1
|
Yong R, Mu R, Han C, Chao T, Liu Y, Dong L, Wang C. Optimizing a 5-factor cocktail to prepare reparative macrophages for wound healing. J Leukoc Biol 2025; 117:qiae096. [PMID: 38630870 DOI: 10.1093/jleuko/qiae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
The treatment of nonhealing wounds, such as diabetic ulcers, remains a critical clinical challenge. Recent breakthroughs in cell therapy have shown great promise, with one primary focus on preparing cells with comprehensive reparative functions and foreseeable safety. In our previous study, we recapitulated the proregenerative and immunosuppressive functions of tumor-associated macrophages in non-tumor-derived macrophages, endowing the latter with characteristics for promoting diabetic wound healing-termed tumor-associated macrophage-educated macrophages. To eliminate the use of tumor-derived sources and devise a more controllable method to prepare tumor-associated macrophage-educated macrophage-like cells, in this study, we identify a cocktail comprising 5 recombinant proteins as an essential condition to induce nonpolarized macrophages into therapeutic cells with prohealing functions. The screened 5 factors are osteopontin, macrophage inflammatory protein 2, chemokine (C-C motif) ligand 8, vascular endothelial growth factor B, and macrophage colony-stimulating factor. We demonstrate the rationale for screening these factors and the phenotype of the 5 factor-induced tumor-associated macrophage-educated macrophage-like macrophages prepared from murine bone marrow-derived macrophages, which exhibit angiogenic and immunomodulatory effects in vitro. Then, we induce primary human monocytes from periphery blood into the 5 factor-induced tumor-associated macrophage-educated macrophage-like macrophages, which show prohealing effects in a human primary cell-based ex vivo model (T-Skin™). Our study demonstrates a simple, effective, and controllable approach to induce primary macrophages to possess repairing activities, which may provide insights for developing cell-based therapeutics for nonhealing wounds clinically.
Collapse
Affiliation(s)
- Rong Yong
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Ruoyu Mu
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Congwei Han
- School of Life Sciences & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, No. 163 Xianlin Avenue, 210023, Nanjing, China
| | - Tzuwei Chao
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Yu Liu
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Lei Dong
- School of Life Sciences & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, No. 163 Xianlin Avenue, 210023, Nanjing, China
- Chemistry and Biomedicine Innovative Center, Nanjing University, No. 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Chunming Wang
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| |
Collapse
|
2
|
Shakiba S, Haddadi NS, Afshari K, Lubov JE, Raef HS, Li R, Yildiz-Altay Ü, Daga M, Refat MA, Kim E, de Laflin JG, Akabane A, Sherman S, MacDonald E, Strassner JP, Zhang L, Leon M, Baer CE, Dresser K, Liang Y, Whitley JB, Skopelja-Gardner S, Harris JE, Deng A, Vesely MD, Rashighi M, Richmond J. Spatial characterization of interface dermatitis in cutaneous lupus reveals novel chemokine ligand-receptor pairs that drive disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574422. [PMID: 38260617 PMCID: PMC10802382 DOI: 10.1101/2024.01.05.574422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Chemokines play critical roles in the recruitment and activation of immune cells in both homeostatic and pathologic conditions. Here, we examined chemokine ligand-receptor pairs to better understand the immunopathogenesis of cutaneous lupus erythematosus (CLE), a complex autoimmune connective tissue disorder. We used suction blister biopsies to measure cellular infiltrates with spectral flow cytometry in the interface dermatitis reaction, as well as 184 protein analytes in interstitial skin fluid using Olink targeted proteomics. Flow and Olink data concordantly demonstrated significant increases in T cells and antigen presenting cells (APCs). We also performed spatial transcriptomics and spatial proteomics of punch biopsies using digital spatial profiling (DSP) technology on CLE skin and healthy margin controls to examine discreet locations within the tissue. Spatial and Olink data confirmed elevation of interferon (IFN) and IFN-inducible CXCR3 chemokine ligands. Comparing involved versus uninvolved keratinocytes in CLE samples revealed upregulation of essential inflammatory response genes in areas near interface dermatitis, including AIM2. Our Olink data confirmed upregulation of Caspase 8, IL-18 which is the final product of AIM2 activation, and induced chemokines including CCL8 and CXCL6 in CLE lesional samples. Chemotaxis assays using PBMCs from healthy and CLE donors revealed that T cells are equally poised to respond to CXCR3 ligands, whereas CD14+CD16+ APC populations are more sensitive to CXCL6 via CXCR1 and CD14+ are more sensitive to CCL8 via CCR2. Taken together, our data map a pathway from keratinocyte injury to lymphocyte recruitment in CLE via AIM2-Casp8-IL-18-CXCL6/CXCR1 and CCL8/CCR2, and IFNG/IFNL1-CXCL9/CXCL11-CXCR3.
Collapse
Affiliation(s)
- Saeed Shakiba
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | | | - Janet E. Lubov
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - Haya S. Raef
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - Robert Li
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | - Mridushi Daga
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | - Evangeline Kim
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | - Andressa Akabane
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - Shany Sherman
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | | | | | | | - Christina E. Baer
- UMass Chan Medical School, Sanderson Center for Optical Experimentation, Dept of Microbiology and Physiological Systems, Worcester, MA, USA
| | - Karen Dresser
- UMass Chan Medical School, Dept of Pathology, Worcester, MA, USA
| | - Yan Liang
- NanoString Technologies, Seattle, WA, USA
| | - James B Whitley
- Dartmouth Hitchcock Medical Center, Dept of Medicine, Lebanon, NH, USA
| | | | - John E Harris
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - April Deng
- UMass Chan Medical School, Dept of Pathology, Worcester, MA, USA
| | - Matthew D. Vesely
- Yale University School of Medicine, Dept of Dermatology, New Haven, CT, USA
| | - Mehdi Rashighi
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - Jillian Richmond
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| |
Collapse
|
3
|
Alexakou E, Bakopoulou A, Apatzidou DA, Kritis A, Malousi A, Anastassiadou V. Biological Effects of "Inflammageing" on Human Oral Cells: Insights into a Potential Confounder of Age-Related Diseases. Int J Mol Sci 2023; 25:5. [PMID: 38203178 PMCID: PMC10778866 DOI: 10.3390/ijms25010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES The term "inflammageing" describes the process of inflammation-induced aging that leads living cells to a state of permanent cell cycle arrest due to chronic antigenic irritation. This in vitro study aimed to shed light on the mechanisms of "inflammageing" on human oral cells. METHODS Primary cultures of human gingival fibroblasts (hGFs) were exposed to variable pro-inflammatory stimuli, including lipopolysaccharide (LPS), Tumor Necrosis Factor-alpha (TNFa), and gingival crevicular fluid (GCF) collected from active periodontal pockets of systemically healthy patients. Inflammageing was studied through two experimental models, employing either late-passage ("aged") cells (p. 10) that were exposed to the pro-inflammatory stimuli or early-passage ("young") cells (p. 1) continuously exposed during a period of several passages (up to p. 10) to the above-mentioned stimuli. Cells were evaluated for the expression of beta-galactosidase activity (histochemical staining), senescence-associated genes (qPCR analysis), and biomarkers related to a Senescence-Associated Secretory Phenotype (SASP), through proteome profile analysis and bioinformatics. RESULTS A significant increase (p < 0.05) in beta-galactosidase-positive cells was observed after exposure to each pro-inflammatory stimulus. The senescence-associated gene expression included upregulation for CCND1 and downregulation for SUSD6, and STAG1, a profile typical for cellular senescence. Overall, pro-inflammatory priming of late-passage cells caused more pronounced effects in terms of senescence than long-term exposure of early-passage cells to these stimuli. Proteomic analysis showed induction of SASP, evidenced by upregulation of several pro-inflammatory proteins (IL-6, IL-10, IL-16, IP-10, MCP-1, MCP-2, M-CSF, MIP-1a, MIP-1b, TNFb, sTNF-RI, sTNF-RII, TIMP-2) implicated in cellular aging and immune responses. The least potent impact on the induction of SASP was provoked by LPS and the most pronounced by GCF. CONCLUSION This study demonstrates that long-term exposure of hGFs to various pro-inflammatory signals induced or accelerated cellular senescence with the most pronounced impact noted for the late-passage cells. The outcome of these analyses provides insights into oral chronic inflammation as a potential confounder of age-related diseases.
Collapse
Affiliation(s)
- Elli Alexakou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece; (E.A.); (V.A.)
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece; (E.A.); (V.A.)
| | - Danae A. Apatzidou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece;
| | - Aristeidis Kritis
- Department of Physiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece;
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andigoni Malousi
- Department of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece;
| | - Vassiliki Anastassiadou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece; (E.A.); (V.A.)
| |
Collapse
|
4
|
Peskar D, Kuret T, Lakota K, Erman A. Molecular Profiling of Inflammatory Processes in a Mouse Model of IC/BPS: From the Complete Transcriptome to Major Sex-Related Histological Features of the Urinary Bladder. Int J Mol Sci 2023; 24:ijms24065758. [PMID: 36982831 PMCID: PMC10058956 DOI: 10.3390/ijms24065758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Animal models are invaluable in the research of the pathophysiology of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic aseptic urinary bladder disease of unknown etiology that primarily affects women. Here, a mouse model of IC/BPS was induced with multiple low-dose cyclophosphamide (CYP) applications and thoroughly characterized by RNA sequencing, qPCR, Western blot, and immunolabeling to elucidate key inflammatory processes and sex-dependent differences in the bladder inflammatory response. CYP treatment resulted in the upregulation of inflammatory transcripts such as Ccl8, Eda2r, and Vegfd, which are predominantly involved in innate immunity pathways, recapitulating the crucial findings in the bladder transcriptome of IC/BPS patients. The JAK/STAT signaling pathway was analyzed in detail, and the JAK3/STAT3 interaction was found to be most activated in cells of the bladder urothelium and lamina propria. Sex-based data analysis revealed that cell proliferation was more pronounced in male bladders, while innate immunity and tissue remodeling processes were the most distinctive responses of female bladders to CYP treatment. These processes were also reflected in prominent histological changes in the bladder. The study provides an invaluable reference dataset for preclinical research on IC/BPS and an insight into the sex-specific mechanisms involved in the development of IC/BPS pathology, which may explain the more frequent occurrence of this disease in women.
