1
|
Taylor SS, Herberg FW, Veglia G, Wu J. Edmond Fischer's kinase legacy: History of the protein kinase inhibitor and protein kinase A. IUBMB Life 2023; 75:311-323. [PMID: 36855225 PMCID: PMC10050139 DOI: 10.1002/iub.2714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
Although Fischer's extraordinary career came to focus mostly on the protein phosphatases, after his co-discovery of Phosphorylase Kinase with Ed Krebs he was clearly intrigued not only by cAMP-dependent protein kinase (PKA), but also by the heat-stable, high-affinity protein kinase inhibitor (PKI). PKI is an intrinsically disordered protein that contains at its N-terminus a pseudo-substrate motif that binds synergistically and with high-affinity to the PKA catalytic (C) subunit. The sequencing and characterization of this inhibitor peptide (IP20) were validated by the structure of the PKA C-subunit solved first as a binary complex with IP20 and then as a ternary complex with ATP and two magnesium ions. A second motif, nuclear export signal (NES), was later discovered in PKI. Both motifs correspond to amphipathic helices that convey high-affinity binding. The dynamic features of full-length PKI, recently captured by NMR, confirmed that the IP20 motif becomes dynamically and sequentially ordered only in the presence of the C-subunit. The type I PKA regulatory (R) subunits also contain a pseudo-substrate ATPMg2-dependent high-affinity inhibitor sequence. PKI and PKA, especially the Cβ subunit, are highly expressed in the brain, and PKI expression is also cell cycle-dependent. In addition, PKI is now linked to several cancers. The full biological importance of PKI and PKA signaling in the brain, and their importance in cancer thus remains to be elucidated.
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Pharmacology, University of California, San Diego, California, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jian Wu
- Department of Pharmacology, University of California, San Diego, California, USA
| |
Collapse
|
2
|
Olivieri C, Wang Y, Li GC, V S M, Kim J, Stultz BR, Neibergall M, Porcelli F, Muretta JM, Thomas DDT, Gao J, Blumenthal DK, Taylor SS, Veglia G. Multi-state recognition pathway of the intrinsically disordered protein kinase inhibitor by protein kinase A. eLife 2020; 9:e55607. [PMID: 32338601 PMCID: PMC7234811 DOI: 10.7554/elife.55607] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
In the nucleus, the spatiotemporal regulation of the catalytic subunit of cAMP-dependent protein kinase A (PKA-C) is orchestrated by an intrinsically disordered protein kinase inhibitor, PKI, which recruits the CRM1/RanGTP nuclear exporting complex. How the PKA-C/PKI complex assembles and recognizes CRM1/RanGTP is not well understood. Using NMR, SAXS, fluorescence, metadynamics, and Markov model analysis, we determined the multi-state recognition pathway for PKI. After a fast binding step in which PKA-C selects PKI's most competent conformations, PKI folds upon binding through a slow conformational rearrangement within the enzyme's binding pocket. The high-affinity and pseudo-substrate regions of PKI become more structured and the transient interactions with the kinase augment the helical content of the nuclear export sequence, which is then poised to recruit the CRM1/RanGTP complex for nuclear translocation. The multistate binding mechanism featured by PKA-C/PKI complex represents a paradigm on how disordered, ancillary proteins (or protein domains) are able to operate multiple functions such as inhibiting the kinase while recruiting other regulatory proteins for nuclear export.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Yingjie Wang
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
- Shenzhen Bay LaboratoryShenzhenChina
| | - Geoffrey C Li
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| | - Manu V S
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Jonggul Kim
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| | | | | | | | - Joseph M Muretta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - David DT Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
- Laboratory of Computational Chemistry and Drug Design, Peking University Shenzhen Graduate SchoolShenzhenChina
| | - Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of UtahSalt Lake CityUnited States
| | - Susan S Taylor
- Department of Chemistry and Biochemistry and Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
3
|
Ahuja LG, Aoto PC, Kornev AP, Veglia G, Taylor SS. Dynamic allostery-based molecular workings of kinase:peptide complexes. Proc Natl Acad Sci U S A 2019; 116:15052-15061. [PMID: 31285328 PMCID: PMC6660753 DOI: 10.1073/pnas.1900163116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023] Open
Abstract
A dense interplay between structure and dynamics underlies the working of proteins, especially enzymes. Protein kinases are molecular switches that are optimized for their regulation rather than catalytic turnover rates. Using long-simulations dynamic allostery analysis, this study describes an exploration of the dynamic kinase:peptide complex. We have used protein kinase A (PKA) as a model system as a generic prototype of the protein kinase superfamily of signaling enzymes. Our results explain the role of dynamic coupling of active-site residues that must work in coherence to provide for a successful activation or inhibition response from the kinase. Amino acid networks-based community analysis allows us to ponder the conformational entropy of the kinase:nucleotide:peptide ternary complex. We use a combination of 7 peptides that include 3 types of PKA-binding partners: Substrates, products, and inhibitors. The substrate peptides provide for dynamic insights into the enzyme:substrate complex, while the product phospho-peptide allows for accessing modes of enzyme:product release. Mapping of allosteric communities onto the PKA structure allows us to locate the more unvarying and flexible dynamic regions of the kinase. These distributions, when correlated with the structural elements of the kinase core, allow for a detailed exploration of key dynamics-based signatures that could affect peptide recognition and binding at the kinase active site. These studies provide a unique dynamic allostery-based perspective to kinase:peptide complexes that have previously been explored only in a structural or thermodynamic context.
Collapse
Affiliation(s)
- Lalima G Ahuja
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093;
| | - Phillip C Aoto
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - Alexandr P Kornev
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Susan S Taylor
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093;
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
4
|
Abstract
The cAMP-dependent protein kinase PKA is a well-characterized member of the serine-threonine protein AGC kinase family and is the effector kinase of cAMP signaling. As such, PKA is involved in the control of a wide variety of cellular processes including metabolism, cell growth, gene expression and apoptosis. cAMP-dependent PKA signaling pathways play important roles during infection and virulence of various pathogens. Since fluxes in cAMP are involved in multiple intracellular functions, a variety of different pathological infectious processes can be affected by PKA signaling pathways. Here, we highlight some features of cAMP-PKA signaling that are relevant to Plasmodium falciparum-infection of erythrocytes and present an update on AKAP targeting of PKA in PGE2 signaling via EP4 in Theileria annulata-infection of leukocytes and discuss cAMP-PKA signling in Toxoplasma.
Collapse
Affiliation(s)
- M. Haidar
- Cochin Institute, Inserm U1016, CNRS UMR8104, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France
| | - G. Ramdani
- Cochin Institute, Inserm U1016, CNRS UMR8104, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France
- Departments of Medicine, University of California, San Diego, La Jolla, California, USA
| | - E. J. Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - G. Langsley
- Cochin Institute, Inserm U1016, CNRS UMR8104, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
5
|
Transforming growth factor β2 promotes transcription of COX2 and EP4, leading to a prostaglandin E2-driven autostimulatory loop that enhances virulence of Theileria annulata-transformed macrophages. Infect Immun 2015; 83:1869-80. [PMID: 25690101 DOI: 10.1128/iai.02975-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2014] [Accepted: 02/13/2015] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor beta (TGF-β) is a pleiotropic cytokine known to regulate cell growth, differentiation, and motility and is a potent modulator of immune function. TGF-β consequently plays a central role in carcinogenesis, and a dampened TGF-β2 response by Theileria annulata-infected monocytes/macrophages underpins disease resistance to tropical theileriosis. Here, we show that concomitant with the loss of TGF-β2 production, there is ablated expression of COX2 and EP4, which leads to a drop in cyclic AMP (cAMP) levels and, consequently, reduced activation of protein kinase A (PKA) and EPAC. This ablated phenotype can be rescued in attenuated macrophages by the addition of exogenous TGF-β2, which reactivates the expression of COX2 and EP4 while repressing that of protein kinase inhibitor gamma (PKIG) to the levels in virulent macrophages. TGF-β2 therefore promotes the adhesion and invasiveness of virulent macrophages by modulating COX2, EP4, and PKIG transcription to initiate a prostaglandin E2 (PGE2)-driven autostimulatory loop that augments PKA and EPAC activities. A virulence phenotype stemming from the double activation of PKA and EPAC is the induction of a CREB-mediated transcriptional program and the upregulation of JAM-L- and integrin 4αβ1-mediated adhesion of Theileria-infected macrophages.
