1
|
Lo J, Forst AL, Warth R, Zdebik AA. EAST/SeSAME Syndrome and Beyond: The Spectrum of Kir4.1- and Kir5.1-Associated Channelopathies. Front Physiol 2022; 13:852674. [PMID: 35370765 PMCID: PMC8965613 DOI: 10.3389/fphys.2022.852674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
In 2009, two groups independently linked human mutations in the inwardly rectifying K+ channel Kir4.1 (gene name KCNJ10) to a syndrome affecting the central nervous system (CNS), hearing, and renal tubular salt reabsorption. The autosomal recessive syndrome has been named EAST (epilepsy, ataxia, sensorineural deafness, and renal tubulopathy) or SeSAME syndrome (seizures, sensorineural deafness, ataxia, intellectual disability, and electrolyte imbalance), accordingly. Renal dysfunction in EAST/SeSAME patients results in loss of Na+, K+, and Mg2+ with urine, activation of the renin-angiotensin-aldosterone system, and hypokalemic metabolic alkalosis. Kir4.1 is highly expressed in affected organs: the CNS, inner ear, and kidney. In the kidney, it mostly forms heteromeric channels with Kir5.1 (KCNJ16). Biallelic loss-of-function mutations of Kir5.1 can also have disease significance, but the clinical symptoms differ substantially from those of EAST/SeSAME syndrome: although sensorineural hearing loss and hypokalemia are replicated, there is no alkalosis, but rather acidosis of variable severity; in contrast to EAST/SeSAME syndrome, the CNS is unaffected. This review provides a framework for understanding some of these differences and will guide the reader through the growing literature on Kir4.1 and Kir5.1, discussing the complex disease mechanisms and the variable expression of disease symptoms from a molecular and systems physiology perspective. Knowledge of the pathophysiology of these diseases and their multifaceted clinical spectrum is an important prerequisite for making the correct diagnosis and forms the basis for personalized therapies.
Collapse
Affiliation(s)
- Jacky Lo
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Anna-Lena Forst
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Anselm A. Zdebik
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- Centre for Nephrology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Loomis C, Stephens A, Janicot R, Baqai U, Drebushenko L, Round J. Identification of MAGUK scaffold proteins as intracellular binding partners of synaptic adhesion protein Slitrk2. Mol Cell Neurosci 2020; 103:103465. [DOI: 10.1016/j.mcn.2019.103465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 01/10/2023] Open
|
3
|
Zangerl-Plessl EM, Qile M, Bloothooft M, Stary-Weinzinger A, van der Heyden MAG. Disease Associated Mutations in K IR Proteins Linked to Aberrant Inward Rectifier Channel Trafficking. Biomolecules 2019; 9:biom9110650. [PMID: 31731488 PMCID: PMC6920955 DOI: 10.3390/biom9110650] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022] Open
Abstract
The ubiquitously expressed family of inward rectifier potassium (KIR) channels, encoded by KCNJ genes, is primarily involved in cell excitability and potassium homeostasis. Channel mutations associate with a variety of severe human diseases and syndromes, affecting many organ systems including the central and peripheral neural system, heart, kidney, pancreas, and skeletal muscle. A number of mutations associate with altered ion channel expression at the plasma membrane, which might result from defective channel trafficking. Trafficking involves cellular processes that transport ion channels to and from their place of function. By alignment of all KIR channels, and depicting the trafficking associated mutations, three mutational hotspots were identified. One localized in the transmembrane-domain 1 and immediately adjacent sequences, one was found in the G-loop and Golgi-export domain, and the third one was detected at the immunoglobulin-like domain. Surprisingly, only few mutations were observed in experimentally determined Endoplasmic Reticulum (ER)exit-, export-, or ER-retention motifs. Structural mapping of the trafficking defect causing mutations provided a 3D framework, which indicates that trafficking deficient mutations form clusters. These “mutation clusters” affect trafficking by different mechanisms, including protein stability.
Collapse
Affiliation(s)
- Eva-Maria Zangerl-Plessl
- Department of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (E.-M.Z.-P.); (A.S.-W.)
| | - Muge Qile
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands; (M.Q.); (M.B.)
| | - Meye Bloothooft
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands; (M.Q.); (M.B.)
| | - Anna Stary-Weinzinger
- Department of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (E.-M.Z.-P.); (A.S.-W.)
| | - Marcel A. G. van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands; (M.Q.); (M.B.)
- Correspondence: ; Tel.: +31-887558901
| |
Collapse
|
4
|
Dong X, Wei L, Guo X, Yang Z, Wu C, Li P, Lu L, Qi H, Shi Y, Hu X, Wu L, Chen L, Liu W. Dlg1 Maintains Dendritic Cell Function by Securing Voltage-Gated K + Channel Integrity. THE JOURNAL OF IMMUNOLOGY 2019; 202:3187-3197. [PMID: 31028120 DOI: 10.4049/jimmunol.1900089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) play key roles in Ab responses by presenting Ags to lymphocytes and by producing proinflammatory cytokines. In this study, we reported that DC-specific knockout of discs large homologue 1 (Dlg1) resulted in a significantly reduced capacity to mediate Ab responses to both thymus-independent and thymus-dependent Ags in Dlg1 fl/flCd11c-Cre-GFP mice. Mechanistically, Dlg1-deficient DCs showed severely impaired endocytosis and phagocytosis capacities upon Ag exposure. In parallel, loss of Dlg1 significantly jeopardized the proinflammatory cytokine production by DCs upon TLR stimulation. Thus, Dlg1-deficient DCs lost their functions to support innate and adaptive immunities. At a cellular level, Dlg1 exhibited an indispensable function to maintain membrane potential changes by securing potassium ion (K+) efflux and subsequent calcium ion (Ca2+) influx events in DCs upon stimulation, both of which are known to be required for proper function of DCs. At a molecular level, Dlg1 did so by retaining the integrity of voltage-gated K+ channels (including Kv1.3) in DCs. The loss of Dlg1 led to a decreased expression of K+ channels, resulting in impaired membrane potential changes and, as a consequence, reduced proinflammatory cytokine production, compromised Ag endocytosis, and phagocytosis. In conclusion, this study provided, to our knowledge, a novel insight into Dlg1 and the voltage-gated K+ channels axis in DC functions.
Collapse
Affiliation(s)
- Xuejiao Dong
- Ministry of Education Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Lisi Wei
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Xueheng Guo
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China.,National Education Examinations Authority, Beijing 100084, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20851
| | - Peiyu Li
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.,Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen 518052, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Hai Qi
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yan Shi
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Hu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Li Wu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China;
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
5
|
Rao SB, Katoozi S, Skauli N, Froehner SC, Ottersen OP, Adams ME, Amiry-Moghaddam M. Targeted deletion of β1-syntrophin causes a loss of K ir 4.1 from Müller cell endfeet in mouse retina. Glia 2019; 67:1138-1149. [PMID: 30803043 DOI: 10.1002/glia.23600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/02/2023]
Abstract
Proper function of the retina depends heavily on a specialized form of retinal glia called Müller cells. These cells carry out important homeostatic functions that are contingent on their polarized nature. Specifically, the Müller cell endfeet that contact retinal microvessels and the corpus vitreum show a tenfold higher concentration of the inwardly rectifying potassium channel Kir 4.1 than other Müller cell plasma membrane domains. This highly selective enrichment of Kir 4.1 allows K+ to be siphoned through endfoot membranes in a special form of spatial buffering. Here, we show that Kir 4.1 is enriched in endfoot membranes through an interaction with β1-syntrophin. Targeted disruption of this syntrophin caused a loss of Kir 4.1 from Müller cell endfeet without affecting the total level of Kir 4.1 expression in the retina. Targeted disruption of α1-syntrophin had no effect on Kir 4.1 localization. Our findings show that the Kir 4.1 aggregation that forms the basis for K+ siphoning depends on a specific syntrophin isoform that colocalizes with Kir 4.1 in Müller endfoot membranes.
Collapse
Affiliation(s)
- Shreyas B Rao
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Shirin Katoozi
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stanley C Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, Western Australia
| | - Ole Petter Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marvin E Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, Western Australia
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Kow LM, Pfaff DW. Can distinctly different rapid estrogen actions share a common mechanistic step? Horm Behav 2018; 104:156-164. [PMID: 29476777 DOI: 10.1016/j.yhbeh.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/23/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. This paper reviews early evidence for the existence of rapid, non-genomic effects of estrogens on neurons, and, further, proposes that these rapid effects are often synergistic with later, genomic effects. Finally, suggestions about potential molecular mechanisms underlying the rapid effects of estrogens are offered. A mechanistic step we propose to be common among rapid estrogenic actions includes membrane ER's binding to histamine, and NMDA receptors and subsequent dimerization, and clustering (respectively) in a manner that enhances histamine and NMDA actions.
