1
|
Salcedo-Tacuma D, Asad N, Howells G, Anderson R, Smith DM. Proteasome hyperactivation rewires the proteome enhancing stress resistance, proteostasis, lipid metabolism and ERAD in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588128. [PMID: 38617285 PMCID: PMC11014606 DOI: 10.1101/2024.04.04.588128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Proteasome dysfunction is implicated in the pathogenesis of neurodegenerative diseases and age-related proteinopathies. Using a C. elegans model, we demonstrate that 20S proteasome hyperactivation, facilitated by 20S gate-opening, accelerates the targeting of intrinsically disordered proteins. This leads to increased protein synthesis, extensive rewiring of the proteome and transcriptome, enhanced oxidative stress defense, accelerated lipid metabolism, and peroxisome proliferation. It also promotes ER-associated degradation (ERAD) of aggregation-prone proteins, such as alpha-1 antitrypsin (ATZ) and various lipoproteins. Notably, our results reveal that 20S proteasome hyperactivation suggests a novel role in ERAD with broad implications for proteostasis-related disorders, simultaneously affecting lipid homeostasis and peroxisome proliferation. Furthermore, the enhanced cellular capacity to mitigate proteostasis challenges, alongside unanticipated acceleration of lipid metabolism is expected to contribute to the longevity phenotype of this mutant. Remarkably, the mechanism of longevity induced by 20S gate opening appears unique, independent of known longevity and stress-resistance pathways. These results support the therapeutic potential of 20S proteasome activation in mitigating proteostasis-related disorders broadly and provide new insights into the complex interplay between proteasome activity, cellular health, and aging.
Collapse
Affiliation(s)
- David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Nadeeem. Asad
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Giovanni Howells
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Raymond Anderson
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - David M. Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
2
|
Gerontas A, Avgerinos D, Charitakis K, Maragou H, Drosatos K. 1821-2021: Contributions of physicians and researchers of Greek descent in the advancement of clinical and experimental cardiology and cardiac surgery. Front Cardiovasc Med 2023; 10:1231762. [PMID: 37600045 PMCID: PMC10436502 DOI: 10.3389/fcvm.2023.1231762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
While the role of Greeks in the development of early western medicine is well-known and appreciated, the contributions of modern Greek medical practitioners are less known and often overlooked. On the occasion of the 200-year anniversary of the Greek War of Independence, this review article sheds light onto the achievements of modern scientists of Greek descent in the development of cardiology, cardiac surgery, and cardiovascular research, through a short history of the development of these fields and of the related institutions in Greece. In the last decades, the Greek cardiology and Cardiac Surgery communities have been active inside and outside Greece and have a remarkable presence internationally, particularly in the United States. This article highlights the ways in which Greek cardiology and cardiovascular research has been enriched by absorbing knowledge produced in international medical centers, academic institutes and pharmaceutical industries in which generations of Greek doctors and researchers trained prior to their return to the homeland; it also highlights the achievements of medical practitioners and researchers of Greek descent who excelled abroad, producing ground-breaking work that has left a permanent imprint on global medicine.