Collapse
|
6
|
Chen X, Hausman BS, Luo G, Zhou G, Murakami S, Rubin J, Greenfield EM. Protein kinase inhibitor γ reciprocally regulates osteoblast and adipocyte differentiation by downregulating leukemia inhibitory factor. Stem Cells 2015; 31:2789-99. [PMID: 23963683 DOI: 10.1002/stem.1524] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2012] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 12/26/2022]
Abstract
The protein kinase inhibitor (Pki) gene family inactivates nuclear protein kinase A (PKA) and terminates PKA-induced gene expression. We previously showed that Pkig is the primary family member expressed in osteoblasts and that Pkig knockdown increases the effects of parathyroid hormone and isoproterenol on PKA activation, gene expression, and inhibition of apoptosis. Here, we determined whether endogenous levels of Pkig regulate osteoblast differentiation. Pkig is the primary family member in murine embryonic fibroblasts (MEFs), murine marrow-derived mesenchymal stem cells, and human mesenchymal stem cells. Pkig deletion increased forskolin-dependent nuclear PKA activation and gene expression and Pkig deletion or knockdown increased osteoblast differentiation. PKA signaling is known to stimulate adipogenesis; however, adipogenesis and osteogenesis are often reciprocally regulated. We found that the reciprocal regulation predominates over the direct effects of PKA since adipogenesis was decreased by Pkig deletion or knockdown. Pkig deletion or knockdown also simultaneously increased osteogenesis and decreased adipogenesis in mixed osteogenic/adipogenic medium. Pkig deletion increased PKA-induced expression of leukemia inhibitory factor (Lif) mRNA and LIF protein. LIF neutralizing antibodies inhibited the effects on osteogenesis and adipogenesis of either Pkig deletion in MEFs or PKIγ knockdown in both murine and human mesenchymal stem cells. Collectively, our results show that endogenous levels of Pkig reciprocally regulate osteoblast and adipocyte differentiation and that this reciprocal regulation is mediated in part by LIF. Stem Cells 2013;31:2789-2799.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Hearst SM, Shao Q, Lopez M, Raucher D, Vig PJS. The design and delivery of a PKA inhibitory polypeptide to treat SCA1. J Neurochem 2014; 131:101-14. [PMID: 24903464 DOI: 10.1111/jnc.12782] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2013] [Revised: 05/13/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023]
Abstract
Spinocerebellar ataxia-1 (SCA1) is a neurodegenerative disease that primarily targets Purkinje cells (PCs) of the cerebellum. The exact mechanism of PC degeneration is unknown, however, it is widely believed that mutant ataxin-1 becomes toxic because of the phosphorylation of its serine 776 (S776) residue by cAMP-dependent protein kinase A (PKA). Therefore, to directly modulate mutant ATXN1 S776 phosphorylation and aggregation, we designed a therapeutic polypeptide to inhibit PKA. This polypeptide comprised of a thermally responsive elastin-like peptide (ELP) carrier, which increases peptide half-life, a PKA inhibitory peptide (PKI), and a cell-penetrating peptide (Synb1). We observed that our therapeutic polypeptide, Synb1-ELP-PKI, inhibited PKA activity at concentrations similar to the PKI peptide. Additionally, Synb1-ELP-PKI significantly suppressed mutant ATXN1 S776 phosphorylation and intranuclear inclusion formation in cell culture. Further, Synb1-ELP-PKI treatment improved SCA1 PC morphology in cerebellar slice cultures. Furthermore, the Synb1-ELP peptide carrier crossed the blood-brain barrier and localized to the cerebellum via the i.p. or intranasal route. Here, we show the intranasal delivery of ELP-based peptides to the brain as a novel delivery strategy. We also demonstrate that our therapeutic polypeptide has a great potential to target the neurotoxic S776 phosphorylation pathway in the SCA1 disease.
Collapse
Affiliation(s)
- Scoty M Hearst
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | | | | |
Collapse
|
8
|
Azeloglu EU, Hardy SV, Eungdamrong NJ, Chen Y, Jayaraman G, Chuang PY, Fang W, Xiong H, Neves SR, Jain MR, Li H, Ma’ayan A, Gordon RE, He JC, Iyengar R. Interconnected network motifs control podocyte morphology and kidney function. Sci Signal 2014; 7:ra12. [PMID: 24497609 PMCID: PMC4220789 DOI: 10.1126/scisignal.2004621] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.
Collapse
Affiliation(s)
- Evren U. Azeloglu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Simon V. Hardy
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Narat John Eungdamrong
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Yibang Chen
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Gomathi Jayaraman
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Peter Y. Chuang
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Wei Fang
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Huabao Xiong
- Immunobiology Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Susana R. Neves
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Systems Biology Center New York, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Mohit R. Jain
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, University of Medicine and Dentistry of New Jersey–New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, University of Medicine and Dentistry of New Jersey–New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Avi Ma’ayan
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Ronald E. Gordon
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - John Cijiang He
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Systems Biology Center New York, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
9
|
Li Y, Li W, Zhang J, Ji D, Zhang G, Yang B. Identification of genes influencing formation of the Type III Brush Hair in Yangtze River Delta white goats by differential display of mRNA. Gene 2013; 526:205-9. [DOI: 10.1016/j.gene.2013.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2013] [Revised: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 12/13/2022]
|
10
|
Huang HS, Turner DL, Thompson RC, Uhler MD. Ascl1-induced neuronal differentiation of P19 cells requires expression of a specific inhibitor protein of cyclic AMP-dependent protein kinase. J Neurochem 2011; 120:667-83. [PMID: 21623794 DOI: 10.1111/j.1471-4159.2011.07332.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
cAMP-dependent protein kinase (PKA) plays a critical role in nervous system development by modulating sonic hedgehog and bone morphogenetic protein signaling. In the current studies, P19 embryonic carcinoma cells were neuronally differentiated by expression of the proneural basic helix-loop-helix transcription factor Ascl1. After expression of Ascl1, but prior to expression of neuronal markers such as microtubule associated protein 2 and neuronal β-tubulin, P19 cells demonstrated a large, transient increase in both mRNA and protein for the endogenous protein kinase inhibitor (PKI)β. PKIβ-targeted shRNA constructs both reduced the levels of PKIβ expression and blocked the neuronal differentiation of P19 cells. This inhibition of differentiation was rescued by transfection of a shRNA-resistant expression vector for the PKIβ protein, and this rescue required the PKA-specific inhibitory sequence of the PKIβ protein. PKIβ played a very specific role in the Ascl1-mediated differentiation process as other PKI isoforms were unable to rescue the deficit conferred by shRNA-mediated knockdown of PKIβ. Our results define a novel requirement for PKIβ and its inhibition of PKA during neuronal differentiation of P19 cells.
Collapse
Affiliation(s)
- Holly S Huang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | |
Collapse
|
11
|
Colombo G, Gertow K, Marenzi G, Brambilla M, De Metrio M, Tremoli E, Camera M. Gene expression profiling reveals multiple differences in platelets from patients with stable angina or non-ST elevation acute coronary syndrome. Thromb Res 2011; 128:161-8. [PMID: 21420725 DOI: 10.1016/j.thromres.2011.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2010] [Revised: 02/16/2011] [Accepted: 02/21/2011] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Platelets play a key role in coronary artery disease. They have the capacity of protein synthesis through translation of megakaryocyte-derived mRNAs, which may influence pathophysiological functions. The present study aimed to prove the concept that platelets from patients with non-ST elevation acute coronary syndrome (NSTE-ACS) have differential mRNA expression profiles, in the hypothesis that this may influence their thrombogenicity. MATERIALS AND METHODS Gene expression profiles were determined in RNA pools from resting platelets of patients with stable angina (SA, n = 14) or NSTE-ACS (n = 15) using a glass microarray platform. Validation was done by real-time PCR and immunoblot analyses in independent sets of individual samples (26 SA and 17 NSTE-ACS patients, in total). Parallel comparison with healthy subjects was performed to relate the relative abundance of validated genes in CAD patients to a control expression level. RESULTS Microarray analysis identified 45 transcripts with a significant ≥ ± 2.0-fold difference in expression between NSTE-ACS and SA platelet pools. Thus, gene expression profiles at least partially discriminate unstable from stable CAD. Validation confirmed a significant over-expression of 3 genes in NSTE-ACS at both mRNA and protein level. In particular, the glycoprotein Ib β-polypeptide (GP1BB) was increased in NSTE-ACS also in comparison with healthy subjects. CONCLUSION This study provides evidence that NSTE-ACS platelets are potentially preconditioned to a higher degree of reactivity on the transcriptional level. Our data suggest that a different composition of the mRNA pool might mediate an increased platelet prothrombotic potential in NSTE-ACS patients.
Collapse
|
12
|
Gu L, Lau SK, Loera S, Somlo G, Kane SE. Protein kinase A activation confers resistance to trastuzumab in human breast cancer cell lines. Clin Cancer Res 2009; 15:7196-206. [PMID: 19920112 DOI: 10.1158/1078-0432.ccr-09-0585] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Trastuzumab is a monoclonal antibody targeted to the Her2 receptor and approved for treatment of Her2-positive breast cancer. Among patients who initially respond to trastuzumab therapy, resistance typically arises within 1 year. BT/Her(R) cells are trastuzumab-resistant variants of Her2-positive BT474 breast cancer cells. The salient feature of BT/Her(R) cells is failure to downregulate phosphoinositide 3-kinase/Akt signaling on trastuzumab binding. The current work addresses the mechanism of sustained signaling in BT/Her(R) cells, focusing on the protein kinase A (PKA) pathway. EXPERIMENTAL DESIGN We performed microarray analysis on BT/Her(R) and BT474 cell lines to identify genes that were upregulated or downregulated in trastuzumab-resistant cells. Specific genes in the PKA pathway were quantified using reverse transcription-PCR and Western hybridization. Small interfering RNA transfection was used to determine the effects of gene knockdown on cellular response to trastuzumab. Electrophoretic mobility shift assays were used to measure cyclic AMP-responsive element binding activity under defined conditions. Immunohistochemistry was used to analyze protein expression in clinical samples. RESULTS BT/Her(R) cells had elevated PKA signaling activity and several genes in the PKA regulatory network had altered expression in these cells. Downregulation of one such gene, the PKA-RIIalpha regulatory subunit, conferred partial trastuzumab resistance in Her2-positive BT474 and SK-Br-3 cell lines. Forskolin activation of PKA also produced significant protection against trastuzumab-mediated Akt dephosphorylation. In patient samples, PKA signaling appeared to be enhanced in residual disease remaining after trastuzumab-containing neoadjuvant therapy. CONCLUSIONS Activation of PKA signaling may be one mechanism contributing to trastuzumab resistance in Her2-positive breast cancer. We propose a molecular model by which PKA confers its effects.
