaling, may allow HIV-1 to evade innate immunity within the CNS. We found that SOCS3 is elevated in an in vivo SIV/macaque model of HAD and that the pattern of expression correlates with recurrence of viral replication and onset of CNS disease. In vitro, the HIV-1 regulatory protein transactivator of transcription induces SOCS3 in human and murine macrophages in a NF-kappaB-dependent manner. SOCS3 expression attenuates the response of macrophages to IFN-beta at proximal levels of pathway activation and downstream antiviral gene expression and consequently overcomes the inhibitory effect of IFN-beta on HIV-1 replication. These studies indicate that SOCS3 expression, induced by stimuli present in the HIV-1-infected brain, such as transactivator of transcription, inhibits antiviral IFN-beta signaling to enhance HIV-1 replication in macrophages. This consequence of SOCS3 expression in vitro, supported by a correlation with increased viral load and onset of CNS disease in vivo, suggests that SOCS3 may allow HIV-1 to evade the protective innate immune response within the CNS, allowing the recurrence of viral replication and, ultimately, promoting progression toward HAD.
Collapse
|
24
|
Abstract
Protein kinase R (PKR) is a central component of the interferon antiviral defense pathway. Upon binding to dsRNA, PKR undergoes autophosphorylation reactions that activate the kinase, resulting in the inhibition of protein synthesis in virally-infected cells. We have used analytical ultracentrifugation and related biophysical methods to quantitatively characterize the stoichiometries, affinities, and free energy couplings that govern the assembly of the macromolecular complexes in the PKR activation pathway. These studies demonstrate that PKR dimerization play a key role in enzymatic activation and support a model where the role of dsRNA is to bring two or more PKR monomers in close proximity to enhance dimerization.
Collapse
Affiliation(s)
- James L Cole
- Department of Molecular and Cell Biology, National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
25
|
Blalock WL, Bavelloni A, Piazzi M, Faenza I, Cocco L. A role for PKR in hematologic malignancies. J Cell Physiol 2010; 223:572-91. [PMID: 20232306 DOI: 10.1002/jcp.22092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The double-stranded RNA-dependent kinase PKR has been described for many years as strictly a pro-apoptotic kinase. Recent data suggest that the main purpose of this kinase is damage control and repair following stress and, if all else fails, apoptosis. Aberrant activation of PKR has been reported in numerous neurodegenerative diseases and cancer. Although a subset of myelodysplastic syndromes (MDS) and chronic lymphocytic leukemia contain low levels of PKR expression and activity, elevated PKR activity and/or expression have been detected in a wide range of hematologic malignancies, from bone marrow failure disorders to acute leukemia. With the recent findings that cancers containing elevated PKR activity are highly sensitive to PKR inhibition, we explore the role of PKR in hematologic malignancies, signal transduction pathways affected by PKR, and how PKR may contribute to leukemic transformation.
Collapse
Affiliation(s)
- William L Blalock
- Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
26
|
Dauber B, Wolff T. Activation of the Antiviral Kinase PKR and Viral Countermeasures. Viruses 2009; 1:523-44. [PMID: 21994559 PMCID: PMC3185532 DOI: 10.3390/v1030523] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 12/25/2022] Open
Abstract
The interferon-induced double-stranded (ds)RNA-dependent protein kinase (PKR) limits viral replication by an eIF2α-mediated block of translation. Although many negative-strand RNA viruses activate PKR, the responsible RNAs have long remained elusive, as dsRNA, the canonical activator of PKR, has not been detected in cells infected with such viruses. In this review we focus on the activating RNA molecules of different virus families, in particular the negative-strand RNA viruses. We discuss the recently identified non-canonical activators 5′-triphosphate RNA and the vRNP of influenza virus and give an update on strategies of selected RNA and DNA viruses to prevent activation of PKR.
Collapse
Affiliation(s)
- Bianca Dauber
- Department of Medical Microbiology & Immunology, University of Alberta, 632 Heritage Medical Research Center, Edmonton, AB, T6G 2S2, Canada
- Authors to whom correspondence should be addressed; E-Mails: (B.D.); (T.W.)
| | - Thorsten Wolff
- P15, Robert Koch-Institute/Nordufer 20, 13353 Berlin, Germany
- Authors to whom correspondence should be addressed; E-Mails: (B.D.); (T.W.)
| |
Collapse
|
27
|
Abstract
Many extracellular stresses cause inhibition of translation initiation by triggering phosphorylation of the initiation factor, eIF-2alpha. A major protein kinase responsible for this phosphorylation is PKR, a latent kinase which itself needs to be activated by autophosphorylation. In stressed cells, this activation occurs when PACT, a PKR-binding protein, is phosphorylated and activates PKR. We have previously demonstrated that the presence of specific residues in domain 3 of PACT is necessary for its ability to activate PKR in vivo. Here, we analyze the biochemical properties of the inactive PACT mutants by assessing their ability to bind and activate PKR in vitro. Among the essential residues, two serines need to be phosphorylated in vivo for PACT's ability to activate PKR. We substituted those serines with aspartic acids, mimics of phosphoserines, and investigated the properties of the corresponding mutant PACTs. In vitro, they activate PKR more efficiently because they bind to PKR more tightly. These results indicate that stress-induced phosphorylation of specific serine residues in domain 3 of PACT increases its affinity for PKR, which leads to better activation of PKR and resultant eIF-2alpha phosphorylation.