Collapse
Affiliation(s)
- Apostolos Gerontas
- School of Applied Natural Sciences, Coburg University, Coburg, Germany
- School of Liberal Arts and Sciences, The American College of Greece, Athens, Greece
| | - Dimitrios Avgerinos
- Department of Cardiac Surgery, Onassis Cardiac Surgery Center, Athens, Greece
- ARISTEiA-Institute for the Advancement of Research and Education in Arts, Sciences and Technology, McLean, VA, United States
| | - Konstantinos Charitakis
- Department of Internal Medicine, Division of Cardiology, University of Texas Health Science Center, Houston, TX, United States
| | - Helena Maragou
- School of Liberal Arts and Sciences, The American College of Greece, Athens, Greece
| | - Konstantinos Drosatos
- ARISTEiA-Institute for the Advancement of Research and Education in Arts, Sciences and Technology, McLean, VA, United States
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
3
|
Duwaerts CC, Maiers JL. ER Disposal Pathways in Chronic Liver Disease: Protective, Pathogenic, and Potential Therapeutic Targets. Front Mol Biosci 2022; 8:804097. [PMID: 35174209 PMCID: PMC8841999 DOI: 10.3389/fmolb.2021.804097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum is a central player in liver pathophysiology. Chronic injury to the ER through increased lipid content, alcohol metabolism, or accumulation of misfolded proteins causes ER stress, dysregulated hepatocyte function, inflammation, and worsened disease pathogenesis. A key adaptation of the ER to resolve stress is the removal of excess or misfolded proteins. Degradation of intra-luminal or ER membrane proteins occurs through distinct mechanisms that include ER-associated Degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD), which includes macro-ER-phagy, micro-ER-phagy, and Atg8/LC-3-dependent vesicular delivery. All three of these processes are critical for removing misfolded or unfolded protein aggregates, and re-establishing ER homeostasis following expansion/stress, which is critical for liver function and adaptation to injury. Despite playing a key role in resolving ER stress, the contribution of these degradative processes to liver physiology and pathophysiology is understudied. Analysis of publicly available datasets from diseased livers revealed that numerous genes involved in ER-related degradative pathways are dysregulated; however, their roles and regulation in disease progression are not well defined. Here we discuss the dynamic regulation of ER-related protein disposal pathways in chronic liver disease and cell-type specific roles, as well as potentially targetable mechanisms for treatment of chronic liver disease.
Collapse
Affiliation(s)
- Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jessica L. Maiers
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Kumari D, Fisher EA, Brodsky JL. Hsp40s play distinct roles during the initial stages of apolipoprotein B biogenesis. Mol Biol Cell 2021; 33:ar15. [PMID: 34910568 PMCID: PMC9236142 DOI: 10.1091/mbc.e21-09-0436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Apolipoprotein B (ApoB) is the primary component of atherogenic lipoproteins, which transport serum fats and cholesterol. Therefore, elevated levels of circulating ApoB are a primary risk factor for cardiovascular disease. During ApoB biosynthesis in the liver and small intestine under nutrient-rich conditions, ApoB cotranslationally translocates into the endoplasmic reticulum (ER) and is lipidated and ultimately secreted. Under lipid-poor conditions, ApoB is targeted for ER Associated Degradation (ERAD). Although prior work identified select chaperones that regulate ApoB biogenesis, the contributions of cytoplasmic Hsp40s are undefined. To this end, we screened ApoB-expressing yeast and determined that a class A ER-associated Hsp40, Ydj1, associates with and facilitates the ERAD of ApoB. Consistent with these results, a homologous Hsp40, DNAJA1, functioned similarly in rat hepatoma cells. DNAJA1 deficient cells also secreted hyperlipidated lipoproteins, in accordance with attenuated ERAD. In contrast to the role of DNAJA1 during ERAD, DNAJB1-a class B Hsp40-helped stabilize ApoB. Depletion of DNAJA1 and DNAJB1 also led to opposing effects on ApoB ubiquitination. These data represent the first example in which different Hsp40s exhibit disparate effects during regulated protein biogenesis in the ER, and highlight distinct roles that chaperones can play on a single ERAD substrate.