Collapse
Affiliation(s)
- Long Gu
- Division of Tumor Cell Biology, City of Hope Comprehensive Cancer Center, Duarte, California 91107, USA
| | | | | | | | | |
Collapse
|
13
|
Bureau C, Hennequet-Antier C, Couty M, Guémené D. Gene array analysis of adrenal glands in broiler chickens following ACTH treatment. BMC Genomics 2009; 10:430. [PMID: 19751509 PMCID: PMC2751787 DOI: 10.1186/1471-2164-10-430] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2009] [Accepted: 09/14/2009] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Difference in adaptability responses to stress has been observed amongst bird species, strains, and individuals. Components of the HPA axis, one of the internal systems involved in homeostasis re-establishment following stress, could play a role in this variability of responses. The aim of the present study was 1) to identify genes involved in the regulation of adrenal activity following ACTH stimulation and 2) to examine adrenal genes differentially expressed in individuals with high and low plasma corticosterone response following ACTH treatment. RESULTS Analysis with 21 K poultry oligo microarrays indicated that ACTH treatment affected the expression of 134 genes. Several transcripts assigned to genes involved in the adrenal ACTH signaling pathway and steroidogenic enzymes were identified as differentially expressed by ACTH treatment. Real-time PCR on 18 selected genes confirmed changes in transcript levels of 11 genes, including MC2R, CREM, Cry, Bmal1, Sqle, Prax1, and StAR. Only 4 genes revealed to be differentially expressed between higher and lower adrenal responders to ACTH treatment. CONCLUSION The results from the present study reveal putative candidate genes; their role in regulation of adrenal functions and adaptability to stress should be further investigated.
Collapse
Affiliation(s)
- Clara Bureau
- UR83-Unité de Recherches Avicoles, Institut National de la Recherche Agronomique, Centre de Tours-Nouzilly, 37380 Nouzilly, France
| | - Christelle Hennequet-Antier
- UR83-Unité de Recherches Avicoles, Institut National de la Recherche Agronomique, Centre de Tours-Nouzilly, 37380 Nouzilly, France
| | - Michel Couty
- UR83-Unité de Recherches Avicoles, Institut National de la Recherche Agronomique, Centre de Tours-Nouzilly, 37380 Nouzilly, France
| | - Daniel Guémené
- UR83-Unité de Recherches Avicoles, Institut National de la Recherche Agronomique, Centre de Tours-Nouzilly, 37380 Nouzilly, France
| |
Collapse
|
14
|
Wakamatsu Y. Overlapped and differential expression of cAMP-dependent kinase-inhibitor isoforms during avian organogenesis period. Dev Growth Differ 2009; 51:707-14. [DOI: 10.1111/j.1440-169x.2009.01130.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
15
|
Darpp-32 and its truncated variant t-Darpp have antagonistic effects on breast cancer cell growth and herceptin resistance. PLoS One 2009; 4:e6220. [PMID: 19593441 PMCID: PMC2704867 DOI: 10.1371/journal.pone.0006220] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2009] [Accepted: 06/11/2009] [Indexed: 11/30/2022] Open
Abstract
Background Herceptin (trastuzumab) is a humanized monoclonal antibody that is approved for the treatment of metastatic breast cancer patients whose tumors overexpress Her2 (erbB2/neu). Up to 70% of Her2-positive breast cancers demonstrate a response to Herceptin-based therapies, but resistance almost inevitably arises within a year of the initial response. To help understand the mechanism of Herceptin resistance, we isolated clonal variants of Her2-positive BT474 human breast cancer cells (BT/HerR) that are highly resistant to Herceptin. These cell lines exhibit sustained PI3K/Akt signaling as an essential component of Herceptin-resistant proliferation. Several genes in the protein kinase A (PKA) signaling network have altered expression in BT/HerR cells, including PPP1R1B, which encodes a 32 kDa protein known as Darpp-32 and its amino-terminal truncated variant, t-Darpp. The purpose of the current work was to determine the role of Darpp-32 and t-Darpp in Herceptin resistance. Methodology and Results We determined expression of Darpp-32 and t-Darpp in BT/HerR cells selected for resistance to Herceptin. Subsequently, cDNAs encoding the two isoforms of Darpp-32 were transfected, separately and together, into Her2-positive SK-Br-3 breast cancer cells. Transfected cells were tested for resistance to Herceptin and Herceptin-mediated dephosphorylation of Akt. DNA binding activity by the cAMP response element binding protein (CREB) was also measured. We found that BT/HerR cells overexpressed t-Darpp but not Darpp-32. Moreover, t-Darpp overexpression in SK-Br-3 cells was sufficient for conferring resistance to Herceptin and Herceptin-mediated dephosphorylation of Akt. Darpp-32 co-expression reversed t-Darpp's effects on Herceptin resistance and Akt phosphorylation. t-Darpp overexpression led to increased CREB binding activity, which was also reversible by Darpp-32. Conclusions t-Darpp and Darpp-32 appear to have antagonistic effects on Herceptin resistance. We present a unified model by which these effects might be mediated via the PKA regulatory network.
Collapse
|
16
|
Arar NH, Voruganti VS, Nath SD, Thameem F, Bauer R, Cole SA, Blangero J, MacCluer JW, Comuzzie AG, Abboud HE. A genome-wide search for linkage to chronic kidney disease in a community-based sample: the SAFHS. Nephrol Dial Transplant 2008; 23:3184-91. [PMID: 18443212 DOI: 10.1093/ndt/gfn215] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) phenotypes such as albuminuria measured by urinary albumin creatinine ratio (ACR), elevated serum creatinine (SrCr) and/or decreased creatinine clearance (CrCl) and glomerular filtration rate (eGFR) are major risk factors for renal and cardiovascular diseases. Epidemiological studies have reported that CKD phenotypes cluster in families suggesting a genetic predisposition. However, studies reporting chromosomal regions influencing CKD are very limited. Therefore, the purpose of this study is to identify susceptible chromosomal regions for CKD phenotypes in Mexican American families enrolled in the San Antonio Family Heart Study (SAFHS). METHODS We used the variance components decomposition approach (implemented in the software package SOLAR) to perform linkage analysis on 848 participants from 26 families. A total of 417 microsatellite markers were genotyped at an average interval of 10 cM spanning 22 autosomal chromosomes. RESULTS All phenotypes were measured by standard procedures. Mean +/- SD values of ACR, SrCr, CrCl and eGFR were 0.06 +/- 0.38, 0.85 +/- 0.72 mg/dl, 129.85 +/- 50.37 ml/min and 99.18 +/- 25.69 ml/min/1.73 m(2) body surface area, respectively. All four CKD phenotypes exhibited significant heritabilities (P < 0.0001). A genome-wide scan showed linkage on chromosome 2p25 for SrCr, CrCl and eGFR. Significant linkage was also detected on chromosome 9q21 for eGFR [logarithm of the odds (LOD) score = 3.87, P = 0.00005] and SrCr (LOD score = 2.6, P = 0.00026). ACR revealed suggestive evidence for linkage to a region on chromosome 20q12 (LOD score = 2.93, P = 0.00020). CONCLUSION Findings indicate that chromosomal regions 2p25, 9q21 and 20q12 may have functional relevance to CKD phenotypes in Mexican Americans.
Collapse
Affiliation(s)
- Nedal H Arar
- Department of Medicine/Nephrology, University of Texas Health Science Center, South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX 78229-4404, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Arar N, Nath S, Thameem F, Bauer R, Voruganti S, Comuzzie A, Cole S, Blangero J, MacCluer J, Abboud H. Genome-wide scans for microalbuminuria in Mexican Americans: the San Antonio Family Heart Study. Genet Med 2007; 9:80-7. [PMID: 17304049 DOI: 10.1097/gim.0b013e31803068ec] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Microalbuminuria, defined as urine albumin-to-creatinine ratio of 0.03 to 0.299 mg/mg, is a major risk factor for cardiovascular disease. Several genetic epidemiological studies have established that microalbuminuria clusters in families, suggesting a genetic predisposition. METHOD We estimated heritability of microalbuminuria and performed a genome-wide linkage analysis to identify chromosomal regions influencing urine albumin-to-creatinine ratio in 486 Mexican Americans from 26 multiplex families. RESULTS Significant heritability was demonstrated for urine albumin-to-creatinine ratio (h = 24%, P < 0.003) after accounting for age, sex, body mass index, triglycerides, and hypertension. Genome scan revealed significant evidence of linkage of urine albumin-to-creatinine ratio to a region on chromosome 20q12 (LOD score of 3.5, P < 0.001) near marker D20S481. This region also exhibited a LOD score of 2.8 with diabetes status as a covariate and 3.0 with hypertension status as a covariate suggesting that the effect of this locus on urine albumin-to-creatinine ratio is largely independent of diabetes and hypertension. CONCLUSION Findings indicate that there is a gene or genes located on human chromosome 20q12 that may have functional relevance to albumin excretion in Mexican Americans. Identifying and understanding the role of the genes that determine albumin excretion would lead to the development of novel therapeutic strategies targeted at high-risk individuals in whom intensive preventive measures may be most beneficial.