Collapse
Affiliation(s)
- Gregory A Peters
- Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
28
|
Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22:240-73, Table of Contents. [PMID: 19366914 DOI: 10.1128/cmr.00046-08] [Citation(s) in RCA: 2141] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The innate immune system constitutes the first line of defense against invading microbial pathogens and relies on a large family of pattern recognition receptors (PRRs), which detect distinct evolutionarily conserved structures on pathogens, termed pathogen-associated molecular patterns (PAMPs). Among the PRRs, the Toll-like receptors have been studied most extensively. Upon PAMP engagement, PRRs trigger intracellular signaling cascades ultimately culminating in the expression of a variety of proinflammatory molecules, which together orchestrate the early host response to infection, and also is a prerequisite for the subsequent activation and shaping of adaptive immunity. In order to avoid immunopathology, this system is tightly regulated by a number of endogenous molecules that limit the magnitude and duration of the inflammatory response. Moreover, pathogenic microbes have developed sophisticated molecular strategies to subvert host defenses by interfering with molecules involved in inflammatory signaling. This review presents current knowledge on pathogen recognition through different families of PRRs and the increasingly complex signaling pathways responsible for activation of an inflammatory and antimicrobial response. Moreover, medical implications are discussed, including the role of PRRs in primary immunodeficiencies and in the pathogenesis of infectious and autoimmune diseases, as well as the possibilities for translation into clinical and therapeutic applications.
Collapse
|
29
|
Heinicke LA, Wong CJ, Lary J, Nallagatla SR, Diegelman-Parente A, Zheng X, Cole JL, Bevilacqua PC. RNA dimerization promotes PKR dimerization and activation. J Mol Biol 2009; 390:319-38. [PMID: 19445956 DOI: 10.1016/j.jmb.2009.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 01/12/2023]
Abstract
The double-stranded RNA (dsRNA)-activated protein kinase [protein kinase R (PKR)] plays a major role in the innate immune response in humans. PKR binds dsRNA non-sequence specifically and requires a minimum of 15-bp dsRNA for one protein to bind and 30-bp dsRNA to induce protein dimerization and activation by autophosphorylation. PKR phosphorylates eukaryotic initiation factor 2alpha, a translation initiation factor, resulting in the inhibition of protein synthesis. We investigated the mechanism of PKR activation by an RNA hairpin with a number of base pairs intermediate between these 15- to 30-bp limits: human immunodeficiency virus type 1 transactivation-responsive region (TAR) RNA, a 23-bp hairpin with three bulges that is known to dimerize. TAR monomers and dimers were isolated from native gels and assayed for RNA and protein dimerization to test whether RNA dimerization affects PKR dimerization and activation. To modulate the extent of dimerization, we included TAR mutants with different secondary features. Native gel mixing experiments and analytical ultracentrifugation indicate that TAR monomers bind one PKR monomer and that TAR dimers bind two or three PKRs, demonstrating that RNA dimerization drives the binding of multiple PKR molecules. Consistent with functional dimerization of PKR, TAR dimers activated PKR while TAR monomers did not, and RNA dimers with fewer asymmetrical secondary-structure defects, as determined by enzymatic structure mapping, were more potent activators. Thus, the secondary-structure defects in the TAR RNA stem function as antideterminants to PKR binding and activation. Our studies support that dimerization of a 15- to 30-bp hairpin RNA, which effectively doubles its length, is a key step in driving activation of PKR and provide a model for how RNA folding can be related to human disease.
Collapse
Affiliation(s)
- Laurie A Heinicke
- Department of Chemistry, Pennsylvania State University, University Park, 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
VanOudenhove J, Anderson E, Kreuger S, Cole JL. Analysis of PKR structure by small-angle scattering. J Mol Biol 2009; 387:910-20. [PMID: 19232355 PMCID: PMC2663012 DOI: 10.1016/j.jmb.2009.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/05/2009] [Accepted: 02/10/2009] [Indexed: 11/20/2022]
Abstract
Protein kinase R (PKR) is a key component of the interferon antiviral defense pathway. Upon binding double-stranded RNA, PKR undergoes autophosphorylation reactions that activate the kinase. PKR contains an N-terminal double-stranded RNA binding domain, which consists of two tandem double-stranded RNA binding motifs, and a C-terminal kinase domain. We have used small-angle X-ray scattering and small-angle neutron scattering to define the conformation of latent PKR in solution. Guinier analysis indicates a radius of gyration of about 35 A. The p(r) distance distribution function exhibits a peak near 30 A, with a broad shoulder extending to longer distances. Good fits to the scattering data require models that incorporate multiple compact and extended conformations of the two interdomain linker regions. Thus, PKR belongs to the growing family of proteins that contain intrinsically unstructured regions. We propose that the flexible linkers may allow PKR to productively dimerize upon interaction with RNA activators that have diverse structures.