Collapse
Affiliation(s)
- Dominika Peskar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Kuret
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
| | - Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Murzilli S, Mirone V, Micheletto M, Tedesco E, Maira GD, Benetti F, Vanelli A. Evaluation of the Immunomodulatory Effects of a Probiotics and Natural Extract-Based Formulation in Bacterial-Induced Prostatitis. Life (Basel) 2023; 13:389. [PMID: 36836748 PMCID: PMC9965078 DOI: 10.3390/life13020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Among the many factors inducing prostate inflammation, bacterial contribution is potentially underrated according to the scientific community. Bacterial prostatitis is characterized by modifications of the prostatic microenvironment, mainly driven by the immune system. Macrophages play a major role in bacterial prostatitis, secreting a plethora of proinflammatory and chemoattractive cytokines and proteolytic enzymes able to degrade the ECM, so facilitating the invasion of other immune cells. Consequently, macrophages represent a link between bacterial infection and prostate inflammation, as well as being the main target of prostate anti-inflammatory drugs and dietary supplements. This study aims to investigate the effect of a formulation composed of active principles and a probiotic strain with a particular focus on the anti-inflammatory effect in an in vitro bacterial prostatitis model. The results obtained showed that the formulation reduces the inflammatory response of prostatic epithelium induced by bacterial infection. This effect is mediated by the modulation of activated macrophages. Analysis of the cytokines released highlights that the tested formulation is able to reduce the expression of key proinflammatory cytokines involved in the pathogenesis of prostate diseases, in particular prostate cancer, and represents a valuable tool to prevent bacterial prostatitis and ensure favorable prostate health.
Collapse
Affiliation(s)
| | - Vincenzo Mirone
- Department of Neurosciences, Sciences of Reproduction and Odontostomatology, University of Naples Federico II, I-80131 Naples, Italy
| | - Marta Micheletto
- ECSIN—European Center for the Sustainable Impact of Nanotechnology, EcamRicert SRL, I-35127 Padova, Italy
| | - Erik Tedesco
- ECSIN—European Center for the Sustainable Impact of Nanotechnology, EcamRicert SRL, I-35127 Padova, Italy
| | - Giovanni Di Maira
- ECSIN—European Center for the Sustainable Impact of Nanotechnology, EcamRicert SRL, I-35127 Padova, Italy
| | - Federico Benetti
- ECSIN—European Center for the Sustainable Impact of Nanotechnology, EcamRicert SRL, I-35127 Padova, Italy
| | | |
Collapse
|
6
|
Shroka TM, Kufareva I, Salanga CL, Handel TM. The dual-function chemokine receptor CCR2 drives migration and chemokine scavenging through distinct mechanisms. Sci Signal 2023; 16:eabo4314. [PMID: 36719944 PMCID: PMC10091583 DOI: 10.1126/scisignal.abo4314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
C-C chemokine receptor 2 (CCR2) is a dual-function receptor. Similar to other G protein-coupled chemokine receptors, it promotes monocyte infiltration into tissues in response to the chemokine CCL2, and, like atypical chemokine receptors (ACKRs), it scavenges chemokine from the extracellular environment. CCR2 therefore mediates CCL2-dependent signaling as a G protein-coupled receptor (GPCR) and also limits CCL2 signaling as a scavenger receptor. We investigated the mechanisms underlying CCR2 scavenging, including the involvement of intracellular proteins typically associated with GPCR signaling and internalization. Using CRISPR knockout cell lines, we showed that CCR2 scavenged by constitutively internalizing to remove CCL2 from the extracellular space and recycling back to the cell surface for further rounds of ligand sequestration. This process occurred independently of G proteins, GPCR kinases (GRKs), β-arrestins, and clathrin, which is distinct from other "professional" chemokine scavenger receptors that couple to GRKs, β-arrestins, or both. These findings set the stage for understanding the molecular regulators that determine CCR2 scavenging and may have implications for drug development targeting this therapeutically important receptor.
Collapse
Affiliation(s)
- Thomas M. Shroka
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Catherina L. Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Yao J, Wu D, Qiu Y. Adipose tissue macrophage in obesity-associated metabolic diseases. Front Immunol 2022; 13:977485. [PMID: 36119080 PMCID: PMC9478335 DOI: 10.3389/fimmu.2022.977485] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue macrophage (ATM) has been appreciated for its critical contribution to obesity-associated metabolic diseases in recent years. Here, we discuss the regulation of ATM on both metabolic homeostatsis and dysfunction. In particular, the macrophage polarization and recruitment as well as the crosstalk between ATM and adipocyte in thermogenesis, obesity, insulin resistance and adipose tissue fibrosis have been reviewed. A better understanding of how ATM regulates adipose tissue remodeling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- *Correspondence: Yifu Qiu,
| |
Collapse
|
8
|
She S, Ren L, Chen P, Wang M, Chen D, Wang Y, Chen H. Functional Roles of Chemokine Receptor CCR2 and Its Ligands in Liver Disease. Front Immunol 2022; 13:812431. [PMID: 35281057 PMCID: PMC8913720 DOI: 10.3389/fimmu.2022.812431] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a family of cytokines that orchestrate the migration and positioning of immune cells within tissues and are critical for the function of the immune system. CCR2 participates in liver pathology, including acute liver injury, chronic hepatitis, fibrosis/cirrhosis, and tumor progression, by mediating the recruitment of immune cells to inflammation and tumor sites. Although a variety of chemokines have been well studied in various diseases, there is no comprehensive review presenting the roles of all known chemokine ligands of CCR2 (CCL2, CCL7, CCL8, CCL12, CCL13, CCL16, and PSMP) in liver disease, and this review aims to fill this gap. The introduction of each chemokine includes its discovery, its corresponding chemotactic receptors, physiological functions and roles in inflammation and tumors, and its impact on different immune cell subgroups.
Collapse
Affiliation(s)
- Shaoping She
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Liying Ren
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Pu Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Dongbo Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Hongsong Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
- *Correspondence: Hongsong Chen,
| |
Collapse
|
9
|
Chemokine (C-C Motif) Ligand 8 and Tubulo-Interstitial Injury in Chronic Kidney Disease. Cells 2022; 11:cells11040658. [PMID: 35203308 PMCID: PMC8869891 DOI: 10.3390/cells11040658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Kidney fibrosis has been accepted to be a common pathological outcome of chronic kidney disease (CKD). We aimed to examine serum levels and tissue expression of chemokine (C-C motif) ligand 8 (CCL8) in patients with CKD and to investigate their association with kidney fibrosis in CKD model. Serum levels and tissue expression of CCL8 significantly increased with advancing CKD stage, proteinuria level, and pathologic deterioration. In Western blot analysis of primary cultured human tubular epithelial cells after induction of fibrosis with rTGF-β, CCL8 was upregulated by rTGF-β treatment and the simultaneous treatment with anti-CCL8 mAb mitigated the rTGF-β-induced an increase in fibronectin and a decrease E-cadherin and BCL-2 protein levels. The antiapoptotic effect of the anti-CCL8 mAb was also demonstrated by Annexin V/propidium iodide staining assay. In qRT-PCR analysis, mRNA expression levels of the markers for fibrosis and apoptosis showed similar expression patterns to those observed by western blotting. The immunohistochemical analysis revealed CCL8 and fibrosis- and apoptosis-related markers significantly increased in the unilateral ureteral obstruction model, which agrees with our in vitro findings. In conclusion, CCL8 pathway is associated with increased risk of kidney fibrosis and that CCL8 blockade can ameliorate kidney fibrosis and apoptosis.
Collapse
|
10
|
Fei L, Ren X, Yu H, Zhan Y. Targeting the CCL2/CCR2 Axis in Cancer Immunotherapy: One Stone, Three Birds? Front Immunol 2021; 12:771210. [PMID: 34804061 PMCID: PMC8596464 DOI: 10.3389/fimmu.2021.771210] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
CCR2 is predominantly expressed by monocytes/macrophages with strong proinflammatory functions, prompting the development of CCR2 antagonists to dampen unwanted immune responses in inflammatory and autoimmune diseases. Paradoxically, CCR2-expressing monocytes/macrophages, particularly in tumor microenvironments, can be strongly immunosuppressive. Thus, targeting the recruitment of immunosuppressive monocytes/macrophages to tumors by CCR2 antagonism has recently been investigated as a strategy to modify the tumor microenvironment and enhance anti-tumor immunity. We present here that beneficial effects of CCR2 antagonism in the tumor setting extend beyond blocking chemotaxis of suppressive myeloid cells. Signaling within the CCL2/CCR2 axis shows underappreciated effects on myeloid cell survival and function polarization. Apart from myeloid cells, T cells are also known to express CCR2. Nevertheless, tissue homing of Treg cells among T cell populations is preferentially affected by CCR2 deficiency. Further, CCR2 signaling also directly enhances Treg functional potency. Thus, although Tregs are not the sole type of T cells expressing CCR2, the net outcome of CCR2 antagonism in T cells favors the anti-tumor arm of immune responses. Finally, the CCL2/CCR2 axis directly contributes to survival/growth and invasion/metastasis of many types of tumors bearing CCR2. Together, CCR2 links to two main types of suppressive immune cells by multiple mechanisms. Such a CCR2-assoicated immunosuppressive network is further entangled with paracrine and autocrine CCR2 signaling of tumor cells. Strategies to target CCL2/CCR2 axis as cancer therapy in the view of three types of CCR2-expessing cells in tumor microenvironment are discussed.
Collapse
Affiliation(s)
- Liyang Fei
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Xiaochen Ren
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Haijia Yu
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Yifan Zhan
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| |
Collapse
|
11
|
Xue S, Tang H, Zhao G, Shen Y, Yang EY, Fu W, Shi Z, Tang X, Guo D. C-C Motif Chemokine 8 promotes angiogenesis in vascular endothelial cells. Vascular 2021; 29:429-441. [PMID: 32972333 DOI: 10.1177/1708538120959972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Angiogenesis is an important progress associated with several pathological situations. Several chemokines have been reported to act as regulators of angiogenesis. The current study aimed to find whether C-C Motif Chemokine 8 is involved in angiogenesis regulation. METHODS To verify whether C-C Motif Chemokine 8 is related to angiogenesis in plaques, carotid plaques were collected from patients with severe carotid stenosis and analysed using CD31 immunohistochemistry and real-time PCR. To further clarify the relation between C-C Motif Chemokine 8 and angiogenesis, human umbilical vein endothelium cells and human dermal microvascular endothelial cells were treated with C-C Motif Chemokine 8 in the presence or absence of C-C motif chemokine receptor 2-Ab and extracellular regulated MAP kinase 1/2 inhibition (FR180204). Proliferation and migration of human umbilical vein endothelium cells and human dermal microvascular endothelial cells were examined with Cell Counting Kit-8 and Transwell chamber assay, respectively. In vitro angiogenesis stimulated by C-C Motif Chemokine 8 was examined using tube formation assay. Ex vivo and in vivo angiogenesis were assessed by mice aortic ring assay and Matrigel plug assay, respectively. C-C motif chemokine receptors of human umbilical vein endothelium cells were examined with real-time PCR, and C-C motif chemokine receptor 1, C-C motif chemokine receptor 2, extracellular regulated MAP kinase 1/2 and phosphorylation-extracellular regulated MAP kinase 1/2 were examined with western blotting assay. RESULTS C-C Motif Chemokine 8 was increased in carotid plaques with severe angiogenesis in both RNA and protein level. C-C Motif Chemokine 8 (5 ng/ml) weakly increased human umbilical vein endothelium cell proliferation, but not on human dermal microvascular endothelial cells. Migration and tube formation could be induced by C-C Motif Chemokine 8 in both human umbilical vein endothelium cells and human dermal microvascular endothelial cells. In mice aortic ring assay and Matrigel plug assay, C-C Motif Chemokine 8 could promote angiogenesis compared to vehicle groups. Phosphorylation of extracellular regulated MAP kinase 1/2 was increased with C-C Motif Chemokine 8 stimulation. The migration and tube formation promoted by C-C Motif Chemokine 8 could be largely blocked by C-C motif chemokine receptor 2-Ab or extracellular regulated MAP kinase 1/2 inhibition (FR180204). CONCLUSIONS C-C Motif Chemokine 8 could promote both in vitro and in vivo angiogenesis. C-C motif chemokine receptor 2 played an important role in the activation of C-C Motif Chemokine 8 and extracellular regulated MAP kinase 1/2 signalling pathway was involved in this mechanism.