Collapse
Affiliation(s)
- Nedal Arar
- Department of Medicine/Nephrology, University of Texas Health Science Center at San Antonio, South Texas Veterans Health Care System, 78229-4404, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen X, Song IH, Dennis JE, Greenfield EM. Endogenous PKI gamma limits the duration of the anti-apoptotic effects of PTH and beta-adrenergic agonists in osteoblasts. J Bone Miner Res 2007; 22:656-64. [PMID: 17266398 DOI: 10.1359/jbmr.070122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED PKI gamma knockdown substantially extended the anti-apoptotic effects of PTH and beta-adrenergic agonists, whereas PKI gamma overexpression decreased these effects. Therefore, inhibition of PKI gamma activity may provide a useful co-therapy in combination with intermittent PTH or beta-adrenergic agonists for bone loss in conditions such as osteoporosis. INTRODUCTION PTH has both catabolic and anabolic effects on bone, which are primarily caused by cAMP/protein kinase A (PKA) signaling and regulation of gene expression. We previously showed that protein kinase inhibitor-gamma (PKI gamma) is required for efficient termination of cAMP/PKA signaling and gene expression after stimulation with PTH or beta-adrenergic agonists. Inhibition of osteoblast apoptosis is thought to be an important, but transient, mechanism partly responsible for the anabolic effects of intermittent PTH. Therefore, we hypothesized that endogenous PKI gamma also terminates the anti-apoptotic effect of PTH. MATERIALS AND METHODS PKI gamma knockdown by antisense transfection or siRNA was used to examine the ability of endogenous PKI gamma to modulate the anti-apoptotic effects of PTH and beta-adrenergic agonists in ROS 17/2.8 cells. RESULTS Knockdown of PKI gamma substantially extended the anti-apoptotic effects of PTH, whether apoptosis was induced by etoposide or dexamethasone. In contrast, overexpression of PKI gamma decreased the anti-apoptotic effect of PTH pretreatment. This study is also the first demonstration that beta-adrenergic agonists mimic the anti-apoptotic effects of PTH in osteoblasts. Moreover, PKI gamma knockdown also substantially extended this anti-apoptotic effect of beta-adrenergic agonists. Taken together, these results show that endogenous PKI gamma limits the duration of the anti-apoptotic effects of cAMP/PKA signaling in osteoblasts. CONCLUSIONS Because significant individual variability exists in the anabolic responses to PTH therapy in current clinical treatment of osteoporosis, inhibition of PKI gamma activity may provide a useful co-therapy in combination with intermittent PTH or beta-adrenergic agonists for bone loss in conditions such as osteoporosis. However, the potential use of such a co-therapy would depend on it not adversely affecting bone formation or other organ systems.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedics, Case Western Reserve University and Case Medical Center, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
19
|
Zhao L, Yang S, Zhou GQ, Yang J, Ji D, Sabatakos G, Zhu T. Downregulation of cAMP-dependent protein kinase inhibitor gamma is required for BMP-2-induced osteoblastic differentiation. Int J Biochem Cell Biol 2006; 38:2064-73. [PMID: 16870489 DOI: 10.1016/j.biocel.2006.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2006] [Revised: 05/11/2006] [Accepted: 05/15/2006] [Indexed: 11/19/2022]
Abstract
Osteoblasts, normally derived from undifferentiated mesenchymal precursor cells, acquire their characteristic phenotypes when induced by various regulatory factors, one of which is bone morphogenetic protein-2 (BMP-2). Our recent studies suggest that expression of cAMP-dependent protein kinase (PKA) inhibitor G (PKIG) is down-regulated as human mesenchymal stromal cells (MSCs) undergo BMP-2-induced osteoblastic differentiation. This raises our hypothesis that the PKA pathway is involved in osteogenesis. In this report, we demonstrated that PKIG in human MSCs and its murine homologue PKA inhibitor gamma (PKIgamma) in murine pre-myoblast C2C12 cells were down-regulated when these cells were treated with BMP-2. On the contrary, the PKA activity of C2C12 cells was increased upon BMP-2 treatment. Overexpression of PKIgamma in C2C12 cells was shown to repress mRNA expression of early osteoblastic markers osterix and type I collagen while inhibiting the PKA activity. This correlated with decreased alkaline phosphatase (ALP) activities. Furthermore, inhibition of the PKA activity using its specific inhibitor KT5720 was found to have the similar effect, whereas 8-Br-cAMP, a specific PKA activator, accelerated BMP-2-induced ALP activities. Finally, this study showed that BMP-2 treatment promoted activities of transcription regulatory elements including cAMP response element (CRE) and activating protein-1 (AP1). This effect of BMP-2 was diminished in PKIgamma-overexpressed C2C12 cells. Taken together, our results indicate that the activation of the PKA pathway may be one of key BMP-2-activated signaling events that lead to osteogenesis and that downregulation of PKIgamma may be prerequisite for the PKA activation during the osteoblastic differentiation of precursor cells.
Collapse
Affiliation(s)
- L Zhao
- Nankai University Medical College, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang Y, Maciejewski BS, Lee N, Silbert O, McKnight NL, Frangos JA, Sanchez-Esteban J. Strain-induced fetal type II epithelial cell differentiation is mediated via cAMP-PKA-dependent signaling pathway. Am J Physiol Lung Cell Mol Physiol 2006; 291:L820-7. [PMID: 16751225 DOI: 10.1152/ajplung.00068.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
The signaling pathways by which mechanical forces modulate fetal lung development remain largely unknown. In the present study, we tested the hypothesis that strain-induced fetal type II cell differentiation is mediated via the cAMP signaling pathway. Freshly isolated E19 fetal type II epithelial cells were cultured on collagen-coated silastic membranes and exposed to mechanical strain for varying intervals, to simulate mechanical forces during lung development. Unstretched samples were used as controls. Mechanical strain activated heterotrimeric G-protein alpha(s) subunit, cAMP, and the transcription factor cAMP response element binding protein (CREB). Incubation of E19 cells with the PKA inhibitor H-89 significantly decreased strain-induced CREB phosphorylation. Moreover, adenylate cyclase 5 and CREB genes were also mechanically induced. In contrast, components of the PKA-independent (Epac) pathway, including Rap-1 or B-Raf, were not phosphorylated by strain. The addition of forskolin or dibutyryl cAMP to unstretched E19 monolayers markedly upregulated expression of the type II cell differentiation marker surfactant protein C, whereas the Epac agonist 8-pCPT-2'-O-Me-cAMP had no effect. Furthermore, incubation of E19 cells with the PKA inhibitor Rp-2'-O-monobutyryladenosine 3',5'-cyclic monophosphorothioate or transient transfection with plasmid DNA containing a PKA inhibitor expression vector significantly decreased strain-induced surfactant protein C mRNA expression. In conclusion, these studies indicate that the cAMP-PKA-dependent signaling pathway is activated by force in fetal type II cells and participates in strain-induced fetal type II cell differentiation.
Collapse
Affiliation(s)
- Yulian Wang
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Brown Medical School, 101 Dudley St., Providence, RI 02905, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Seldon PM, Meja KK, Giembycz MA. Rolipram, salbutamol and prostaglandin E2 suppress TNFalpha release from human monocytes by activating Type II cAMP-dependent protein kinase. Pulm Pharmacol Ther 2006; 18:277-84. [PMID: 15777610 DOI: 10.1016/j.pupt.2004.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/04/2004] [Accepted: 12/21/2004] [Indexed: 11/18/2022]
Abstract
The extent to which cAMP-dependent protein kinase (PKA) mediates the inhibitory effects of cAMP-elevating drugs on tumour necrosis factor (TNF) alpha release from lipopolysaccharide (LPS)-stimulated human monocytes is equivocal. Here, we have investigated the role of this kinase by exploiting the ability of certain novel cAMP analogues to inhibit or activate PKA and the recently described cAMP-guanine nucleotide-exchange factors (GEFs). Pre-treatment of monocytes with Rp-8-Br-cAMPS, a selective inhibitor of Type I PKA that has no effect on basal or stimulated Rap1 (a downstream effector of cAMP-GEFs) activity, potentiated LPS-induced TNFalpha output but had little or no effect on the suppression of this cytokine effected by rolipram (a PDE4 inhibitor), prostaglandin (PG) E2 and salbutamol (a beta2-adrenoceptor agonist). In contrast, Rp-8-pCPT-cAMPS, which selectively blocks Type II PKA with only weak activity against Rap1, significantly antagonised or abolished the inhibitory effect of these cAMP-elevating agents. Pre-treatment of monocytes with 8-pCPT-2'-O-Me-cAMPS, a potent activator of cAMP-GEFs, failed to suppress TNFalpha output at concentrations known to profoundly activate Rap1. Collectively, these results indicate that cAMP-elevating drugs suppress TNFalpha release from LPS-stimulated human monocytes by activating PKA independently of cAMP-GEFs. Furthermore, by using phosphorothioate cAMP analogue PKA inhibitors we provide evidence that the Type II PKA isoenzyme is functionally the most important.