Collapse
Affiliation(s)
- Jennifer VanOudenhove
- Department of Molecular and Cell Biology, University of Connecticut Storrs, Connecticut 06269, USA
| | - Eric Anderson
- Department of Molecular and Cell Biology, University of Connecticut Storrs, Connecticut 06269, USA
| | - Susan Kreuger
- NIST Center for Neutron Research National Institutes of Standards and Technology Gaithersburg, MD 21702-1201, USA
| | - James L. Cole
- Department of Molecular and Cell Biology, University of Connecticut Storrs, Connecticut 06269, USA
- Deparment of Chemistry University of Connecticut Storrs, Connecticut 06269, USA
| |
Collapse
|
31
|
Sadler AJ, Latchoumanin O, Hawkes D, Mak J, Williams BRG. An antiviral response directed by PKR phosphorylation of the RNA helicase A. PLoS Pathog 2009; 5:e1000311. [PMID: 19229320 PMCID: PMC2637979 DOI: 10.1371/journal.ppat.1000311] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 01/23/2009] [Indexed: 11/18/2022] Open
Abstract
The double-stranded RNA-activated protein kinase R (PKR) is a key regulator of the innate immune response. Activation of PKR during viral infection culminates in phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2alpha) to inhibit protein translation. A broad range of regulatory functions has also been attributed to PKR. However, as few additional PKR substrates have been identified, the mechanisms remain unclear. Here, PKR is shown to interact with an essential RNA helicase, RHA. Moreover, RHA is identified as a substrate for PKR, with phosphorylation perturbing the association of the helicase with double-stranded RNA (dsRNA). Through this mechanism, PKR can modulate transcription, as revealed by its ability to prevent the capacity of RHA to catalyze transactivating response (TAR)-mediated type 1 human immunodeficiency virus (HIV-1) gene regulation. Consequently, HIV-1 virions packaged in cells also expressing the decoy RHA peptides subsequently had enhanced infectivity. The data demonstrate interplay between key components of dsRNA metabolism, both connecting RHA to an important component of innate immunity and delineating an unanticipated role for PKR in RNA metabolism.
Collapse
Affiliation(s)
- Anthony J Sadler
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | |
Collapse
|
32
|
Mechanism of PKR Activation by dsRNA. J Mol Biol 2008; 381:351-60. [PMID: 18599071 DOI: 10.1016/j.jmb.2008.05.056] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 05/20/2008] [Accepted: 05/23/2008] [Indexed: 01/20/2023]
Abstract
Protein kinase R (PKR) is a central component of the interferon antiviral defense pathway. Upon binding double-stranded RNA (dsRNA), PKR undergoes autophosphorylation reactions that activate the kinase. PKR then phosphorylates eukaryotic initiation factor 2alpha, thus inhibiting protein synthesis in virally infected cells. Using a series of dsRNAs of increasing length, we define the mechanism of PKR activation. A minimal dsRNA of 30 bp is required to bind two PKR monomers and 30 bp is the smallest dsRNA that elicits autophosphorylation activity. Thus, the ability of dsRNAs to function as PKR activators is correlated with binding of two or more PKR monomers. Sedimentation velocity data fit a model where PKR monomers sequentially attach to a single dsRNA. These results support an activation mechanism where the role of the dsRNA is to bring two or more PKR monomers in close proximity to enhance dimerization via the kinase domain. This model explains the inhibition observed at high dsRNA concentrations and the strong dependence of maximum activation on dsRNA binding affinity. Binding affinities increase dramatically upon reducing the salt concentration from 200 to 75 mM NaCl and we observe that a second PKR can bind to the 20-bp dsRNA. Nonspecific assembly of PKR on dsRNA occurs stochastically without apparent cooperativity.
Collapse
|
33
|
Anderson E, Cole JL. Domain stabilities in protein kinase R (PKR): evidence for weak interdomain interactions. Biochemistry 2008; 47:4887-97. [PMID: 18393532 DOI: 10.1021/bi702211j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PKR (protein kinase R) is induced by interferon and is a key component of the innate immunity antiviral pathway. Upon binding dsRNA, PKR undergoes autophosphorylation reactions that activate the kinase, leading it to phosphorylate eIF2alpha, thus inhibiting protein synthesis in virally infected cells. PKR contains a dsRNA-binding domain (dsRBD) and a kinase domain. The dsRBD is composed of two tandem dsRNA-binding motifs. An autoinhibition model for PKR has been proposed, whereby dsRNA binding activates the enzyme by inducing a conformational change that relieves the latent enzyme of the inhibition that is mediated by the interaction of the dsRBD with the kinase. However, recent biophysical data support an open conformation for the latent enzyme, where activation is mediated by dimerization of PKR induced upon binding dsRNA. We have probed the importance of interdomain contacts by comparing the relative stabilities of isolated domains with the same domain in the context of the intact enzyme using equilibrium chemical denaturation experiments. The two dsRNA-binding motifs fold independently, with the C-terminal motif exhibiting greater stability. The kinase domain is stabilized by about 1.5 kcal/mol in the context of the holenzyme, and we detect low-affinity binding of the kinase and dsRBD constructs in solution, indicating that these domains interact weakly. Limited proteolysis measurements confirm the expected domain boundaries and reveal that the activation loop in the kinase is accessible to cleavage and unstructured. Autophosphorylation induces a conformation change that blocks proteolysis of the activation loop.
