1
|
Steinhoff JS, Wagner C, Dähnhardt HE, Košić K, Meng Y, Taschler U, Pajed L, Yang N, Wulff S, Kiefer MF, Petricek KM, Flores RE, Li C, Dittrich S, Sommerfeld M, Guillou H, Henze A, Raila J, Wowro SJ, Schoiswohl G, Lass A, Schupp M. Adipocyte HSL is required for maintaining circulating vitamin A and RBP4 levels during fasting. EMBO Rep 2024; 25:2878-2895. [PMID: 38769419 PMCID: PMC11239848 DOI: 10.1038/s44319-024-00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Vitamin A (retinol) is distributed via the blood bound to its specific carrier protein, retinol-binding protein 4 (RBP4). Retinol-loaded RBP4 is secreted into the circulation exclusively from hepatocytes, thereby mobilizing hepatic retinoid stores that represent the major vitamin A reserves in the body. The relevance of extrahepatic retinoid stores for circulating retinol and RBP4 levels that are usually kept within narrow physiological limits is unknown. Here, we show that fasting affects retinoid mobilization in a tissue-specific manner, and that hormone-sensitive lipase (HSL) in adipose tissue is required to maintain serum concentrations of retinol and RBP4 during fasting in mice. We found that extracellular retinol-free apo-RBP4 induces retinol release by adipocytes in an HSL-dependent manner. Consistently, global or adipocyte-specific HSL deficiency leads to an accumulation of retinoids in adipose tissue and a drop of serum retinol and RBP4 during fasting, which affects retinoid-responsive gene expression in eye and kidney and lowers renal retinoid content. These findings establish a novel crosstalk between liver and adipose tissue retinoid stores for the maintenance of systemic vitamin A homeostasis during fasting.
Collapse
Affiliation(s)
- Julia S Steinhoff
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Carina Wagner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Henriette E Dähnhardt
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Kristina Košić
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Yueming Meng
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Laura Pajed
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Na Yang
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Sascha Wulff
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Marie F Kiefer
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Konstantin M Petricek
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Roberto E Flores
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Chen Li
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Sarah Dittrich
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Manuela Sommerfeld
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Andrea Henze
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle, Germany
- Junior Research Group ProAID, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Jens Raila
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Sylvia J Wowro
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Gabriele Schoiswohl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Michael Schupp
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany.
| |
Collapse
|
2
|
Li S, Yuan J, Cheng Z, Li Y, Cheng S, Liu X, Huang S, Xu Z, Wu A, Liu L, Dong J. Hsa_circ_0021205 enhances lipolysis via regulating miR-195-5p/HSL axis and drives malignant progression of glioblastoma. Cell Death Discov 2024; 10:71. [PMID: 38341418 DOI: 10.1038/s41420-024-01841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Abnormal lipid metabolism is an essential hallmark of glioblastoma. Hormone sensitive lipase (HSL), an important rate-limiting enzyme contributed to lipolysis, which was involved in aberrant lipolysis of glioblastoma, however, its definite roles and the relevant regulatory pathway have not been fully elucidated. Our investigations disclosed high expression of HSL in glioblastoma. Knock-down of HSL restrained proliferation, migration, and invasion of glioblastoma cells while adding to FAs could significantly rescue the inhibitory effect of si-HSL on tumor cells. Overexpression of HSL further promoted tumor cell proliferation and invasion. Bioinformatics analysis and dual-luciferase reporter assay were performed to predict and verify the regulatory role of ncRNAs on HSL. Mechanistically, hsa_circ_0021205 regulated HSL expression by sponging miR-195-5p, which further promoted lipolysis and drove the malignant progression of glioblastoma. Besides, hsa_circ_0021205/miR-195-5p/HSL axis activated the epithelial-mesenchymal transition (EMT) signaling pathway. These findings suggested that hsa_circ_0021205 promoted tumorigenesis of glioblastoma through regulation of HSL, and targeting hsa_circ_0021205/miR-195-5p/HSL axis can serve as a promising new strategy against glioblastoma.
Collapse
Affiliation(s)
- Suwen Li
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaqi Yuan
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery, the Zhangjiagang Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Zhe Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery, the Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yongdong Li
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinglei Liu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shilu Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhipeng Xu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Anyi Wu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Dong
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Bradić I, Kuentzel KB, Honeder S, Grabner GF, Vujić N, Zimmermann R, Birner-Gruenberger R, Kratky D. Off-target effects of the lysosomal acid lipase inhibitors Lalistat-1 and Lalistat-2 on neutral lipid hydrolases. Mol Metab 2022; 61:101510. [PMID: 35504532 PMCID: PMC9118473 DOI: 10.1016/j.molmet.2022.101510] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Lysosomal acid lipase (LAL) is the key enzyme, which degrades neutral lipids at an acidic pH in lysosomes. The role of LAL in various cellular processes has mostly been studied in LAL-knockout mice, which share phenotypical characteristics with humans suffering from LAL deficiency. In vitro, the cell-specific functions of LAL have been commonly investigated by using the LAL inhibitors Lalistat-1 and Lalistat-2. METHODS We performed lipid hydrolase activity assays and serine hydrolase-specific activity-based labeling combined with quantitative proteomics to investigate potential off-target effects of Lalistat-1 and -2. RESULTS Pharmacological LAL inhibition but not genetic loss of LAL impairs isoproterenol-stimulated lipolysis as well as neutral triglyceride and cholesteryl ester hydrolase activities. Apart from LAL, Lalistat-1 and -2 also inhibit major cytosolic lipid hydrolases responsible for lipid degradation in primary cells at neutral pH through off-target effects. Their binding to the active center of the enzymes leads to a decrease in neutral lipid hydrolase activities in cells overexpressing the respective enzymes. CONCLUSIONS Our findings are critically important since they demonstrate that commonly used concentrations of these inhibitors are not suitable to investigate the role of LAL-specific lipolysis in lysosomal function, signaling pathways, and autophagy. The interpretation of their effects on lipid metabolism should be taken with caution and the applied inhibitor concentrations in cell culture studies should not exceed 1 μM.
Collapse
Affiliation(s)
- Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Sophie Honeder
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria
| | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
4
|
Steinhoff JS, Lass A, Schupp M. Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease. Nutrients 2022; 14:1236. [PMID: 35334893 PMCID: PMC8951293 DOI: 10.3390/nu14061236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Retinol binding protein 4 (RBP4) is the specific transport protein of the lipophilic vitamin A, retinol, in blood. Circulating RBP4 originates from the liver. It is secreted by hepatocytes after it has been loaded with retinol and binding to transthyretin (TTR). TTR association prevents renal filtration due to the formation of a higher molecular weight complex. In the circulation, RBP4 binds to specific membrane receptors, thereby delivering retinol to target cells, rendering liver-secreted RBP4 the major mechanism to distribute hepatic vitamin A stores to extrahepatic tissues. In particular, binding of RBP4 to 'stimulated by retinoic acid 6' (STRA6) is required to balance tissue retinoid responses in a highly homeostatic manner. Consequently, defects/mutations in RBP4 can cause a variety of conditions and diseases due to dysregulated retinoid homeostasis and cover embryonic development, vision, metabolism, and cardiovascular diseases. Aside from the effects related to retinol transport, non-canonical functions of RBP4 have also been reported. In this review, we summarize the current knowledge on the regulation and function of RBP4 in health and disease derived from murine models and human mutations.
Collapse
Affiliation(s)
- Julia S. Steinhoff
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria;
- Field of Excellence BioHealth, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria
| | - Michael Schupp
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| |
Collapse
|
5
|
Steinhoff JS, Lass A, Schupp M. Biological Functions of RBP4 and Its Relevance for Human Diseases. Front Physiol 2021; 12:659977. [PMID: 33790810 PMCID: PMC8006376 DOI: 10.3389/fphys.2021.659977] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Retinol binding protein 4 (RBP4) is a member of the lipocalin family and the major transport protein of the hydrophobic molecule retinol, also known as vitamin A, in the circulation. Expression of RBP4 is highest in the liver, where most of the body’s vitamin A reserves are stored as retinyl esters. For the mobilization of vitamin A from the liver, retinyl esters are hydrolyzed to retinol, which then binds to RBP4 in the hepatocyte. After associating with transthyretin (TTR), the retinol/RBP4/TTR complex is released into the bloodstream and delivers retinol to tissues via binding to specific membrane receptors. So far, two distinct RBP4 receptors have been identified that mediate the uptake of retinol across the cell membrane and, under specific conditions, bi-directional retinol transport. Although most of RBP4’s actions depend on its role in retinoid homeostasis, functions independent of retinol transport have been described. In this review, we summarize and discuss the recent findings on the structure, regulation, and functions of RBP4 and lay out the biological relevance of this lipocalin for human diseases.
Collapse
Affiliation(s)
- Julia S Steinhoff
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Michael Schupp
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Brejchova K, Radner FPW, Balas L, Paluchova V, Cajka T, Chodounska H, Kudova E, Schratter M, Schreiber R, Durand T, Zechner R, Kuda O. Distinct roles of adipose triglyceride lipase and hormone-sensitive lipase in the catabolism of triacylglycerol estolides. Proc Natl Acad Sci U S A 2021; 118:e2020999118. [PMID: 33372146 PMCID: PMC7812821 DOI: 10.1073/pnas.2020999118] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Branched esters of palmitic acid and hydroxy stearic acid are antiinflammatory and antidiabetic lipokines that belong to a family of fatty acid (FA) esters of hydroxy fatty acids (HFAs) called FAHFAs. FAHFAs themselves belong to oligomeric FA esters, known as estolides. Glycerol-bound FAHFAs in triacylglycerols (TAGs), named TAG estolides, serve as metabolite reservoir of FAHFAs mobilized by lipases upon demand. Here, we characterized the involvement of two major metabolic lipases, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in TAG estolide and FAHFA degradation. We synthesized a library of 20 TAG estolide isomers with FAHFAs varying in branching position, chain length, saturation grade, and position on the glycerol backbone and developed an in silico mass spectra library of all predicted catabolic intermediates. We found that ATGL alone or coactivated by comparative gene identification-58 efficiently liberated FAHFAs from TAG estolides with a preference for more compact substrates where the estolide branching point is located near the glycerol ester bond. ATGL was further involved in transesterification and remodeling reactions leading to the formation of TAG estolides with alternative acyl compositions. HSL represented a much more potent estolide bond hydrolase for both TAG estolides and free FAHFAs. FAHFA and TAG estolide accumulation in white adipose tissue of mice lacking HSL argued for a functional role of HSL in estolide catabolism in vivo. Our data show that ATGL and HSL participate in the metabolism of estolides and TAG estolides in distinct manners and are likely to affect the lipokine function of FAHFAs.