Collapse
Affiliation(s)
- Lee-Ming Kow
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States.
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| |
Collapse
|
7
|
Duncan AL, Reddy T, Koldsø H, Hélie J, Fowler PW, Chavent M, Sansom MSP. Protein crowding and lipid complexity influence the nanoscale dynamic organization of ion channels in cell membranes. Sci Rep 2017; 7:16647. [PMID: 29192147 PMCID: PMC5709381 DOI: 10.1038/s41598-017-16865-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/15/2017] [Indexed: 01/07/2023] Open
Abstract
Cell membranes are crowded and complex environments. To investigate the effect of protein-lipid interactions on dynamic organization in mammalian cell membranes, we have performed coarse-grained molecular dynamics simulations containing >100 copies of an inwardly rectifying potassium (Kir) channel which forms specific interactions with the regulatory lipid phosphatidylinositol 4,5-bisphosphate (PIP2). The tendency of protein molecules to cluster has the effect of organizing the membrane into dynamic compartments. At the same time, the diversity of lipids present has a marked effect on the clustering behavior of ion channels. Sub-diffusion of proteins and lipids is observed. Protein crowding alters the sub-diffusive behavior of proteins and lipids such as PIP2 which interact tightly with Kir channels. Protein crowding also affects bilayer properties, such as membrane undulations and bending rigidity, in a PIP2-dependent manner. This interplay between the diffusion and the dynamic organization of Kir channels may have important implications for channel function.
Collapse
Affiliation(s)
- Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Tyler Reddy
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- T-6, MS K710, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- D. E. Shaw Research, 120 W 45th St., New York, NY, 10036, USA
| | - Jean Hélie
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Semmle, Blue Boar Court, 9 Alfred St, Oxford, OX1 4EH, UK
| | - Philip W Fowler
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Matthieu Chavent
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- IPBS-CNRS, Toulouse, Midi-Pyrénées, France
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
8
|
Visscher KM, Medeiros-Silva J, Mance D, Rodrigues JPGLM, Daniëls M, Bonvin AMJJ, Baldus M, Weingarth M. Supramolekulare Organisation und funktionale Auswirkungen von Ballungen von K +
-Kanälen in Membranen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Koen M. Visscher
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Deni Mance
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - João P. G. L. M. Rodrigues
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Mark Daniëls
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Alexandre M. J. J. Bonvin
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| |
Collapse
|
9
|
Visscher KM, Medeiros‐Silva J, Mance D, Rodrigues JPGLM, Daniëls M, Bonvin AMJJ, Baldus M, Weingarth M. Supramolecular Organization and Functional Implications of K + Channel Clusters in Membranes. Angew Chem Int Ed Engl 2017; 56:13222-13227. [PMID: 28685953 PMCID: PMC5655921 DOI: 10.1002/anie.201705723] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/29/2017] [Indexed: 11/19/2022]
Abstract
The segregation of cellular surfaces in heterogeneous patches is considered to be a common motif in bacteria and eukaryotes that is underpinned by the observation of clustering and cooperative gating of signaling membrane proteins such as receptors or channels. Such processes could represent an important cellular strategy to shape signaling activity. Hence, structural knowledge of the arrangement of channels or receptors in supramolecular assemblies represents a crucial step towards a better understanding of signaling across membranes. We herein report on the supramolecular organization of clusters of the K+ channel KcsA in bacterial membranes, which was analyzed by a combination of DNP-enhanced solid-state NMR experiments and MD simulations. We used solid-state NMR spectroscopy to determine the channel-channel interface and to demonstrate the strong correlation between channel function and clustering, which suggests a yet unknown mechanism of communication between K+ channels.
Collapse
Affiliation(s)
- Koen M. Visscher
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - João Medeiros‐Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Deni Mance
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - João P. G. L. M. Rodrigues
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Mark Daniëls
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Alexandre M. J. J. Bonvin
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| |
Collapse
|
10
|
Brasko C, Hawkins V, De La Rocha IC, Butt AM. Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS. Brain Struct Funct 2017; 222:41-59. [PMID: 26879293 PMCID: PMC5225165 DOI: 10.1007/s00429-016-1199-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022]
Abstract
The inwardly rectifying K+ channel subtype Kir5.1 is only functional as a heteromeric channel with Kir4.1. In the CNS, Kir4.1 is localised to astrocytes and is the molecular basis of their strongly negative membrane potential. Oligodendrocytes are the specialised myelinating glia of the CNS and their resting membrane potential provides the driving force for ion and water transport that is essential for myelination. However, little is known about the ion channel profile of mature myelinating oligodendrocytes. Here, we identify for the first time colocalization of Kir5.1 with Kir4.1 in oligodendrocytes in white matter. Immunolocalization with membrane-bound Na+/K+-ATPase and western blot of the plasma membrane fraction of the optic nerve, a typical CNS white matter tract containing axons and the oligodendrocytes that myelinate them, demonstrates that Kir4.1 and Kir5.1 are colocalized on oligodendrocyte cell membranes. Co-immunoprecipitation provides evidence that oligodendrocytes and astrocytes express a combination of homomeric Kir4.1 and heteromeric Kir4.1/Kir5.1 channels. Genetic knock-out and shRNA to ablate Kir4.1 indicates plasmalemmal expression of Kir5.1 in glia is largely dependent on Kir4.1 and the plasmalemmal anchoring protein PSD-95. The results demonstrate that, in addition to astrocytes, oligodendrocytes express both homomeric Kir4.1 and heteromeric Kir4.1/Kir5.1 channels. In astrocytes, these channels are essential to their key functions of K+ uptake and CO2/H+ chemosensation. We propose Kir4.1/Kir5.1 channels have equivalent functions in oligodendrocytes, maintaining myelin integrity in the face of large ionic shifts associated with action potential propagation along myelinated axons.
Collapse
Affiliation(s)
- C Brasko
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - V Hawkins
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - I Chacon De La Rocha
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - A M Butt
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
11
|
Targeted Gene Resequencing (Astrochip) to Explore the Tripartite Synapse in Autism-Epilepsy Phenotype with Macrocephaly. Neuromolecular Med 2015; 18:69-80. [PMID: 26537360 DOI: 10.1007/s12017-015-8378-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022]
Abstract
The frequent co-occurrence of autism spectrum disorders (ASD) and epilepsy, or paroxysmal EEG abnormalities, defines a condition termed autism-epilepsy phenotype (AEP). This condition results, in some cases , from dysfunctions of glial inwardly rectifying potassium channels (Kir), which are mainly expressed in astrocytes where they mediate neuron-glia communication. Macrocephaly is also often comorbid with autism-epilepsy (autism-epilepsy phenotype with macrocephaly, MAEP), and it is tempting to hypothesize that shared pathogenic mechanisms might explain concurrence of these conditions. In the present study, we assessed whether protein pathways involved, along with Kir channels, in astrocyte-neuron interaction at the tripartite synapse play a role in the etiopathogenesis of MAEP. Using a targeted resequencing methodology, we investigated the coding regions of 35 genes in 61 patients and correlated genetic results with clinical features. Variants were subdivided into 12 classes and clustered into four groups. We detected rare or previously unknown predicted deleterious missense changes in GJA1, SLC12A2, SNTA1, EFNA3, CNTNAP2, EPHA4, and STXBP1 in seven patients and two high-frequency variants in DLG1 in six individuals. We also found that a group of variants (predicted deleterious and non-coding), segregating with the comorbid MAEP/AEP subgroups, belong to proteins specifically involved in glutamate transport and metabolism (namely, SLC17A6, GRM8, and GLUL), as well as in potassium conductance (KCNN3). This "endophenotype-oriented" study, performed using a targeted strategy, helped to further delineate part of the complex genetic background of ASD, particularly in the presence of coexisting macrocephaly and/or epilepsy/paroxysmal EEG, and suggests that use of stringent clinical clustering might be an approach worth adopting in order to unravel the complex genomic data in neurodevelopmental disorders.
Collapse
|
12
|
|
13
|
Sepúlveda FV, Pablo Cid L, Teulon J, Niemeyer MI. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Physiol Rev 2015; 95:179-217. [PMID: 25540142 DOI: 10.1152/physrev.00016.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
K(+) channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K(+) channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K(+) homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K(+)-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge.