Collapse
Affiliation(s)
- Eric Anderson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | |
Collapse
|
34
|
Mittelstadt M, Frump A, Khuu T, Fowlkes V, Handy I, Patel CV, Patel RC. Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR. Nucleic Acids Res 2007; 36:998-1008. [PMID: 18096616 PMCID: PMC2241914 DOI: 10.1093/nar/gkm1129] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PKR is an interferon (IFN)-induced protein kinase, which is involved in regulation of antiviral innate immunity, stress signaling, cell proliferation and programmed cell death. Although a low amount of PKR is expressed ubiquitously in all cell types in the absence of IFNs, PKR expression is induced at transcriptional level by IFN. PKR's enzymatic activity is activated by its binding to one of its activators. Double-stranded (ds) RNA, protein activator PACT and heparin are the three known activators of PKR. Activation of PKR in cells leads to a general block in protein synthesis due to phosphorylation of eIF2α on serine 51 by PKR. PKR activation is regulated very tightly in mammalian cells and a prolonged activation of PKR leads to apoptosis. Thus, positive and negative regulation of PKR activation is important for cell viability and function. The studies presented here describe human dihydrouridine synthase-2 (hDUS2) as a novel regulator of PKR. We originally identified hDUS2 as a protein interacting with PACT in a yeast two-hybrid screen. Further characterization revealed that hDUS2 also interacts with PKR through its dsRNA binding/dimerization domain and inhibits its kinase activity. Our results suggest that hDUS2 may act as a novel inhibitor of PKR in cells.
Collapse
Affiliation(s)
- Megan Mittelstadt
- Department of Biological Sciences, University of South Carolina Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 2007; 8:479-90. [PMID: 17473849 PMCID: PMC5507177 DOI: 10.1038/nrm2178] [Citation(s) in RCA: 948] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many RNA-binding proteins have modular structures and are composed of multiple repeats of just a few basic domains that are arranged in various ways to satisfy their diverse functional requirements. Recent studies have investigated how different modules cooperate in regulating the RNA-binding specificity and the biological activity of these proteins. They have also investigated how multiple modules cooperate with enzymatic domains to regulate the catalytic activity of enzymes that act on RNA. These studies have shown how, for many RNA-binding proteins, multiple modules define the fundamental structural unit that is responsible for biological function.
Collapse
Affiliation(s)
- Bradley M Lunde
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
36
|
García MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, Esteban M. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 2007; 70:1032-60. [PMID: 17158706 PMCID: PMC1698511 DOI: 10.1128/mmbr.00027-06] [Citation(s) in RCA: 614] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase PKR is a critical mediator of the antiproliferative and antiviral effects exerted by interferons. Not only is PKR an effector molecule on the cellular response to double-stranded RNA, but it also integrates signals in response to Toll-like receptor activation, growth factors, and diverse cellular stresses. In this review, we provide a detailed picture on how signaling downstream of PKR unfolds and what are the ultimate consequences for the cell fate. PKR activation affects both transcription and translation. PKR phosphorylation of the alpha subunit of eukaryotic initiation factor 2 results in a blockade on translation initiation. However, PKR cannot avoid the translation of some cellular and viral mRNAs bearing special features in their 5' untranslated regions. In addition, PKR affects diverse transcriptional factors such as interferon regulatory factor 1, STATs, p53, activating transcription factor 3, and NF-kappaB. In particular, how PKR triggers a cascade of events involving IKK phosphorylation of IkappaB and NF-kappaB nuclear translocation has been intensively studied. At the cellular and organism levels PKR exerts antiproliferative effects, and it is a key antiviral agent. A point of convergence in both effects is that PKR activation results in apoptosis induction. The extent and strength of the antiviral action of PKR are clearly understood by the findings that unrelated viral proteins of animal viruses have evolved to inhibit PKR action by using diverse strategies. The case for the pathological consequences of the antiproliferative action of PKR is less understood, but therapeutic strategies aimed at targeting PKR are beginning to offer promising results.
Collapse
Affiliation(s)
- M A García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
All replication-competent retroviruses contain three main reading frames, gag, pol and env, which are used for the synthesis of structural proteins, enzymes and envelope proteins respectively. Complex retroviruses, such as lentiviruses, also code for regulatory and accessory proteins that have essential roles in viral replication. The concerted expression of these genes ensures the efficient polypeptide production required for the assembly and release of new infectious progeny virions. Retroviral protein synthesis takes place in the cytoplasm and depends exclusively on the translational machinery of the host infected cell. Therefore, not surprisingly, retroviruses have developed RNA structures and strategies to promote robust and efficient expression of viral proteins in a competitive cellular environment.