Collapse
Affiliation(s)
- Kristyna Brejchova
- Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | | | - Laurence Balas
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, École Nationale Supérieure de Chimie de Montpellier, Faculté de Pharmacie, Université de Montpellier, 34093 Montpellier, France
| | - Veronika Paluchova
- Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Tomas Cajka
- Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | | | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, École Nationale Supérieure de Chimie de Montpellier, Faculté de Pharmacie, Université de Montpellier, 34093 Montpellier, France
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria;
- BioTechMed-Graz, 8010 Graz, Austria
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic;
| |
Collapse
|
7
|
Recazens E, Mouisel E, Langin D. Hormone-sensitive lipase: sixty years later. Prog Lipid Res 2020; 82:101084. [PMID: 33387571 DOI: 10.1016/j.plipres.2020.101084] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and vascular plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a broad substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.
Collapse
Affiliation(s)
- Emeline Recazens
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Etienne Mouisel
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
8
|
Hofer P, Taschler U, Schreiber R, Kotzbeck P, Schoiswohl G. The Lipolysome-A Highly Complex and Dynamic Protein Network Orchestrating Cytoplasmic Triacylglycerol Degradation. Metabolites 2020; 10:E147. [PMID: 32290093 PMCID: PMC7240967 DOI: 10.3390/metabo10040147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
The catabolism of intracellular triacylglycerols (TAGs) involves the activity of cytoplasmic and lysosomal enzymes. Cytoplasmic TAG hydrolysis, commonly termed lipolysis, is catalyzed by the sequential action of three major hydrolases, namely adipose triglyceride lipase, hormone-sensitive lipase, and monoacylglycerol lipase. All three enzymes interact with numerous protein binding partners that modulate their activity, cellular localization, or stability. Deficiencies of these auxiliary proteins can lead to derangements in neutral lipid metabolism and energy homeostasis. In this review, we summarize the composition and the dynamics of the complex lipolytic machinery we like to call "lipolysome".
Collapse
Affiliation(s)
- Peter Hofer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Petra Kotzbeck
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| |
Collapse
|
9
|
Yu L, Li Y, Grisé A, Wang H. CGI-58: Versatile Regulator of Intracellular Lipid Droplet Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:197-222. [PMID: 32705602 PMCID: PMC8063591 DOI: 10.1007/978-981-15-6082-8_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Comparative gene identification-58 (CGI-58), also known as α/β-hydrolase domain-containing 5 (ABHD5), is a member of a large family of proteins containing an α/β-hydrolase-fold. CGI-58 is well-known as the co-activator of adipose triglyceride lipase (ATGL), which is a key enzyme initiating cytosolic lipid droplet lipolysis. Mutations in either the human CGI-58 or ATGL gene cause an autosomal recessive neutral lipid storage disease, characterized by the excessive accumulation of triglyceride (TAG)-rich lipid droplets in the cytoplasm of almost all cell types. CGI-58, however, has ATGL-independent functions. Distinct phenotypes associated with CGI-58 deficiency commonly include ichthyosis (scaly dry skin), nonalcoholic steatohepatitis, and hepatic fibrosis. Through regulated interactions with multiple protein families, CGI-58 controls many metabolic and signaling pathways, such as lipid and glucose metabolism, energy balance, insulin signaling, inflammatory responses, and thermogenesis. Recent studies have shown that CGI-58 regulates the pathogenesis of common metabolic diseases in a tissue-specific manner. Future studies are needed to molecularly define ATGL-independent functions of CGI-58, including the newly identified serine protease activity of CGI-58. Elucidation of these versatile functions of CGI-58 may uncover fundamental cellular processes governing lipid and energy homeostasis, which may help develop novel approaches that counter against obesity and its associated metabolic sequelae.
Collapse
Affiliation(s)
- Liqing Yu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yi Li
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alison Grisé
- College of Computer, Math, and Natural Sciences, College of Behavioral and Social Sciences, University of Maryland, College Park, MD, USA
| | - Huan Wang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Ahn J, Suh Y, Lee K. Adipose-Specific Expression, Developmental and Nutritional Regulation of the Gene-Encoding Retinol-Binding Protein 7 in Pigs. Lipids 2019; 54:359-367. [PMID: 31218688 DOI: 10.1002/lipd.12170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 11/09/2022]
Abstract
Modulation of expression of adipose tissue-specific transcripts has been known to regulate adipogenesis and lipid metabolism. Recently, adipose-specific expression patterns and developmental regulation of the gene-encoding retinol-binding protein 7 (RBP7) was identified. However, its expression in adipose tissue of the porcine species has yet to be explored. In this study, adipose tissue-specific expression of porcine RBP7 was identified and conservation of the fatty acid-binding domains and evolutionary relationship of the RBP7 gene were verified comparatively across mammalian species. Our in vitro and in vivo analysis of gene expression revealed that RBP7 expression was significantly high in fat cell fraction compared to stromal vascular cells (p < 0.05) and increased during development (p < 0.05). The level of RBP7 expression was upregulated during a 24-h short-term fasting intervention and restored 6 h after refeeding (p < 0.05). Taken together, these studies provide insights into the role of RBP7 in adipose tissue of pigs during development and nutritional intervention and pave the way for future studies on the regulation of retinol homeostasis in porcine adipose tissue.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
11
|
Shajari S, Saeed A, Smith-Cortinez NF, Heegsma J, Sydor S, Faber KN. Hormone-sensitive lipase is a retinyl ester hydrolase in human and rat quiescent hepatic stellate cells. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1258-1267. [PMID: 31150775 DOI: 10.1016/j.bbalip.2019.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/13/2019] [Accepted: 05/24/2019] [Indexed: 01/04/2023]
Abstract
Hepatic stellate cells (HSC) store vitamin A as retinyl esters and control circulating retinol levels. Upon liver injury, quiescent (q)HSC lose their vitamin A and transdifferentiate to myofibroblasts, e.g. activated (a)HSC, which promote fibrosis by producing excessive extracellular matrix. Adipose triglyceride lipase/patatin-like phospholipase domain-containing protein 2 (ATGL/PNPLA2) and adiponutrin (ADPN/PNPLA3) have so far been shown to mobilize retinol from retinyl esters in HSC. Here, we studied the putative role of hormone-sensitive lipase (HSL/LIPE) in HSC, as it is the major retinyl ester hydrolase (REH) in adipose tissue. Lipe/HSL expression was analyzed in rat liver and primary human and rat qHSC and culture-activated aHSC. Retinyl hydrolysis was analyzed after Isoproterenol-mediated phosphorylation/activation of HSL. Primary human HSC contain 2.5-fold higher LIPE mRNA levels compared to hepatocytes. Healthy rat liver contains significant mRNA and protein levels of HSL/Lipe, which predominates in qHSC and cells of the portal tree. Q-PCR comparison indicates that Lipe mRNA levels in qHSC are dominant over Pnpla2 and Pnpla3. HSL is mostly phosphorylated/activated in qHSC and partly colocalizes with vitamin A-containing lipid droplets. Lipe/HSL and Pnpla3 expression is rapidly lost during HSC culture-activation, while Pnpla2 expression is maintained. HSL super-activation by isoproterenol accelerates loss of lipid droplets and retinyl palmitate from HSC, which coincided with a small, but significant reduction in HSC proliferation and suppression of Collagen1A1 mRNA and protein levels. In conclusion, HSL participates in vitamin A metabolism in qHSC. Equivalent activities of ATGL and ADPN provide the healthy liver with multiple routes to control circulating retinol levels.
Collapse
Affiliation(s)
- Shiva Shajari
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ali Saeed
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Natalia F Smith-Cortinez
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Svenja Sydor
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
Lee YCG, Sue YM, Lee CK, Huang HM, He JJ, Wang YS, Juan SH. Synergistic effects of cAMP-dependent protein kinase A and AMP-activated protein kinase on lipolysis in kinsenoside-treated C3H10T1/2 adipocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:255-263. [PMID: 30668437 DOI: 10.1016/j.phymed.2018.06.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/22/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND We previously showed that 3-O-β-D-glucopyranosyl-(3R)-hydroxybutanolide (kinsenoside), a major compound of Anoectochilus formosanus, increased lipolysis through an AMP-activated protein kinase (AMPK)-dependent pathway. PURPOSE To extend our previous finding, we investigated the in vivo and in vitro effects of kinsenoside on lipolysis and the involvement of cyclic AMP (cAMP)-dependent protein kinase A (PKA) and AMPK in kinsenoside-mediated lipolysis. STUDY DESIGN/METHODS Mice were fed a high-fat diet for six weeks to induce lipid deposition and then treated with 50 and 100 mg/kg kinsenoside for two weeks. The coordination of PKA and AMPK activation in lipolysis in C3H10T1/2 adipocytes was evaluated in vitro by using PKA and AMPK's corresponding inhibitors, oil-red O staining, a glycerol production assay, and Western blot analysis. RESULTS Kinsenoside reduced body weight, fat pad mass, and hepatic lipid accumulation in obese mice, and concurrently increased the induction and activation of hormone-sensitive lipase (HSL), perilipin, adipose triglyceride lipase (ATGL), and carnitine palmitoyltransferase I (CPT1). Kinsenoside concentration-dependently increased PKA activation by increasing the phosphorylation of Ser/Thr-PKA substrates in vitro. These increases were accompanied by a reduction in fat accumulation. Using H89 and Rp-8-Br-cAMPs to inhibit PKA reduced the release of glycerol but did not alter the activation of peroxisome proliferator-activated receptor alpha or the expression of CPT1 or ATGL. By contrast, compound C, an AMPK inhibitor, inhibited CPT1 and ATGL expression in kinsenoside-treated C3H10T1/2 adipocytes. In addition, H89 caused the reactivation of AMPK downstream targets by increasing the levels of the active form of pAMPK-Thr172, suggesting that PKA negatively modulates AMPK activity. CONCLUSION Kinsenoside increased HSL activation through PKA-mediated phosphorylation at Ser660/563 and concomitantly increased perilipin activation in lipolysis. These lipolytic effects of kinsenoside were validated using 6-Bnz-cAMPs, a PKA agonist. In this study, we demonstrated that in addition to AMPK, PKA also plays a crucial role in kinsenoside-mediated lipolysis.