Collapse
Affiliation(s)
- Francisco V Sepúlveda
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - L Pablo Cid
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - Jacques Teulon
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - María Isabel Niemeyer
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| |
Collapse
|
14
|
Kim GE, Kronengold J, Barcia G, Quraishi IH, Martin HC, Blair E, Taylor JC, Dulac O, Colleaux L, Nabbout R, Kaczmarek LK. Human slack potassium channel mutations increase positive cooperativity between individual channels. Cell Rep 2014; 9:1661-1672. [PMID: 25482562 DOI: 10.1016/j.celrep.2014.11.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/06/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022] Open
Abstract
Disease-causing mutations in ion channels generally alter intrinsic gating properties such as activation, inactivation, and voltage dependence. We examined nine different mutations of the KCNT1 (Slack) Na(+)-activated K(+) channel that give rise to three distinct forms of epilepsy. All produced many-fold increases in current amplitude compared to the wild-type channel. This could not be accounted for by increases in the intrinsic open probability of individual channels. Rather, greatly increased opening was a consequence of cooperative interactions between multiple channels in a patch. The degree of cooperative gating was much greater for all of the mutant channels than for the wild-type channel, and could explain increases in current even in a mutant with reduced unitary conductance. We also found that the same mutation gave rise to different forms of epilepsy in different individuals. Our findings indicate that a major consequence of these mutations is to alter channel-channel interactions.
Collapse
Affiliation(s)
- Grace E Kim
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Jack Kronengold
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Giulia Barcia
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Imran H Quraishi
- Comprehensive Epilepsy Center, Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Hilary C Martin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Edward Blair
- Oxford University Hospitals Trust, Oxford OX3 9DU, UK
| | - Jenny C Taylor
- Oxford Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Olivier Dulac
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Laurence Colleaux
- INSERM U781, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Rima Nabbout
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
15
|
Giudici AM, Molina ML, Ayala JL, Montoya E, Renart ML, Fernández AM, Encinar JA, Ferrer-Montiel AV, Poveda JA, González-Ros JM. Detergent-labile, supramolecular assemblies of KcsA: Relative abundance and interactions involved. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:193-200. [DOI: 10.1016/j.bbamem.2012.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/22/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
|
16
|
Self-directed assembly and clustering of the cytoplasmic domains of inwardly rectifying Kir2.1 potassium channels on association with PSD-95. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2374-89. [DOI: 10.1016/j.bbamem.2011.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/22/2011] [Accepted: 06/28/2011] [Indexed: 12/21/2022]
|
17
|
The potassium channel KcsA: a model protein in studying membrane protein oligomerization and stability of oligomeric assembly? Arch Biochem Biophys 2011; 510:1-10. [PMID: 21458409 DOI: 10.1016/j.abb.2011.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 01/01/2023]
Abstract
Many membrane proteins are functional as stable oligomers. An understanding of the conditions that elicit and enhance oligomerization is important in many therapeutics. In this regard, protein-protein and protein-lipid interactions play crucial roles in the assembly and stability of oligomeric complexes. Recent years have seen a rapid increase in the mechanistic information on the importance of cytoplasmic termini in determining subunit assembly and stability of oligomeric complexes. In addition, the role of specific protein-lipid interaction between anionic phospholipids and "hot spots" on the protein surface has also become evident in stabilizing oligomeric assemblies. This review focuses on several contemporary developments of membrane proteins that stabilize oligomers by taking the potassium channel KcsA as an exemplary ion channel.
Collapse
|
18
|
Abstract
SAP97 is thought to play key roles in synapse assembly and synaptic plasticity. This study was carried out to determine whether it is involved in the Müller cell response to blue light injury. In light-injured rats, obvious intracellular edema in the outer retina was observed by transmission electron microscopy. The immunostaining of SAP97 was upregulated and concentrated in the Müller cell processes after photic injury, which was similar to the changes of AQP4 and the inwardly rectifying potassium channel, Kir4.1. Western blots showed that SAP97 and AQP4 protein levels were both increased on the third day after light exposure when compared with the control group (P<0.05). The upregulation of SAP97 coincides with the redistribution of AQP4 and Kir4.1 in blue light-injured rat retina.
Collapse
|
19
|
Tang X, Hang D, Sand A, Kofuji P. Variable loss of Kir4.1 channel function in SeSAME syndrome mutations. Biochem Biophys Res Commun 2010; 399:537-41. [PMID: 20678478 DOI: 10.1016/j.bbrc.2010.07.105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/27/2010] [Indexed: 11/28/2022]
Abstract
SeSAME syndrome is a complex disease characterized by seizures, sensorineural deafness, ataxia, mental retardation and electrolyte imbalance. Mutations in the inwardly rectifying potassium channel Kir4.1 (KCNJ10 gene) have been linked to this condition. Kir4.1 channels are weakly rectifying channels expressed in glia, kidney, cochlea and possibly other tissues. We determined the electrophysiological properties of SeSAME mutant channels after expression in transfected mammalian cells. We found that a majority of mutations (R297C, C140R, R199X, T164I) resulted in complete loss of Kir4.1 channel function while two mutations (R65P and A167V) produced partial loss of function. All mutant channels were rescued upon co-transfection of wild-type Kir4.1 but not Kir5.1 channels. Cell-surface biotinylation assays indicate significant plasma membrane expression of all mutant channels with exception of the non-sense mutant R199X. These results indicate the differential loss of Kir channel function among SeSAME syndrome mutations.
Collapse
Affiliation(s)
- Xiaofang Tang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455,USA
| | | | | | | |
Collapse
|
20
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1135] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Benfenati V, Ferroni S. Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels. Neuroscience 2009; 168:926-40. [PMID: 20026249 DOI: 10.1016/j.neuroscience.2009.12.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 12/04/2009] [Accepted: 12/05/2009] [Indexed: 12/16/2022]
Abstract
The physiological ability of the mammalian CNS to integrate peripheral stimuli and to convey information to the body is tightly regulated by its capacity to preserve the ion composition and volume of the perineuronal milieu. It is well known that astroglial syncytium plays a crucial role in such process by controlling the homeostasis of ions and water through the selective transmembrane movement of inorganic and organic molecules and the equilibration of osmotic gradients. Astrocytes, in fact, by contacting neurons and cells lining the fluid-filled compartments, are in a strategic position to fulfill this role. They are endowed with ion and water channel proteins that are localized in specific plasma membrane domains facing diverse liquid spaces. Recent data in rodents have demonstrated that the precise dynamics of the astroglia-mediated homeostatic regulation of the CNS is dependent on the interactions between water channels and ion channels, and their anchoring with proteins that allow the formation of macromolecular complexes in specific cellular domains. Interplay can occur with or without direct molecular interactions suggesting the existence of different regulatory mechanisms. The importance of molecular and functional interactions is pinpointed by the numerous observations that as consequence of pathological insults leading to the derangement of ion and volume homeostasis the cell surface expression and/or polarized localization of these proteins is perturbed. Here, we critically discuss the experimental evidence concerning: (1) molecular and functional interplay of aquaporin 4, the major aquaporin protein in astroglial cells, with potassium and gap-junctional channels that are involved in extracellular potassium buffering. (2) the interactions of aquaporin 4 with chloride and calcium channels regulating cell volume homeostasis. The relevance of the crosstalk between water channels and ion channels in the pathogenesis of astroglia-related acute and chronic diseases of the CNS is also briefly discussed.
Collapse
Affiliation(s)
- V Benfenati
- Istituto per lo Studio dei Materiali Nanostrutturati, ISMN, National Research Council, Via Gobetti 101, 40129 Bologna, Italy
| | | |
Collapse
|
22
|
Vikstrom KL, Vaidyanathan R, Levinsohn S, O'Connell RP, Qian Y, Crye M, Mills JH, Anumonwo JMB. SAP97 regulates Kir2.3 channels by multiple mechanisms. Am J Physiol Heart Circ Physiol 2009; 297:H1387-97. [PMID: 19633205 DOI: 10.1152/ajpheart.00638.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We examined the impact of coexpressing the inwardly rectifying potassium channel, Kir2.3, with the scaffolding protein, synapse-associated protein (SAP) 97, and determined that coexpression of these proteins caused an approximately twofold increase in current density. A combination of techniques was used to determine if the SAP97-induced increase in Kir2.3 whole cell currents resulted from changes in the number of channels in the cell membrane, unitary channel conductance, or channel open probability. In the absence of SAP97, Kir2.3 was found predominantly in a cytoplasmic, vesicular compartment with relatively little Kir2.3 localized to the plasma membrane. The introduction of SAP97 caused a redistribution of Kir2.3, leading to prominent colocalization of Kir2.3 and SAP97 and a modest increase in cell surface Kir2.3. The median Kir2.3 single channel conductance in the absence of SAP97 was approximately 13 pS, whereas coexpression of SAP97 led to a wide distribution of channel events with three distinct peaks centered at 16, 29, and 42 pS. These changes occurred without altering channel open probability, current rectification properties, or pH sensitivity. Thus association of Kir2.3 with SAP97 in HEK293 cells increased channel cell surface expression and unitary channel conductance. However, changes in single channel conductance play the major role in determining whole cell currents in this model system. We further suggest that the SAP97 effect results from SAP97 binding to the Kir2.3 COOH-terminal domain and altering channel conformation.