Collapse
Affiliation(s)
- Song Xue
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Hanfei Tang
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Gefei Zhao
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Ethan Yibo Yang
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Xiao Tang
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Daqiao Guo
- Department of Vascular Surgery, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Xue S, Tang H, Zhao G, Fang C, Shen Y, Yan D, Yuan Y, Fu W, Shi Z, Tang X, Guo D. C-C motif ligand 8 promotes atherosclerosis via NADPH oxidase 2/reactive oxygen species-induced endothelial permeability increase. Free Radic Biol Med 2021; 167:181-192. [PMID: 33741452 DOI: 10.1016/j.freeradbiomed.2021.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 02/14/2021] [Indexed: 12/31/2022]
Abstract
Chemokines have been reported to play important roles in atherosclerotic development. Recently, we found C-C motif ligand 8 (CCL8), a rarely studied chemokine in atherosclerosis, was highly expressed in the endothelium of advanced human carotid plaques. We hypothesized whether CCL8 promotes atherosclerosis through endothelial dysfunction. Apolipoprotein E-deficient mice under the Western diet were used to construct atherosclerosis models. Adeno-associated viruses (AAV) with CCL8 and the CCL8-antibody were injected into mice respectively to conduct CCL8 overexpression and suppression. The results showed that atherosclerotic lesions were significantly increased in the AAV-CCL8 group, while, lesions in the aortic sinus were reduced in the CCL8-antibody group. With CCL8 treatment (200 ng/ml, 24 h) in vitro, the permeability of human aortic endothelial cells (HAECs) increased and the expression of junctional proteins Zonula occluden-1, and Vascular endothelial cadherin were decreased. This effect was dependent on reactive oxygen species (ROS) generation, which could be blocked by l-Ascorbic acid and Apocynin. Results showed that NADPH oxidase 2 (NOX2) expression also increased with CCL8 stimulation and the ROS, and permeability increase of HAECs could be inhibited when NOX2 interfered with the specific siRNA. Additionally, we further found ERK1/2, PI3K-AKT, and NF-κB pathways were involved in the activation of CCL8. Our results indicated that CCL8 might also play important roles in atherosclerosis and this effect, at least in part, was caused by NOX2/ROS-induced endothelial permeability increase. This study might contribute to a deeper understanding of the connection between chemokines and atherosclerosis.
Collapse
Affiliation(s)
- Song Xue
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanfei Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gefei Zhao
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiansu, China
| | - Chao Fang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dong Yan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ye Yuan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Daqiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Siddiqui JA, Le Henaff C, Johnson J, He Z, Rifkin DB, Partridge NC. Osteoblastic monocyte chemoattractant protein-1 (MCP-1) mediation of parathyroid hormone's anabolic actions in bone implicates TGF-β signaling. Bone 2021; 143:115762. [PMID: 33212319 PMCID: PMC8628523 DOI: 10.1016/j.bone.2020.115762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/24/2022]
Abstract
Parathyroid hormone (PTH) is necessary for the regulation of calcium homeostasis and PTH (1-34) was the first approved osteoanabolic therapy for osteoporosis. It is well established that intermittent PTH increases bone formation and that bone remodeling and several cytokines and chemokines play an essential role in this process. Earlier, we had established that the chemokine, monocyte chemoattractant protein-1 (MCP-1/CCL2), was the most highly stimulated gene in rat bone after intermittent PTH injections. Nevertheless, MCP-1 function in bone appears to be complicated. To identify the primary cells expressing MCP-1 in response to PTH, we performed in situ hybridization of rat bone sections after hPTH (1-34) injections and showed that bone-lining osteoblasts are the primary cells that express MCP-1 after PTH treatment. We previously demonstrated MCP-1's importance by showing that PTH's anabolic effects are abolished in MCP-1 null mice, further implicating a role for the chemokine in this process. To establish whether rhMCP-1 peptide treatment could rescue the anabolic effect of PTH in MCP-1 null mice, we treated 4-month-old wild-type (WT) mice with hPTH (1-34) and MCP-1-/- mice with rhMCP-1 and/or hPTH (1-34) for 6 weeks. Micro-computed tomography (μCT) analysis of trabecular and cortical bone showed that MCP-1 injections for 6 weeks rescued the PTH anabolic effect in MCP-1-/- mice. In fact, the combination of rhMCP-1 and hPTH (1-34) has a synergistic anabolic effect compared with monotherapies. Mechanistically, PTH-enhanced transforming growth factor-β (TGF-β) signaling is abolished in the absence of MCP-1, while MCP-1 peptide treatment restores TGF-β signaling in the bone marrow. Here, we have shown that PTH regulates the transcription of the chemokine MCP-1 in osteoblasts and determined how MCP-1 affects bone cell function in PTH's anabolic actions. Taken together, our current work indicates that intermittent PTH stimulates osteoblastic secretion of MCP-1, which leads to increased TGF-β signaling, implicating it in PTH's anabolic actions.
Collapse
Affiliation(s)
- Jawed A Siddiqui
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, United States of America
| | - Carole Le Henaff
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, United States of America
| | - Joshua Johnson
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, United States of America
| | - Zhiming He
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, United States of America
| | - Daniel B Rifkin
- Department of Cell Biology, New York University Grossman School of Medicine, New York, United States of America
| | - Nicola C Partridge
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, United States of America.
| |
Collapse
|
14
|
CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of the Ligands of Receptors CCR1, CCR2, CCR3, and CCR4. Int J Mol Sci 2020; 21:ijms21218412. [PMID: 33182504 PMCID: PMC7665155 DOI: 10.3390/ijms21218412] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
CC chemokines, a subfamily of 27 chemotactic cytokines, are a component of intercellular communication, which is crucial for the functioning of the tumor microenvironment. Although many individual chemokines have been well researched, there has been no comprehensive review presenting the role of all known human CC chemokines in the hallmarks of cancer, and this paper aims at filling this gap. The first part of this review discusses the importance of CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 in cancer. Here, we discuss the significance of CCL2 (MCP-1), CCL7, CCL8, CCL11, CCL13, CCL14, CCL15, CCL16, CCL17, CCL22, CCL23, CCL24, and CCL26. The presentation of each chemokine includes its physiological function and then the role in tumor, including proliferation, drug resistance, migration, invasion, and organ-specific metastasis of tumor cells, as well as the effects on angiogenesis and lymphangiogenesis. We also discuss the effects of each CC chemokine on the recruitment of cancer-associated cells to the tumor niche (eosinophils, myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), regulatory T cells (Treg)). On the other hand, we also present the anti-cancer properties of CC chemokines, consisting in the recruitment of tumor-infiltrating lymphocytes (TIL).
Collapse
|
15
|
Gericke C, Mallone A, Engelhardt B, Nitsch RM, Ferretti MT. Oligomeric Forms of Human Amyloid-Beta(1-42) Inhibit Antigen Presentation. Front Immunol 2020; 11:1029. [PMID: 32582162 PMCID: PMC7290131 DOI: 10.3389/fimmu.2020.01029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
Genetic, clinical, biochemical and histochemical data indicate a crucial involvement of inflammation in Alzheimer's disease (AD), but harnessing the immune system to cure or prevent AD has so far proven difficult. Clarifying the cellular heterogeneity and signaling pathways associated with the presence of the AD hallmarks beta-amyloid and tau in the brain, would help to identify potential targets for therapy. While much attention has been so far devoted to microglia and their homeostatic phagocytic activity, additional cell types and immune functions might be affected in AD. Beyond microglia localized in the brain parenchyma, additional antigen-presenting cell (APC) types might be affected by beta-amyloid toxicity. Here, we investigated potential immunomodulatory properties of oligomeric species of beta-amyloid-peptide (Aβ) on microglia and putative APCs. We performed a comprehensive characterization of time- and pathology-dependent APC and T-cell alterations in a model of AD-like brain beta-amyloidosis, the APP-PS1-dE9 mouse model. We show that the deposition of first beta-amyloid plaques is accompanied by a significant reduction in MHC class II surface levels on brain APCs. Furthermore, taking advantage of customized in vitro systems and RNAseq, we demonstrate that a preparation containing various forms of oligomeric Aβ1-42 inhibits antigen presentation by altering the transcription of key immune mediators in dendritic cells. These results suggest that, beyond their neurotoxic effects, certain oligomeric Aβ forms can act as immunomodulatory agents on cerebral APCs and interfere with brain antigen presentation. Impaired brain immune surveillance might be one of the factors that facilitate Aβ and tau spreading in AD.