Collapse
Affiliation(s)
- Yuan-Chii G Lee
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Mou Sue
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Huei-Mei Huang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jhin-Jyun He
- Department of Physiology and Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Shiou Wang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physiology and Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Hui Juan
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physiology and Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Xu S, Zhang X, Liu P. Lipid droplet proteins and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1968-1983. [DOI: 10.1016/j.bbadis.2017.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
|
14
|
Shannon SR, Moise AR, Trainor PA. New insights and changing paradigms in the regulation of vitamin A metabolism in development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28207193 DOI: 10.1002/wdev.264] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
Vitamin A and its active metabolite retinoic acid are essential for embryonic development and adult homeostasis. Surprisingly, excess or deficiency of vitamin A and retinoic acid can cause similar developmental defects. Therefore, strict feedback and other mechanisms exist to regulate the levels of retinoic acid within a narrow physiological range. The oxidation of vitamin A to retinal has recently been established as a critical nodal point in the synthesis of retinoic acid, and over the past decade, RDH10 and DHRS3 have emerged as the predominant enzymes that regulate this reversible reaction. Together they form a codependent complex that facilitates negative feedback maintenance of retinoic acid levels and thus guard against the effects of dysregulated vitamin A metabolism and retinoic acid synthesis. This review focuses on advances in our understanding of the roles of Rdh10 and Dhrs3 and their impact on development and disease. WIREs Dev Biol 2017, 6:e264. doi: 10.1002/wdev.264 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Stephen R Shannon
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alexander R Moise
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
15
|
Guo H, Foncea R, O'Byrne SM, Jiang H, Zhang Y, Deis JA, Blaner WS, Bernlohr DA, Chen X. Lipocalin 2, a Regulator of Retinoid Homeostasis and Retinoid-mediated Thermogenic Activation in Adipose Tissue. J Biol Chem 2016; 291:11216-29. [PMID: 27008859 DOI: 10.1074/jbc.m115.711556] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 11/06/2022] Open
Abstract
We have recently characterized the role of lipocalin 2 (Lcn2) as a new adipose-derived cytokine in the regulation of adaptive thermogenesis via a non-adrenergic pathway. Herein, we explored a potential non-adrenergic mechanism by which Lcn2 regulates thermogenesis and lipid metabolism. We found that Lcn2 is a retinoic acid target gene, and retinoic acid concurrently stimulated UCP1 and Lcn2 expression in adipocytes. Lcn2 KO mice exhibited a blunted effect of all-trans-retinoic acid (ATRA) on body weight and fat mass, lipid metabolism, and retinoic acid signaling pathway activation in adipose tissue under the high fat diet-induced obese condition. We further demonstrated that Lcn2 is required for the full action of ATRA on the induction of UCP1 and PGC-1α expression in brown adipocytes and the restoration of cold intolerance in Lcn2 KO mice. Interestingly, we discovered that Lcn2 KO mice have decreased levels of retinoic acid and retinol in adipose tissue. The protein levels of STRA6 responsible for retinol uptake were significantly decreased in adipose tissue. The retinol transporter RBP4 was increased in adipose tissue but decreased in the circulation, suggesting the impairment of RBP4 secretion in Lcn2 KO adipose tissue. Moreover, Lcn2 deficiency abolished the ATRA effect on RBP4 expression in adipocytes. All the data suggest that the decreased retinoid level and action are associated with impaired retinol transport and storage in adipose tissue in Lcn2 KO mice. We conclude that Lcn2 plays a critical role in regulating metabolic homeostasis of retinoids and retinoid-mediated thermogenesis in adipose tissue.
Collapse
Affiliation(s)
- Hong Guo
- From the Departments of Food Science and Nutrition and
| | - Rocio Foncea
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, Minnesota 55108 and
| | - Sheila M O'Byrne
- the Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Hongfeng Jiang
- the Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | - William S Blaner
- the Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - David A Bernlohr
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, Minnesota 55108 and
| | - Xiaoli Chen
- From the Departments of Food Science and Nutrition and
| |
Collapse
|
16
|
Lopategi A, López-Vicario C, Alcaraz-Quiles J, García-Alonso V, Rius B, Titos E, Clària J. Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction. Mol Cell Endocrinol 2016; 419:44-59. [PMID: 26433072 DOI: 10.1016/j.mce.2015.09.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
White adipose tissue is recognized as an active endocrine organ implicated in the maintenance of metabolic homeostasis. However, adipose tissue function, which has a crucial role in the development of obesity-related comorbidities including insulin resistance and non-alcoholic fatty liver disease, is dysregulated in obese individuals. This review explores the physiological functions and molecular actions of bioactive lipids biosynthesized in adipose tissue including sphingolipids and phospholipids, and in particular fatty acids derived from phospholipids of the cell membrane. Special emphasis is given to polyunsaturated fatty acids of the omega-6 and omega-3 families and their conversion to bioactive lipid mediators through the cyclooxygenase and lipoxygenase pathways. The participation of omega-3-derived lipid autacoids in the resolution of adipose tissue inflammation and in the prevention of obesity-associated hepatic complications is also thoroughly discussed.
Collapse
Affiliation(s)
- Aritz Lopategi
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain.
| | - Cristina López-Vicario
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - José Alcaraz-Quiles
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Verónica García-Alonso
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Bibiana Rius
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Esther Titos
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain; CIBERehd, University of Barcelona, Barcelona 08036, Spain
| | - Joan Clària
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain; CIBERehd, University of Barcelona, Barcelona 08036, Spain; Department of Physiological Sciences I, University of Barcelona, Barcelona 08036, Spain.
| |
Collapse
|
17
|
Eichmann TO, Lass A. DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling. Cell Mol Life Sci 2015; 72:3931-52. [PMID: 26153463 PMCID: PMC4575688 DOI: 10.1007/s00018-015-1982-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/29/2015] [Indexed: 12/31/2022]
Abstract
The neutral lipids diacylglycerols (DAGs) are involved in a plethora of metabolic pathways. They function as components of cellular membranes, as building blocks for glycero(phospho)lipids, and as lipid second messengers. Considering their central role in multiple metabolic processes and signaling pathways, cellular DAG levels require a tight regulation to ensure a constant and controlled availability. Interestingly, DAG species are versatile in their chemical structure. Besides the different fatty acid species esterified to the glycerol backbone, DAGs can occur in three different stereo/regioisoforms, each with unique biological properties. Recent scientific advances have revealed that DAG metabolizing enzymes generate and distinguish different DAG isoforms, and that only one DAG isoform holds signaling properties. Herein, we review the current knowledge of DAG stereochemistry and their impact on cellular metabolism and signaling. Further, we describe intracellular DAG turnover and its stereochemistry in a 3-pool model to illustrate the spatial and stereochemical separation and hereby the diversity of cellular DAG metabolism.
Collapse
Affiliation(s)
- Thomas Oliver Eichmann
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010, Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010, Graz, Austria.
| |
Collapse
|
18
|
|
19
|
Nielsen TS, Jessen N, Jørgensen JOL, Møller N, Lund S. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 2014; 52:R199-222. [PMID: 24577718 DOI: 10.1530/jme-13-0277] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipolysis is the process by which triglycerides (TGs) are hydrolyzed to free fatty acids (FFAs) and glycerol. In adipocytes, this is achieved by sequential action of adipose TG lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase. The activity in the lipolytic pathway is tightly regulated by hormonal and nutritional factors. Under conditions of negative energy balance such as fasting and exercise, stimulation of lipolysis results in a profound increase in FFA release from adipose tissue (AT). This response is crucial in order to provide the organism with a sufficient supply of substrate for oxidative metabolism. However, failure to efficiently suppress lipolysis when FFA demands are low can have serious metabolic consequences and is believed to be a key mechanism in the development of type 2 diabetes in obesity. As the discovery of ATGL in 2004, substantial progress has been made in the delineation of the remarkable complexity of the regulatory network controlling adipocyte lipolysis. Notably, regulatory mechanisms have been identified on multiple levels of the lipolytic pathway, including gene transcription and translation, post-translational modifications, intracellular localization, protein-protein interactions, and protein stability/degradation. Here, we provide an overview of the recent advances in the field of AT lipolysis with particular focus on the molecular regulation of the two main lipases, ATGL and HSL, and the intracellular and extracellular signals affecting their activity.