Collapse
Affiliation(s)
- Deepa Kumari
- Department of Biological Sciences, A320 Langley Hall, Fifth & Ruskin Ave, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Edward A Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, A320 Langley Hall, Fifth & Ruskin Ave, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
5
|
Apolipoprotein B and Cardiovascular Disease: Biomarker and Potential Therapeutic Target. Metabolites 2021; 11:metabo11100690. [PMID: 34677405 PMCID: PMC8540246 DOI: 10.3390/metabo11100690] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein (apo) B, the critical structural protein of the atherogenic lipoproteins, has two major isoforms: apoB48 and apoB100. ApoB48 is found in chylomicrons and chylomicron remnants with one apoB48 molecule per chylomicron particle. Similarly, a single apoB100 molecule is contained per particle of very-low-density lipoprotein (VLDL), intermediate density lipoprotein, LDL and lipoprotein(a). This unique one apoB per particle ratio makes plasma apoB concentration a direct measure of the number of circulating atherogenic lipoproteins. ApoB levels indicate the atherogenic particle concentration independent of the particle cholesterol content, which is variable. While LDL, the major cholesterol-carrying serum lipoprotein, is the primary therapeutic target for management and prevention of atherosclerotic cardiovascular disease, there is strong evidence that apoB is a more accurate indicator of cardiovascular risk than either total cholesterol or LDL cholesterol. This review examines multiple aspects of apoB structure and function, with a focus on the controversy over use of apoB as a therapeutic target in clinical practice. Ongoing coronary artery disease residual risk, despite lipid-lowering treatment, has left patients and clinicians with unsatisfactory options for monitoring cardiovascular health. At the present time, the substitution of apoB for LDL-C in cardiovascular disease prevention guidelines has been deemed unjustified, but discussions continue.
Collapse
|
6
|
The Targeting of Native Proteins to the Endoplasmic Reticulum-Associated Degradation (ERAD) Pathway: An Expanding Repertoire of Regulated Substrates. Biomolecules 2021; 11:biom11081185. [PMID: 34439852 PMCID: PMC8393694 DOI: 10.3390/biom11081185] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
All proteins are subject to quality control processes during or soon after their synthesis, and these cellular quality control pathways play critical roles in maintaining homeostasis in the cell and in organism health. Protein quality control is particularly vital for those polypeptides that enter the endoplasmic reticulum (ER). Approximately one-quarter to one-third of all proteins synthesized in eukaryotic cells access the ER because they are destined for transport to the extracellular space, because they represent integral membrane proteins, or because they reside within one of the many compartments of the secretory pathway. However, proteins that mature inefficiently are subject to ER-associated degradation (ERAD), a multi-step pathway involving the chaperone-mediated selection, ubiquitination, and extraction (or “retrotranslocation”) of protein substrates from the ER. Ultimately, these substrates are degraded by the cytosolic proteasome. Interestingly, there is an increasing number of native enzymes and metabolite and solute transporters that are also targeted for ERAD. While some of these proteins may transiently misfold, the ERAD pathway also provides a route to rapidly and quantitatively downregulate the levels and thus the activities of a variety of proteins that mature or reside in the ER.
Collapse
|
7
|
Kang JA, Jeon YJ. How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases. Int J Mol Sci 2021; 22:ijms22042078. [PMID: 33669844 PMCID: PMC7923238 DOI: 10.3390/ijms22042078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that plays fundamental roles in the biosynthesis, folding, stabilization, maturation, and trafficking of secretory and transmembrane proteins. It is the largest organelle and critically modulates nearly all aspects of life. Therefore, in the endoplasmic reticulum, an enormous investment of resources, including chaperones and protein folding facilitators, is dedicated to adequate protein maturation and delivery to final destinations. Unfortunately, the folding and assembly of proteins can be quite error-prone, which leads to the generation of misfolded proteins. Notably, protein homeostasis, referred to as proteostasis, is constantly exposed to danger by flows of misfolded proteins and subsequent protein aggregates. To maintain proteostasis, the ER triages and eliminates terminally misfolded proteins by delivering substrates to the ubiquitin–proteasome system (UPS) or to the lysosome, which is termed ER-associated degradation (ERAD) or ER-phagy, respectively. ERAD not only eliminates misfolded or unassembled proteins via protein quality control but also fine-tunes correctly folded proteins via protein quantity control. Intriguingly, the diversity and distinctive nature of E3 ubiquitin ligases determine efficiency, complexity, and specificity of ubiquitination during ERAD. ER-phagy utilizes the core autophagy machinery and eliminates ERAD-resistant misfolded proteins. Here, we conceptually outline not only ubiquitination machinery but also catalytic mechanisms of E3 ubiquitin ligases. Further, we discuss the mechanistic insights into E3 ubiquitin ligases involved in the two guardian pathways in the ER, ERAD and ER-phagy. Finally, we provide the molecular mechanisms by which ERAD and ER-phagy conduct not only protein quality control but also protein quantity control to ensure proteostasis and subsequent organismal homeostasis.