Collapse
Affiliation(s)
- Christoph Gericke
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Anna Mallone
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | | | - Roger M Nitsch
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.,Neurimmune AG, Schlieren, Switzerland
| | - Maria Teresa Ferretti
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| |
Collapse
|
16
|
Hao Q, Vadgama JV, Wang P. CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signal 2020; 18:82. [PMID: 32471499 PMCID: PMC7257158 DOI: 10.1186/s12964-020-00589-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a family of small cytokines, which guide a variety of immune/inflammatory cells to the site of tumor in tumorigenesis. A dysregulated expression of chemokines is implicated in different types of cancer including prostate cancer. The progression and metastasis of prostate cancer involve a complex network of chemokines that regulate the recruitment and trafficking of immune cells. The chemokine CCL2 and its main receptor CCR2 have been receiving particular interest on their roles in cancer pathogenesis. The up-regulation of CCL2/CCR2 and varied immune conditions in prostate cancer, are associated with cancer advancement, metastasis, and relapse. Here we reviewed recent findings, which link CCL2/CCR2 to the inflammation and cancer pathogenesis, and discussed the therapeutic potential of CCL2/CCR2 axis in cancer treatment based on results from our group and other investigators, with a major focus on prostate cancer. Video Abstract.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA. .,David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA. .,David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Piwen Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA. .,David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA. .,Center for Human Nutrition, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Hirayama H, Sakumoto R, Koyama K, Yasuhara T, Hasegawa T, Inaba R, Fujii T, Naito A, Moriyasu S, Kageyama S. Expression of C-C motif chemokines and their receptors in bovine placentomes at spontaneous and induced parturition. J Reprod Dev 2020; 66:49-55. [PMID: 31761882 PMCID: PMC7040214 DOI: 10.1262/jrd.2019-113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/03/2019] [Indexed: 01/01/2023] Open
Abstract
In bovine placentomes, the inflammatory response is considered important for the detachment of the fetal membrane from the caruncle after parturition. Glucocorticoids, a trigger of the onset of parturition, facilitate functional maturation of placentomes via prostaglandin (PG) and estrogen production in cattle. This study investigated how exogeneous glucocorticoids, which exert immunosuppressive effects, affect placental inflammation at parturition. Placentomes were collected immediately after spontaneous or induced parturition. Parturition was conventionally induced using PGF2α or dexamethasone or with a combination of triamcinolone acetonide and high-dose betamethasone (TABET treatment). Polymerase chain reaction (PCR) array analysis indicated that 9/13 C-C motif chemokine ligands (CCLs) were upregulated > two-fold in spontaneous parturition, with CCL2 and CCL8 being highly expressed. The expressions of CCL2, CCL8, C-C motif chemokine receptor 1 (CCR1), and CCR5 in caruncles were significantly higher in spontaneous parturition than in induced parturition. Although the clinical dose of dexamethasone did not influence the expression of these CCLs and CCRs, TABET treatment increased CCR1 expression. CCL8, CCR1, CCR2, and CCR5 were localized in the caruncular epithelial cells. CCR2 was also localized in the epithelial cells of the cotyledonary villi. This study is the first report to reveal the disruption in CCL and CCR expression in bovine placentomes at induced parturition. Enhanced glucocorticoid exposure for the induction of parturition may upregulate CCR1 expression in placentomes, but the treatment does not adequately promote CCL expression. Additionally, immunohistochemistry suggested that the CCL-CCR system is involved in the functional regulation of maternal and fetal epithelial cells in placentomes at parturition.
Collapse
Affiliation(s)
- Hiroki Hirayama
- Department of Bioproduction, Graduate School of Bioindustry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| | - Ryosuke Sakumoto
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ibaraki 305-0901, Japan
| | - Keisuke Koyama
- Dairy Cow Group, Daily Research Center, Hokkaido Research Organization, Hokkaido 086-1135, Japan
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Taichi Yasuhara
- Department of Bioproduction, Graduate School of Bioindustry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| | - Taito Hasegawa
- Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| | - Ryo Inaba
- Department of Bioproduction, Graduate School of Bioindustry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| | - Takashi Fujii
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
| | - Akira Naito
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
| | - Satoru Moriyasu
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
| | - Soichi Kageyama
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
| |
Collapse
|
18
|
Nahand JS, Karimzadeh MR, Nezamnia M, Fatemipour M, Khatami A, Jamshidi S, Moghoofei M, Taghizadieh M, Hajighadimi S, Shafiee A, Sadeghian M, Bokharaei-Salim F, Mirzaei H. The role of miR-146a in viral infection. IUBMB Life 2019; 72:343-360. [PMID: 31889417 DOI: 10.1002/iub.2222] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Cellular microRNAs (miRNAs) were identified as a key player in the posttranscriptional regulation of cellular-genes regulatory pathways. They also emerged as a significant regulator of the immune response. In particular, miR-146a acts as an importance modulator of function and differentiation cells of the innate and adaptive immunity. It has been associated with disorder including cancer and viral infections. Given its significance in the regulation of key cellular processes, it is not surprising which virus infection have found ways to dysregulation of miRNAs. miR-146a has been identified in exosomes (exosomal miR-146a). After the exosomes release from donor cells, they are taken up by the recipient cell and probably the exosomal miR-146a is able to modulate the antiviral response in the recipient cell and result in making them more susceptible to virus infection. In this review, we discuss recent reports regarding miR-146a expression levels, target genes, function, and contributing role in the pathogenesis of the viral infection and provide a clue to develop the new therapeutic and preventive strategies for viral disease in the future.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maryam Fatemipour
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Mohammad Sadeghian
- Orthopedic Surgeon Fellowship of Spine Surgery, Sasan General Hospital, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
19
|
Mamishi S, Pourakbari B, Sadeghi RH, Marjani M, Mahmoudi S. Diagnostic Accuracy of Monocyte Chemotactic Protein (MCP)-2 as Biomarker in Response to PE35/PPE68 Proteins: A Promising Diagnostic Method for the Discrimination of Active and Latent Tuberculosis. Protein Pept Lett 2019; 26:281-286. [PMID: 30663558 DOI: 10.2174/0929866526666190119165805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Several studies have been conducted to find new biomarkers for the discrimination of Latent Tuberculosis Infection (LTBI) from active TB (ATB); however, their findings are inconsistent. The aim of the current study was to evaluate the potential of in vitro antigenspecific expression of Monocyte Chemotactic Protein (MCP)-2 for discrimination of ATB and LTBI after stimulation of whole blood with PE35 and PPE68 recombinant proteins. MATERIALS AND METHODS The recombinant PE35 and PPE68 proteins were evaluated at a final concentration of 5 µg/ml by a 3-day whole blood assay. Secreted MCP-2 from the culture supernatants were measured by commercially available Human MCP2 ELISA Kit. The diagnostic performance of MCP-2 was ascertained by Receiver Operator Characteristic (ROC) curve and measuring the Area Under the Curve (AUC) and their 95% Confidence Intervals (CI). Cut-offs was estimated at various sensitivities and specificities and at the maximum Youden's index (YI), i.e. sensitivity specificity-1. RESULTS The median MCP-2 response to both PE35 and PPE68 in those with LTBI was significantly higher than patients with ATB. The discrimination performance of MCP-2 response following stimulation of PE35 (assessed by AUC) between LTBI and patients with ATB was 0.98 (95%CI: 0.94-1.00). Maximum discrimination was reached at a cut-off of 86pg/mL with 100% sensitivity and 97% specificity. The highest sensitivity and specificity was obtained using cut off 58 pg/mL following stimulation with PPE68 (100% and 90%, respectively; AUC: 0.94, 95%CI: 0.85- 1.00). CONCLUSION MCP-2 induced by PE35 and PPE68 shows good discriminatory power for discrimination of ATB and LTBI. Additional studies with a larger sample size are needed to confirm the advantage of this marker, alone or combined with other markers; however, these findings present a promising method, which can discriminate between ATB and LTBI.
Collapse
Affiliation(s)
- Setareh Mamishi
- Pediatric Infectious Disease Research Center, Children Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Pourakbari
- Pediatric Infectious Disease Research Center, Children Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reihaneh Hosseinpour Sadeghi
- Pediatric Infectious Disease Research Center, Children Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Marjani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Mahmoudi
- Pediatric Infectious Disease Research Center, Children Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Jablonski CL, Leonard C, Salo P, Krawetz RJ. CCL2 But Not CCR2 Is Required for Spontaneous Articular Cartilage Regeneration Post-Injury. J Orthop Res 2019; 37:2561-2574. [PMID: 31424112 DOI: 10.1002/jor.24444] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/07/2019] [Indexed: 02/04/2023]
Abstract
The role of the inflammatory response in articular cartilage degeneration and/or repair is often debated. Chemokine networks play a critical role in directing the recruitment of immune cells to sites of injury and have been shown to regulate cell behavior. In this study, we investigated the role of the CCL2/CCR2 signaling axis in cartilage regeneration and degeneration. CCL2-/- , CCR2-/- , CCL2-/- CCR2-/- , and control (C57) mice were subjected to full-thickness cartilage defect (FTCD) injuries (n = 9/group) within the femoral groove. Cartilage regeneration at 4 and 12 weeks post-FTCD was assessed using a 14-point histological scoring scale. Mesenchymal stem cells (MSCs) (Sca-1+ , CD140a+ ), macrophages (M1:CD38+ , M2:CD206+ , and M0:F4/80+ ) and proliferating cells (Ki67+ ) were quantified within joints using immunofluorescence. The multi-lineage differentiation capacity of Sca1+ MSCs was determined for all mouse strains. ACL transection (ACL-x) was employed to determine if CCL2-/- CCR2-/- mice were protected against osteoarthritis (OA) (n = 6/group). Absence of CCR2, but not CCL2 nor both (CCL2 and CCR2), enhanced spontaneous articular cartilage regeneration by 4 weeks post-FTCD. Furthermore, increased chondrogenesis was observed in MSCs derived from CCR2-/- mice. CCL2 deficiency promoted MSC homing to the adjacent synovium and FTCD at both 4 and 12 weeks post-injury; with no MSCs present at the surface of the FTCD in the remaining strains. Lower OA scores were observed in CCL2-/- CCR2-/- mice at 12 weeks post-ACL-x compared with C57 mice. Our findings demonstrate an inhibitory role for CCR2 in cartilage regeneration after injury, while CCL2 is required for regeneration, acting through a CCR2 independent mechanism. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2561-2574, 2019.