Collapse
Affiliation(s)
- Laurent Balvay
- Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, IFR 128, Lyon, F-69364 France
- Inserm, U758, Lyon, F-69364 France
| | - Marcelo Lopez Lastra
- Laboratorio de Virología Molecular, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Bruno Sargueil
- Centre de Génétique, Moléculaire, CNRS UPR 2167, Avenue de la terrasse, Gif sur Yvette, 91190 France
| | - Jean-Luc Darlix
- Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, IFR 128, Lyon, F-69364 France
- Inserm, U758, Lyon, F-69364 France
| | - Théophile Ohlmann
- Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, IFR 128, Lyon, F-69364 France
- Inserm, U758, Lyon, F-69364 France
| |
Collapse
|
38
|
Cole JL. Activation of PKR: an open and shut case? Trends Biochem Sci 2006; 32:57-62. [PMID: 17196820 PMCID: PMC2703476 DOI: 10.1016/j.tibs.2006.12.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/16/2006] [Accepted: 12/18/2006] [Indexed: 11/15/2022]
Abstract
The double-stranded (ds) RNA-activated protein kinase, PKR, has a key role in the innate immunity response to viral infection in higher eukaryotes. PKR contains an N-terminal dsRNA-binding domain and a C-terminal kinase domain. In the prevalent autoinhibition model for PKR activation, dsRNA binding induces a conformational change that leads to the release of the dsRNA-binding domain from the kinase, thus relieving the inhibition of the latent enzyme. Structural and biophysical data now favor a model whereby dsRNA principally functions to induce dimerization of PKR via the kinase domain. This dimerization model has implications for other PKR regulatory mechanisms and represents a new structural paradigm for control of protein kinase activity.
Collapse
Affiliation(s)
- James L Cole
- Department of Molecular and Cell Biology, 91 N. Eagleville Road, U-3125 University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
39
|
Ucci JW, Kobayashi Y, Choi G, Alexandrescu AT, Cole JL. Mechanism of Interaction of the Double-Stranded RNA (dsRNA) Binding Domain of Protein Kinase R with Short dsRNA Sequences. Biochemistry 2006; 46:55-65. [PMID: 17198375 DOI: 10.1021/bi061531o] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dsRNA-activated protein kinase (PKR) plays a major role in the cellular response to viral infection. PKR contains an N-terminal dsRNA binding domain (dsRBD) and a C-terminal kinase domain. The dsRBD consists of two tandem copies of a conserved double-stranded RNA binding motif, dsRBM1 and dsRBM2. dsRNA binding is believed to activate PKR by inducing dimerization and subsequent autophosphorylation reactions. We have characterized the function of the dsRBD by assessing the binding of dsRBM1 and dsRBD to a series of dsRNA sequences ranging from 15 to 45 bp. For dsRBM1, the binding stoichiometries agree with an overlapping ligand binding model where the motif binds to multiple faces of the dsRNA duplex and overlaps along the helical axis. Similar behavior is observed for a dsRBD containing both dsRBM1 and dsRBM2 for sequences up to 30 bp; however, the binding affinity is enhanced 30-fold. Longer dsRNA sequences exhibit lower-than-expected stoichiometries, indicating a change in binding mode. NMR spectroscopy was used to define the regions of the dsRBD that interact with dsRNA. dsRNA binding induces exchange broadening of cross-peaks in 1H-15N HSQC spectra. For a 20 bp dsRNA, the resonances most affected map to the known dsRNA binding regions of dsRBM1 as well as the N-terminus of dsRBM2. For a longer 40 bp sequence, additional regions of dsRBM2 exhibit enhanced broadening. These data support a model in which dsRBM1 plays the dominant role in binding short dsRNA sequences and dsRBM2 makes additional interactions with the longer sequences capable of activating PKR.
Collapse
Affiliation(s)
- Jason W Ucci
- Department of Molecular and Cell Biology and National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | | | | | |
Collapse
|
40
|
Peters GA, Li S, Sen GC. Phosphorylation of Specific Serine Residues in the PKR Activation Domain of PACT Is Essential for Its Ability to Mediate Apoptosis. J Biol Chem 2006; 281:35129-36. [PMID: 16982605 DOI: 10.1074/jbc.m607714200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the latent protein kinase, PKR, by extracellular stresses and triggering of resultant cellular apoptosis are mediated by the protein, PACT, which itself gets phosphorylated in stressed cells. We have analyzed the underlying biochemical mechanism by carrying out alanine-scanning mutagenesis of the PKR activation domain of PACT. Among the indispensable residues identified were two serine residues, whose phosphorylation was essential for the cellular actions of PACT. Two-dimensional gel analysis, Western analysis using phosphoamino acid-specific antiserum, and in vivo 32P labeling of PACT demonstrated that constitutive phosphorylation of one of the two residues, Ser246, was required for stress-induced phosphorylation of the other, Ser287. Substitution of either of them by threonine or aspartic acid, but not alanine, was tolerated. Substitution of both residues with the phosphoserine mimetic, aspartic acid, produced a mutant PACT that, unlike the wild-type protein, caused PKR activation and apoptosis, even in unstressed cells. These results indicate that phosphorylation of specific serine residues in the activation domain of PACT is the major mode of transmission of cellular stress response to PKR.