Collapse
Affiliation(s)
- Karen L Vikstrom
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Raja M, Vales E. Effects of sodium chloride on membrane fusion and on the formation of aggregates of potassium channel KcsA in Escherichia coli membrane. Biophys Chem 2009; 142:46-54. [DOI: 10.1016/j.bpc.2009.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
|
24
|
Sindic A, Huang C, Chen AP, Ding Y, Miller-Little WA, Che D, Romero MF, Miller RT. MUPP1 complexes renal K+ channels to alter cell surface expression and whole cell currents. Am J Physiol Renal Physiol 2009; 297:F36-45. [PMID: 19420109 DOI: 10.1152/ajprenal.90559.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously found that the Ca(2+)-sensing receptor (CaR) interacts with and inactivates the inwardly rectifying K(+) channel Kir4.2 that is expressed in the kidney cortex and that has a COOH-terminal PDZ domain. To identify potential scaffolding proteins that could organize a macromolecular signaling complex involving the CaR and Kir4.2, we used yeast two-hybrid cloning with the COOH-terminal 125 amino acids (AA) of Kir4.2 as bait to screen a human kidney cDNA library. We identified two independent partial cDNAs corresponding to the COOH-terminal 900 AA of MUPP1, a protein containing 13 PDZ binding domains that is expressed in the kidney in tight junctions and lateral borders of epithelial cells. When expressed in human embryonic kidney (HEK)-293 cells, Kir4.2 coimmunoprecipitates reciprocally with MUPP1 but not with a Kir4.2 construct lacking the four COOH-terminal amino acids, Kir5.1, or the CaR. MUPP1 and Kir4.2 coimmunoprecipitate reciprocally from rat kidney cortex extracts. Coexpression of MUPP1 with Kir4.2 in HEK-293 cells leads to reduced cell surface expression of Kir4.2 as assessed by cell surface biotinylation. Coexpression of MUPP1 and Kir4.2 in Xenopus oocytes results in reduced whole cell currents compared with expression of Kir4.2 alone, whereas expression of Kir4.2DeltaPDZ results in minimal currents and is not affected by coexpression with MUPP1. Immunofluorescence studies of oocytes demonstrate that MUPP1 reduces Kir4.2 membrane localization. These results indicate that Kir4.2 interacts selectively with MUPP1 to affect its cell surface expression. Thus MUPP1 and Kir4.2 may participate in a protein complex in the nephron that could regulate transport of K(+) as well as other ions.
Collapse
Affiliation(s)
- Aleksandra Sindic
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Doupnik CA. GPCR-Kir channel signaling complexes: defining rules of engagement. J Recept Signal Transduct Res 2008; 28:83-91. [PMID: 18437632 DOI: 10.1080/10799890801941970] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ion channels and G protein-coupled receptors (GPCRs) are integral transmembrane proteins vital to a multitude of cell signaling and physiological functions. Members of these large protein families are known to interact directly with various intracellular protein partners in a dynamic and isoform-dependent manner, ultimately shaping their life cycle and signal output. The family of G protein-gated inwardly rectifying potassium channels (Kir3 or GIRK) expressed in brain, heart, and endocrine tissues were recently shown to stably associate with several different GPCRs, forming the basis of a macromolecular ion channel-GPCR signaling complex. The molecular determinants that mediate and maintain GPCR-Kir3 channel complexes are currently not well understood. Recent findings and emerging hypotheses on the assembly and stability of multiprotein GPCR-Kir channel signaling complexes are discussed, highlighting distinct mechanisms used by different Kir channel families. These protein-protein interaction processes are crucial in determining both the synaptic response times and the extent of GPCR "cross-talk" in Kir3-mediated inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Craig A Doupnik
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida 33612, USA.
| |
Collapse
|
26
|
Alewine C, Kim BY, Hegde V, Welling PA. Lin-7 targets the Kir 2.3 channel on the basolateral membrane via a L27 domain interaction with CASK. Am J Physiol Cell Physiol 2007; 293:C1733-41. [PMID: 17913842 DOI: 10.1152/ajpcell.00323.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polarized expression of the Kir 2.3 channel in renal epithelial cells is influenced by the opposing activities of two different PDZ proteins. Mammalian Lin-7 (mLin-7) directly interacts with Kir 2.3 to coordinate basolateral membrane expression, whereas the tax interacting protein 1 (TIP-1), composed of a single PDZ domain, competes for interaction with mLin-7 and drives Kir 2.3 into the endocytic pathway. Here we show that the basolateral targeting function of mLin-7 depends on its L27 domain, which directs interaction with a cognate L27 domain in the basolateral membrane-anchoring protein, calcium/calmodulin-dependent serine protein kinase (CASK). In MDCK cells, the expression of an mLin-7 mutant that lacks the L27 domain displaced Kir 2.3 from the mLin-7/CASK complex and caused the channel to accumulate into large intracellular vesicles that partially colocalized with Rab-11. Conversely, transplantation of the mLin-7 L27 domain to TIP-1 conferred CASK interaction and basolateral targeting of Kir 2.3. Expression of the CASK L27 domain redistributed endogenous mLin-7 to an intracellular compartment and caused Kir 2.3 to accumulate in subapical endosomes. Taken together, these data support a model whereby mLin-7 acts as a PDZ-to-L27 adapter, mediating indirect association of Kir 2.3 with a basolateral membrane scaffold and thereby stabilizing Kir 2.3 at the basolateral membrane.
Collapse
Affiliation(s)
- Christine Alewine
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
27
|
Ferraro TN, Golden GT, Dahl JP, Smith GG, Schwebel CL, MacDonald R, Lohoff FW, Berrettini WH, Buono RJ. Analysis of a quantitative trait locus for seizure susceptibility in mice using bacterial artificial chromosome-mediated gene transfer. Epilepsia 2007; 48:1667-1677. [PMID: 17521350 DOI: 10.1111/j.1528-1167.2007.01126.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Previous quantitative trait loci (QTL) mapping studies from our laboratory identified a 6.6 Mb segment of distal chromosome 1 that contains a gene (or genes) having a strong influence on the difference in seizure susceptibility between C57BL/6 (B6) and DBA/2 (D2) mice. A gene transfer strategy involving a bacterial artificial chromosome (BAC) DNA construct that contains several candidate genes from the critical interval was used to test the hypothesis that a strain-specific variation in one (or more) of the genes is responsible for the QTL effect. METHODS Fertilized oocytes from a seizure-sensitive congenic strain (B6.D2-Mtv7a/Ty-27d) were injected with BAC DNA and three independent founder lines of BAC-transgenic mice were generated. Seizure susceptibility was quantified by measuring maximal electroshock seizure threshold (MEST) in transgenic mice and nontransgenic littermates. RESULTS Seizure testing documented significant MEST elevation in all three transgenic lines compared to littermate controls. Allele-specific RT-PCR analysis confirmed gene transcription from genome-integrated BAC DNA and copy-number-dependent phenotypic effects were observed. CONCLUSIONS Results of this study suggest that the gene(s) responsible for the major chromosome 1 seizure QTL is found on BAC RPCI23-157J4 and demonstrate the utility of in vivo gene transfer for studying quantitative trait genes in mice. Further characterization of this transgenic model will provide new insight into mechanisms of seizure susceptibility.
Collapse
Affiliation(s)
- Thomas N Ferraro
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Gregory T Golden
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - John P Dahl
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - George G Smith
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Candice L Schwebel
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Ross MacDonald
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Falk W Lohoff
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Wade H Berrettini
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Russell J Buono
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| |
Collapse
|
28
|
Pearson WL, Skatchkov SN, Eaton MJ, Nichols CG. C-Terminal Determinants of Kir4.2 Channel Expression. J Membr Biol 2007; 213:187-93. [PMID: 17468958 DOI: 10.1007/s00232-006-0058-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/18/2006] [Indexed: 10/23/2022]
Abstract
Inward rectifier potassium (Kir) channels serve important functional and modulatory roles in a wide variety of cells. While the activity of several members of this channel family are tightly regulated by intracellular messengers such as adenosine triphosphate, G proteins, protein kinases and pH, other members are tonically active and activity is controlled only by the expression level of the protein. In a number of Kir channels, sequence motifs have been identified which determine how effectively the channel is trafficked to and from the plasma membrane. In this report, we identify a number of trafficking determinants in the Kir4.2 channel. Using mutational analysis, we found that truncation of the C terminus of the protein increased current density in Xenopus oocytes, although multiple mutations of the C terminus had no effect on current density. Instead, mutation of a unique region of the channel significantly increased current density. Selective mutation of a putative tyrosine phosphorylation site within this region mimicked the increase in current, suggesting that tyrosine phosphorylation of the protein increases channel retrieval from the membrane (or prevents trafficking to the membrane). Mutation of a previously identified trafficking determinant, K110N, also caused an increase in current density, and combining these mutations caused a multiplicative increase in current, suggesting that these two mutations increase current by independent mechanisms. These data demonstrate novel determinants of Kir4.2 channel expression.