Collapse
Affiliation(s)
- Thomas Svava Nielsen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, DenmarkThe Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Niels Jessen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, DenmarkThe Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Jens Otto L Jørgensen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Niels Møller
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Sten Lund
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| |
Collapse
|
20
|
Manna PR, Slominski AT, King SR, Stetson CL, Stocco DM. Synergistic activation of steroidogenic acute regulatory protein expression and steroid biosynthesis by retinoids: involvement of cAMP/PKA signaling. Endocrinology 2014; 155:576-91. [PMID: 24265455 PMCID: PMC3891939 DOI: 10.1210/en.2013-1694] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both retinoic acid receptors (RARs) and retinoid X receptors (RXRs) mediate the action of retinoids that play important roles in reproductive development and function, as well as steroidogenesis. Regulation of steroid biosynthesis is principally mediated by the steroidogenic acute regulatory protein (StAR); however, the modes of action of retinoids in the regulation of steroidogenesis remain obscure. In this study we demonstrate that all-trans retinoic acid (atRA) enhances StAR expression, but not its phosphorylation (P-StAR), and progesterone production in MA-10 mouse Leydig cells. Activation of the protein kinase A (PKA) cascade, by dibutyrl-cAMP or type I/II PKA analogs, markedly increased retinoid-responsive StAR, P-StAR, and steroid levels. Targeted silencing of endogenous RARα and RXRα, with small interfering RNAs, resulted in decreases in 9-cis RA-stimulated StAR and progesterone levels. Truncation of and mutational alterations in the 5'-flanking region of the StAR gene demonstrated the importance of the -254/-1-bp region in retinoid responsiveness. An oligonucleotide probe encompassing an RXR/liver X receptor recognition motif, located within the -254/-1-bp region, specifically bound MA-10 nuclear proteins and in vitro transcribed/translated RXRα and RARα in EMSAs. Transcription of the StAR gene in response to atRA and dibutyrl-cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of cAMP response-element binding protein (CREB). Chromatin immunoprecipitation studies revealed the association of phosphorylation of CREB, CREB binding protein, RXRα, and RARα to the StAR promoter. Further studies elucidated that hormone-sensitive lipase plays an important role in atRA-mediated regulation of the steroidogenic response that involves liver X receptor signaling. These findings delineate the molecular events by which retinoids influence cAMP/PKA signaling and provide additional and novel insight into the regulation of StAR expression and steroidogenesis in mouse Leydig cells.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry (P.R.M., S.R.K., D.M.S.), Department of Dermatology and Pathology (C.L.S.), Texas Tech University Health Sciences Center, Lubbock, Texas 79430; and Department of Pathology and Laboratory Medicine (A.T.S.), University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | | | | | | |
Collapse
|
21
|
O'Byrne SM, Blaner WS. Retinol and retinyl esters: biochemistry and physiology. J Lipid Res 2013; 54:1731-43. [PMID: 23625372 PMCID: PMC3679378 DOI: 10.1194/jlr.r037648] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/24/2013] [Indexed: 12/23/2022] Open
Abstract
By definition, a vitamin is a substance that must be obtained regularly from the diet. Vitamin A must be acquired from the diet, but unlike most vitamins, it can also be stored within the body in relatively high levels. For humans living in developed nations or animals living in present-day vivariums, stored vitamin A concentrations can become relatively high, reaching levels that can protect against the adverse effects of insufficient vitamin A dietary intake for six months, or even much longer. The ability to accumulate vitamin A stores lessens the need for routinely consuming vitamin A in the diet, and this provides a selective advantage to the organism. The molecular processes that underlie this selective advantage include efficient mechanisms to acquire vitamin A from the diet, efficient and overlapping mechanisms for the transport of vitamin A in the circulation, a specific mechanism allowing for vitamin A storage, and a mechanism for mobilizing vitamin A from these stores in response to tissue needs. These processes are considered in this review.
Collapse
Affiliation(s)
- Sheila M. O'Byrne
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - William S. Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
22
|
Jeyakumar S, Yasmeen R, Reichert B, Ziouzenkova O. Metabolism of Vitamin A in White Adipose Tissue and Obesity. OXIDATIVE STRESS AND DISEASE 2013. [DOI: 10.1201/b14569-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Shim E, Yeum KJ, Tang G, Ahn SH, Hwang J, Lee-Kim YC. Retinoids, carotenoids, and tocopherols in breast adipose tissue and serum of benign breast disease and breast cancer patients. Nutr Cancer 2013; 64:956-63. [PMID: 23061903 DOI: 10.1080/01635581.2012.717678] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Various retinoic acid (RA) isomers (all-trans, 13-cis, 11-cis, and 9-cis) as well as retinol, carotenoids, and tocopherol concentrations were determined in both serum and breast adipose tissue of 22 benign breast disease patients and 52 breast cancer patients categorized into 4 stages by malignancy. Serum RA isomers were analyzed by a newly developed sensitive method combining a high-performance liquid chromatography and a gas chromatography-mass spectrometry, and retinol, carotenoid, and tocopherol concentrations using a high-performance liquid chromatography system. The breast cancer patients showed significantly lower serum retinol, whereas significantly higher breast adipose tissue retinol concentration than those of benign breast disease patients. Although breast cancer patients showed significantly higher serum all-trans and 13-cis RA concentrations, 11-cis RA in breast adipose tissue was significantly lower in the breast cancer patients than those of benign breast disease patients and it was associated with the stage of malignancy. The current study indicates that the retinol and RA isomers in the target tissue of breast tumor patients are not reflecting their concentrations in circulation. The mechanisms of tissue specific uptake of RA isomers and their functions warrant further studies.
Collapse
Affiliation(s)
- Eugene Shim
- National Hypertension Center, Yonsei University Health System, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Brun PJ, Yang KJZ, Lee SA, Yuen JJ, Blaner WS. Retinoids: Potent regulators of metabolism. Biofactors 2013; 39:151-63. [PMID: 23281051 PMCID: PMC3620893 DOI: 10.1002/biof.1056] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/13/2012] [Indexed: 12/18/2022]
Abstract
Retinoids (vitamin A and its analogs) are highly potent regulators of cell differentiation, cell proliferation, and apoptosis. Because of these activities, retinoids have been most extensively studied in the contexts of embryonic development and of proliferative diseases, especially cancer and skin disease. Recently, there has been considerable new research interest focused on gaining understanding of the roles that retinoids and/or retinoid-related proteins may have in the development of metabolic diseases, primarily obesity, diabetes, and dyslipidemia. This review will summarize recent advances that have been made in these areas, focusing on the role of retinoids in modulating adipogenesis, the roles of retinoids and retinoid-related proteins as signaling molecules linking obesity with the development of type II diabetes, the roles of retinoids in pancreatic β-cell biology/insulin secretion, and the actions of retinoids in hepatic steatosis.
Collapse
Affiliation(s)
- Pierre-Jacques Brun
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
25
|
Roy VK, Krishna A. Changes in the expression of HSL and OCTN2 in the female reproductive tract of the bat, Scotophilus heathii in relation to sperm storage. Acta Histochem 2012; 114:358-62. [PMID: 21820160 DOI: 10.1016/j.acthis.2011.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/09/2011] [Accepted: 07/10/2011] [Indexed: 11/16/2022]
Abstract
The aim of this study was to compare the changes in the expression of hormone sensitive lipase (HSL) and organic cation transporter 2 (OCTN2) in different regions of the female reproductive tract of bats (Scotophilus heathii) during the period of sperm storage. Western blot analysis revealed that both HSL and OCTN2 showed elevated expression in the utero-tubal junction, the site of sperm storage, compared to the vagina, cervix and uterus. An immunohistochemical study showed localization of HSL and OCTN2 in the cytoplasm of luminal epithelial cells in the utero-tubal junction of S. heathii, which suggests a role of fatty acids metabolism at the site of sperm storage. Furthermore, this study showed the presence OCTN2 immunostaining in the tail of stored sperm, which suggests a direct role of carnitine in sperm physiology. However, the role of carnitine in sperm storage needs further investigation. It is hypothesized that the utero-tubal junction may be finely tuned with fat depletion to support sperm storage in the female genital tract of S. heathii.