Collapse
Affiliation(s)
- Christina L Jablonski
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone & Joint Health, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | - Catherine Leonard
- McCaig Institute for Bone & Joint Health, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.,Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul Salo
- McCaig Institute for Bone & Joint Health, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.,Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roman J Krawetz
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone & Joint Health, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.,Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Lassner D, Siegismund CS, Kühl U, Rohde M, Stroux A, Escher F, Schultheiss HP. CCR5del32 genotype in human enteroviral cardiomyopathy leads to spontaneous virus clearance and improved outcome compared to wildtype CCR5. J Transl Med 2018; 16:249. [PMID: 30180856 PMCID: PMC6123922 DOI: 10.1186/s12967-018-1610-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
Background Enteroviral cardiomyopathy is a life-threatening disease, and detection of enterovirus (EV) RNA in the initial endomyocardial biopsy is associated with adverse prognosis and increased mortality. Some patients with EV infection may spontaneously eliminate the virus and recover, whereas those with virus persistence deteriorate and progress to heart failure. Interferon-beta (IFN-β) therapy eliminates the virus, resulting in increased survival of treated patients. CCR5 is expressed on antigen-presenting cells (both macrophages and dendritic cells) and immune effector cells (T-lymphocytes with memory/effector phenotype and natural killer cells). Its 32-bp deletion (CCR5del32) is the most frequent human coding sequence mutation. This study addresses the correlation of CCR5 polymorphism to the clinical course of EV infection and the necessity for IFN-β treatment. Methods We examined 97 consecutive patients with chronic/inflammatory cardiomyopathy and biopsy-proven EV infection and reliable information on clinical outcomes by CCr5 genotyping. These data were evaluated in relation to virus persistence in follow-up biopsies and survival rates over a 15-year period. Results Genotyping revealed a strong correlation between the CCR5del32 genotype and spontaneous virus clearance with improved outcomes. All patients with CCR5del32 eliminated EV spontaneously and none of them died within the observed period. In the group of untreated CCR5 wildtype patients, 33% died (Kaplan–Meier log-rank p = 0.010). However, CCR5 wildtype individuals treated with IFN-β are more likely to survive than without therapy (Kaplan–Meier log-rank p = 0.004) in identical proportions to individuals with the CCR5del32 genotype. Conclusions These data suggest that CCR5 genotyping is a novel predictive genetic marker for the clinical course of human EV cardiomyopathies. Hereby clinicians can identify those EV positive individuals who will eliminate the virus spontaneously based on CCR5 phenotype and those patients with CCR5 wildtype genotype who would be eligible for immediate antiviral IFN-β treatment to minimize irreversible cardiac damage. Electronic supplementary material The online version of this article (10.1186/s12967-018-1610-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dirk Lassner
- Institute of Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany.
| | | | - Uwe Kühl
- Institute of Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany.,Department of Cardiology, Campus Virchow, Charité-University Hospital Berlin, Berlin, Germany
| | - Maria Rohde
- Institute of Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany
| | - Andrea Stroux
- Institute of Biometry and Clinical Epidemiology, Campus Benjamin Franklin, Charité-University Hospital and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Felicitas Escher
- Institute of Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany.,Department of Cardiology, Campus Virchow, Charité-University Hospital Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | | |
Collapse
|
22
|
Nisha KJ, Suresh A, Anilkumar A, Padmanabhan S. MIP-1α and MCP-1 as salivary biomarkers in periodontal disease. Saudi Dent J 2018; 30:292-298. [PMID: 30202165 PMCID: PMC6128325 DOI: 10.1016/j.sdentj.2018.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/05/2018] [Accepted: 07/01/2018] [Indexed: 11/24/2022] Open
Abstract
Aim Chemokines released by different host cells when exposed to the components of periodontopathic bacteria induce and maintain an inflammatory response in the periodontium. The aim of the study was to estimate the salivary levels of two chemokines, macrophage inflammatory protein-1 alpha (MIP-1α) and monocyte chemo attractant protein-1 (MCP-1) in health, gingivitis and periodontitis and to evaluate their role as reliable salivary biomarkers in discriminating gingivitis and periodontitis from health. Methods A cross sectional study was designed to estimate the levels of MIP-1α and MCP-1 in whole unstimulated saliva from 75 patients who were divided into healthy (Group 1, n = 25), gingivitis (Group 2, n = 25) and chronic generalized periodontitis (Group 3, n = 25). MIP-1α and MCP-1 levels were estimated by using ELISA and were correlated with clinical parameters. ROC curve analysis was done to determine the sensitivity and specificity of these biomarkers in distinguishing periodontal disease from health. Results Both the biomarkers were detected in all the saliva samples. There was a statistically significant difference in the concentration of both the analytes in Group 3 and Group 2 compared with Group 1 (p < 0.001). ROC curve analysis showed 100% sensitivity and specificity for MIP-1α and MCP-1 in discriminating periodontitis from health. For discriminating gingivitis from health, MIP-1α had a higher sensitivity and specificity (100% & 88% respectively) compared to MCP-1(84.1% & 80% respectively). Conclusion There is a substantial increase in the concentration of both MIP-1α and MCP-1 with increasing severity of periodontal disease. Both the analytes showed promising results as biomarkers for discriminating periodontal disease from health.
Collapse
Affiliation(s)
- K J Nisha
- Department of Periodontics, Vydehi Institute of Dental Sciences and Research Centre, EPIP Zone, Whitefield, Bangalore, Karnataka 560066, India
| | - Aparnna Suresh
- Department of Periodontics, Vydehi Institute of Dental Sciences and Research Centre, EPIP Zone, Whitefield, Bangalore, Karnataka 560066, India
| | - A Anilkumar
- Department of Periodontics, Vydehi Institute of Dental Sciences and Research Centre, EPIP Zone, Whitefield, Bangalore, Karnataka 560066, India
| | - Shyam Padmanabhan
- Department of Periodontics, Vydehi Institute of Dental Sciences and Research Centre, EPIP Zone, Whitefield, Bangalore, Karnataka 560066, India
| |
Collapse
|
23
|
Lopes N, Charaix J, Cédile O, Sergé A, Irla M. Lymphotoxin α fine-tunes T cell clonal deletion by regulating thymic entry of antigen-presenting cells. Nat Commun 2018; 9:1262. [PMID: 29593265 PMCID: PMC5872006 DOI: 10.1038/s41467-018-03619-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Abstract
Medullary thymic epithelial cells (mTEC) purge the T cell repertoire of autoreactive thymocytes. Although dendritic cells (DC) reinforce this process by transporting innocuous peripheral self-antigens, the mechanisms that control their thymic entry remain unclear. Here we show that mTEC-CD4+ thymocyte crosstalk regulates the thymus homing of SHPS-1+ conventional DCs (cDC), plasmacytoid DCs (pDC) and macrophages. This homing process is controlled by lymphotoxin α (LTα), which negatively regulates CCL2, CCL8 and CCL12 chemokines in mTECs. Consequently, Ltα-deficient mice have increased expression of these chemokines that correlates with augmented classical NF-κB subunits and increased thymic recruitment of cDCs, pDCs and macrophages. This enhanced migration depends mainly on the chemokine receptor CCR2, and increases thymic clonal deletion. Altogether, this study identifies a fine-tuning mechanism of T cell repertoire selection and paves the way for therapeutic interventions to treat autoimmune disorders.
Collapse
Affiliation(s)
- Noëlla Lopes
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France
| | - Jonathan Charaix
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France
| | - Oriane Cédile
- Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, J.B. Winsløwsvej 25, 5000, Odense C, Denmark
| | - Arnauld Sergé
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Aix-Marseille Université UM105, 13273 cedex 09, Marseille, France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France.
| |
Collapse
|
24
|
Ge B, Li J, Wei Z, Sun T, Song Y, Khan NU. Functional expression of CCL8 and its interaction with chemokine receptor CCR3. BMC Immunol 2017; 18:54. [PMID: 29281969 PMCID: PMC5745793 DOI: 10.1186/s12865-017-0237-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 12/14/2017] [Indexed: 01/23/2023] Open
Abstract
Background Chemokines and their cognate receptors play important role in the control of leukocyte chemotaxis, HIV entry and other inflammatory diseases. Developing an effcient method to investigate the functional expression of chemokines and its interactions with specific receptors will be helpful to asses the structural and functional characteristics as well as the design of new approach to therapeutic intervention. Results By making systematic optimization study of expression conditions, soluble and functional production of chemokine C-C motif ligand 8 (CCL8) in Escherichia coli (E. coli) has been achieved with approx. 1.5 mg protein/l culture. Quartz crystal microbalance (QCM) analysis exhibited that the purified CCL8 could bind with C-C chemokine receptor type 3 (CCR3) with dissociation equilibrium constant (KD) as 1.2 × 10−7 M in vitro. Obvious internalization of CCR3 in vivo could be detected in 1 h when exposed to 100 nM of CCL8. Compared with chemokine C-C motif ligand 11 (CCL11) and chemokine C-C motif ligand 24 (CCL24), a weaker chemotactic effect of CCR3 expressing cells was observed when induced by CCL8 with same concentration. Conclusion This study delivers a simple and applicable way to produce functional chemokines in E. coli. The results clearly confirms that CCL8 can interact with chemokine receptor CCR3, therefore, it is promising area to develop drugs for the treatment of related diseases. Electronic supplementary material The online version of this article (10.1186/s12865-017-0237-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baosheng Ge
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| | - Jiqiang Li
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Zhijin Wei
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Tingting Sun
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Yanzhuo Song
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Naseer Ullah Khan
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| |
Collapse
|
25
|
Emerging Roles of MTG16 in Cell-Fate Control of Hematopoietic Stem Cells and Cancer. Stem Cells Int 2017; 2017:6301385. [PMID: 29358956 PMCID: PMC5735743 DOI: 10.1155/2017/6301385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
MTG16 (myeloid translocation gene on chromosome 16) and its related proteins, MTG8 and MTGR1, define a small family of transcriptional corepressors. These corepressors share highly conserved domain structures yet have distinct biological functions and tissue specificity. In vivo studies have shown that, of the three MTG corepressors, MTG16 is uniquely important for the regulation of hematopoietic stem/progenitor cell (HSPC) proliferation and differentiation. Apart from this physiological function, MTG16 is also involved in carcinomas and leukemias, acting as the genetic target of loss of heterozygosity (LOH) aberrations in breast cancer and recurrent translocations in leukemia. The frequent involvement of MTG16 in these disease etiologies implies an important developmental role for this transcriptional corepressor. Furthermore, mounting evidence suggests that MTG16 indirectly alters the disease course of several leukemias via its regulatory interactions with a variety of pathologic fusion proteins. For example, a recent study has shown that MTG16 can repress not only wild-type E2A-mediated transcription, but also leukemia fusion protein E2A-Pbx1-mediated transcription, suggesting that MTG16 may serve as a potential therapeutic target in acute lymphoblastic leukemia expressing the E2A-Pbx1 fusion protein. Given that leukemia stem cells share similar regulatory pathways with normal HSPCs, studies to further understand how MTG16 regulates cell proliferation and differentiation could lead to novel therapeutic approaches for leukemia treatment.