Collapse
Affiliation(s)
- Gregory A Peters
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
41
|
Pellicena P, Kuriyan J. Protein-protein interactions in the allosteric regulation of protein kinases. Curr Opin Struct Biol 2006; 16:702-9. [PMID: 17079130 DOI: 10.1016/j.sbi.2006.10.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 10/06/2006] [Accepted: 10/20/2006] [Indexed: 01/26/2023]
Abstract
Protein-protein interactions involving the catalytic domain of protein kinases are likely to be generally important in the regulation of signal transduction pathways, but are rather sparsely represented in crystal structures. Recently determined structures of the kinase domains of the mitogen-activated protein kinase Fus3, the RNA-dependent kinase PKR, the epidermal growth factor receptor and Ca(2+)/calmodulin-dependent protein kinase II have revealed unexpected and distinct mechanisms by which interactions with the catalytic domain can modulate kinase activity.
Collapse
Affiliation(s)
- Patricia Pellicena
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
42
|
Puthenveetil S, Whitby L, Ren J, Kelnar K, Krebs JF, Beal PA. Controlling activation of the RNA-dependent protein kinase by siRNAs using site-specific chemical modification. Nucleic Acids Res 2006; 34:4900-11. [PMID: 16982647 PMCID: PMC1635244 DOI: 10.1093/nar/gkl464] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The RNA-dependent protein kinase (PKR) is activated by binding to double-stranded RNA (dsRNA). Activation of PKR by short-interfering RNAs (siRNAs) and stimulation of the innate immune response has been suggested to explain certain off-target effects in some RNA interference experiments. Here we show that PKR's kinase activity is stimulated in vitro 3- to 5-fold by siRNA duplexes with 19 bp and 2 nt 3′-overhangs, whereas the maximum activation observed for poly(I)•poly(C) was 17-fold over background under the same conditions. Directed hydroxyl radical cleavage experiments indicated that siRNA duplexes have at least four different binding sites for PKR's dsRNA binding motifs (dsRBMs). The location of these binding sites suggested specific nucleotide positions in the siRNA sense strand that could be modified with a corresponding loss of PKR binding. Modification at these sites with N2-benzyl-2′-deoxyguanosine (BndG) blocked interaction with PKR's dsRBMs and inhibited activation of PKR by the siRNA. Importantly, modification of an siRNA duplex that greatly reduced PKR activation did not prevent the duplex from lowering mRNA levels of a targeted message by RNA interference in HeLa cells. Thus, these studies demonstrate that specific positions in an siRNA can be rationally modified to prevent interaction with components of cellular dsRNA-regulated pathways.
Collapse
Affiliation(s)
| | | | | | - Kevin Kelnar
- Ambion, Inc.2130 Woodward, Austin, TX 78744, USA
| | | | - Peter A. Beal
- To whom correspondence should be addressed. Fax: +1 801 581 8433;
| |
Collapse
|
43
|
Lemaire PA, Tessmer I, Craig R, Erie DA, Cole JL. Unactivated PKR exists in an open conformation capable of binding nucleotides. Biochemistry 2006; 45:9074-84. [PMID: 16866353 PMCID: PMC2913708 DOI: 10.1021/bi060567d] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The dsRNA-activated protein kinase, PKR, plays a pivotal role in the cellular antiviral response. PKR contains an N-terminal dsRNA binding domain (dsRBD) and a C-terminal kinase domain. An autoinhibition model has been proposed in which latent PKR exists in a closed conformation where the substrate binding cleft of the kinase is blocked by the dsRBD. Binding to dsRNA activates the enzyme by inducing an open conformation and enhancing dimerization. We have tested this model by characterizing the affinity and kinetics of binding of a nucleotide substrate to PKR. The fluorescent nucleotide mant-AMPPNP binds to unactivated PKR with a Kd of approximately 30 microM, and the affinity is not strongly affected by autophosphorylation or binding to dsRNA. We observe biphasic binding kinetics in which the fast phase depends on ligand concentration but the slow phase is ligand-independent. The kinetic data fit to a two-step model of ligand binding followed by a slow conformation change. The kinetics are also not strongly affected by phosphorylation state or dsRNA binding. Thus, the equilibrium and kinetic data indicate that the substrate accessibility of the kinase is not modulated by PKR activation state as predicted by the autoinhibition model. In atomic force microscopy images, monomers of the latent protein are resolved with three separate regions linked by flexible, bridgelike structures. The resolution of the individual domains in the images supports a model in which unactivated PKR exists in an open conformation where the kinase domain is accessible and capable of binding substrate.