Collapse
Affiliation(s)
- Paul M Seldon
- Dermatology Section, Division of Medicine, Faculty of Medicine, Hammersmith Hospital, Imperial College London, DuCane Road, London W12 ONN, UK
| | | | | |
Collapse
|
22
|
Dalton GD, Dewey WL. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function. Neuropeptides 2006; 40:23-34. [PMID: 16442618 DOI: 10.1016/j.npep.2005.10.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/21/2005] [Accepted: 10/11/2005] [Indexed: 11/30/2022]
Abstract
Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous system and the rest of the body.
Collapse
Affiliation(s)
- George D Dalton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980524, Richmond, VA 23298, USA.
| | | |
Collapse
|
23
|
Clarke DL, Belvisi MG, Smith SJ, Hardaker E, Yacoub MH, Meja KK, Newton R, Slater DM, Giembycz MA. Prostanoid receptor expression by human airway smooth muscle cells and regulation of the secretion of granulocyte colony-stimulating factor. Am J Physiol Lung Cell Mol Physiol 2005; 288:L238-50. [PMID: 15640521 DOI: 10.1152/ajplung.00313.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The prostanoid receptors on human airway smooth muscle cells (HASMC) that augment the release by IL-1β of granulocyte colony-stimulating factor (G-CSF) have been characterized and the signaling pathway elucidated. PCR of HASM cDNA identified products corresponding to EP2, EP3, and EP4receptor subtypes. These findings were corroborated at the protein level by immunocytochemistry. IL-1β promoted the elaboration of G-CSF, which was augmented by PGE2. Cicaprost (IP receptor agonist) was approximately equiactive with PGE2, whereas PGD2, PGF2α, and U-46619 (TP receptor agonist) were over 10-fold less potent. Neither SQ 29,548 nor BW A868C (TP and DP1receptor antagonists, respectively) attenuated the enhancement of G-CSF release evoking any of the prostanoids studied. With respect to PGE2, the EP receptor agonists 16,16-dimethyl PGE2(nonselective), misoprostol (EP2/EP3selective), 17-phenyl-ω-trinor PGE2(EP1selective), ONO-AE1-259, and butaprost (both EP2selective) were full agonists at enhancing G-CSF release. AH 6809 (10 μM) and L-161,982 (2 μM), which can be used in HASMC as selective EP2and EP4receptor antagonists, respectively, failed to displace to the right the PGE2concentration-response curve that described the augmented G-CSF release. In contrast, AH 6809 and L-161,982 in combination competitively antagonized PGE2-induced G-CSF release. Augmentation of G-CSF release by PGE2was mimicked by 8-BrcAMP and abolished in cells infected with an adenovirus vector encoding an inhibitor protein of cAMP-dependent protein kinase (PKA). These data demonstrate that PGE2facilitates G-CSF secretion from HASMC through a PKA-dependent mechanism by acting through EP2and EP4prostanoid receptors and that effective antagonism is realized only when both subtypes are blocked concurrently.
Collapse
Affiliation(s)
- Deborah L Clarke
- Thoraic Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Clarke DL, Belvisi MG, Hardaker E, Newton R, Giembycz MA. E-ring 8-isoprostanes are agonists at EP2- and EP4-prostanoid receptors on human airway smooth muscle cells and regulate the release of colony-stimulating factors by activating cAMP-dependent protein kinase. Mol Pharmacol 2005; 67:383-93. [PMID: 15528403 DOI: 10.1124/mol.104.006486] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
8-Isoprostanes are bioactive lipid mediators formed via the nonenzymatic peroxidation of arachidonic acid by free radicals and reactive oxygen species. However, their cognate receptors, biological actions, and signaling pathways are poorly studied. Here, we report the effect of a variety of E- and Falpha-ring 8-isoprostanes on the release of granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) from human airway smooth muscle (HASM) cells stimulated with interleukin-1beta (IL-1beta). The elaboration of GM-CSF and G-CSF by IL-1beta was inhibited and augmented, respectively, in a concentration-dependent manner by 8-iso-prostaglandin (PG) E(1) and 8-iso-PGE(2), but not by 8-iso-PGF(1alpha), 8-iso-PGF(2alpha), and 8-iso-PGF(3)alpha. AH 6809 (6-isopropoxy-9-oxoxanthine-2-carboxylic acid), an EP(1)-/EP(2)-/DP-receptor blocking drug, antagonized the inhibitory effect of 8-iso-PGE(1) and 8-iso-PGE(2) on GM-CSF output with an affinity consistent with an interaction at prostanoid receptors of the EP(2)-subtype. In contrast, the facilitation by 8-iso-PGE(1) and 8-iso-PGE(2) of G-CSF release was unaffected by AH 6809 and the selective EP(4)-receptor antagonist L-161,982 [4'-[3-butyl-5-oxo-1-(2-trifluoromethyl-phenyl)-1,5-dihydro-[1,2,4]triazol-4-ylmethyl]-biphenyl-2-sulfonic acid (3-methyl-thiophene-2-carbonyl)-amide]. However, when used in combination, AH 6809 and L-161,982 displaced 5-fold to the right the 8-iso-PGE and 8-iso-PGE concentration-response curves. The opposing (1)effect of E-ring (2)8-isoprostanes on GM-CSF and G-CSF release was mimicked by 8-bromo-cAMP and abolished in cells infected with an adenovirus vector encoding an inhibitor protein of cAMP-dependent protein kinase (PKA). Together, these data demonstrate that E-ring 8-isoprostanes regulate the secretion of GM-CSF and G-CSF from HASM cells by a cAMP- and PKA-dependent mechanism. Moreover, antagonist studies revealed that 8-iso-PGE(1) and 8-iso-PGE(2) act solely via EP(2) -receptors to inhibit GM-CSF release, whereas both EP(2)- and EP(4)-receptor subtypes positively regulate G-CSF output.
Collapse
MESH Headings
- Adolescent
- Adult
- Cells, Cultured
- Colony-Stimulating Factors/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dinoprost/analogs & derivatives
- Dinoprost/chemistry
- Dinoprost/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Female
- Humans
- Male
- Middle Aged
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Trachea/drug effects
- Trachea/metabolism
Collapse
Affiliation(s)
- Deborah L Clarke
- Thoraic Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | |
Collapse
|
25
|
Chen X, Dai JC, Orellana SA, Greenfield EM. Endogenous protein kinase inhibitor gamma terminates immediate-early gene expression induced by cAMP-dependent protein kinase (PKA) signaling: termination depends on PKA inactivation rather than PKA export from the nucleus. J Biol Chem 2004; 280:2700-7. [PMID: 15557275 DOI: 10.1074/jbc.m412558200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Expression of many genes induced by cAMP-dependent protein kinase (PKA) signaling is rapidly terminated. Although many mechanisms contribute to regulation of PKA signaling, members of the endogenous protein kinase inhibitor (PKI) family may be particularly important for terminating nuclear PKA activity and gene expression. Here we used both siRNA and antisense knockdown strategies to examine PKA signaling activated by parathyroid hormone or the beta-adrenergic agonist, isoproterenol. We found that endogenous PKIgamma is required for efficient termination of nuclear PKA activity, transcription factor phosphorylation, and immediate-early genes. Moreover, PKIgamma is required for export of PKA catalytic subunits from the nucleus back to the cytoplasm following activation of PKA signaling because this is also inhibited by PKIgamma knockdown. Leptomycin B blocks PKA nuclear export but has little or no effect on nuclear PKA activity or immediate-early gene expression. Thus, inactivation of PKA activity in the nucleus is sufficient to terminate signaling, and nuclear export is not required. These results were the first in any cell type showing that endogenous levels of PKI regulate PKA signaling.