Collapse
|
26
|
Chemokine CCL8 and its receptor CCR5 in the spinal cord are involved in visceral pain induced by experimental colitis in mice. Brain Res Bull 2017; 135:170-178. [DOI: 10.1016/j.brainresbull.2017.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 01/26/2023]
|
27
|
Siddiqui JA, Partridge NC. CCL2/Monocyte Chemoattractant Protein 1 and Parathyroid Hormone Action on Bone. Front Endocrinol (Lausanne) 2017; 8:49. [PMID: 28424660 PMCID: PMC5372820 DOI: 10.3389/fendo.2017.00049] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
Chemokines are small molecules that play a crucial role as chemoattractants for several cell types, and their components are associated with host immune responses and repair mechanisms. Chemokines selectively recruit monocytes, neutrophils, and lymphocytes and induce chemotaxis through the activation of G protein-coupled receptors. Two well-described chemokine families (CXC and CC) are known to regulate the localization and trafficking of immune cells in cases of injury, infection, and tumors. Monocyte chemoattractant protein 1 (MCP-1/CCL2) is one of the important chemokines from the CC family that controls migration and infiltration of monocytes/macrophages during inflammation. CCL2 is profoundly expressed in osteoporotic bone and prostate cancer-induced bone resorption. CCL2 also regulates physiological bone remodeling in response to hormonal and mechanical stimuli. Parathyroid hormone (PTH) has multifaceted effects on bone, depending on the mode of administration. Intermittent PTH increases bone in vivo by increasing the number and activity of osteoblasts, whereas a continuous infusion of PTH decreases bone mass by stimulating a net increase in bone resorption. CCL2 is essential for both anabolic and catabolic effects of PTH. In this review, we will discuss the pharmacological role of PTH and involvement of CCL2 in the processes of PTH-mediated bone remodeling.
Collapse
Affiliation(s)
- Jawed Akhtar Siddiqui
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Nicola C. Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
- *Correspondence: Nicola C. Partridge,
| |
Collapse
|
28
|
Tone A, Shikata K, Ogawa D, Sasaki S, Nagase R, Sasaki M, Yozai K, Usui HK, Okada S, Wada J, Shikata Y, Makino H. Changes of gene expression profiles in macrophages stimulated by angiotensin II — Angiotensin II induces MCP-2 through AT1-receptor. J Renin Angiotensin Aldosterone Syst 2016; 8:45-50. [PMID: 17487826 DOI: 10.3317/jraas.2007.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Introduction. Macrophages play critical roles in the development of atherosclerosis and diabetic nephropathy as well as many inflammatory diseases. Angiotensin II type 1 receptor antagonists (AIIA) are beneficial for the prevention of atherosclerosis and diabetic nephropathy suggesting that angiotensin II (Ang II) promotes the development of these diseases. It has recently been reported that Ang II exerts proinflammatory actions in vivo and in vitro. This study was aimed to clarify the direct effects of Ang II on monocytes/macrophages. Materials and methods. PMA-treated THP-1 cells, a human monocytic leukaemia cell line, were treated with Ang II (10-6 mol/L) for 24 hours with or without AIIA (CV11974). We evaluated gene expression profiles of these cells using DNA microarray system and quantified them by real-time RT-PCR. Results. DNA microarray revealed that in total 19 genes, including monocyte chemoattractant protein (MCP)-2, were up-regulated by Ang II and down-regulated by AIIA. Real-tim D e RT-PCR showed that up-regulation of MCP-2 with Ang II is blocked by the AIIA (CV11974) but not by an AT2-receptor antagonist. Conclusions. These results suggest that Ang II directly stimulates MCP-2 expression through AT1-receptors in activated macrophages.Ang II may contribute to the persistence or amplification of microinflammation in vessel walls, heart and kidney.Vasculoprotective or renoprotective effects of AIIA might partly depend on direct antiinflammatory effects on macrophages.
Collapse
Affiliation(s)
- Atsuhito Tone
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
A CCL8 gradient drives breast cancer cell dissemination. Oncogene 2016; 35:6309-6318. [PMID: 27181207 PMCID: PMC5112152 DOI: 10.1038/onc.2016.161] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/21/2016] [Accepted: 04/06/2016] [Indexed: 01/14/2023]
Abstract
The migration of cancer cells towards gradients of chemoattractive factors represents a potential, yet elusive, mechanism that may contribute to cancer cell dissemination. Here we provide evidence for the maintenance of a gradient of increasing CCL8 concentration between the epithelium, the stroma and the periphery that is instrumental for breast cancer cells’ dissemination. In response to signals elicited by the neoplastic epithelium CCL8 production is enhanced in stromal fibroblasts at the tumor margins and in tissues at which breast cancer cells tend to metastasize such as the lungs and the brain. Manipulation of CCL8 activity influences the histology of the tumors and promotes major steps of the metastatic process such as invasion to adjacent stroma, intravasation and ultimately extravasation and seeding. These findings exemplify how gradients of chemoattractive factors such as CCL8, drive metastasis and suggest that interference with their operation may provide means for breast cancer management.
Collapse
|
30
|
Bessler WK, Kim G, Hudson FZ, Mund JA, Mali R, Menon K, Kapur R, Clapp DW, Ingram DA, Stansfield BK. Nf1+/- monocytes/macrophages induce neointima formation via CCR2 activation. Hum Mol Genet 2016; 25:1129-39. [PMID: 26740548 DOI: 10.1093/hmg/ddv635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
Persons with neurofibromatosis type 1 (NF1) have a predisposition for premature and severe arterial stenosis. Mutations in the NF1 gene result in decreased expression of neurofibromin, a negative regulator of p21(Ras), and increases Ras signaling. Heterozygous Nf1 (Nf1(+/-)) mice develop a marked arterial stenosis characterized by proliferating smooth muscle cells (SMCs) and a predominance of infiltrating macrophages, which closely resembles arterial lesions from NF1 patients. Interestingly, lineage-restricted inactivation of a single Nf1 allele in monocytes/macrophages is sufficient to recapitulate the phenotype observed in Nf1(+/-) mice and to mobilize proinflammatory CCR2+ monocytes into the peripheral blood. Therefore, we hypothesized that CCR2 receptor activation by its primary ligand monocyte chemotactic protein-1 (MCP-1) is critical for monocyte infiltration into the arterial wall and neointima formation in Nf1(+/-) mice. MCP-1 induces a dose-responsive increase in Nf1(+/-) macrophage migration and proliferation that corresponds with activation of multiple Ras kinases. In addition, Nf1(+/-) SMCs, which express CCR2, demonstrate an enhanced proliferative response to MCP-1 when compared with WT SMCs. To interrogate the role of CCR2 activation on Nf1(+/-) neointima formation, we induced neointima formation by carotid artery ligation in Nf1(+/-) and WT mice with genetic deletion of either MCP1 or CCR2. Loss of MCP-1 or CCR2 expression effectively inhibited Nf1(+/-) neointima formation and reduced macrophage content in the arterial wall. Finally, administration of a CCR2 antagonist significantly reduced Nf1(+/-) neointima formation. These studies identify MCP-1 as a potent chemokine for Nf1(+/-) monocytes/macrophages and CCR2 as a viable therapeutic target for NF1 arterial stenosis.
Collapse
Affiliation(s)
- Waylan K Bessler
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Grace Kim
- Department of Pediatrics and Neonatal-Perinatal Medicine and Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Farlyn Z Hudson
- Department of Pediatrics and Neonatal-Perinatal Medicine and Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Julie A Mund
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and
| | - Raghuveer Mali
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Keshav Menon
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - D Wade Clapp
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian K Stansfield
- Department of Pediatrics and Neonatal-Perinatal Medicine and Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
31
|
Li Y, Wu J, Zhang P. CCL15/CCR1 axis is involved in hepatocellular carcinoma cells migration and invasion. Tumour Biol 2015; 37:4501-7. [PMID: 26501423 DOI: 10.1007/s13277-015-4287-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022] Open
Abstract
The identification of new biomarkers for the early detection of hepatocellular carcinoma is critical in the development of tumor-targeted therapy, which is possibly advantageous on the prognosis of this disease. Results from our previous study indicated that CCL15 can be a specific proteomic biomarker of hepatocellular carcinoma, which plays an important role in tumorigenesis and tumor invasion. In this study, we found that CCL15 can induce hepatocellular carcinoma cell migration and invasion. Furthermore, CCR1, the receptor of CCL15, was demonstrated to play a critical role in metastatic hepatocellular carcinoma. CCR1 short hairpin RNA significantly inhibited CCL15-induced chemotaxis and invasion of HepG2 cells. Moreover, CCR1 knockdown significantly limited the activity and expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. These findings suggest that CCR1 plays critical roles in hepatocellular carcinoma metastasis, which indicates that CCR1 may be a potential molecular target in hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Yueguo Li
- Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.
- Key Laboratory of Cancer Prevention and Therapy, The National "863" Program of Clinical Research Laboratory, Tianjin, 300060, People's Republic of China.
| | - Jing Wu
- Department of Laboratory, Tianjin Third Central Hospital, Tianjin, 300170, People's Republic of China
| | - Peng Zhang
- Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, The National "863" Program of Clinical Research Laboratory, Tianjin, 300060, People's Republic of China
| |
Collapse
|
32
|
Domingos-Pereira S, Hojeij R, Reggi E, Derré L, Chevalier MF, Romero P, Jichlinski P, Nardelli-Haefliger D. Local Salmonella immunostimulation recruits vaccine-specific CD8 T cells and increases regression of bladder tumor. Oncoimmunology 2015; 4:e1016697. [PMID: 26140240 DOI: 10.1080/2162402x.2015.1016697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 12/13/2022] Open
Abstract
The efficacy of antitumoral responses can be increased using combinatorial vaccine strategies. We recently showed that vaccination could be optimized by local administration of diverse molecular or bacterial agents to target and augment antitumoral CD8 T cells in the genital mucosa (GM) and increase regression of cervical cancer in an animal model. Non muscle-invasive bladder cancer is another disease that is easily amenable to local therapies. In contrast to data obtained in the GM, in this study we show that intravesical (IVES) instillation of synthetic toll-like receptor (TLR) agonists only modestly induced recruitment of CD8 T cells to the bladder. However, IVES administration of Ty21a, a live bacterial vaccine against typhoid fever, was much more effective and increased the number of total and vaccine-specific CD8 T cells in the bladder approximately 10 fold. Comparison of chemokines induced in the bladder by either CpG (a TLR-9 agonist) or Ty21a highlighted the preferential increase in complement component 5a, CXCL5, CXCL2, CCL8, and CCL5 by Ty21a, suggesting their involvement in the attraction of T cells to the bladder. IVES treatment with Ty21a after vaccination also significantly increased tumor regression compared to vaccination alone, resulting in 90% survival in an orthotopic murine model of bladder cancer expressing a prototype tumor antigen. Our data demonstrate that combining vaccination with local immunostimulation may be an effective treatment strategy for different types of cancer and also highlight the great potential of the Ty21a vaccine, which is routinely used worldwide, in such combinatorial therapies.