Collapse
Affiliation(s)
- Ji An Kang
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence:
| |
Collapse
|
8
|
Wang X, Guo M, Wang Q, Wang Q, Zuo S, Zhang X, Tong H, Chen J, Wang H, Chen X, Guo J, Su X, Liang H, Zhou H, Li JZ. The Patatin-Like Phospholipase Domain Containing Protein 7 Facilitates VLDL Secretion by Modulating ApoE Stability. Hepatology 2020; 72:1569-1585. [PMID: 32103509 DOI: 10.1002/hep.31161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS The regulation of hepatic very-low-density lipoprotein (VLDL) secretion is vital for lipid metabolism whose pathogenetic status is involved in fatty liver disease and dyslipidemia seen in hepatic steatosis. Accumulated evidence suggest that apolipoprotein E (ApoE) is closely related to hepatic VLDL secretion. Here, we report that the expression of patatin-like phospholipase domain containing protein 7 (PNPLA7) is strongly induced by hepatic steatosis and positively correlates with plasma triacylglycerol (TAG) levels in the human subjects, whereas the role of PNPLA7 in hepatic VLDL secretion is unknown. APPROACH AND RESULTS Herein, with genetic manipulation in the mice, the deficiency of hepatic PNPLA7 expression resulted in reduced VLDL secretion accompanied by enhanced hepatic lipid accumulation and decreased hepatic ApoE expression. Furthermore, knockdown of PNPLA7 in the livers of the db/db mice also resulted in significant reduction in plasma TAG level but aggravated hepatic steatosis. Importantly, we observed that PNPLA7 interacted with ApoE and presumably at the site of endoplasmic reticulum. Mechanistically, we have shown that PNPLA7 could modulate polyubiquitination and proteasomal-mediated degradation of ApoE. Overexpressed ApoE restored the impaired VLDL-TAG metabolism in PNPLA7-knockdown primary hepatocytes. CONCLUSION PNPLA7 plays a critical role in regulating hepatic VLDL secretion by modulating ApoE stability through its interaction with ApoE.
Collapse
Affiliation(s)
- Xiuyun Wang
- The Key Laboratory of Rare Metabolic Disease, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Min Guo
- The State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qian Wang
- The Key Laboratory of Rare Metabolic Disease, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Qingjie Wang
- The Key Laboratory of Rare Metabolic Disease, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Shasha Zuo
- The Key Laboratory of Rare Metabolic Disease, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Xu Zhang
- The Key Laboratory of Rare Metabolic Disease, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Hui Tong
- The Key Laboratory of Rare Metabolic Disease, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Jizheng Chen
- The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Huimin Wang
- The Sate Key laboratory of Membrane Biology, Center for Life Science and Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiaowei Chen
- The Sate Key laboratory of Membrane Biology, Center for Life Science and Institute of Molecular Medicine, Peking University, Beijing, China
| | - Junyuan Guo
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, China
| | - Hui Liang
- Department of General Surgery, The First affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongwen Zhou
- The Key Laboratory of Rare Metabolic Disease, Nanjing Medical University, Nanjing, China.,Department of Endocrinology, The First affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Singh A, Vashistha N, Heck J, Tang X, Wipf P, Brodsky JL, Hampton RY. Direct involvement of Hsp70 ATP hydrolysis in Ubr1-dependent quality control. Mol Biol Cell 2020; 31:2669-2686. [PMID: 32966159 PMCID: PMC7927186 DOI: 10.1091/mbc.e20-08-0541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chaperones can mediate both protein folding and degradation. This process is referred to as protein triage, which demands study to reveal mechanisms of quality control for both basic scientific and translational purposes. In yeast, many misfolded proteins undergo chaperone-dependent ubiquitination by the action of the E3 ligases Ubr1 and San1, allowing detailed study of protein triage. In cells, both HSP70 and HSP90 mediated substrate ubiquitination, and the canonical ATP cycle was required for HSP70’s role: we have found that ATP hydrolysis by HSP70, the nucleotide exchange activity of Sse1, and the action of J-proteins are all needed for Ubr1-mediated quality control. To discern whether chaperones were directly involved in Ubr1-mediated ubiquitination, we developed a bead-based assay with covalently immobilized but releasable misfolded protein to obviate possible chaperone effects on substrate physical state or transport. In this in vitro assay, only HSP70 was required, along with its ATPase cycle and relevant cochaperones, for Ubr1-mediated ubiquitination. The requirement for the HSP70 ATP cycle in ubiquitination suggests a possible model of triage in which efficiently folded proteins are spared, while slow-folding or nonfolding proteins are iteratively tagged with ubiquitin for subsequent degradation.