Collapse
Affiliation(s)
- Wade L Pearson
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, Missouri, 63110, USA.
| | | | | | | |
Collapse
|
29
|
Höltje M, Brunk I, Grosse J, Beyer E, Veh RW, Bergmann M, Grosse G, Ahnert-Hilger G. Differential distribution of voltage-gated potassium channels Kv 1.1-Kv1.6 in the rat retina during development. J Neurosci Res 2007; 85:19-33. [PMID: 17075900 DOI: 10.1002/jnr.21105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The discharge behavior of neurons depends on a variable expression and sorting pattern of voltage-dependent potassium (Kv) channels that changes during development. The rodent retina represents a neuronal network whose main functions develop after birth. To obtain information about neuronal maturation we analyzed the expression of subunits of the Kv1 subfamily in the rat retina during postnatal development using immunocytochemistry and immunoelectron microscopy. At postnatal day 5 (P5) all the alpha-subunits of Kv1.1-Kv1.6 channels were found to be expressed in the ganglion cell layer (GCL), most of them already at P1 or P3. Their expression upregulates postnatally and the pattern and distribution change in an isoform-specific manner. Additionally Kv1 channels are found in the outer and inner plexiform layer (OPL, IPL) and in the inner nuclear layer (INL) at different postnatal stages. In adult retina the Kv 1.3 channel localizes to the inner and outer segments of cones. In contrast, Kv1.4 is highly expressed in the outer retina at P8. In adult retina Kv1.4 occurs in rod inner segments (RIS) near the connecting cilium where it colocalizes with synapse associated protein SAP 97. By using confocal laser scanning microscopy we showed a differential localization of Kv1.1-1.6 to cholinergic amacrine and rod bipolar cells of the INL of the adult retina.
Collapse
Affiliation(s)
- M Höltje
- Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jung AC, Ribeiro C, Michaut L, Certa U, Affolter M. Polychaetoid/ZO-1 is required for cell specification and rearrangement during Drosophila tracheal morphogenesis. Curr Biol 2006; 16:1224-31. [PMID: 16782014 DOI: 10.1016/j.cub.2006.04.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/13/2006] [Accepted: 04/24/2006] [Indexed: 11/25/2022]
Abstract
The development of the complex network of epithelial tubes that ultimately forms the Drosophila tracheal system relies on cell migration, cell shape changes, cell rearrangements, cell differentiation, and branch fusion . Most of these events are controlled by a combination of distinct transcription factors and cell-cell signaling molecules, but few proteins that do not fall within these two functional classes have been associated with tracheal development. We show that the MAGUK protein Polychaetoid (Pyd/ZO-1), the Drosophila homolog of the junctional protein ZO-1 , plays a dual role in the formation of tracheal tubes. pyd/ZO-1 mutant embryos display branch fusion defects due to the lack of reliable determination of the fusion cell fate. In addition, pyd/ZO-1 mutant embryos show impaired cell intercalation in thin tracheal branches. Pyd/ZO-1 localizes to the adherens junctions (AJs) in tracheal cells and might thus play a direct role in the regulation of the dynamic state of the AJ during epithelial remodeling. Our study suggests that MAGUK proteins might play important roles during AJ remodeling in epithelial morphogenesis.
Collapse
Affiliation(s)
- Alain C Jung
- Abteilung Zellbiologie, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Benfenati V, Caprini M, Nobile M, Rapisarda C, Ferroni S. Guanosine promotes the up-regulation of inward rectifier potassium current mediated by Kir4.1 in cultured rat cortical astrocytes. J Neurochem 2006; 98:430-45. [PMID: 16805837 DOI: 10.1111/j.1471-4159.2006.03877.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guanosine (Guo) is an endogenous neuroprotective molecule of the CNS, which has various acute and long-term effects on both neurones and astroglial cells. Whether Guo also modulates the activity/expression of ion channels involved in homeostatic control of extracellular potassium by the astrocytic syncytium is still unknown. Here we provide electrophysiological evidence that chronic exposure (48 h) to Guo (500 microm) promotes the functional expression of an inward rectifier K+ (Kir) conductance in primary cultured rat cortical astrocytes. Molecular screening indicated that Guo promotes the up-regulation of the Kir4.1 channel, the major component of the Kir current in astroglia in vivo. Furthermore, the properties of astrocytic Kir current overlapped those of the recombinant Kir4.1 channel expressed in a heterologous system, strongly suggesting that the Guo-induced Kir conductance is mainly gated by Kir4.1. In contrast, the expression levels of two other Kir channel proteins were either unchanged (Kir2.1) or decreased (Kir5.1). Finally, we showed that inhibition of translational process, but not depression of transcription, prevents the Guo-induced up-regulation of Kir4.1, indicating that this nucleoside acts through de novo protein synthesis. Because accumulating data indicate that down-regulation of astroglial Kir current contributes to the pathogenesis of neurodegenerative diseases associated with dysregulation of extracellular K+ homeostasis, these results support the notion that Guo might be a molecule of therapeutic interest for counteracting the detrimental effect of K+-buffering impairment of the astroglial syncytium that occurs in pathological conditions.
Collapse
Affiliation(s)
- Valentina Benfenati
- Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
32
|
Molina ML, Barrera FN, Fernández AM, Poveda JA, Renart ML, Encinar JA, Riquelme G, González-Ros JM. Clustering and coupled gating modulate the activity in KcsA, a potassium channel model. J Biol Chem 2006; 281:18837-48. [PMID: 16670090 DOI: 10.1074/jbc.m600342200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Different patterns of channel activity have been detected by patch clamping excised membrane patches from reconstituted giant liposomes containing purified KcsA, a potassium channel from prokaryotes. The more frequent pattern has a characteristic low channel opening probability and exhibits many other features reported for KcsA reconstituted into planar lipid bilayers, including a moderate voltage dependence, blockade by Na(+), and a strict dependence on acidic pH for channel opening. The predominant gating event in this low channel opening probability pattern corresponds to the positive coupling of two KcsA channels. However, other activity patterns have been detected as well, which are characterized by a high channel opening probability (HOP patterns), positive coupling of mostly five concerted channels, and profound changes in other KcsA features, including a different voltage dependence, channel opening at neutral pH, and lack of Na(+) blockade. The above functional diversity occurs correlatively to the heterogeneous supramolecular assembly of KcsA into clusters. Clustering of KcsA depends on protein concentration and occurs both in detergent solution and more markedly in reconstituted membranes, including giant liposomes, where some of the clusters are large enough (up to micrometer size) to be observed by confocal microscopy. As in the allosteric conformational spread responses observed in receptor clustering (Bray, D. and Duke, T. (2004) Annu. Rev. Biophys. Biomol. Struct. 33, 53-73) our tenet is that physical clustering of KcsA channels is behind the observed multiple coupled gating and diverse functional responses.
Collapse
Affiliation(s)
- Maria L Molina
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Segev F, Mor O, Segev A, Belkin M, Assia EI. Downregulation of gene expression in the ageing lens: a possible contributory factor in senile cataract. Eye (Lond) 2005; 19:80-5. [PMID: 15105821 DOI: 10.1038/sj.eye.6701423] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To study the molecular characteristics of lens epithelial cells from patients with senile cataract by cDNA microarray technique. METHODS Lens epithelial cells adhering to anterior capsules taken during cataract surgery collected from 108 patients, aged 56-92 years (senile cataract group), were pooled. Pooled epithelial cells of normal, noncataractous lenses from one patient with ocular trauma, one patient with lens subluxation, and 25 cadaveric eyes, all under the age of 55 years, served as a control. Total RNA was extracted by conventional methods from the two groups of cells, and a fluorescent probe was prepared for each group. The probes were hybridized on 9700 known human cDNA clones. Hybridized clones were analysed using a scanning laser and the results were processed by GEMTools (Incyte Genomics) software. RESULTS A total of 1827 clones hybridized with the two probes. Of these, 400 showed differences of more than two-fold in gene expression between the two probes. Relative to controls, gene expression in the senile cataract lenses was upregulated in 318 clones and downregulated in 82. Three genes-filensin, inwardly rectifying potassium channel (IRPC), and pigment epithelium-derived factor (PEDF) were strongly downregulated (by 41.3-, 6.8-, and 5.9-fold, respectively) in senile cataract. CONCLUSIONS Cataractogenesis is associated with numerous changes in the genetic profile of the lens epithelial cells. Since filensin, IRPC, and PEDF genes are known to have important roles in the physiology and morphology of the transparent lens, substantial downregulation of their expression might contribute to the formation of senile cataract.