Collapse
Affiliation(s)
- Xin Chen
- Orthopaedics, Pediatrics, Physiology and Biophysics, and Pathology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106-5000, USA
| | | | | | | |
Collapse
|
26
|
Malyala A, Pattee P, Nagalla SR, Kelly MJ, Rønnekleiv OK. Suppression subtractive hybridization and microarray identification of estrogen-regulated hypothalamic genes. Neurochem Res 2004; 29:1189-200. [PMID: 15176476 DOI: 10.1023/b:nere.0000023606.13670.1d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
The gonadal steroid estrogen is a pleiotropic hormone that has multiple effects on numerous cellular functions. One of estrogen's major targets is the brain, where the steroid not only affects growth, differentiation, and survival of neurons, but also regulates cell excitability. Because estrogen modulates multiple, overlapping signaling pathways, it has been difficult to scrutinize the transcriptional activity of the steroid. Therefore, we still lack a global picture of how different genes interact and are regulated by estrogen. Herein we report the use of suppression subtractive hybridization followed by custom microarray analysis of thousands of genes that are differentially expressed during the negative feedback phase of the female reproductive cycle. We have found a number of key transcripts that are regulated by estrogen and contribute to the alteration in synaptic transmission and hence excitability of hypothalamic neurons (e.g., GABA neurons). These include gec-1, GABA(B)R2, PI3 kinase subunit p55gamma, and a number of proteins containing pleckstrin homology domains that are critical for plasma membrane targeting. Studies are underway to refine our analysis to individual nuclei and individual cells. However, what has emerged from this highly sensitive microarray analysis is that estrogen affects neuronal plasticity in hypothalamic neurons not only by transcription of new membrane proteins (e.g., receptors and channels), but also by altering expression of downstream signaling molecules and proteins involved in neurosecretory pathways.
Collapse
Affiliation(s)
- Anna Malyala
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
27
|
Jin R, Dai L, Zheng J, Ji C. Purification and structural study of the beta form of human cAMP-dependent protein kinase inhibitor. ACTA ACUST UNITED AC 2004; 271:1768-73. [PMID: 15096215 DOI: 10.1111/j.1432-1033.2004.04087.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
The beta form of human cAMP-dependent protein kinase inhibitor (human PKIbeta), a novel heat-stable protein, was isolated with high yield using a bacterial expression system. Assays of PKI activity demonstrated that purified PKIbeta inhibits the catalytic subunit of cAMP-dependent protein kinase. FTIR, Raman spectroscopy and CD experiments implied that human PKIbeta contained only small amounts of alpha-helix and beta-structures, but large amounts of random coil and turn structures, which may explain its high thermostability. The details of its conformational changes in response to heat were studied by CD experiments for the first time, revealing that the protein unfolded at high temperature and refolded when decreased to room temperature.
Collapse
Affiliation(s)
- Rong Jin
- Center of Analysis and Measurement, School of Life Sciences, Fudan University, Shanghai, PR China
| | | | | | | |
Collapse
|
28
|
Clarke DL, Belvisi MG, Catley MC, Yacoub MH, Newton R, Giembycz MA. Identification in human airways smooth muscle cells of the prostanoid receptor and signalling pathway through which PGE2 inhibits the release of GM-CSF. Br J Pharmacol 2004; 141:1141-50. [PMID: 15023863 PMCID: PMC1574884 DOI: 10.1038/sj.bjp.0705716] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023] Open
Abstract
1. The prostanoid receptor(s) on human airways smooth muscle (HASM) cells that mediates the inhibitory effect of PGE(2) on interleukin (IL)-1 beta-induced granulocyte/macrophage colony-stimulating factor (GM-CSF) release has been classified. 2. IL-1 beta evoked the release of GM-CSF from HASM cells, which was suppressed by PGE(2), 16,16-dimethyl PGE(2) (nonselective), misoprostol (EP(2)/EP(3)-selective), ONO-AE1-259 and butaprost (both EP(2)-selective) with pIC(50) values of 8.61, 7.13, 5.64, 8.79 and 5.43, respectively. EP-receptor agonists that have selectivity for the EP(1)-(17-phenyl-omega-trinor PGE(2)) and EP(3)-receptor (sulprostone) subtypes as well as cicaprost (IP-selective), PGD(2), PGF(2 alpha) and U-46619 (TP-selective) were poorly active or inactive at concentrations up to 10 microM. 3. AH 6809, a drug that can be used to selectively block EP(2)-receptors in HASM cells, antagonised the inhibitory effect of PGE(2), 16,16-dimethyl PGE(2) and ONO-AE1-259 with apparent pA(2) values of 5.85, 6.09 and 6.1 respectively. In contrast, the EP(4)-receptor antagonists, AH 23848B and L-161,982, failed to displace to the right the concentration-response curves that described the inhibition of GM-CSF release evoked by PGE(2) and ONO-AE1-259. 4. Inhibition of GM-CSF release by PGE(2) and 8-Br-cAMP was abolished in cells infected with an adenovirus vector encoding an inhibitor protein of cAMP-dependent protein kinase (PKA) but not by H-89, a purported small molecule inhibitor of PKA. 5. We conclude that prostanoid receptors of the EP(2)-subtype mediate the inhibitory effect of PGE(2) on GM-CSF release from HASM cells by recruiting a PKA-dependent pathway. In addition, the data illustrate that caution should be exercised when using H-89 in studies designed to assess the role of PKA in biological processes.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Adolescent
- Adult
- Aged
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Cell Survival
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/drug effects
- Cyclic AMP-Dependent Protein Kinases/genetics
- Dinoprostone/analogs & derivatives
- Dinoprostone/pharmacology
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression/drug effects
- Genetic Vectors/genetics
- Granulocyte Colony-Stimulating Factor/antagonists & inhibitors
- Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Humans
- Indomethacin/pharmacology
- Interleukin-1/antagonists & inhibitors
- Interleukin-1/pharmacology
- Isoquinolines/pharmacology
- Male
- Middle Aged
- Misoprostol/pharmacology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Prostaglandins E, Synthetic/chemistry
- Prostaglandins E, Synthetic/metabolism
- Prostaglandins E, Synthetic/pharmacology
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/classification
- Receptors, Prostaglandin E/drug effects
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sulfonamides/pharmacology
- Trachea/cytology
- Xanthones/pharmacology
Collapse
Affiliation(s)
- Deborah L Clarke
- Department of Thoracic Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, SW3 6LY
| | - Maria G Belvisi
- Department of Cardiothoracic Surgery (Respiratory Pharmacology Group), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW3 6LY
| | - Matthew C Catley
- Department of Thoracic Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, SW3 6LY
| | - Magdi H Yacoub
- Department of Cardiothoracic Surgery (Respiratory Pharmacology Group), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW3 6LY
| | - Robert Newton
- Department of Biological Sciences, Biomedical Research Institute, University of Warwick, Coventry, CV4 7AL
| | - Mark A Giembycz
- Department of Pharmacology and Therapeutics, Respiratory Research Group, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
- Author for correspondence:
| |
Collapse
|
29
|
Meja KK, Catley MC, Cambridge LM, Barnes PJ, Lum H, Newton R, Giembycz MA. Adenovirus-mediated delivery and expression of a cAMP-dependent protein kinase inhibitor gene to BEAS-2B epithelial cells abolishes the anti-inflammatory effects of rolipram, salbutamol, and prostaglandin E2: a comparison with H-89. J Pharmacol Exp Ther 2004; 309:833-44. [PMID: 14747610 DOI: 10.1124/jpet.103.060020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
cAMP-elevating drugs are thought to mediate their biological effects by activating the cAMP/cAMP-dependent protein kinase (PKA) cascade. However, this hypothesis is difficult to confirm due to a lack of selective inhibitors. Here, we have probed the role of PKA in mediating inhibitory effects of several cAMP-elevating drugs in BEAS-2B epithelial cells using an adenovirus vector encoding a PKA inhibitor protein (PKIalpha) and have compared it to H-89, a commonly used small molecule PKA inhibitor. Initial studies established efficient gene transfer and confirmed functionality of PKIalpha 48 h after virus infection. All cAMP-elevating drugs tested promoted the phosphorylation of cAMP response element-binding protein (CREB), activated a cAMP response element (CRE)-driven luciferase reporter gene, and suppressed both granulocyte/macrophage colony-stimulating factor (GM-CSF) generation and [(3)H]arachidonic acid (AA) release in response to interleukin-1beta and monocyte chemotactic protein (MCP)-1, respectively. These effects were abolished by PKIalpha. In contrast, H-89 behaved unpredictably under the same conditions. Thus, although CREB phosphorylation evoked by a range of cAMP-elevating drugs was abolished by H-89, neither activation of the CRE-dependent luciferase reporter gene construct nor the inhibition of GM-CSF generation was inhibited. Paradoxically, H-89 antagonized MCP-1-induced [(3)H]AA release and enhanced the inhibitory effect of submaximal concentrations of rolipram and 8-bromo-cAMP. We suggest that expression of PKIalpha in susceptible cells provides a simple and unambiguous way to assess the role of PKA in cAMP signaling and to probe the mechanism of action of other drugs and cAMP-dependent responses where the participation of PKA is equivocal. Furthermore, these data suggest that H-89 is not a selective inhibitor of PKA and should be avoided.