Collapse
Affiliation(s)
- Amanjot Singh
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| | - Nidhi Vashistha
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| | - Jarrod Heck
- Adaptive Biotechnologies Corp., Seattle, WA 98102
| | - Xin Tang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Randolph Y Hampton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| |
Collapse
|
10
|
Sin TK, Zhang G, Zhang Z, Gao S, Li M, Li YP. Cancer Takes a Toll on Skeletal Muscle by Releasing Heat Shock Proteins-An Emerging Mechanism of Cancer-Induced Cachexia. Cancers (Basel) 2019; 11:cancers11091272. [PMID: 31480237 PMCID: PMC6770863 DOI: 10.3390/cancers11091272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Cancer-associated cachexia (cancer cachexia) is a major contributor to the modality and mortality of a wide variety of solid tumors. It is estimated that cachexia inflicts approximately ~60% of all cancer patients and is the immediate cause of ~30% of all cancer-related death. However, there is no established treatment of this disorder due to the poor understanding of its underlying etiology. The key manifestations of cancer cachexia are systemic inflammation and progressive loss of skeletal muscle mass and function (muscle wasting). A number of inflammatory cytokines and members of the TGFβ superfamily that promote muscle protein degradation have been implicated as mediators of muscle wasting. However, clinical trials targeting some of the identified mediators have not yielded satisfactory results. Thus, the root cause of the muscle wasting associated with cancer cachexia remains to be identified. This review focuses on recent progress of laboratory studies in the understanding of the molecular mechanisms of cancer cachexia that centers on the role of systemic activation of Toll-like receptor 4 (TLR4) by cancer-released Hsp70 and Hsp90 in the development and progression of muscle wasting, and the downstream signaling pathways that activate muscle protein degradation through the ubiquitin-proteasome and the autophagy-lysosome pathways in response to TLR4 activation. Verification of these findings in humans could lead to etiology-based therapies of cancer cachexia by targeting multiple steps in this signaling cascade.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Song Gao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Min Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Shin JY, Hernandez-Ono A, Fedotova T, Östlund C, Lee MJ, Gibeley SB, Liang CC, Dauer WT, Ginsberg HN, Worman HJ. Nuclear envelope-localized torsinA-LAP1 complex regulates hepatic VLDL secretion and steatosis. J Clin Invest 2019; 129:4885-4900. [PMID: 31408437 PMCID: PMC6819140 DOI: 10.1172/jci129769] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Deciphering novel pathways regulating liver lipid content has profound implications for understanding the pathophysiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Recent evidence suggests that the nuclear envelope is a site of regulation of lipid metabolism but there is limited appreciation of the responsible mechanisms and molecular components within this organelle. We showed that conditional hepatocyte deletion of the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1) caused defective VLDL secretion and steatosis, including intranuclear lipid accumulation. LAP1 binds to and activates torsinA, an AAA+ ATPase that resides in the perinuclear space and continuous main ER. Deletion of torsinA from mouse hepatocytes caused even greater reductions in VLDL secretion and profound steatosis. Both of these mutant mouse lines developed hepatic steatosis and subsequent steatohepatitis on a regular chow diet in the absence of whole-body insulin resistance or obesity. Our results establish an essential role for the nuclear envelope-localized torsinA-LAP1 complex in hepatic VLDL secretion and suggest that the torsinA pathway participates in the pathophysiology of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ji-Yeon Shin