Collapse
Key Words
- BCG, Bacillus Calmette Guerin
- BMDC, bone marrow-derived dendritic cell
- C5a, complement component 5a
- ESL, E-selectin ligands
- GM, genital mucosa
- IVAG, intravaginal
- IVES, intravesical
- NMIBC, non-muscle invasive bladder cancer
- PBS, phosphate buffered saline
- PE, phycoerythrin
- PIC, poly (I:C)
- SEM, standard error of the mean
- Salmonella Ty21a
- TLR, toll-like receptor
- TUR, transurethral resection
- bacterial immunostimulant
- bladder cancer
- combinatorial therapy
- s.c., subcutaneously
- therapeutic vaccination
Collapse
Affiliation(s)
| | - Rim Hojeij
- Dept. Urology; Lausanne University Hospital (CHUV); Lausanne, Switzerland
| | - Erica Reggi
- Dept. Urology; Lausanne University Hospital (CHUV); Lausanne, Switzerland
| | - Laurent Derré
- Dept. Urology; Lausanne University Hospital (CHUV); Lausanne, Switzerland
| | | | - Pedro Romero
- Ludwig Center for Cancer Research of University of Lausanne ; Lausanne, Switzerland
| | - Patrice Jichlinski
- Dept. Urology; Lausanne University Hospital (CHUV); Lausanne, Switzerland
| | | |
Collapse
|
33
|
Birkholz J, Doganci A, Darstein C, Gehring S, Zepp F, Meyer CU. IL-27 improves migrational and antiviral potential of CB dendritic cells. Hum Immunol 2014; 75:584-91. [PMID: 24530744 DOI: 10.1016/j.humimm.2014.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/03/2014] [Accepted: 02/04/2014] [Indexed: 11/18/2022]
Abstract
Interleukin (IL)-27 is known to be increased considerably in cord blood (CB) dendritic cells (DCs) after TLR ligation. Previously, we demonstrated that also basal IL-27 levels are higher in CB DCs. Here, we examined effects of IL-27 on monocyte derived dendritic cells (moDCs) to approach its particular role in the specialized immune system of the human neonate. Exogenous IL-27 promotes IL-27 transcription in CB and adult blood (AB) moDCs. IL-27 acts on CB moDCs primarily by significantly augmenting IL-27 protein, secondarily by increasing transcription of CXCL10 among other chemokines, chemokine receptor CCR1, interferon stimulated genes, transcription factor IRF8 and genes involved in antigen presentation. Furthermore, CB moDCs respond to IL-27 with augmented IL-8 and Tumor necrosis factor (TNF)-α. The results suggest that IL-27 enhances migrational and antiviral properties of CB dendritic cells.
Collapse
Affiliation(s)
- Julia Birkholz
- Pediatric Immunology Mainz, Children's Hospital, Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | - Aysefa Doganci
- Pediatric Immunology Mainz, Children's Hospital, Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Claudia Darstein
- Pediatric Immunology Mainz, Children's Hospital, Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Stephan Gehring
- Pediatric Immunology Mainz, Children's Hospital, Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Fred Zepp
- Pediatric Immunology Mainz, Children's Hospital, Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Claudius U Meyer
- Pediatric Immunology Mainz, Children's Hospital, Medical Center of the Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
34
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 509] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
35
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 PMCID: PMC3880466 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 687] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Induction of CCL8/MCP-2 by mycobacteria through the activation of TLR2/PI3K/Akt signaling pathway. PLoS One 2013; 8:e56815. [PMID: 23418602 PMCID: PMC3572057 DOI: 10.1371/journal.pone.0056815] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
Pleural tuberculosis (TB), together with lymphatic TB, constitutes more than half of all extrapulmonary cases. Pleural effusions (PEs) in TB are representative of lymphocytic PEs which are dominated by T cells. However, the mechanism underlying T lymphocytes homing and accumulation in PEs is still incompletely understood. Here we performed a comparative analysis of cytokine abundance in PEs from TB patients and non-TB patients by protein array analysis and observed that MCP-2/CCL8 is highly expressed in the TB-PEs as compared to peripheral blood. Meanwhile, we observed that CCR5, the primary receptor used by MCP-2/CCL8, is mostly expressed on pleural CD4+ T lymphocytes. Furthermore, we found that infection with either Mycobacterium bovis Bacillus Calmette-Guérin (BCG) or Mycobacterium tuberculosis H37Rv induced production of MCP-2/CCL8 at both transcriptional and protein level in Raw264.7 and THP-1 macrophage cells, mouse peritoneal macrophages as well as human PBMC monocyte-derived macrophages (MDMs). The induction of MCP-2/CCL8 by mycobacteria is dependent on the activation of TLR2/PI3K/Akt and p38 signaling pathway. We conclude that accumulation of MCP-2/CCL8 in TB-PEs may function as a biomarker for TB diagnosis.
Collapse
|
37
|
White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65:47-89. [PMID: 23300131 DOI: 10.1124/pr.111.005074] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.
Collapse
Affiliation(s)
- Gemma E White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
38
|
MEKATA H, KONNAI S, MINGALA CN, ABES NS, GUTIERREZ CA, DARGANTES AP, WITOLA WH, INOUE N, ONUMA M, MURATA S, OHASHI K. Kinetics of regulatory dendritic cells in inflammatory responses during Trypanosoma evansi infection. Parasite Immunol 2012; 34:318-29. [DOI: 10.1111/j.1365-3024.2012.01362.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Binding site characterization of G protein-coupled receptor by alanine-scanning mutagenesis using molecular dynamics and binding free energy approach: application to C-C chemokine receptor-2 (CCR2). Mol Divers 2012; 16:401-13. [PMID: 22528270 DOI: 10.1007/s11030-012-9368-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
The C-C chemokine receptor 2 (CCR2) was proved as a multidrug target in many diseases like diabetes, inflammation and AIDS, but rational drug design on this target is still lagging behind as the information on the exact binding site and the crystal structure is not yet available. Therefore, for a successful structure-based drug design, an accurate receptor model in ligand-bound state is necessary. In this study, binding-site residues of CCR2 was determined using in silico alanine scanning mutagenesis and the interactions between TAK-779 and the developed homology model of CCR2. Molecular dynamic simulation and Molecular Mechanics-Generalized Born Solvent Area method was applied to calculate binding free energy difference between the template and mutated protein. Upon mutating 29 amino acids of template protein and comparison of binding free energy with wild type, six residues were identified as putative hot spots of CCR2.
Collapse
|
40
|
Gama L, Shirk EN, Russell JN, Carvalho KI, Li M, Queen SE, Kalil J, Zink MC, Clements JE, Kallas EG. Expansion of a subset of CD14highCD16negCCR2low/neg monocytes functionally similar to myeloid-derived suppressor cells during SIV and HIV infection. J Leukoc Biol 2012; 91:803-16. [PMID: 22368280 DOI: 10.1189/jlb.1111579] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Monocytes have been categorized in three main subpopulations based on CD14 and CD16 surface expression. Classical monocytes express the CD14(++)CD16(-)CCR2(+) phenotype and migrate to inflammatory sites by quickly responding to CCL2 signaling. Here, we identified and characterized the expansion of a novel monocyte subset during HIV and SIV infection, which were undistinguishable from classical monocytes, based on CD14 and CD16 expression, but expressed significantly lower surface CCR2. Transcriptome analysis of sorted cells demonstrated that the CCR2(low/neg) cells are a distinct subpopulation and express lower levels of inflammatory cytokines and activation markers than their CCR2(high) counterparts. They exhibited impaired phagocytosis and greatly diminished chemotaxis in response to CCL2 and CCL7. In addition, these monocytes are refractory to SIV infection and suppress CD8(+) T cell proliferation in vitro. These cells express higher levels of STAT3 and NOS2, suggesting a phenotype similar to monocytic myeloid-derived cells, which suppress expansion of CD8(+) T cells in vivo. They may reflect an antiproliferative response against the extreme immune activation observed during HIV and SIV infections. In addition, they may suppress antiviral responses and thus, have a role in AIDS pathogenesis. Antiretroviral therapy in infected macaque and human subjects caused this population to decline, suggesting that this atypical phenotype is linked to viral replication.
Collapse
Affiliation(s)
- Lucio Gama
- Johns Hopkins University School of Medicine, BRB 831, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Zhang S, Wang X, Zhang L, Yang X, Pan J, Ren G. Characterization of monocyte chemoattractant proteins and CC chemokine receptor 2 expression during atherogenesis in apolipoprotein E-null mice. J Atheroscler Thromb 2011; 18:846-56. [PMID: 21712615 DOI: 10.5551/jat.7211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM We aimed to investigate the expression of monocyte chemoattractant proteins (MCPs) and their cognate receptor CC chemokine receptor 2 (CCR2) in aortas of apolipoprotein E-null (apoE(-/-)) mice during atherogenesis as well as the possible transcription pathway involved in the early induction of MCP-1 in vascular smooth muscle cells (VSMCs) in vivo. METHODS Atherosclerotic lesion development, aortic MCPs and CCR2 mRNA expression as well as the cellular localization of MCP-1, CCR2 and MCP-1 related transcription factors in atherosclerotic lesions were analyzed in apoE(-/-) mice fed a high fat and cholesterol diet. RESULTS MCP-1 and CCR2 mRNA expression was significantly induced during early atherogenesis and peaked after 10 and 12 weeks of diet, respectively, whereas MCP-2 and MCP-3 mRNA expression elevated in the late phases of lesion development. Immunostaining revealed that early MCP-1 expression was localized to VSMCs and that, in advanced lesions, both neointimal VSMCs and intimal macrophages expressed high levels of MCP-1. During the early (0 and 4 weeks of diet) induction of MCP-1 in VSMCs, the regulatory activator protein-1 (AP-1) proteins c-Jun and c-Fos were highly expressed and observed within the VSMCs nuclei, whereas nuclear factor-κB (NF-κB) protein p65 was only observed within the nuclei of VSMCs after 4 weeks of diet. CCR2 was also identified on intimal macrophages, endothelial cells and VSMCs in advanced lesions. CONCLUSION This study provides fundamental information on the expression kinetics of MCPs and CCR2 during atherogenesis and indicates that the earliest induction of MCP-1 in VSMCs of apoE(-/-)mice appears to correlate with AP-1 but not NF-κB regulatory pathways.