Collapse
Affiliation(s)
- Koremu K Meja
- Thoracic Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Chen X, Dai JC, Greenfield EM. Termination of immediate-early gene expression after stimulation by parathyroid hormone or isoproterenol. Am J Physiol Cell Physiol 2002; 283:C1432-40. [PMID: 12372804 DOI: 10.1152/ajpcell.00221.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
cAMP/PKA signaling transiently stimulates mRNA expression of immediate-early genes, including IL-6 and c-fos. We confirmed that these mRNAs are transiently stimulated by parathyroid hormone (PTH) in ROS 17/2.8 osteoblastic cells. Consistent with the role for cAMP/PKA signaling in this response, PTH induces transient cAMP elevation, PKA activation, and cAMP-responsive element-binding protein (CREB) phosphorylation. Our goal was to determine whether termination of immediate-early gene expression is due to receptor desensitization or cAMP degradation. The approaches used were 1) inhibition of PTH receptor desensitization with G protein-coupled receptor kinase 2 (GRK2) antisense oligonucleotides or antisense plasmids, 2) sustained activation of adenyl cyclase with forskolin, and 3) inhibition of cAMP degradation with 3-isobutyl-1-methylxanthine. These experiments show that mechanisms downstream of receptor desensitization and cAMP degradation are primarily responsible for termination of PKA activity, CREB phosphorylation, and immediate-early gene expression. Similar conclusions were also obtained in response to PTH in a second osteoblastic cell line (MC3T3-E1) and in response to isoproterenol in NIH3T3 fibroblasts. This conclusion may therefore reflect a general mechanism for termination of immediate-early gene expression after induction by cAMP/PKA.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedics, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106-5000, USA
| | | | | |
Collapse
|
31
|
Lum H, Hao Z, Gayle D, Kumar P, Patterson CE, Uhler MD. Vascular endothelial cells express isoforms of protein kinase A inhibitor. Am J Physiol Cell Physiol 2002; 282:C59-66. [PMID: 11742798 DOI: 10.1152/ajpcell.00256.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
The expression and function of the endogenous inhibitor of cAMP-dependent protein kinase (PKI) in endothelial cells are unknown. In this study, overexpression of rabbit muscle PKI gene into endothelial cells inhibited the cAMP-mediated increase and exacerbated thrombin-induced decrease in endothelial barrier function. We investigated PKI expression in human pulmonary artery (HPAECs), foreskin microvessel (HMECs), and brain microvessel endothelial cells (HBMECs). RT-PCR using specific primers for human PKI alpha, human PKI gamma, and mouse PKI beta sequences detected PKI alpha and PKI gamma mRNA in all three cell types. Sequencing and BLAST analysis indicated that forward and reverse DNA strands for PKI alpha and PKI gamma were of >96% identity with database sequences. RNase protection assays showed protection of the 542 nucleotides in HBMEC and HPAEC PKI alpha mRNA and 240 nucleotides in HBMEC, HPAEC, and HMEC PKI gamma mRNA. Western blot analysis indicated that PKI gamma protein was detected in all three cell types, whereas PKI alpha was found in HBMECs. In summary, endothelial cells from three different vascular beds express PKI alpha and PKI gamma, which may be physiologically important in endothelial barrier function.
Collapse
Affiliation(s)
- Hazel Lum
- Department of Pharmacology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Kawakami M, Nakanishi N. The role of an endogenous PKA inhibitor, PKIalpha, in organizing left-right axis formation. Development 2001; 128:2509-15. [PMID: 11493567 DOI: 10.1242/dev.128.13.2509] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Protein kinase inhibitor (PKI) is an endogenous inhibitor of cAMP-dependent protein kinase A (PKA). We have found that the alpha-isoform of PKI (PKIalpha) is asymmetrically expressed along the left-right (L-R) axis in chick embryos. At stage 6, PKIalpha is expressed on the right side of the node, and this asymmetric expression continues until stage 7+. After stage 8, PKIalpha expression returns symmetric. Treatment of embryos with antisense PKIalpha oligonucleotides increased the incidence of reversed heart looping. Antisense oligonucleotides also induced ectopic expression of the left-specific genes Nodal and Pitx2, and suppressed the expression of the right-specific gene SnR in the right lateral plate mesoderm. Similarly, treatment with PKA activators forskolin and Sp-cAMPs resulted in both reversed heart looping and bilateral expression of NODAL: Ectopic activin induced PKIalpha on the left side of the node, while ectopic Shh and anti-Shh antibody had no effect on PKIalpha expression. Taken together, these data suggest that PKIalpha induced by an activin-like molecule, through the inhibition of PKA activity, suppresses the Nodal-Pitx2 pathway on the right side of the body.
Collapse
Affiliation(s)
- M Kawakami
- The Burnham Institute, Center for Neuroscience and Aging, La Jolla, CA 92037, USA
| | | |
Collapse
|
33
|
Abstract
The protein kinase inhibitor (PKI) family includes three genes encoding small, heat-stable inhibitors of the cyclic AMP-dependent kinase PKA. Each PKI isoform contains a PKA inhibitory domain and a nuclear export domain, enabling PKI to both inhibit PKA and remove it from the nucleus. The PKIbeta isoform, also known as testis PKI, is highly expressed in germ cells of the testis and is found at more modest levels in other tissues. In order to investigate its physiological role, we have generated PKIbeta knockout mice by gene targeting. These mice exhibit a partial loss of PKI activity in testis but remain fertile with normal testis development and function. PKIbeta knockout females also reproduce normally. The PKIbeta mutants were crossed with our previously derived PKIalpha mutants to obtain double-knockout mice. Remarkably, these mice are also viable and fertile with no obvious physiological defects in either males or females.
Collapse
Affiliation(s)
- M Belyamani
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
34
|
Taylor MK, Uhler MD. The amino-terminal cyclic nucleotide binding site of the type II cGMP-dependent protein kinase is essential for full cyclic nucleotide-dependent activation. J Biol Chem 2000; 275:28053-62. [PMID: 10864932 DOI: 10.1074/jbc.m004184200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
For the type I cGMP-dependent protein kinases (cGKIalpha and cGKIbeta), a high affinity interaction exists between the C2 amino group of cGMP and the hydroxyl side chain of a threonine conserved in most cGMP binding sites. To examine the effect of this interaction on ligand binding and kinase activation in the type II isozyme of cGMP-dependent protein kinase (cGKII), alanine was substituted for the conserved threonine or serine. cGKII was found to require the C2 amino group of cGMP and its cognate serine or threonine hydroxyl for efficient cGMP activation. Of the two binding sites, disruption of cGMP-specific binding in the NH(2)-terminal binding site had the greatest effect on cGMP-dependent kinase activation, like cGKI. However, ligand dissociation studies showed that the location of the rapid and slow dissociation sites of cGKII was reversed relative to cGKI. Another set of mutations that prevented cyclic nucleotide binding demonstrated the necessity of the NH(2)-terminal, rapid dissociation binding site for cyclic nucleotide-dependent activation of cGKII. These findings suggest distinct mechanisms of activation for cGKII and cGKI isoforms. Because cGKII mediates the effects of heat-stable enterotoxins via the cystic fibrosis transmembrane regulator Cl(-) channel, these findings define a structural target for drug design.
Collapse
Affiliation(s)
- M K Taylor
- Department of Biological Chemistry, the Neuroscience Graduate Program, and the Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48104, USA
| | | |
Collapse
|
35
|
Zheng L, Yu L, Tu Q, Zhang M, He H, Chen W, Gao J, Yu J, Wu Q, Zhao S. Cloning and mapping of human PKIB and PKIG, and comparison of tissue expression patterns of three members of the protein kinase inhibitor family, including PKIA. Biochem J 2000; 349:403-7. [PMID: 10880337 PMCID: PMC1221161 DOI: 10.1042/0264-6021:3490403] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
Two novel members of the human cAMP-dependent protein kinase inhibitor (PKI) gene family, PKIB and PKIG, were cloned. The deduced proteins showed 70% and 90% identity with mouse PKIbeta and PKIgamma respectively. Both the already identified pseudosubstrate site and leucine-rich nuclear export signal motifs were defined from the 11 PKIs of different species. The PKIB and PKIG genes were mapped respectively to chromosome 6q21-22.1, using a radiation hybrid GB4 panel, and to chromosome 20q13.12-13.13, using a Stanford G3 panel. Northern-blot analysis of three PKI isoforms, including the PKIA identified previously, revealed significant differences in their expression patterns. PKIB had two transcripts of 1.9 kb and 1.4 kb. The former transcript was abundant in both placenta and brain and the latter was expressed most abundantly in placenta, highly in brain, heart, liver, pancreas, moderately in kidney, skeletal muscle and colon, and very little in the other eight tissues tested. PKIG was widely expressed as a 1.5-kb transcript with the highest level in heart, hardly detectable in thymus and peripheral blood leucocytes and was moderately expressed in the other tissues, with slightly different levels. However, PKIA was specifically expressed as two transcripts of 3.3 kb and 1.5 kb in heart and skeletal muscle. The distinct expression patterns of the three PKIs suggest that their roles in various tissues are probably different.