- Department of Medicine, and
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | - Cecilia Östlund
- Department of Medicine, and
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Michael J. Lee
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | - William T. Dauer
- Department of Neurology, and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Howard J. Worman
- Department of Medicine, and
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
12
|
Needham PG, Guerriero CJ, Brodsky JL. Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033928. [PMID: 30670468 DOI: 10.1101/cshperspect.a033928] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Misfolded proteins compromise cellular homeostasis. This is especially problematic in the endoplasmic reticulum (ER), which is a high-capacity protein-folding compartment and whose function requires stringent protein quality-control systems. Multiprotein complexes in the ER are able to identify, remove, ubiquitinate, and deliver misfolded proteins to the 26S proteasome for degradation in the cytosol, and these events are collectively termed ER-associated degradation, or ERAD. Several steps in the ERAD pathway are facilitated by molecular chaperone networks, and the importance of ERAD is highlighted by the fact that this pathway is linked to numerous protein conformational diseases. In this review, we discuss the factors that constitute the ERAD machinery and detail how each step in the pathway occurs. We then highlight the underlying pathophysiology of protein conformational diseases associated with ERAD.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
13
|
Goder V, Alanis-Dominguez E, Bustamante-Sequeiros M. Lipids and their (un)known effects on ER-associated protein degradation (ERAD). Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158488. [PMID: 31233887 DOI: 10.1016/j.bbalip.2019.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 02/09/2023]
Abstract
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a conserved cellular process that apart from protein quality control and maintenance of ER membrane identity has pivotal functions in regulating the lipid composition of the ER membrane. A general trigger for ERAD activation is the exposure of normally buried protein domains due to protein misfolding, absence of binding partners or conformational changes. Several feedback loops for ER lipid homeostasis exploit the induction of conformational changes in key enzymes of lipid biosynthesis or in ER membrane-embedded transcription factors upon shortage or abundance of specific lipids, leading to enzyme degradation or mobilization of transcription factors. Similarly, an insufficient amount of lipids triggers ERAD of apolipoproteins during lipoprotein formation. Lipids might even have a role in ER protein quality control: when proteins destined for ER export are covalently modified with lipids their ER residence time and their susceptibility to ERAD is reduced. Here we summarize and compare the various interconnections of lipids with ER membrane proteins and ERAD. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Veit Goder
- Department of Genetics, University of Seville, 6, Ave Reina Mercedes, 41012 Seville, Spain.