Collapse
Affiliation(s)
- Vikas Kumar Roy
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
26
|
Shirakami Y, Lee SA, Clugston RD, Blaner WS. Hepatic metabolism of retinoids and disease associations. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:124-36. [PMID: 21763780 PMCID: PMC3488285 DOI: 10.1016/j.bbalip.2011.06.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/14/2011] [Accepted: 06/21/2011] [Indexed: 12/12/2022]
Abstract
The liver is the most important tissue site in the body for uptake of postprandial retinoid, as well as for retinoid storage. Within the liver, both hepatocytes and hepatic stellate cells (HSCs) are importantly involved in retinoid metabolism. Hepatocytes play an indispensable role in uptake and processing of dietary retinoid into the liver, and in synthesis and secretion of retinol-binding protein (RBP), which is required for mobilizing hepatic retinoid stores. HSCs are the central cellular site for retinoid storage in the healthy animal, accounting for as much as 50-60% of the total retinoid present in the entire body. The liver is also an important target organ for retinoid actions. Retinoic acid is synthesized in the liver and can interact with retinoid receptors which control expression of a large number of genes involved in hepatic processes. Altered retinoid metabolism and the accompanying dysregulation of retinoid signaling in the liver contribute to hepatic disease. This is related to HSCs, which contribute significantly to the development of hepatic disease when they undergo a process of cellular activation. HSC activation results in the loss of HSC retinoid stores and changes in extracellular matrix deposition leading to the onset of liver fibrosis. An association between hepatic disease progression and decreased hepatic retinoid storage has been demonstrated. In this review article, we summarize the essential role of the liver in retinoid metabolism and consider briefly associations between hepatic retinoid metabolism and disease. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Yohei Shirakami
- Department of Medicine, College of Physcians and Surgeons, Columbia University, 630 W, 168th St, New York, NY 10032, USA
| | | | | | | |
Collapse
|
27
|
Quiroga AD, Lehner R. Liver triacylglycerol lipases. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:762-9. [PMID: 21963564 DOI: 10.1016/j.bbalip.2011.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 12/20/2022]
Abstract
The hallmark of obesity and one of the key contributing factors to insulin resistance, type 2 diabetes and cardiovascular disease is excess triacylglycerol (TG) storage. In hepatocytes, excessive accumulation of TG is the common denominator of a wide range of clinicopathological entities known as nonalcoholic fatty liver disease, which can eventually progress to cirrhosis and associated complications including hepatic failure, hepatocellular carcinoma and death. A tight regulation between TG synthesis, hydrolysis, secretion and fatty acid oxidation is required to prevent lipid accumulation as well as lipid depletion from hepatocytes. Therefore, understanding the pathways that regulate hepatic TG metabolism is crucial for development of therapies to ameliorate pathophysiological conditions associated with excessive hepatic TG accumulation, including dyslipidemias, viral infection and atherosclerosis. This review highlights the physiological roles of liver lipases that degrade TG in cytosolic lipid droplets, endoplasmic reticulum, late endosomes/lysosomes and along the secretory route. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Ariel D Quiroga
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | |
Collapse
|
28
|
Yasmeen R, Jeyakumar SM, Reichert B, Yang F, Ziouzenkova O. The contribution of vitamin A to autocrine regulation of fat depots. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:190-7. [PMID: 21704731 DOI: 10.1016/j.bbalip.2011.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/03/2011] [Accepted: 06/02/2011] [Indexed: 02/01/2023]
Abstract
Morbidity and mortality associated with increased white fat accumulation in visceral fat depots have focused attention on the pathways regulating the development of this tissue during embryogenesis, in adulthood, and while under the influence of obesogenic diets. Adipocytes undergo clonal expansion, differentiation (adipogenesis) and maturation through a complex network of transcriptional factors, most of which are expressed at similar levels in visceral and subcutaneous fat. Rigorous research attempts to unfold the pathways regulating expression and activity of adipogenic transcription factors that act in a fat-depot-specific manner. Peroxisome proliferator-activated receptor-γ (PPARγ) is the master regulator of adipogenesis, and is expressed at higher levels in subcutaneous than in visceral depots. PPARγ expression in adipogenesis is mediated by CCAAT/enhancer binding proteins (C/EBPs) and several transcription factors acting in conjunction with C/EBPs, although alternative pathways through zinc-finger protein-423 (ZFP423) transcription factor are sufficient to induce PPARγ expression and adipogenesis. Vitamin A and its metabolites, retinaldehyde and retinoic acid, are transcriptionally-active molecules. Retinoic acid is generated from retinaldehyde in adipose tissue by the aldehyde dehydrogenase-1 family of enzymes (Aldh1). In this review, we discuss the role of Aldh1 enzymes in the generation of retinoic acid during adipogenesis, in the regulation of the transcriptional network of PPARγ in a fat-depot-specific manner, and the important contribution of this autocrine pathway in the development of visceral obesity. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Rumana Yasmeen
- Department of Human Nutrition, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
29
|
Schreiber R, Taschler U, Preiss-Landl K, Wongsiriroj N, Zimmermann R, Lass A. Retinyl ester hydrolases and their roles in vitamin A homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:113-23. [PMID: 21586336 PMCID: PMC3242165 DOI: 10.1016/j.bbalip.2011.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 12/16/2022]
Abstract
In mammals, dietary vitamin A intake is essential for the maintenance of adequate retinoid (vitamin A and metabolites) supply of tissues and organs. Retinoids are taken up from animal or plant sources and subsequently stored in form of hydrophobic, biologically inactive retinyl esters (REs). Accessibility of these REs in the intestine, the circulation, and their mobilization from intracellular lipid droplets depends on the hydrolytic action of RE hydrolases (REHs). In particular, the mobilization of hepatic RE stores requires REHs to maintain steady plasma retinol levels thereby assuring constant vitamin A supply in times of food deprivation or inadequate vitamin A intake. In this review, we focus on the roles of extracellular and intracellular REHs in vitamin A metabolism. Furthermore, we will discuss the tissue-specific function of REHs and highlight major gaps in the understanding of RE catabolism. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
|
30
|
Lampidonis AD, Rogdakis E, Voutsinas GE, Stravopodis DJ. The resurgence of Hormone-Sensitive Lipase (HSL) in mammalian lipolysis. Gene 2011; 477:1-11. [PMID: 21241784 DOI: 10.1016/j.gene.2011.01.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/22/2010] [Accepted: 01/07/2011] [Indexed: 12/13/2022]
Abstract
The ability to store energy in the form of energy-dense triacylglycerol and to mobilize these stores rapidly during periods of low carbohydrate availability or throughout the strong metabolic demand is a highly conserved process, absolutely essential for survival. In the industrialized world the regulation of this pathway is viewed as an important therapeutic target for disease prevention. Adipose tissue lipolysis is a catabolic process leading to the breakdown of triacylglycerols stored in fat cells, and release of fatty acids and glycerol. Mobilization of adipose tissue fat is mediated by the MGL, HSL and ATGL, similarly functioning enzymes. ATGL initiates lipolysis followed by the actions of HSL on diacylglycerol, and MGL on monoacylglycerol. HSL is regulated by reversible phosphorylation on five critical residues. Phosphorylation alone, however, is not enough to activate HSL. Probably, conformational alterations and a translocation from the cytoplasm to lipid droplets are also involved. In accordance, Perilipin functions as a master regulator of lipolysis, protecting or exposing the triacylglycerol core of a lipid droplet to lipases. The prototype processes of hormonal lipolytic control are the β-adrenergic stimulation and suppression by insulin, both of which affect cytoplasmic cyclic AMP levels. Lipolysis in adipocytes is an important process in the management of body energy reserves. Its deregulation may contribute to the symptoms of type 2 diabetes mellitus and other pathological situations. We, herein, discuss the metabolic regulation and function of lipases mediating mammalian lipolysis with a focus on HSL, quoting newly identified members of the lipolytic proteome.
Collapse
Affiliation(s)
- Antonis D Lampidonis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Zografou, 157 84 Athens, Greece
| | | | | | | |
Collapse
|
31
|
D'Ambrosio DN, Clugston RD, Blaner WS. Vitamin A metabolism: an update. Nutrients 2011; 3:63-103. [PMID: 21350678 PMCID: PMC3042718 DOI: 10.3390/nu3010063] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/24/2010] [Accepted: 01/11/2011] [Indexed: 12/18/2022] Open
Abstract
Retinoids are required for maintaining many essential physiological processes in the body, including normal growth and development, normal vision, a healthy immune system, normal reproduction, and healthy skin and barrier functions. In excess of 500 genes are thought to be regulated by retinoic acid. 11-cis-retinal serves as the visual chromophore in vision. The body must acquire retinoid from the diet in order to maintain these essential physiological processes. Retinoid metabolism is complex and involves many different retinoid forms, including retinyl esters, retinol, retinal, retinoic acid and oxidized and conjugated metabolites of both retinol and retinoic acid. In addition, retinoid metabolism involves many carrier proteins and enzymes that are specific to retinoid metabolism, as well as other proteins which may be involved in mediating also triglyceride and/or cholesterol metabolism. This review will focus on recent advances for understanding retinoid metabolism that have taken place in the last ten to fifteen years.