Collapse
Affiliation(s)
- Shun Zhang
- The Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | | | | | | | | | | |
Collapse
|
43
|
Berchiche YA, Gravel S, Pelletier ME, St-Onge G, Heveker N. Different effects of the different natural CC chemokine receptor 2b ligands on beta-arrestin recruitment, Gαi signaling, and receptor internalization. Mol Pharmacol 2011; 79:488-98. [PMID: 21088225 DOI: 10.1124/mol.110.068486] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The chemokine receptor CCR2, which has been implicated in a variety of inflammatory, autoimmune, and cardiovascular conditions, binds several natural chemokine ligands. Here, we assessed the recruitment of β-arrestin to CCR2 in response to these ligands using bioluminescence resonance energy transfer technology. Compared with CCL2, which was considered as a full agonist, other CCR2 ligands were partial agonists with reduced efficacy and potency. Agonist potencies were not a function of their affinity for CCR2. Efficacy of arrestin recruitment matched that of agonist-induced CCR2 internalization. Although the potency and efficacy rank orders of the ligands in arrestin recruitment were similar to those observed for Gα(i1) activation, arrestin recruitment was at least in part resistant to Gα(i/o)-inactivating pertussis toxin, suggesting partial independence from Gα(i/o). The degree of pertussis toxin resistance of arrestin recruitment was different between the chemokines. Moreover, qualitative differences between the arrestin responses to the different ligands were identified in the stability of the response: although CCL7-induced arrestin recruitment had a half-life of less than 15 min, CCL8 and CCL13 induced stable CCR2-arrestin interactions. Finally, the ligands stabilized different conformations of the CCR2 homodimer. Our results support the validity of models for receptor-ligand interactions in which different ligands stabilize different receptor conformations also for endogenous receptor ligands, with corresponding implications for drug development targeting CCR2.
Collapse
Affiliation(s)
- Yamina A Berchiche
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
44
|
Islam SA, Chang DS, Colvin RA, Byrne MH, McCully ML, Moser B, Lira SA, Charo IF, Luster AD. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ T(H)2 cells. Nat Immunol 2011; 12:167-77. [PMID: 21217759 DOI: 10.1038/ni.1984] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/09/2010] [Indexed: 12/29/2022]
Abstract
Mouse CCL8 is a CC chemokine of the monocyte chemoattractant protein (MCP) family whose biological activity and receptor usage have remained elusive. Here we show that CCL8 is highly expressed in the skin, where it serves as an agonist for the chemokine receptor CCR8 but not for CCR2. This distinguishes CCL8 from all other MCP chemokines. CCL8 responsiveness defined a population of highly differentiated, CCR8-expressing inflammatory T helper type 2 (T(H)2) cells enriched for interleukin (IL)-5. Ccr8- and Ccl8-deficient mice had markedly less eosinophilic inflammation than wild-type or Ccr4-deficient mice in a model of chronic atopic dermatitis. Adoptive transfer studies established CCR8 as a key regulator of T(H)2 cell recruitment into allergen-inflamed skin. In humans, CCR8 expression also defined an IL-5-enriched T(H)2 cell subset. The CCL8-CCR8 chemokine axis is therefore a crucial regulator of T(H)2 cell homing that drives IL-5-mediated chronic allergic inflammation.
Collapse
Affiliation(s)
- Sabina A Islam
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shah TA, Hillman NH, Nitsos I, Polglase GR, Pillow JJ, Newnham JP, Jobe AH, Kallapur SG. Pulmonary and systemic expression of monocyte chemotactic proteins in preterm sheep fetuses exposed to lipopolysaccharide-induced chorioamnionitis. Pediatr Res 2010; 68:210-5. [PMID: 20703142 PMCID: PMC3123719 DOI: 10.1203/pdr.0b013e3181e9c556] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Monocyte chemoattractant proteins (MCP-1 and MCP-2) mediate monocyte and T-lymphocyte chemotaxis, and IL-1 contributes to the pathogenesis of chorioamnionitis-induced lung inflammation and fetal inflammatory responses. We tested the hypothesis that IL-1 mediates the systemic and pulmonary induction of MCP-1 and MCP-2 in response to lipopolysaccharide (LPS)-induced chorioamnionitis. MCP-1 mRNA, MCP-2 mRNA, and MCP-1 protein expression were measured in two models: 1) intra-amniotic LPS and 2) intra-amniotic recombinant sheep IL-1alpha given at varying intervals before preterm delivery at 124 d GA. Intra-amniotic LPS or IL-1alpha induced MCP-1 mRNA and protein and MCP-2 mRNA in fetal lung many fold at 1-2 d. LPS induced intense MCP-1 expression in subepithelial mesenchymal cells and interstitial inflammatory cells in the lung. Inhibition of IL-1 signaling with recombinant human IL-1 receptor antagonist (rhIL-1ra) did not attenuate LPS induced increase in MCP-1 or MCP-2 expression. MCP-1 and MCP-2 were not induced in liver or chorioamnion, but MCP-1 increased in cord plasma. LPS or IL-1 can induce robust expression of MCP-1 or MCP-2 in the fetal lung. LPS induction of MCP-1 is not IL-1 dependent in fetal sheep. MCP-1 and MCP-2 may be significant contributors to fetal inflammation.
Collapse
Affiliation(s)
- Tushar A Shah
- Divisions of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rom S, Rom I, Passiatore G, Pacifici M, Radhakrishnan S, Del Valle L, Piña-Oviedo S, Khalili K, Eletto D, Peruzzi F. CCL8/MCP-2 is a target for mir-146a in HIV-1-infected human microglial cells. FASEB J 2010; 24:2292-300. [PMID: 20181935 DOI: 10.1096/fj.09-143503] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MicroRNA-mediated regulation of gene expression appears to be involved in a variety of cellular processes, including development, differentiation, proliferation, and apoptosis. Mir-146a is thought to be involved in the regulation of the innate immune response, and its expression is increased in tissues associated with chronic inflammation. Among the predicted gene targets for mir-146a, the chemokine CCL8/MCP-2 is a ligand for the CCR5 chemokine receptor and a potent inhibitor of CD4/CCR5-mediated HIV-1 entry and replication. In the present study, we have analyzed changes in the expression of mir-146a in primary human fetal microglial cells upon infection with HIV-1 and found increased expression of mir-146a. We further show that CCL8/MCP-2 is a target for mir-146a in HIV-1 infected microglia, as overexpression of mir-146a prevented HIV-induced secretion of MCP-2 chemokine. The clinical relevance of our findings was evaluated in HIV-encephalitis (HIVE) brain samples in which decreased levels of MCP-2 and increased levels of mir-146a were observed, suggesting a role for mir-146a in the maintenance of HIV-mediated chronic inflammation of the brain.
Collapse
Affiliation(s)
- Slava Rom
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, 1900 North 12th Street, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shin N, Baribaud F, Wang K, Yang G, Wynn R, Covington MB, Feldman P, Gallagher KB, Leffet LM, Lo YY, Wang A, Xue CB, Newton RC, Scherle PA. Pharmacological characterization of INCB3344, a small molecule antagonist of human CCR2. Biochem Biophys Res Commun 2009; 387:251-5. [DOI: 10.1016/j.bbrc.2009.06.135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
|
48
|
Struyf S, Proost P, Vandercappellen J, Dempe S, Noyens B, Nelissen S, Gouwy M, Locati M, Opdenakker G, Dinsart C, Van Damme J. Synergistic up-regulation of MCP-2/CCL8 activity is counteracted by chemokine cleavage, limiting its inflammatory and anti-tumoral effects. Eur J Immunol 2009; 39:843-57. [PMID: 19224633 DOI: 10.1002/eji.200838660] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chemokines mediate the inflammatory response by attracting various leukocyte types. MCP-2/CC chemokine ligand 8 (CCL8) was induced at only suboptimal levels in fibroblasts and endothelial cells by IL-1beta or IFN-gamma, unless these cytokines were combined. IFN-gamma also synergized with the TLR ligands peptidoglycan (TLR2), dsRNA (TLR3) or LPS (TLR4). Under these conditions, intact MCP-2/CCL8(1-76) produced by fibroblasts was found to be processed into MCP-2/CCL8(6-75), which lacked chemotactic activity for monocytic cells. Furthermore, the capacity of MCP-2/CCL8(6-75) to increase intracellular calcium levels through CCR1, CCR2, CCR3 and CCR5 was severely reduced. However, the truncated isoform still blocked these receptors for other ligands. MCP-2/CCL8(6-75) induced internalization of CCR2, inhibited MCP-1/CCL2 and MCP-2/CCL8 ERK signaling and antagonized the chemotactic activity of several CCR2 ligands (MCP-1/CCL2, MCP-2/CCL8, MCP-3/CCL7). In contrast to MCP-3/CCL7, parvoviral delivery of MCP-2/CCL8 into B78/H1 melanoma failed to inhibit tumor growth, partially due to proteolytic cleavage into inactive MCP-2/CCL8 missing five NH(2)-terminal residues. However, in an alternative tumor model, using HeLa cells, MCP-2/CCL8 retarded tumor development. These data indicate that optimal induction and delivery of MCP-2/CCL8 is counteracted by converting this chemokine into a receptor antagonist, thereby losing its anti-tumoral potential.
Collapse
Affiliation(s)
- Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Sawa Y, Tsuruga E, Iwasawa K, Ishikawa H, Yoshida S. Leukocyte adhesion molecule and chemokine production through lipoteichoic acid recognition by toll-like receptor 2 in cultured human lymphatic endothelium. Cell Tissue Res 2008; 333:237-52. [PMID: 18523807 DOI: 10.1007/s00441-008-0625-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/15/2008] [Indexed: 01/25/2023]
Abstract
We have recently reported that the human lymphatic endothelium has toll-like receptor 4 (TLR4)-mediated lipopolysaccharide recognition mechanisms that induce the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Although ligand engagement with TLR2 enables activation of the MyD88-dependent pathway similarly to TLR4, whether TLR2 ligands such as lipoteichoic acid (LTA) trigger the activation of lymphatic endothelium remains unclear. This study has been designed to investigate the expression dynamics of LTA-induced leukocyte adhesion molecules and chemokines in cultured human lymphatic endothelium (LEC). Reverse transcription/polymerase chain reaction (RT-PCR) and real-time quantitative PCR analyses have shown that LEC usually expresses TLR2 and increases TLR2 gene expression on LTA treatment. Indeed, LTA-treated LEC increases the expression of E-selectin, ICAM-1, and VCAM-1 but does not alter the gene expression of ICAM-2, ICAM-3, junctional adhesion molecule-1 (JAM-1), JAM-3, or platelet endothelial cell adhesion molecule-1 (PECAM-1). The expression of LTA-induced E-selectin, ICAM-1, and VCAM-1 in LEC is suppressed by anti-TLR2 but not by anti-TLR4 and is also suppressed by TLR2-specific short interfering RNA (siRNA) but not by siRNA for TLR4. The expression of CCL2, CCL5, and CCL20 (Cys-Cys motif chemokines) and of CXCL1, CXCL3, CXCL5, CXCL6, and CXCL8 (Cys-X-Cys motif chemokines) was induced in LEC with LTA. These data suggest that the human lymphatic endothelial phenotype has TLR2-mediated LTA-recognition mechanisms, resulting in increased expression of inflammatory leukocyte adhesion molecules and phagocyte-attractive chemokines. The human lymphatic endothelium may thus function to collect leukocytes from tissues into lymphatic vessels by means of immunologically functional molecules.
Collapse
Affiliation(s)
- Yoshihiko Sawa
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-Ku, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|