| | | | | |
Collapse
|
14
|
van den Boogert MAW, Larsen LE, Ali L, Kuil SD, Chong PLW, Loregger A, Kroon J, Schnitzler JG, Schimmel AWM, Peter J, Levels JHM, Steenbergen G, Morava E, Dallinga-Thie GM, Wevers RA, Kuivenhoven JA, Hand NJ, Zelcer N, Rader DJ, Stroes ESG, Lefeber DJ, Holleboom AG. N-Glycosylation Defects in Humans Lower Low-Density Lipoprotein Cholesterol Through Increased Low-Density Lipoprotein Receptor Expression. Circulation 2019; 140:280-292. [PMID: 31117816 DOI: 10.1161/circulationaha.118.036484] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying patients with type I congenital disorders of glycosylation (CDGs) with defective N-glycosylation. METHODS We studied 29 patients with the 2 most prevalent types of type I CDG, ALG6 (asparagine-linked glycosylation protein 6)-deficiency CDG and PMM2 (phosphomannomutase 2)-deficiency CDG, and 23 first- and second-degree relatives with a heterozygous mutation and measured plasma cholesterol levels. Low-density lipoprotein (LDL) metabolism was studied in 3 cell models-gene silencing in HepG2 cells, patient fibroblasts, and patient hepatocyte-like cells derived from induced pluripotent stem cells-by measuring apolipoprotein B production and secretion, LDL receptor expression and membrane abundance, and LDL particle uptake. Furthermore, SREBP2 (sterol regulatory element-binding protein 2) protein expression and activation and endoplasmic reticulum stress markers were studied. RESULTS We report hypobetalipoproteinemia (LDL cholesterol [LDL-C] and apolipoprotein B below the fifth percentile) in a large cohort of patients with type I CDG (mean age, 9 years), together with reduced LDL-C and apolipoprotein B in clinically unaffected heterozygous relatives (mean age, 46 years), compared with 2 separate sets of age- and sex-matched control subjects. ALG6 and PMM2 deficiency led to markedly increased LDL uptake as a result of increased cell surface LDL receptor abundance. Mechanistically, this outcome was driven by increased SREBP2 protein expression accompanied by amplified target gene expression, resulting in higher LDL receptor protein levels. Endoplasmic reticulum stress was not found to be a major mediator. CONCLUSIONS Our study establishes N-glycosylation as an important regulator of LDL metabolism. Given that LDL-C was also reduced in a group of clinically unaffected heterozygotes, we propose that increasing LDL receptor-mediated cholesterol clearance by targeting N-glycosylation in the LDL pathway may represent a novel therapeutic strategy to reduce LDL-C and cardiovascular disease.
Collapse
Affiliation(s)
- Marjolein A W van den Boogert
- Departments of Vascular Medicine (M.A.W.v.d.B., J.K., G.M.D.-T., E.S.G.S., A.G.H.), Amsterdam University Medical Centers, location AMC, The Netherlands.,Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Lars E Larsen
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands.,Department of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (L.E.L., P.L.W.C., N.J.H., D.J.R.)
| | - Lubna Ali
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Sacha D Kuil
- Department of Laboratory Medicine, Translational Metabolic Laboratory (S.D.K., G.S., R.A.W., D.J.L.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Patrick L W Chong
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands.,Department of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (L.E.L., P.L.W.C., N.J.H., D.J.R.)
| | - Anke Loregger
- Medical Biochemistry (A.L., N.Z.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Jeffrey Kroon
- Departments of Vascular Medicine (M.A.W.v.d.B., J.K., G.M.D.-T., E.S.G.S., A.G.H.), Amsterdam University Medical Centers, location AMC, The Netherlands.,Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Johan G Schnitzler
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Alinda W M Schimmel
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Jorge Peter
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Johannes H M Levels
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Gerry Steenbergen
- Department of Laboratory Medicine, Translational Metabolic Laboratory (S.D.K., G.S., R.A.W., D.J.L.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN (E.M.)
| | - Geesje M Dallinga-Thie
- Departments of Vascular Medicine (M.A.W.v.d.B., J.K., G.M.D.-T., E.S.G.S., A.G.H.), Amsterdam University Medical Centers, location AMC, The Netherlands.,Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory (S.D.K., G.S., R.A.W., D.J.L.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, The Netherlands (J.A.K.)
| | - Nicholas J Hand
- Department of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (L.E.L., P.L.W.C., N.J.H., D.J.R.)
| | - Noam Zelcer
- Medical Biochemistry (A.L., N.Z.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Daniel J Rader
- Department of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (L.E.L., P.L.W.C., N.J.H., D.J.R.)