Collapse
Affiliation(s)
- Peter A. Lemaire
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125
| | - Ingrid Tessmer
- Department of Chemistry and Curriculum in Materials and Applied Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Ranyelle Craig
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125
| | - Dorothy A. Erie
- Department of Chemistry and Curriculum in Materials and Applied Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - James L. Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125
- National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, Connecticut 06269-3125
- To whom correspondence may be addressed: (860) 486-4333 (telephone),
| |
Collapse
|
44
|
Wahl SM, Greenwell-Wild T, Vázquez N. HIV accomplices and adversaries in macrophage infection. J Leukoc Biol 2006; 80:973-83. [PMID: 16908514 DOI: 10.1189/jlb.0306130] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell surface and intracellular proteins in macrophages influence various steps in the life cycle of lentiviruses. Characterization of these restriction and/or cofactors is essential to understanding how macrophages become unwitting HIV hosts and in fact, can coexist with a heavy viral burden. Although many of the cellular pathways co-opted by HIV in macrophages mimic those seen in CD4+ T cells, emerging evidence reveals cellular constituents of the macrophage, which may be uniquely usurped by HIV. For example, in addition to CD4 and CCR5, membrane annexin II facilitates early steps in infection of macrophages, but not in T cells. Blockade of this pathway effectively diminishes macrophage infection. Viral binding engages a macrophage-centric signaling pathway and a transcriptional profile, including genes such as p21, which benefit the virus. Once inside the cell, multiple host cell molecules are engaged to facilitate virus replication and assembly. Although the macrophage is an enabler, it also possesses innate antiviral mechanisms, including apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3) family DNA-editing enzymes to inhibit replication of HIV. Differential expression of these enzymes, which are largely neutralized by HIV to protect its rebirth, is associated with resistance or susceptibility to the virus. Higher levels of the cytidine deaminases endow potential HIV targets with a viral shield, and IFN-alpha, a natural inducer of macrophage APOBEC expression, renders macrophages tougher combatants to HIV infection. These and other manipulatable pathways may give the macrophage a fighting chance in its battle against the virus.
Collapse
Affiliation(s)
- Sharon M Wahl
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Rm. 320, 30 Convent Dr., MSC 4352, Bethesda, MD 20892-4352, USA.
| | | | | |
Collapse
|
45
|
Li S, Peters GA, Ding K, Zhang X, Qin J, Sen GC. Molecular basis for PKR activation by PACT or dsRNA. Proc Natl Acad Sci U S A 2006; 103:10005-10. [PMID: 16785445 PMCID: PMC1502496 DOI: 10.1073/pnas.0602317103] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mammalian protein kinase PKR is a critical component of the innate immune response against virus infection. Its cellular actions are mediated by modulating cell signaling and translational regulation. To be enzymatically active, latent PKR needs to be activated by binding to one of its activators, dsRNA or PACT protein. Although the structures of the N-terminal dsRNA-binding domain and the C-terminal kinase domain of PKR have been separately determined, the mode of activation of the enzyme remains unknown. To address this problem, we used biochemical, genetic, and NMR analyses to identify the PACT-binding motif (PBM) located in the kinase domain and demonstrated an intramolecular interaction between PBM and dsRNA-binding domain. This interaction is responsible for keeping PKR in an inactive conformation, because its disruption by point mutations of appropriate residues produced constitutively active PKR. Furthermore, a short decoy peptide, representing PBM, was able to activate PKR by interfering with the intramolecular interaction. These observations suggest a model for PKR activation upon binding of dsRNA or PACT.
Collapse
Affiliation(s)
- Shoudong Li
- *Department of Molecular Genetics and
- Graduate Program in Molecular Virology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | | | - Keyang Ding
- Structural Biology Program and Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195; and
| | - Xiaolun Zhang
- Structural Biology Program and Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195; and
| | - Jun Qin
- Structural Biology Program and Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195; and
| | - Ganes C. Sen
- *Department of Molecular Genetics and
- Graduate Program in Molecular Virology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- To whom correspondence should be addressed at:
Department of Molecular Genetics/NE20, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195. E-mail:
| |
Collapse
|
46
|
Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R, Fujita T, Behlke MA, Williams BRG. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 2006; 24:559-65. [PMID: 16648842 DOI: 10.1038/nbt1205] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 03/22/2006] [Indexed: 02/01/2023]
Abstract
Nonspecific effects triggered by small interfering RNAs (siRNAs) complicate the use of RNA interference (RNAi) to specifically downregulate gene expression. To uncover the basis of these nonspecific activities, we analyzed the effect of chemically synthesized siRNAs on mammalian double-stranded RNA (dsRNA)-activated signaling pathways. siRNAs ranging from 21 to 27 nucleotides (nt) in length activated the interferon system when they lacked 2-nt 3' overhangs, a characteristic of Dicer products. We show that the recognition of siRNAs is mediated by the RNA helicase RIG-I and that the presence of 3' overhangs impairs its ability to unwind the dsRNA substrate and activate downstream signaling to the transcription factor IRF-3. These results suggest a structural basis for discrimination between microRNAs that are endogenous Dicer products, and nonself dsRNAs such as by-products of viral replication. These findings will enable the rational design of siRNAs that avoid nonspecific effects or, alternatively, that induce bystander effects to potentially increase the efficacy of siRNA-based treatments of viral infections or cancer.