Collapse
Affiliation(s)
- F Segev
- Department of Ophthalmology, Meir Hospital, Sapir Medical Center, Kfar-Saba, Israel.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Rapid changes in extracellular K+ concentration ([K+](o)) in the mammalian CNS are counteracted by simple passive diffusion as well as by cellular mechanisms of K+ clearance. Buffering of [K+](o) can occur via glial or neuronal uptake of K+ ions through transporters or K+-selective channels. The best studied mechanism for [K+](o) buffering in the brain is called K+ spatial buffering, wherein the glial syncytium disperses local extracellular K+ increases by transferring K+ ions from sites of elevated [K+](o) to those with lower [K+](o). In recent years, K+ spatial buffering has been implicated or directly demonstrated by a variety of experimental approaches including electrophysiological and optical methods. A specialized form of spatial buffering named K+ siphoning takes place in the vertebrate retina, where glial Muller cells express inwardly rectifying K+ channels (Kir channels) positioned in the membrane domains near to the vitreous humor and blood vessels. This highly compartmentalized distribution of Kir channels in retinal glia directs K+ ions from the synaptic layers to the vitreous humor and blood vessels. Here, we review the principal mechanisms of [K+](o) buffering in the CNS and recent molecular studies on the structure and functions of glial Kir channels. We also discuss intriguing new data that suggest a close physical and functional relationship between Kir and water channels in glial cells.
Collapse
Affiliation(s)
- P Kofuji
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
35
|
Sensitized Photoinactivation of Gramicidin Channels: Technique and Applications. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1554-4516(05)01005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
36
|
Pannicke T, Uckermann O, Iandiev I, Biedermann B, Wiedemann P, Perlman I, Reichenbach A, Bringmann A. Altered membrane physiology in Müller glial cells after transient ischemia of the rat retina. Glia 2004; 50:1-11. [PMID: 15593100 DOI: 10.1002/glia.20151] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inwardly rectifying K+ (Kir) channels have been implicated in the mediation of retinal K+ homeostasis by Muller glial cells. To assess possible involvement of altered glial K+ channel expression in ischemia-reperfusion injury, transient retinal ischemia was induced in rat eyes. Acutely isolated Muller cells from postischemic retinae displayed a fast downregulation of their Kir currents, which began within 1 day and reached a maximum at 3 days of reperfusion, with a peak decrease to 20% as compared with control. This strong decrease of Kir currents was accompanied by an increase of the incidence of cells which displayed depolarization-evoked fast transient (A-type) K+ currents. While no cell from untreated control rats expressed A-type K+ currents, all cells investigated from 3- and 7-day postischemic retinae displayed such currents. An increased incidence of cells displaying fast transient Na+ currents was observed at 7 days after ischemia. These results suggest a role of altered glial Kir channel expression in postischemic neuronal degeneration via disturbance of retinal K+ siphoning.
Collapse
Affiliation(s)
- Thomas Pannicke
- Paul-Flechsig-Institut für Hirnforschung, Abteilung Neurophysiologie, Universität Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Almqvist N, Bhatia R, Primbs G, Desai N, Banerjee S, Lal R. Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys J 2004; 86:1753-62. [PMID: 14990502 PMCID: PMC1304010 DOI: 10.1016/s0006-3495(04)74243-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell surface macromolecules such as receptors and ion channels serve as the interface link between the cytoplasm and the extracellular region. Their density, distribution, and clustering are key spatial features influencing effective and proper physical and biochemical cellular responses to many regulatory signals. In this study, the effect of plasma-membrane receptor clustering on local cell mechanics was obtained from maps of interaction forces between antibody-conjugated atomic force microscope tips and a specific receptor, a vascular endothelial growth factor (VEGF) receptor. The technique allows simultaneous measurement of the real-time motion of specific macromolecules and their effect on local rheological properties like elasticity. The clustering was stimulated by online additions of VEGF, or antibody against VEGF receptors. VEGF receptors are found to concentrate toward the cell boundaries and cluster rapidly after the online additions commence. Elasticity of regions under the clusters is found to change remarkably, with order-of-magnitude stiffness reductions and fluidity increases. The local stiffness reductions are nearly proportional to receptor density and, being concentrated near the cell edges, provide a mechanism for cell growth and angiogenesis.
Collapse
Affiliation(s)
- N Almqvist
- Department of Applied Physics & Mechanical Engineering, Luleå University of Technology, Luleå, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Anzai N, Miyazaki H, Noshiro R, Khamdang S, Chairoungdua A, Shin HJ, Enomoto A, Sakamoto S, Hirata T, Tomita K, Kanai Y, Endou H. The Multivalent PDZ Domain-containing Protein PDZK1 Regulates Transport Activity of Renal Urate-Anion Exchanger URAT1 via Its C Terminus. J Biol Chem 2004; 279:45942-50. [PMID: 15304510 DOI: 10.1074/jbc.m406724200] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The urate-anion exchanger URAT1 is a member of the organic anion transporter (OAT) family that regulates blood urate level in humans and is targeted by uricosuric and antiuricosuric agents. URAT1 is expressed only in the kidney, where it is thought to participate in tubular urate reabsorption. We found that the multivalent PDZ (PSD-95, Drosophila discs-large protein, Zonula occludens protein 1) domain-containing protein, PDZK1 interacts with URAT1 in a yeast two-hybrid screen. Such an interaction requires the PDZ motif of URAT1 in its extreme intracellular C-terminal region and the first, second, and fourth PDZ domains of PDZK1 as identified by yeast two-hybrid assay, in vitro binding assay and surface plasmon resonance analysis (K(D) = 1.97-514 nM). Coimmunoprecipitation studies revealed that the wild-type URAT1, but not its mutant lacking the PDZ-motif, directly interacts with PDZK1. Colocalization of URAT1 and PDZK1 was observed at the apical membrane of renal proximal tubular cells. The association of URAT1 with PDZK1 enhanced urate transport activities in HEK293 cells (1.4-fold), and the deletion of the URAT1 C-terminal PDZ motif abolished this effect. The augmentation of the transport activity was accompanied by a significant increase in the V(max) of urate transport via URAT1 and was associated with the increased surface expression level of URAT1 protein from HEK293 cells stably expressing URAT1 transfected with PDZK1. Taken together, the present study indicates the novel role of PDZK1 in regulating the functional activity of URAT1-mediated urate transport in the apical membrane of renal proximal tubules.
Collapse
Affiliation(s)
- Naohiko Anzai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hibino H, Fujita A, Iwai K, Yamada M, Kurachi Y. Differential Assembly of Inwardly Rectifying K+ Channel Subunits, Kir4.1 and Kir5.1, in Brain Astrocytes. J Biol Chem 2004; 279:44065-73. [PMID: 15310750 DOI: 10.1074/jbc.m405985200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inwardly rectifying K+ channel subunit Kir5.1 is expressed abundantly in the brain, but its precise distribution and function are still largely unknown. Because Kir5.1 is co-expressed with Kir4.1 in retinal glial Muller cells, we have compared the biochemical and immunological properties of Kir5.1 and Kir4.1 in the mouse brain. Immunoprecipitation experiments suggested that brain expressed at least two subsets of Kir channels, heteromeric Kir4.1/5.1 and homomeric Kir4.1. Immunolabeling using specific antibodies showed that channels comprising Kir4.1 and Kir5.1 subunits were assembled in a region-specific fashion. Heteromeric Kir4.1/5.1 was identified in the neocortex and in the glomeruli of the olfactory bulb. Homomeric Kir4.1 was confined to the hippocampus and the thalamus. Homomeric Kir5.1 was not identified. Kir4.1/5.1 and Kir4.1 expression appeared to occur only in astrocytes, specifically in the membrane domains facing the pia mater and blood vessels or in the processes surrounding synapses. Both Kir4.1/5.1 and Kir4.1 could be associated with PDZ domain-containing syntrophins, which might be involved in the subcellular targeting of these astrocyte Kir channels. Because heteromeric Kir4.1/5.1 and homomeric Kir4.1 have distinct ion channel properties (Tanemoto, M., Kittaka, N., Inanobe, A., and Kurachi, Y. (2000) J. Physiol. (Lond.) 525, 587-592 and Tucker, S. J., Imbrici, P., Salvatore, L., D'Adamo, M. C., and Pessia, M. (2000) J. Biol. Chem. 275, 16404-16407), it is plausible that these channels play differential physiological roles in the K+ -buffering action of brain astrocytes in a region-specific manner.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology II, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | | | | | | | | |
Collapse
|
40
|
Leyland ML, Dart C. An alternatively spliced isoform of PSD-93/chapsyn 110 binds to the inwardly rectifying potassium channel, Kir2.1. J Biol Chem 2004; 279:43427-36. [PMID: 15304517 DOI: 10.1074/jbc.m407575200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inwardly rectifying potassium (Kir) channels are prime determinants of resting membrane potential in neurons. Their subcellular distribution and surface density thus help shape neuronal excitability, yet mechanisms governing the membrane targeting and localization of Kir channels are poorly understood. Here we report a direct interaction between the strong inward rectifier, Kir2.1, and a recently identified splice variant of postsynaptic density-93 (PSD-93), a protein involved the subcellular targeting of ion channels and glutamate receptors at excitatory synapses. Yeast two-hybrid screening of a human brain cDNA library using the carboxyl terminus of Kir2.1 as bait yielded cDNA encoding the first two PDZ domains of PSD-93, but with an extended N-terminal region that diverged from other PSD-93 isoforms. This clone represented the human homologue of the mouse PSD-93 splice variant, PSD-93delta. Reverse transcription-polymerase chain reaction analysis showed diffuse low level PSD-93delta expression throughout the brain, with significantly higher levels in spinal cord. In vitro binding studies revealed that a type I PDZ recognition motif at the extreme C terminus of the Kir2.1 mediates interaction with all three PDZ domains of PSD-93delta, and association between Kir2 channels and PSD-93delta was confirmed further by the ability of anti-Kir2.1 antibodies to coimmunoprecipitate PSD-93delta from rat spinal cord lysates. Functionally, coexpression of Kir2.1 and PSD-93delta had no discernible effect upon channel kinetics but resulted in cell surface Kir2.1 clustering and suppression of channel internalization. We conclude that PSD-93delta is potentially an important regulator of the spatial and temporal distribution of Kir2 channels within neuronal membranes of the central nervous system.