Collapse
Affiliation(s)
- Diana N D'Ambrosio
- Department of Medicine and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
32
|
Shen WJ, Yu Z, Patel S, Jue D, Liu LF, Kraemer FB. Hormone-sensitive lipase modulates adipose metabolism through PPARγ. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1811:9-16. [PMID: 20950707 DOI: 10.1016/j.bbalip.2010.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 08/26/2010] [Accepted: 10/05/2010] [Indexed: 11/20/2022]
Abstract
Hormone-sensitive lipase (HSL) is rate limiting for diacylglycerol and cholesteryl ester hydrolysis in adipose tissue and essential for complete hormone-stimulated lipolysis. Gene expression profiling in HSL-/- mice suggests that HSL is important for modulating adipogenesis and adipose metabolism. To test whether HSL is required for the supply of intrinsic ligands for PPARγ for normal adipose differentiation, HSL-/- and wild-type (WT) littermates were fed normal chow (NC) and high-fat (HF) diets supplemented with or without rosiglitazone (200 mg/kg) for 16 weeks. Results show that supplementing rosiglitazone to an NC diet completely normalized the decreased body weight and adipose depots in HSL-/- mice. Additionally, rosiglitazone resulted in similar serum glucose, total cholesterol, FFA, and adiponectin values in WT and HSL-/- mice. Furthermore, rosiglitazone normalized the expression of genes involved in adipocyte differentiation, markers of adipocyte differentiation, and enzymes involved in triacylglycerol synthesis and metabolism, and cholesteryl ester homeostasis, in HSL-/- mice. Supplementing rosiglitazone to an HF diet resulted in improved glucose tolerance in both WT and HSL-/- animals and also partial normalization in HSL-/- mice of abnormal WAT gene expression, serum chemistries, organ and body weight changes. In vitro studies showed that adipocytes from WT animals can provide ligands for activation of PPARγ and that activation is further boosted following lipolytic stimulation, whereas adipocytes from HSL-/- mice displayed attenuated activation of PPARγ, with no change following lipolytic stimulation. These results suggest that one of the mechanisms by which HSL modulates adipose metabolism is by providing intrinsic ligands or pro-ligands for PPARγ.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Division of Endocrinology, Stanford University, CA 94305-5103, USA
| | | | | | | | | | | |
Collapse
|
33
|
Fernandez C, Krogh M, Wårell K, Alm K, Oredsson S, Persson L, James P, Holm C. Omics Analyses Reveal a Potential Link between Hormone-Sensitive Lipase and Polyamine Metabolism. J Proteome Res 2009; 8:5008-19. [DOI: 10.1021/pr9004037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Céline Fernandez
- Department of Experimental Medical Science and Lund University Diabetes Center, Department of Theoretical Physics, Department of Immunotechnology, and Department for Cell and Organism Biology, Lund University, Sweden
| | - Morten Krogh
- Department of Experimental Medical Science and Lund University Diabetes Center, Department of Theoretical Physics, Department of Immunotechnology, and Department for Cell and Organism Biology, Lund University, Sweden
| | - Kristofer Wårell
- Department of Experimental Medical Science and Lund University Diabetes Center, Department of Theoretical Physics, Department of Immunotechnology, and Department for Cell and Organism Biology, Lund University, Sweden
| | - Kersti Alm
- Department of Experimental Medical Science and Lund University Diabetes Center, Department of Theoretical Physics, Department of Immunotechnology, and Department for Cell and Organism Biology, Lund University, Sweden
| | - Stina Oredsson
- Department of Experimental Medical Science and Lund University Diabetes Center, Department of Theoretical Physics, Department of Immunotechnology, and Department for Cell and Organism Biology, Lund University, Sweden
| | - Lo Persson
- Department of Experimental Medical Science and Lund University Diabetes Center, Department of Theoretical Physics, Department of Immunotechnology, and Department for Cell and Organism Biology, Lund University, Sweden
| | - Peter James
- Department of Experimental Medical Science and Lund University Diabetes Center, Department of Theoretical Physics, Department of Immunotechnology, and Department for Cell and Organism Biology, Lund University, Sweden
| | - Cecilia Holm
- Department of Experimental Medical Science and Lund University Diabetes Center, Department of Theoretical Physics, Department of Immunotechnology, and Department for Cell and Organism Biology, Lund University, Sweden
| |
Collapse
|
34
|
Gao JG, Shih A, Gruber R, Schmuth M, Simon M. GS2 as a retinol transacylase and as a catalytic dyad independent regulator of retinylester accretion. Mol Genet Metab 2009; 96:253-60. [PMID: 19181555 DOI: 10.1016/j.ymgme.2008.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 01/17/2023]
Abstract
GS2 (PNPLA4; iPLAeta) is the smallest member of the patatin-like family of phospholipases (PNPLA). It was initially identified by its ability to hydrolyze retinylesters (RE) in cell homogenates, and was later found to esterify retinol using a variety of acyl donors. In the present study we set out to determine its cellular function and examined its impact on RE status in 293T cells transfected with GS2, GS2-M1 (a non-translatable mutant of GS2) and empty vector, in fibroblasts isolated from normal and GS2-null donors and in SCC12b and in a somatic cell knock-out of GS2 (SCC12b-GS2(neo/-)), that we generated by homologous recombination. At 50nM medium retinol, GS2 had no significant impact on RE accumulation. However, at 2muM retinol, GS2 promoted a 1.6- to 5-fold increase in RE accumulation. To verify role of GS2 as a catalyst, RE levels were measured in 293T transfected wild type GS2, catalytic dyad mutants devoid of enzymatic activity, or alanine substitution mutants spanning the entire GS2 sequence. Surprisingly, every GS2 mutant promoted RE accumulation. This activity was also observed in the GS2 paralogues and rat orthologue. The data demonstrate that within the context of the cell GS2 promotes RE accumulation and may do so either as a catalyst or as a regulatory protein that enhances RE formation catalyzed by other acyl transferases.
Collapse
Affiliation(s)
- Jay G Gao
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794-8702, USA.
| | | | | | | | | |
Collapse
|
35
|
Ström K, Gundersen TE, Hansson O, Lucas S, Fernandez C, Blomhoff R, Holm C. Hormone-sensitive lipase (HSL) is also a retinyl ester hydrolase: evidence from mice lacking HSL. FASEB J 2009; 23:2307-16. [PMID: 19246492 DOI: 10.1096/fj.08-120923] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Here, we investigated the importance of hormone-sensitive lipase (HSL) as a retinyl ester hydrolase (REH). REH activity was measured in vitro using recombinant HSL and retinyl palmitate. The expression of retinoic acid (RA)-regulated genes and retinoid metabolites were measured in high-fat diet fed HSL-null mice using real-time quantitative PCR and triple-stage liquid chromatography/tandem mass spectrometry, respectively. Age- and gender-matched wild-type littermates were used as controls. The REH activity of rat HSL was found to be higher than that against the hitherto best known HSL substrate, i.e., diacylglycerols. REH activity in white adipose tissue (WAT) of HSL-null mice was completely blunted and accompanied by increased levels of retinyl esters and decreased levels of retinol, retinaldehyde and all-trans RA. Accordingly, genes known to be positively regulated by RA were down-regulated in HSL-null mice, including pRb and RIP140, key factors promoting differentiation into the white over the brown adipocyte lineage. Dietary RA supplementation partly restored WAT mass and the expression of RA-regulated genes in WAT of HSL-null mice. These findings demonstrate the importance of HSL as an REH of adipose tissue and suggest that HSL via this action provides RA and other retinoids for signaling events that are crucial for adipocyte differentiation and lineage commitment.
Collapse
Affiliation(s)
- Kristoffer Ström
- Division of Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, Lund University, BMC C11, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
36
|
Miyoshi H, Perfield JW, Obin MS, Greenberg AS. Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem 2009; 105:1430-6. [PMID: 18980248 DOI: 10.1002/jcb.21964] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In adipocytes, lipid droplet (LD) size reflects a balance of triglyceride synthesis (lipogenesis) and hydrolysis (lipolysis). Perilipin A (Peri A) is the most abundant phosphoprotein on the surface of adipocyte LDs and has a crucial role in lipid storage and lipolysis. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major rate-determining enzymes for lipolysis in adipocytes. Each of these proteins (Peri A, ATGL, and HSL) has been demonstrated to regulate lipid storage and release in the adipocyte. However, in the absence of protein kinase A (PKA) stimulation (basal state), the lipases (ATGL and HSL) are located mainly in the cytoplasm, and their contribution to basal rates of lipolysis and influence on LD size are poorly understood. In this study, we utilize an adenoviral system to knockdown or overexpress ATGL and HSL in an engineered model system of adipocytes in the presence or absence of Peri A. We are able to demonstrate in our experimental model system that in the basal state, LD size, triglyceride storage, and fatty acid release are mainly influenced by the expression of ATGL. These results demonstrate for the first time the relative contributions of ATGL, HSL, and Peri A on determination of LD size in the absence of PKA stimulation.
Collapse
Affiliation(s)
- Hideaki Miyoshi
- Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
37
|
Fernandez C, Lindholm M, Krogh M, Lucas S, Larsson S, Osmark P, Berger K, Borén J, Fielding B, Frayn K, Holm C. Disturbed cholesterol homeostasis in hormone-sensitive lipase-null mice. Am J Physiol Endocrinol Metab 2008; 295:E820-31. [PMID: 18664600 DOI: 10.1152/ajpendo.90206.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcriptomics analysis revealed that genes involved in hepatic de novo cholesterol synthesis were downregulated in fed HSL-null mice that had been on a high-fat diet (HFD) for 6 mo. This finding prompted a further analysis of cholesterol metabolism in HSL-null mice, which was performed in fed and 16-h-fasted mice on a normal chow diet (ND) or HFD regimen. Plasma cholesterol was elevated in HSL-null mice, in all tested conditions, as a result of cholesterol enrichment of HDL and VLDL. Hepatic esterified cholesterol content and ATP-binding cassette transporter A1 (ABCA1) mRNA and protein levels were increased in HSL-null mice regardless of the dietary regimen. Unsaturated fatty acid composition of hepatic triglycerides was modified in fasted HSL-null mice on ND and HFD. The increased ABCA1 expression had no major effect on cholesterol efflux from HSL-null mouse hepatocytes. Taken together, the results of this study suggest that HSL plays a critical role in the hydrolysis of cytosolic cholesteryl esters and that increased levels of hepatic cholesteryl esters, due to lack of action of HSL in the liver, are the main mechanism underlying the imbalance in cholesterol metabolism in HSL-null mice.
Collapse
Affiliation(s)
- Céline Fernandez
- Department of Experimental Medical Science, Lund University, BMC C11, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lobo MVT, Huerta L, Arenas MI, Busto R, Lasunción MA, Martín-Hidalgo A. Hormone-sensitive lipase expression and IHC localization in the rat ovary, oviduct, and uterus. J Histochem Cytochem 2008; 57:51-60. [PMID: 18824635 DOI: 10.1369/jhc.2008.951996] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hormone-sensitive lipase (HSL) is a key regulator of cholesterol esters metabolism. The aim of this study was to determine HSL localization in rat female reproductive organs during the ovarian cycle by IHC methods. HSL was located in the ovarian epithelium. The granulosa cells and oocytes of primordial follicles were immunonegative. In mature follicles, HSL was found in oocytes and theca and granulosa cells. However, HSL expression in theca cells and oocytes decreased during follicular atresia. Luteal cells showed HSL staining in cytoplasm during proestrus and estrus, in the nucleus during metestrus, and in cytoplasm and the nucleus during diestrus. In the tubaric ampulla, HSL was located in the epithelial cells nuclei and in the cilia during proestrus and estrus but mainly in the nucleus during metestrus and diestrus. In the isthmus, cells showed HSL immunolabeling in the nucleus and cilia during proestrus, but only in the cilia during estrus, metestrus, and diestrus. In the uterus, HSL was found in the epithelial cells nuclei. HSL-immunoreactive bands at 84, 67, 54, and 43 kDa were found in rat female reproductive organs. HSL labeling in the nucleus of epithelial and germ cells suggests an as yet unknown function for this protein, probably related to oogenesis and cell proliferation.