Collapse
Affiliation(s)
- L Zheng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang PW, Eisenbart JD, Espinosa R, Davis EM, Larson RA, Le Beau MM. Refinement of the smallest commonly deleted segment of chromosome 20 in malignant myeloid diseases and development of a PAC-based physical and transcription map. Genomics 2000; 67:28-39. [PMID: 10945467 DOI: 10.1006/geno.2000.6215] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
A deletion of the long arm of chromosome 20, del(20q), is a recurring abnormality in malignant myeloid diseases. In previous studies, we delineated a commonly deleted segment (CDS) of 5 Mb within band 20q12 flanked by D20S206 (proximal) and D20S481 (distal). We have generated a detailed physical map of P1 artificial chromosome (PAC) clones of this interval as well as a transcriptional map. The contig consists of 81 clones to which 152 markers (27 genes, 45 unique expressed sequence tags (ESTs) or UniGenes, 24 polymorphisms, and 56 sequence-tagged sites) have been mapped. Using PAC clones for fluorescence in situ hybridization analysis of myeloid leukemia cells with reciprocal translocations of 20q, or unbalanced rearrangements leading to loss of 20q, we have narrowed the CDS to an approximately 250-kb interval encompassing two overlapping PACs, P201E16 and P29M7 (between EST AA368224 and D20S481). This interval is gene-rich and contains 5 characterized genes, 4 UniGenes, and 9 single ESTs. The development of a transcriptional map and the identification of the smallest CDS will facilitate the molecular cloning of a myeloid leukemia suppressor gene on 20q.
Collapse
MESH Headings
- Alleles
- Chromosome Banding/methods
- Chromosome Deletion
- Chromosome Mapping
- Chromosomes, Artificial, Yeast
- Chromosomes, Bacterial
- Chromosomes, Human, Pair 20
- Cloning, Molecular
- Cytogenetic Analysis
- Expressed Sequence Tags
- Gene Rearrangement
- Genetic Markers
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Myeloid/genetics
- Microsatellite Repeats
- Translocation, Genetic
- Tumor Cells, Cultured/physiology
Collapse
Affiliation(s)
- P W Wang
- Department of Medicine, and the University of Chicago Cancer Research Center, The University of Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
37
|
Gangolli EA, Belyamani M, Muchinsky S, Narula A, Burton KA, McKnight GS, Uhler MD, Idzerda RL. Deficient gene expression in protein kinase inhibitor alpha Null mutant mice. Mol Cell Biol 2000; 20:3442-8. [PMID: 10779334 PMCID: PMC85637 DOI: 10.1128/mcb.20.10.3442-3448.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase inhibitor (PKI) is a potent endogenous inhibitor of the cyclic AMP (cAMP)-dependent protein kinase (PKA). It functions by binding the free catalytic (C) subunit with a high affinity and is also known to export nuclear C subunit to the cytoplasm. The significance of these actions with respect to PKI's physiological role is not well understood. To address this, we have generated by homologous recombination mutant mice that are deficient in PKIalpha, one of the three isoforms of PKI. The mice completely lack PKI activity in skeletal muscle and, surprisingly, show decreased basal and isoproterenol-induced gene expression in muscle. Further examination revealed reduced levels of the phosphorylated (active) form of the transcription factor CREB (cAMP response element binding protein) in the knockouts. This phenomenon stems, at least in part, from lower basal PKA activity levels in the mutants, arising from a compensatory increase in the level of the RIalpha subunit of PKA. The deficit in gene induction, however, is not easily explained by current models of PKI function and suggests that PKI may play an as yet undescribed role in PKA signaling.
Collapse
Affiliation(s)
- E A Gangolli
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Rowland-Goldsmith MA, Holmquist B, Henry HL. Genomic cloning, structure, and regulatory elements of the 1 alpha, 25(OH)2D3 down-regulated gene for cyclic AMP-dependent protein kinase inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1446:414-8. [PMID: 10524218 DOI: 10.1016/s0167-4781(99)00101-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
Abstract
The cyclic AMP-dependent protein kinase inhibitor (PKI) mRNA and protein are negatively and tissue-specifically regulated in the kidney by 1 alpha, 25(OH)2D3. A 17-kb PKI clone, isolated from a chick genomic library, revealed that the PKI gene consists of two exons separated by a 4.5-kb intron. A 411-bp upstream region (constituting 93 bp upstream and 318 bp downstream from the transcriptional start site) containing a putative negative VDRE (nVDRE) fused to the luciferase gene was used for transient transfections of primary cultures of chick kidney cells. Luciferase activity was significantly down-regulated in response to 1 alpha, 25(OH)2D3. This result suggests that the promoter region containing the putative nVDRE plays a pivotal role in the negative regulation of PKI gene transcription.
Collapse
|
39
|
Collins SP, Uhler MD. Cyclic AMP- and cyclic GMP-dependent protein kinases differ in their regulation of cyclic AMP response element-dependent gene transcription. J Biol Chem 1999; 274:8391-404. [PMID: 10085070 DOI: 10.1074/jbc.274.13.8391] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The ability of cGMP-dependent protein kinases (cGKs) to activate cAMP response element (CRE)-dependent gene transcription was compared with that of cAMP-dependent protein kinases (cAKs). Although both the type Ibeta cGMP-dependent protein kinase (cGKIbeta) and the type II cAMP-dependent protein kinase (cAKII) phosphorylated the cytoplasmic substrate VASP (vasodilator- and A kinase-stimulated phosphoprotein) to a similar extent, cyclic nucleotide regulation of CRE-dependent transcription was at least 10-fold higher in cAKII-transfected cells than in cGKIbeta-transfected cells. Overexpression of each kinase in mammalian cells resulted in a cytoplasmic localization of the unactivated enzyme. As reported previously, the catalytic (C) subunit of cAKII translocated to the nucleus following activation by 8-bromo-cyclic AMP. However, cGKIbeta did not translocate to the nucleus upon activation by 8-bromo-cyclic GMP. Replacement of an autophosphorylated serine (Ser79) of cGKIbeta with an aspartic acid resulted in a mutant kinase with constitutive kinase activity in vitro and in vivo. The cGKIbetaS79D mutant localized to the cytoplasm and was only a weak activator of CRE-dependent gene transcription. However, an amino-terminal deletion mutant of cGKIbeta was found in the nucleus as well as the cytoplasm and was a strong activator of CRE-dependent gene transcription. These data suggest that the inability of cGKs to translocate to the nucleus is responsible for the differential ability of cAKs and cGKs to activate CRE-dependent gene transcription and that nuclear redistribution of cGKs is not required for NO/cGMP regulation of gene transcription.
Collapse
Affiliation(s)
- S P Collins
- Department of Biological Chemistry and the Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
40
|
Wiley JC, Wailes LA, Idzerda RL, McKnight GS. Role of regulatory subunits and protein kinase inhibitor (PKI) in determining nuclear localization and activity of the catalytic subunit of protein kinase A. J Biol Chem 1999; 274:6381-7. [PMID: 10037729 DOI: 10.1074/jbc.274.10.6381] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.
Collapse
Affiliation(s)
- J C Wiley
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7750, USA
| | | | | | | |
Collapse
|
41
|
Hall KU, Collins SP, Gamm DM, Massa E, DePaoli-Roach AA, Uhler MD. Phosphorylation-dependent inhibition of protein phosphatase-1 by G-substrate. A Purkinje cell substrate of the cyclic GMP-dependent protein kinase. J Biol Chem 1999; 274:3485-95. [PMID: 9920894 DOI: 10.1074/jbc.274.6.3485] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
G-substrate, a specific substrate of the cGMP-dependent protein kinase, has previously been localized to the Purkinje cells of the cerebellum. We report here the isolation from mouse brain of a cDNA encoding G-substrate. This cDNA was used to localize G-substrate mRNA expression, as well as to produce recombinant protein for the characterization of G-substrate phosphatase inhibitory activity. Brain and eye were the only tissues in which a G-substrate transcript was detected. Within the brain, G-substrate transcripts were restricted almost entirely to the Purkinje cells of the cerebellum, although transcripts were also detected at low levels in the paraventricular region of the hypothalamus and the pons/medulla. Like the native protein, the recombinant protein was preferentially phosphorylated by cGMP-dependent protein kinase (Km = 0.2 microM) over cAMP-dependent protein kinase (Km = 2.0 microM). Phospho-G-substrate inhibited the catalytic subunit of native protein phosphatase-1 with an IC50 of 131 +/- 27 nM. Dephospho-G-substrate was not found to be inhibitory. Both dephospho- and phospho-G-substrate were weak inhibitors of native protein phosphatase-2A1, which dephosphorylated G-substrate 20 times faster than the catalytic subunit of protein phosphatase-1. G-substrate potentiated the action of cAMP-dependent protein kinase on a cAMP-regulated luciferase reporter construct, consistent with an inhibition of cellular phosphatases in vivo. These results provide the first demonstration that G-substrate inhibits protein phosphatase-1 and suggest a novel mechanism by which cGMP-dependent protein kinase I can regulate the activity of the type 1 protein phosphatases.
Collapse
Affiliation(s)
- K U Hall
- Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger produced in cells in response to hormones and nutrients. The production of cAMP is dependent upon the actions of many different proteins that affect its synthesis and degradation. An important function of cAMP is to activate the phosphorylating enzyme, protein kinase A. The key roles of cAMP and protein kinase A in the phosphorylation and regulation of enzyme substrates involved in intermediary metabolism are well known. A newly discovered role for protein kinase A is in the phosphorylation and activation of transcription factors that are critical for the control of the transcription of genes in response to elevated levels of cAMP.
Collapse
Affiliation(s)
- P B Daniel
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston 02114, USA
| | | | | |
Collapse
|