Collapse
Affiliation(s)
- Mark L Leyland
- Department of Biochemistry, University of Leicester, PO Box 138, LE1 9HN, UK.
| | | |
Collapse
|
41
|
Clinton SM, Meador-Woodruff JH. Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities. Schizophr Res 2004; 69:237-53. [PMID: 15469196 DOI: 10.1016/j.schres.2003.09.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While abnormalities of the prefrontal cortex and temporal lobe structures have typically been associated with the pathophysiology of schizophrenia, recent findings implicate thalamic dysfunction in this illness as well. The thalamus plays a critical role in processing and integrating sensory information relevant to emotional and cognitive functions. Neuropathological and in vivo imaging studies in schizophrenia have identified several structural and metabolic abnormalities in the thalamus, which may contribute to a deficit in sensory processing and be related to psychotic symptomatology. In addition to these postmortem and in vivo imaging studies indicating structural and metabolic changes in the thalamus in schizophrenia, more recent studies have examined the neurochemical substrates that accompany these changes. Much of this work to date has focused on glutamatergic abnormalities in the thalamus, in part because it is a predominant neurotransmitter used in the thalamus, and because glutamatergic dysfunction has been hypothesized to be involved in schizophrenia. Several studies, however, have also examined markers of gamma-aminobutyric acid (GABA) and dopaminergic neurotransmission in the thalamus in schizophrenia. We review these neurochemical findings, as well as the growing body of postmortem and in vivo imaging evidence that supports the hypothesis of thalamic dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Sarah M Clinton
- Department of Psychiatry and Mental Health Research Institute, University of Michigan Medical School, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720, USA.
| | | |
Collapse
|
42
|
Connors NC, Adams ME, Froehner SC, Kofuji P. The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia. J Biol Chem 2004; 279:28387-92. [PMID: 15102837 DOI: 10.1074/jbc.m402604200] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the major physiological roles of potassium channels in glial cells is to promote "potassium spatial buffering" in the central nervous system, a process necessary to maintain an optimal potassium concentration in the extracellular environment. This process requires the precise distribution of potassium channels accumulated at high density in discrete subdomains of glial cell membranes. To obtain a better understanding of how glial cells selectively target potassium channels to discrete membrane subdomains, we addressed the question of whether the glial inwardly rectifying potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex (DGC). Immunoprecipitation experiments revealed that Kir4.1 is associated with the DGC in mouse brain and cultured cortical astrocytes. In vitro immunoprecipitation and pull-down assays demonstrated that Kir4.1 can bind directly to alpha-syntrophin, requiring the presence of the last three amino acids of the channel (SNV), a consensus PDZ domain-binding motif. Furthermore, Kir4.1 failed to associate with the DGC in brains from alpha-syntrophin knockout mice. These results suggest that Kir4.1 is localized in glial cells by its association with the DGC through a PDZ domain-mediated interaction with alpha-syntrophin and suggest an important role for the DGC in central nervous system physiology.
Collapse
Affiliation(s)
- Nathan C Connors
- Department of Neuroscience, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
43
|
Kurachi Y, Ishii M. Cell signal control of the G protein-gated potassium channel and its subcellular localization. J Physiol 2004; 554:285-94. [PMID: 12923211 PMCID: PMC1664760 DOI: 10.1113/jphysiol.2003.048439] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
G protein-gated inward rectifier K(+) (K(G)) channels are directly activated by the betagamma subunits released from pertussis toxin-sensitive G proteins, and contribute to neurotransmitter-induced deceleration of heart beat, formation of slow inhibitory postsynaptic potentials in neurones and inhibition of hormone release in endocrine cells. The physiological roles of K(G) channels are critically determined by mechanisms which regulate their activity and their subcellular localization. K(G) channels are tetramers of inward rectifier K(+) (Kir) channel subunits, Kir3.x. The combination of Kir3.x subunits in each K(G) channel varies among tissues and cell types. Each subunit of the channel possesses one Gbetagamma binding site. The binding of Gbetagamma increases the number of functional K(G) channels via a mechanism that can be described by the Monod-Wyman-Changeux allosteric model. During voltage pulses K(G) channel current alters time dependently. The K(G) current exhibits inward rectification due to blockade of outward-going current by intracellular Mg(2+) and polyamines. Upon repolarization, this blockade is relieved practically instantaneously and then the current slowly increases further. This slow current alteration is called 'relaxation'. Relaxation is caused by the voltage-dependent behaviour of regulators of G protein signalling (RGS proteins), which accelerate intrinsic GTP hydrolysis mediated by the Galpha subunit. Thus, the relaxation behaviour of K(G) channels reflects the time course with which the G protein cycle is altered by RGS protein activity at each membrane potential. Subcellular localization of K(G) channels is controlled by several distinct mechanisms, some of which have been recently clarified. The neuronal K(G) channel, which contains Kir3.2c, is localized in the postsynaptic density (PSD) of various neurones including dopaminergic neurones in substantia nigra. Its localization at PSD may be controlled by PDZ domain-containing anchoring proteins. The K(G) channel in thyrotrophs is localized exclusively on secretary vesicles, which upon stimulation are rapidly inserted into the plasma membrane and causes hyperpolarization of the cell. This mechanism indicates a novel negative feedback regulation of exocytosis. In conclusion, K(G) channels are under the control of a variety of signalling molecules which regulate channel activity, subcellular localization and thus their physiological roles in myocytes, neurones and endocrine cells.
Collapse
Affiliation(s)
- Yoshihisa Kurachi
- Department of Pharmacology II, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
44
|
Guadagno E, Moukhles H. Laminin-induced aggregation of the inwardly rectifying potassium channel, Kir4.1, and the water-permeable channel, AQP4, via a dystroglycan-containing complex in astrocytes. Glia 2004; 47:138-49. [PMID: 15185393 DOI: 10.1002/glia.20039] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dystroglycan (DG) is part of a multiprotein complex that links the extracellular matrix to the actin cytoskeleton of muscle fibers and that is involved in aggregating acetylcholine receptors at the neuromuscular junction. This complex is also expressed in regions of the central nervous system where it is localized to both neuronal and glial cells. DG and the inwardly rectifying potassium channels, Kir4.1, are concentrated at the interface of astroglia and small blood vessels. These channels are involved in siphoning potassium released into the extracellular space after neuronal excitation. This raises the possibility that DG may be involved in targeting Kir4.1 channels to specific domains of astroglia. To address this question, we used mixed hippocampal cultures to investigate the distribution of DG, syntrophin, dystrobrevin, and Kir4.1 channels, as well as aquaporin-permeable water channels, AQP4. These proteins exhibit a similar distribution pattern and form aggregates in astrocytes cultured on laminin. Both DG and syntrophin colocalize with Kir4.1 channel aggregates in astrocytes. Similarly, DG colocalizes with AQP4 channel aggregates. Quantitative studies show a significant increase of Kir4.1 and AQP4 channel aggregates in astrocytes cultured in the presence of laminin when compared with those in the absence of laminin. These findings show that laminin has a role in Kir4.1 and AQP4 channel aggregation and suggest that this may be mediated via a dystroglycan-containing complex. This study reveals a novel functional role for DG in brain including K+ buffering and water homeostasis.