Collapse
Affiliation(s)
- María V T Lobo
- Department of Cell Biology and Genetics, Alcalá de Henares University, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Mello T, Nakatsuka A, Fears S, Davis W, Tsukamoto H, Bosron WF, Sanghani SP. Expression of carboxylesterase and lipase genes in rat liver cell-types. Biochem Biophys Res Commun 2008; 374:460-4. [PMID: 18639528 DOI: 10.1016/j.bbrc.2008.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/08/2008] [Indexed: 11/24/2022]
Abstract
Approximately 80% of the body vitamin A is stored in liver stellate cells with in the lipid droplets as retinyl esters. In low vitamin A status or after liver injury, stellate cells are depleted of the stored retinyl esters by their hydrolysis to retinol. However, the identity of retinyl ester hydrolase(s) expressed in stellate cells is unknown. The expression of carboxylesterase and lipase genes in purified liver cell-types was investigated by real-time PCR. We found that six carboxylesterase and hepatic lipase genes were expressed in hepatocytes. Adipose triglyceride lipase was expressed in Kupffer cells, stellate cells and endothelial cells. Lipoprotein lipase expression was detected in Kupffer cells and stellate cells. As a function of stellate cell activation, expression of adipose triglyceride lipase decreased by twofold and lipoprotein lipase increased by 32-fold suggesting that it may play a role in retinol ester hydrolysis during stellate cell activation.
Collapse
Affiliation(s)
- Tommaso Mello
- Gastroenterology Unit, Department of Clinical Pathophysiology, University of Florence, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Wongsiriroj N, Piantedosi R, Palczewski K, Goldberg IJ, Johnston TP, Li E, Blaner WS. The molecular basis of retinoid absorption: a genetic dissection. J Biol Chem 2008; 283:13510-9. [PMID: 18348983 PMCID: PMC2376245 DOI: 10.1074/jbc.m800777200] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/13/2008] [Indexed: 11/06/2022] Open
Abstract
The intestine and other tissues are able to synthesize retinyl esters in an acyl-CoA-dependent manner involving an acyl-CoA:retinol acyltransferase (ARAT). However, the molecular identity of this ARAT has not been established. Recent studies of lecithin:retinol acyltransferase (LRAT)-deficient mice indicate that LRAT is responsible for the preponderance of retinyl ester synthesis in the body, aside from in the intestine and adipose tissue. Our present studies, employing a number of mutant mouse models, identify diacylglycerol acyltransferase 1 (DGAT1) as an important intestinal ARAT in vivo. The contribution that DGAT1 makes to intestinal retinyl ester synthesis becomes greater when a large pharmacologic dose of retinol is administered by gavage to mice. Moreover, when large retinol doses are administered another intestinal enzyme(s) with ARAT activity becomes apparent. Surprisingly, although DGAT1 is expressed in adipose tissue, DGAT1 does not catalyze retinyl ester synthesis in adipose tissue in vivo. Our data also establish that cellular retinol-binding protein, type II (CRBPII), which is expressed solely in the adult intestine, in vivo channels retinol to LRAT for retinyl ester synthesis. Contrary to what has been proposed in the literature based on in vitro studies, CRBPII does not directly prevent retinol from being acted upon by DGAT1 or other intestinal ARATs in vivo.
Collapse
Affiliation(s)
- Nuttaporn Wongsiriroj
- Institute of Human Nutrition and Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Ström K, Hansson O, Lucas S, Nevsten P, Fernandez C, Klint C, Movérare-Skrtic S, Sundler F, Ohlsson C, Holm C. Attainment of brown adipocyte features in white adipocytes of hormone-sensitive lipase null mice. PLoS One 2008; 3:e1793. [PMID: 18335062 PMCID: PMC2258419 DOI: 10.1371/journal.pone.0001793] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/11/2008] [Indexed: 01/25/2023] Open
Abstract
Background Hormone-sensitive lipase (HSL) is expressed predominantly in adipose tissue, where it plays an important role in catecholamine-stimulated hydrolysis of stored tri- and diglycerides, thus mobilizing fatty acids. HSL exhibits broad substrate specificity and besides acylglycerides it hydrolyzes cholesteryl esters, retinyl esters and lipoidal esters. Despite its role in fatty acid mobilization, HSL null mice have been shown to be resistant to diet-induced obesity. Methodology/Principal Findings Following a high-fat diet (HFD) regimen, energy expenditure, measured using indirect calorimetry, was increased in HSL null mice. White adipose tissue of HSL null mice was characterized by reduced mass and reduced protein expression of PPARγ, a key transcription factor in adipogenesis, and stearoyl-CoA desaturase 1, the expression of which is known to be positively correlated to the differentiation state of the adipocyte. The protein expression of uncoupling protein-1 (UCP-1), the highly specific marker of brown adipocytes, was increased 7-fold in white adipose tissue of HSL null mice compared to wildtype littermates. Transmission electron microscopy revealed an increase in the size of mitochondria of white adipocytes of HSL null mice. The mRNA expression of pRb and RIP140 was decreased in isolated white adipocytes, while the expression of UCP-1 and CPT1 was increased in HSL null mice compared to wildtype littermates. Basal oxygen consumption was increased almost 3-fold in white adipose tissue of HSL null mice and was accompanied by increased uncoupling activity. Conclusions These data suggest that HSL is involved in the determination of white versus brown adipocytes during adipocyte differentiation The exact mechanism(s) underlying this novel role of HSL remains to be elucidated, but it seems clear that HSL is required to sustain normal expression levels of pRb and RIP140, which both promote differentiation into the white, rather than the brown, adipocyte lineage.
Collapse
Affiliation(s)
- Kristoffer Ström
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Reid BN, Ables GP, Otlivanchik OA, Schoiswohl G, Zechner R, Blaner WS, Goldberg IJ, Schwabe RF, Chua SC, Huang LS. Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J Biol Chem 2008; 283:13087-99. [PMID: 18337240 DOI: 10.1074/jbc.m800533200] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatic steatosis is often associated with insulin resistance and obesity and can lead to steatohepatitis and cirrhosis. In this study, we have demonstrated that hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), two enzymes critical for lipolysis in adipose tissues, also contribute to lipolysis in the liver and can mobilize hepatic triglycerides in vivo and in vitro. Adenoviral overexpression of HSL and/or ATGL reduced liver triglycerides by 40-60% in both ob/ob mice and mice with high fat diet-induced obesity. However, these enzymes did not affect fasting plasma triglyceride and free fatty acid levels or triglyceride and apolipoprotein B secretion rates. Plasma 3-beta-hydroxybutyrate levels were increased 3-5 days after infection in both HSL- and ATGL-overexpressing male mice, suggesting an increase in beta-oxidation. Expression of genes involved in fatty acid transport and synthesis, lipid storage, and mitochondrial bioenergetics was unchanged. Mechanistic studies in oleate-supplemented McA-RH7777 cells with adenoviral overexpression of HSL or ATGL showed that reduced cellular triglycerides could be attributed to increases in beta-oxidation as well as direct release of free fatty acids into the medium. In summary, hepatic overexpression of HSL or ATGL can promote fatty acid oxidation, stimulate direct release of free fatty acid, and ameliorate hepatic steatosis. This study suggests a direct functional role for both HSL and ATGL in hepatic lipid homeostasis and identifies these enzymes as potential therapeutic targets for ameliorating hepatic steatosis associated with insulin resistance and obesity.
Collapse
Affiliation(s)
- Brendan N Reid
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Brasaemle DL. Thematic review series: Adipocyte Biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 2007; 48:2547-59. [PMID: 17878492 DOI: 10.1194/jlr.r700014-jlr200] [Citation(s) in RCA: 734] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The majority of eukaryotic cells synthesize neutral lipids and package them into cytosolic lipid droplets. In vertebrates, triacylglycerol-rich lipid droplets of adipocytes provide a major energy storage depot for the body, whereas cholesteryl ester-rich droplets of many other cells provide building materials for local membrane synthesis and repair. These lipid droplets are coated with one or more of five members of the perilipin family of proteins: adipophilin, TIP47, OXPAT/MLDP, S3-12, and perilipin. Members of this family share varying levels of sequence similarity, lipid droplet association, and functions in stabilizing lipid droplets. The most highly studied member of the family, perilipin, is the most abundant protein on the surfaces of adipocyte lipid droplets, and the major substrate for cAMP-dependent protein kinase [protein kinase A (PKA)] in lipolytically stimulated adipocytes. Perilipin serves important functions in the regulation of basal and hormonally stimulated lipolysis. Under basal conditions, perilipin restricts the access of cytosolic lipases to lipid droplets and thus promotes triacylglycerol storage. In times of energy deficit, perilipin is phosphorylated by PKA and facilitates maximal lipolysis by hormone-sensitive lipase and adipose triglyceride lipase. A model is discussed whereby perilipin serves as a dynamic scaffold to coordinate the access of enzymes to the lipid droplet in a manner that is responsive to the metabolic status of the adipocyte.
Collapse
Affiliation(s)
- Dawn L Brasaemle
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
44
|
Gao JG, Simon M. A comparative study of human GS2, its paralogues, and its rat orthologue. Biochem Biophys Res Commun 2007; 360:501-6. [PMID: 17603008 DOI: 10.1016/j.bbrc.2007.06.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
Abstract
We have previously shown that human GS2 (hGS2) catalyzes keratinocyte retinylester and triglyceride hydrolysis. hGS2 and its rat orthologue, rGS2, are 80% homologous and share a proline insertion at residue 56 and a C-terminal truncation compared to the hGS2 paralogues. Both changes are required for hGS2 function. However, the catalytic capabilities of hGS2 are more similar to the paralogue, TTS-2.2, than to rGS2. Only hGS2 and hTTS-2.2 transfer fatty acid from triglyceride to retinol, hydrolyze retinylesters, and generate 1,3-diacylglycerol from triglycerides. Rat-human chimeras containing either the N- or C-terminus of rGS2 are without activity and single substitutions of rat for human residues cause activity loss. The differences between orthologues suggest that GS2 has a unique function in humans or has a function that is fulfilled by other enzymes in rodents. Since retinoid and triglyceride metabolites are transcription factor ligands, we expect that these enzymes will coordinately regulate epidermal homeostasis.