Collapse
Affiliation(s)
- Joao Trindade Marques
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gabel F, Wang D, Madern D, Sadler A, Dayie K, Daryoush MZ, Schwahn D, Zaccai G, Lee X, Williams BRG. Dynamic flexibility of double-stranded RNA activated PKR in solution. J Mol Biol 2006; 359:610-23. [PMID: 16650856 DOI: 10.1016/j.jmb.2006.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 03/21/2006] [Accepted: 03/22/2006] [Indexed: 12/31/2022]
Abstract
PKR, an interferon-induced double-stranded RNA activated serine-threonine kinase, is a component of signal transduction pathways mediating cell growth control and responses to stress and viral infection. Analysis of separate PKR functional domains by NMR and X-ray crystallography has revealed details of PKR RNA binding domains and kinase domain, respectively. Here, we report the structural characteristics, calculated from biochemical and neutron scattering data, of a native PKR fraction with a high level of autophosphorylation and constitutive kinase activity. The experiments reveal association of the protein monomer into dimers and tetramers, in the absence of double-stranded RNA or other activators. Low-resolution structures of the association states were obtained from the large angle neutron scattering data and reveal the relative orientation of all protein domains in the activated kinase dimer. Low-resolution structures were also obtained for a PKR tetramer-monoclonal antibody complex. Taken together, this information leads to a new model for the structure of the functioning unit of the enzyme, highlights the flexibility of PKR and sheds light on the mechanism of PKR activation. The results of this study emphasize the usefulness of low-resolution structural studies in solution on large flexible multiple domain proteins.
Collapse
Affiliation(s)
- Frank Gabel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Austin BA, Halford W, Silverman RH, Williams BRG, Carr DJJ. OAS and PKR are not required for the antiviral effect of Ad:IFN-gamma against acute HSV-1 in primary trigeminal ganglia cultures. J Interferon Cytokine Res 2006; 26:220-5. [PMID: 16704298 PMCID: PMC1472294 DOI: 10.1089/jir.2006.26.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Three interferon-gamma (IFN-gamma)-induced antiviral pathways have been reported. Involved antiviral proteins include: Mx, RNase L/2',5'-OAS, and protein kinase R (PKR). Involvement of OAS and PKR in IFN-gamma-induced anti-herpes simplex virus-1 (HSV-1) pathways has not been reported previously, but IFN-gamma induces OAS and PKR when other viruses invade the nervous system. The aim of the current study was to determine if the absence of intact OAS and PKR antiviral pathways affects the antiviral activity of IFN-gamma during acute HSV-1 infection within the trigeminal ganglia (TG). To investigate this, primary TG cultures were established using TGs removed from C57BL/6 (wild-type), RNase L knockout, and RNase L/PKR double knockout mice. Each dissociated TG was transduced with an adenoviral vector containing an IFN-gamma transgene or vector alone. Viral titers after HSV-1 infection of primary TG cell cultures were determined. Significant differences in viral titer for Ad:Null-transduced vs. Ad:IFN-gamma-tranduced TG were found in each genotype. However, the effectiveness of Ad:IFN-gamma was not reduced in the absence of both OAS and PKR pathways or OAS alone. Recombinant IFN-gamma also exhibited anti-HSV-1 activity. The effectiveness of the IFN-gamma transgene was lost in primary TG cells from IFN-gamma receptor knockout mice. The data suggest that novel anti-HSV-1 mechanisms are induced by IFN-gamma.
Collapse
Affiliation(s)
- Bobbie Ann Austin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William Halford
- Veterinary Molecular Biology Laboratory, P.O. Box 173610, Montana State University-Bozeman, Bozeman, MT 59717-3610
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Bryan R. G. Williams
- Department of Cancer Biology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Daniel J. J. Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Departments of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
49
|
Okumura A, Lu G, Pitha-Rowe I, Pitha PM. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci U S A 2006; 103:1440-5. [PMID: 16434471 PMCID: PMC1360585 DOI: 10.1073/pnas.0510518103] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Indexed: 12/20/2022] Open
Abstract
The goal of this study was to elucidate the molecular mechanism by which type I IFN inhibits assembly and release of HIV-1 virions. Our study revealed that the IFN-induced ubiquitin-like protein ISG15 mimics the IFN effect and inhibits release of HIV-1 virions without having any effect on the synthesis of HIV-1 proteins in the cells. ISG15 expression specifically inhibited ubiquitination of Gag and Tsg101 and disrupted the interaction of the Gag L domain with Tsg101, but conjugation of ISG15 to Gag or Tsg101 was not detected. The inhibition of Gag-Tsg101 interaction was also detected in HIV-1 infected, IFN-treated cells. Elimination of ISG15 expression by small interfering RNA reversed the IFN-mediated inhibition of HIV-1 replication and release of virions. These results indicated a critical role for ISG15 in the IFN-mediated inhibition of late stages of HIV-1 assembly and release and pointed to a mechanism by which the innate antiviral response targets the cellular endosomal trafficking pathway used by HIV-1 to exit the cell. Identification of ISG15 as the critical component in IFN-mediated inhibition of HIV-1 release advances the understanding of the IFN-mediated inhibition of HIV-1 replication and uncovers a target for the anti HIV-1 therapy.
Collapse
Affiliation(s)
- Atsushi Okumura
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
50
|
Dey M, Cao C, Dar AC, Tamura T, Ozato K, Sicheri F, Dever TE. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition. Cell 2005; 122:901-13. [PMID: 16179259 DOI: 10.1016/j.cell.2005.06.041] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 05/05/2005] [Accepted: 06/29/2005] [Indexed: 01/27/2023]
Abstract
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.
Collapse
Affiliation(s)
- Madhusudan Dey
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|