Collapse
Affiliation(s)
- Eric Guadagno
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
45
|
Godreau D, Vranckx R, Maguy A, Goyenvalle C, Hatem SN. Different isoforms of synapse-associated protein, SAP97, are expressed in the heart and have distinct effects on the voltage-gated K+ channel Kv1.5. J Biol Chem 2003; 278:47046-52. [PMID: 12970345 DOI: 10.1074/jbc.m308463200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SAP97 isoforms differ by alternatively spliced insertion domains that regulate protein localization and oligomerization. We used reverse transcription-PCR to identify SAP97 isoforms of human and rat myocardium. In Chinese hamster ovary cells, cloned protein expression was studied using Western blot, confocal imaging of green fluorescent protein-tagged proteins, and patch clamp technique. The two main cardiac SAP97 isoforms contained both I3 and I1B inserts and differed by the I1A insert. Both isoforms co-precipitated with hKv1.5 channels. Only the isoform lacking I1A increased the current (by 215 +/- 22%), whatever the level of channel expression. To examine the involvement of the proline-rich I1A insert in the effect of SAP97, a W623F mutation in the Src homology 3 domain was created, and that restored the effect of the SAP97 on current. SAP97 isoform containing an I1A and I2 domain instead of the I3 domain stimulated the current, whereas SAP97 after deletion of the Src homology 3 and guanylate kinase-like domains did not. In cells co-expressing I3(+I1A) or I3(-I1A), green fluorescent protein-tagged Kv1.5 channels were organized in plaque-like structures at the plasma membrane level, whereas intracellular aggregates of channels predominated with the I2 isoform. The two cardiac SAP97 isoforms have different effects on the hKv1.5 current, depending on their capacity to form channel clusters.
Collapse
Affiliation(s)
- David Godreau
- INSERM 460, Medical Hospital Xavier Bichat-Claude Bernard, 46 Rue Henri Huchard, 75018 Paris, France
| | | | | | | | | |
Collapse
|
46
|
Sampson LJ, Leyland ML, Dart C. Direct interaction between the actin-binding protein filamin-A and the inwardly rectifying potassium channel, Kir2.1. J Biol Chem 2003; 278:41988-97. [PMID: 12923176 DOI: 10.1074/jbc.m307479200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of filamins in actin cross-linking and membrane stabilization is well established, but recently their ability to interact with a variety of transmembrane receptors and signaling proteins has led to speculation of additional roles in scaffolding and signal transduction. Here we report a direct interaction between filamin-A and Kir2.1, an isoform of inwardly rectifying potassium channel expressed in vascular smooth muscle and an important regulator of vascular tone. Yeast two-hybrid screening of a porcine coronary artery cDNA library using the carboxyl terminus of Kir2.1 as bait yielded cDNA encoding a fragment of filamin-A (residues 2481-2647). Interaction between filamin-A and Kir2.1 was confirmed by in vitro overlay assay of membrane-bound Kir2.1 with glutathione S-transferase fusion protein of the isolated filamin clone. Additionally, antibodies directed against Kir2.1 coimmunoprecipitated filamin-A from arterial smooth muscle cell lysates, and immunocytochemical analysis of individual arterial smooth muscle cells showed that Kir2.1 and filamin co-localize in "hotspots" at the cell membrane. Interaction with filamin-A was found to have no effect on Kir2.1 channel behavior but, rather, increased the number of functional channels resident within the membrane. We conclude that filamin-A is potentially an important regulator of Kir2.1 surface expression and location within vascular smooth muscle.
Collapse
Affiliation(s)
- Laura J Sampson
- Department of Cell Physiology and Pharmacology, University of Leicester, P. O. Box 138, Leicester LE1 9HN, United Kingdom.
| | | | | |
Collapse
|
47
|
Rokitskaya TI, Kotova EA, Antonenko YN. Tandem gramicidin channels cross-linked by streptavidin. J Gen Physiol 2003; 121:463-76. [PMID: 12719486 PMCID: PMC2217381 DOI: 10.1085/jgp.200208780] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2002] [Revised: 03/31/2003] [Accepted: 04/02/2003] [Indexed: 11/20/2022] Open
Abstract
The interaction of biotin-binding proteins with biotinylated gramicidin (gA5XB) was studied by monitoring single-channel activity and sensitized photoinactivation kinetics. It was discovered that the addition of streptavidin or avidin to the bathing solutions of a bilayer lipid membrane (BLM) with incorporated gA5XB induced the opening of a channel characterized by approximately doubled single-channel conductance and extremely long open-state duration. We believe that the deceleration of the photoinactivation kinetics observed here with streptavidin and previously (Rokitskaya, T.I., Y.N. Antonenko, E.A. Kotova, A. Anastasiadis, and F. Separovic. 2000. Biochemistry. 39:13053-13058) with avidin reflects the formation of long-lived channels of this type. Both opening and closing of the double-conductance channels occurred via a transient sub-state of the conductance coinciding with that of the usual single-channel transition. The appearance of the double-conductance channels after the addition of streptavidin was preceded by bursts of fast fluctuations of the current with the open state duration of the individual events of 60 ms. The streptavidin-induced double-conductance channels appeared to be inherent only to the gramicidin analogue with a biotin group linked to the COOH terminus through a long linker arm. Including biotinylated phosphatidylethanolamine into the BLM prevented the formation of the double-conductance channels even with the excess streptavidin. In view of the results obtained here, it is suggested that the double-conductance channel represents a tandem of two neighboring gA5XB channels with their COOH termini being cross-linked by the bound streptavidin at both sides of the BLM. The finding that streptavidin induces the formation of the tandem gramicidin channel comprising two channels functioning in concert is considered to be relevant to the physiologically important phenomenon of ligand-induced receptor oligomerization.
Collapse
|
48
|
Bowie D, Garcia EP, Marshall J, Traynelis SF, Lange GD. Allosteric regulation and spatial distribution of kainate receptors bound to ancillary proteins. J Physiol 2003; 547:373-85. [PMID: 12562952 PMCID: PMC2342651 DOI: 10.1113/jphysiol.2002.033076] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2002] [Accepted: 12/05/2002] [Indexed: 11/08/2022] Open
Abstract
A diverse range of accessory proteins regulates the behaviour of most ligand- and voltage-gated ion channels. For glutamate receptor 6 (GluR6) kainate receptors, two unrelated proteins, concanavalin-A (Con-A) and postsynaptic density protein 95 (PSD-95), bind to extra- and intracellular domains, respectively, but are reported to exert similar effects on GluR6 desensitization behaviour. We have tested the hypothesis that distinct allosteric binding sites control GluR6 receptors via a common transduction pathway. Rapid agonist application to excised patches revealed that neither Con-A nor PSD-95 affect the onset of desensitization. The rate of desensitization elicited by 10 mM L-glutamate was similar in control (taufast = 5.5 +/- 0.4 ms), Con-A-treated patches (taufast = 6.1 +/- 0.5 ms) and patches containing PSD-95 and GluR6 receptors (taufast = 4.7 +/- 0.6 ms). Likewise, the time course of recovery from GluR6 desensitization was similar in both control and Con-A conditions, whereas PSD-95 accelerated recovery almost twofold. Peak and steady-state (SS) dose-response relationships to glutamate were unchanged by lectin treatment (e.g. control, EC50(SS) = 31 +/- 28 microM vs Con-A, EC50(SS) = 45 +/- 9 microM, n = 6), suggesting that Con-A does not convert non-conducting channels with high agonist affinity into an open conformation. Instead, we demonstrate that the effects of Con-A on macroscopic responses reflect a shift in the relative contribution of different open states of the channel. In contrast, the effect of PSD-95 on recovery behaviour suggests that the association between kainate receptors and cytoskeletal proteins regulates signalling at glutamatergic synapses. Our results show that Con-A and PSD-95 regulate kainate receptors via distinct allosteric mechanisms targeting selective molecular steps in the transduction pathway.
Collapse
Affiliation(s)
- Derek Bowie
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
49
|
Abstract
We have investigated the interactions of prototypical PDZ domains with both the C- and N-termini of Kv1.5 and other Kv channels. A combination of in vitro binding and yeast two-hybrid assays unexpectedly showed that PDZ domains derived from PSD95 bind both the C- and N-termini of the channels with comparable avidity. From doubly transfected HEK293 cells, Kv1.5 was found to co-immunoprecipitate with the PDZ protein, irrespective of the presence of the canonical C-terminal PDZ-binding motif in Kv1.5. Imaging analysis of the same HEK cell lines demonstrated that co-localization of Kv1.5 with PSD95 at the cell surface is similarly independent of the canonical PDZ-binding motif. Deletion analysis localized the N-terminal PDZ-binding site in Kv1.5 to the T1 region of the channel. Co-expression of PSD95 with Kv1.5 N- and C-terminal deletions in HEK cells had contrasting effects on the magnitudes of the potassium currents across the membranes of these cells. These findings may have important implications for the regulation of channel expression and function by PDZ proteins like PSD95.
Collapse
Affiliation(s)
- Jodene Eldstrom
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, V6T 1Z3, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
50
|
Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 2002; 145:47-179. [PMID: 12224528 DOI: 10.1007/bfb0116431] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peter R Stanfield
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|