Collapse
Affiliation(s)
- Jay G Gao
- Department of Oral Biology and Pathology, School of Dental Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794-8702, USA
| | | |
Collapse
|
45
|
Moro C, Klimcakova E, Lolmède K, Berlan M, Lafontan M, Stich V, Bouloumié A, Galitzky J, Arner P, Langin D. Atrial natriuretic peptide inhibits the production of adipokines and cytokines linked to inflammation and insulin resistance in human subcutaneous adipose tissue. Diabetologia 2007; 50:1038-47. [PMID: 17318625 DOI: 10.1007/s00125-007-0614-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 01/17/2007] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS Increased adipose tissue secretion of adipokines and cytokines has been implicated in the chronic low-grade inflammation state and insulin resistance associated with obesity. We tested here whether the cardiovascular and metabolic hormone atrial natriuretic peptide (ANP) was able to modulate adipose tissue secretion of several adipokines (derived from adipocytes) and cytokines (derived from adipose tissue macrophages). SUBJECTS AND METHODS We used protein array to measure the secretion of adipokines and cytokines after a 24-h culture of human subcutaneous adipose tissue pieces treated or not with a physiological concentration of ANP. The effect of ANP on protein secretion was also directly studied on isolated adipocytes and macrophages. Gene expression was measured by real-time RT-quantitative PCR. RESULTS ANP decreased the secretion of the pro-inflammatory cytokines IL-6 and TNF-alpha, of several chemokines, and of the adipokines leptin and retinol-binding protein-4 (RBP-4). The secretion of the anti-inflammatory molecules IL-10 and adiponectin remained unaffected. The cytokines were mainly expressed in macrophages that expressed all components of the ANP-dependent signalling pathway. The adipokines, leptin, adiponectin and RBP-4 were specifically expressed in mature adipocytes. ANP directly inhibited the secretion of IL-6 and monocyte chemoattractant protein-1 by macrophages. The inhibitory effects of ANP on leptin and growth-related oncogene-alpha secretions were not seen under selective hormone-sensitive lipase inhibition. CONCLUSIONS/INTERPRETATION We suggest that ANP, either by direct action on adipocytes and macrophages or through activation of adipocyte hormone-sensitive lipase, inhibits the secretion of factors involved in inflammation and insulin resistance.
Collapse
Affiliation(s)
- C Moro
- INSERM, U586, Obesity Research Unit, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Moise AR, Noy N, Palczewski K, Blaner WS. Delivery of retinoid-based therapies to target tissues. Biochemistry 2007; 46:4449-58. [PMID: 17378589 PMCID: PMC2562735 DOI: 10.1021/bi7003069] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Through its various metabolites, vitamin A controls essential physiological functions. Both naturally occurring metabolites and novel retinoid analogues have shown effectiveness in many clinical settings that include skin diseases and cancer, and in animal models of human conditions affecting vision. In this review, we analyze several potential retinoid-based therapies from the point of view of drug metabolism and transport to target tissues. We focus on the endogenous factors that affect the absorption, transport, and metabolism of retinoids by taking into account data obtained from the analysis of animal models that lack the enzymes or proteins involved in the storage and absorption of retinoids. We also discuss findings of toxicity associated with retinoids in an effort to improve the outcome of retinoid-based therapies. In this context, we review evidence that esterification of retinol and retinol-based drugs within target tissues provides one of the most efficient means to improve the absorption and to reduce the toxicity associated with pharmacological doses of retinoids. Future retinoid-based therapeutic strategies could involve targeted delivery mechanisms leading to lower toxicity and improved effectiveness of retinoids.
Collapse
Affiliation(s)
- Alexander R Moise
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
Lipids as fuel for energy provision originate from different sources: albumin-bound long-chain fatty acids (LCFA) in the blood plasma, circulating very-low-density lipoproteins-triacylglycerols (VLDL-TG), fatty acids from triacylglycerol located in the muscle cell (IMTG), and possibly fatty acids liberated from adipose tissue adhering to the muscle cells. The regulation of utilization of the different lipid sources in skeletal muscle during exercise is reviewed, and the influence of diet, training, and gender is discussed. Major points deliberated are the methods utilized to measure uptake and oxidation of LCFA during exercise in humans. The role of the various lipid-binding proteins in transmembrane and cytosolic transport of lipids is considered as well as regulation of lipid entry into the mitochondria, focusing on the putative role of AMP-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC), and carnitine during exercise. The possible contribution to fuel provision during exercise of circulating VLDL-TG as well as the role of IMTG is discussed from a methodological point of view. The contribution of IMTG for energy provision may not be large, covering ∼10% of total energy provision during fasting exercise in male subjects, whereas in females, IMTG may cover a larger proportion of energy delivery. Molecular mechanisms involved in breakdown of IMTG during exercise are also considered focusing on hormone-sensitive lipase (HSL). Finally, the role of lipids in development of insulin resistance in skeletal muscle, including possible molecular mechanisms involved, is discussed.
Collapse
Affiliation(s)
- Bente Kiens
- Copenhagen Muscle Research Centre, Dept. of Human Physiology, Institute of Exercise and Sports Sciences, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
48
|
Gao J, Simon M. Identification of a Novel Keratinocyte Retinyl Ester Hydrolase as a Transacylase and Lipase. J Invest Dermatol 2005; 124:1259-66. [PMID: 15955102 DOI: 10.1111/j.0022-202x.2005.23761.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinoic acid influences epidermal morphology and function through its ability to control transcription. Because the circulation presents the epidermis with micromolar amounts of retinol that can be converted to retinoic acid, regulating retinol access is imperative. In keratinocytes the majority of retinol is sequestered as long chain fatty acid esters. Although much has been learned about the major esterifying enzyme, little is known about the hydrolase that accesses retinol from its storage depot. Murine carboxylesterases and hormone sensitive lipase have been shown to have this activity. We found that their in vitro sensitivity to bis-p-nitrophenyl phosphate (BNPP), however, was not shared by the epidermal hydrolase activity. We therefore produced and screened two keratinocyte cDNA expression libraries and identified a previously sequenced gene (GS2) as a keratinocyte retinyl ester (RE) hydrolase insensitive to BNPP. The enzyme also catalyzes fattyacyl CoA-dependent and -independent retinol esterification. The hydrolysis reaction is greater at neutral pH, whereas the esterification reaction is greater at acidic pH. These activities are consistent with the increased RE content that accompanies epidermal maturation. In addition, this enzyme utilizes triolein as substrate and generates diacylglyceride and free fatty acid.
Collapse
Affiliation(s)
- Jay Gao
- Department of Oral Biology & Pathology, State University of New York at Stony Brook, Stony Brook, New York 11974, USA.
| | | |
Collapse
|
49
|
Müllner H, Deutsch G, Leitner E, Ingolic E, Daum G. YEH2/YLR020c Encodes a Novel Steryl Ester Hydrolase of the Yeast Saccharomyces cerevisiae. J Biol Chem 2005; 280:13321-8. [PMID: 15632184 DOI: 10.1074/jbc.m409914200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work from our laboratory (Zinser, E., Paltauf, F., and Daum, G. (1993) J. Bacteriol. 175, 2853-2858) demonstrated steryl ester hydrolase activity in the plasma membrane of the yeast Saccharomyces cerevisiae. Here, we show that the gene product of YEH2/ YLR020c, which is homologous to several known mammalian steryl ester hydrolases, is the enzyme catalyzing this reaction. Deletion of yeast YEH2 led to complete loss of plasma membrane steryl ester hydrolase activity whereas overexpression of the gene resulted in a significant elevation of the activity. Purification of enzymatically active Yeh2p close to homogeneity unambiguously identified this protein as a steryl ester hydrolase and thus as the first enzyme of this kind characterized in S. cerevisiae. In addition to evidence obtained in vitro experiments in vivo contributed to the characterization of this novel enzyme. Sterol analysis of yeh2Delta unveiled a slightly elevated level of zymosterol suggesting that the esterified form of this sterol precursor is a preferred substrate of Yeh2p. However, in strains bearing hybrid proteins with strongly enhanced Yeh2p activity decreased levels of all steryl esters were observed. Thus, it appears that Yeh2p activity is not restricted to distinct steryl esters but rather has broad substrate specificity. The fact that in a yeh2Delta deletion strain bulk steryl ester mobilization occurred at a similar rate as in wild type suggested that Yeh2p is not the only steryl ester hydrolase but that other enzymes with overlapping function exist in the yeast.
Collapse
|
50
|
Martín-Hidalgo A, Huerta L, Alvarez N, Alegría G, Del Val Toledo M, Herrera E. Expression, activity, and localization of hormone-sensitive lipase in rat mammary gland during pregnancy and lactation. J Lipid Res 2005; 46:658-68. [PMID: 15654127 DOI: 10.1194/jlr.m400370-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the presence of hormone-sensitive lipase (HSL) in mammary glands of virgin, pregnant (12, 20, and 21 days), and lactating (1 and 4 days postpartum) rats. Immunohistochemistry with antibody against rat HSL revealed positive HSL in the cytoplasm of both alveolar epithelial cells and adipocytes. In virgin rats, immunoreactive HSL was observed in mammary adipocytes, whereas diffuse staining was found in the epithelial cells. Positive staining for HSL was seen in the two types of cells in pregnant and lactating rats. However, as pregnancy advanced, the staining intensity of immunoreactive HSL increased in the epithelial cells parallel to their proliferation, attaining the maximum during lactation. An immunoreactive protein of 84 kDa and a HSL mRNA of 3.3. kb were found in the rat mammary gland as in white adipose tissue. Both HSL protein and activity were lower in mammary glands from 20 and 21 day pregnant rats than from those of virgin rats, although they returned to virgin values on days 1 and 4 of lactation. Mammary gland HSL activity correlated negatively to plasma insulin levels. Immunoreactive HSL and HSL activity were found in lactating rats' milk. The observed changes indicate an active role of HSL in mammary gland lipid metabolism.
Collapse
|