| | - Erik S G Stroes
- Departments of Vascular Medicine (M.A.W.v.d.B., J.K., G.M.D.-T., E.S.G.S., A.G.H.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Dirk J Lefeber
- Department of Laboratory Medicine, Translational Metabolic Laboratory (S.D.K., G.S., R.A.W., D.J.L.), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neurology (D.J.L.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adriaan G Holleboom
- Departments of Vascular Medicine (M.A.W.v.d.B., J.K., G.M.D.-T., E.S.G.S., A.G.H.), Amsterdam University Medical Centers, location AMC, The Netherlands
| |
Collapse
|
15
|
Zhang P, Csaki LS, Ronquillo E, Baufeld LJ, Lin JY, Gutierrez A, Dwyer JR, Brindley DN, Fong LG, Tontonoz P, Young SG, Reue K. Lipin 2/3 phosphatidic acid phosphatases maintain phospholipid homeostasis to regulate chylomicron synthesis. J Clin Invest 2018; 129:281-295. [PMID: 30507612 DOI: 10.1172/jci122595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022] Open
Abstract
The lipin phosphatidic acid phosphatase (PAP) enzymes are required for triacylglycerol (TAG) synthesis from glycerol 3-phosphate in most mammalian tissues. The 3 lipin proteins (lipin 1, lipin 2, and lipin 3) each have PAP activity, but have distinct tissue distributions, with lipin 1 being the predominant PAP enzyme in many metabolic tissues. One exception is the small intestine, which is unique in expressing exclusively lipin 2 and lipin 3. TAG synthesis in small intestinal enterocytes utilizes 2-monoacylglycerol and does not require the PAP reaction, making the role of lipin proteins in enterocytes unclear. Enterocyte TAGs are stored transiently as cytosolic lipid droplets or incorporated into lipoproteins (chylomicrons) for secretion. We determined that lipin enzymes are critical for chylomicron biogenesis, through regulation of membrane phospholipid composition and association of apolipoprotein B48 with nascent chylomicron particles. Lipin 2/3 deficiency caused phosphatidic acid accumulation and mammalian target of rapamycin complex 1 (mTORC1) activation, which were associated with enhanced protein levels of a key phospholipid biosynthetic enzyme (CTP:phosphocholine cytidylyltransferase α) and altered membrane phospholipid composition. Impaired chylomicron synthesis in lipin 2/3 deficiency could be rescued by normalizing phospholipid synthesis levels. These data implicate lipin 2/3 as a control point for enterocyte phospholipid homeostasis and chylomicron biogenesis.
Collapse
Affiliation(s)
- Peixiang Zhang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Lauren S Csaki
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Emilio Ronquillo
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Lynn J Baufeld
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jason Y Lin
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Alexis Gutierrez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jennifer R Dwyer
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Loren G Fong
- Department of Medicine, Division of Cardiology, and
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Stephen G Young
- Department of Medicine, Division of Cardiology, and.,Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
16
|
A computational study on the endohedral alkali metal and ion B 40 nanocluster. J Mol Model 2018; 24:194. [PMID: 29974242 DOI: 10.1007/s00894-018-3731-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
Recent exploration of the boron fullerenes has raised exciting new prospects for boron applications. Here, the endohedral X/X+@B40 complexes (X = Li, Na, and K) were explored by means of density functional theory calculations. By increasing the atomic number, the interaction of alkali metals with the B40 nanocage is unusually weakened. It was concluded that by increasing the alkali metals' size, their electrons repel those of the cage, and the interaction weakens. The interaction of X with B40 is more favorable than that of X+. For example, the calculated ΔG of interaction at 298 K and 1 atm is about -108.3 and + 18.4 kJ mol-1 for X and X+, respectively. Compared to the X+ cations, the X atoms considerably enhance the boron cluster electrical conductivity, by reducing the gap. We found that the B40 nanocluster is not large enough to freely embed large atoms, such as Na and K. Also, the electron emission from the surface of B40 cluster is increased and reduced by X and X+ encapsulations, respectively.
Collapse
|
17
|
Doonan LM, Fisher EA, Brodsky JL. Can modulators of apolipoproteinB biogenesis serve as an alternate target for cholesterol-lowering drugs? Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:762-771. [PMID: 29627384 DOI: 10.1016/j.bbalip.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 12/23/2022]
Abstract
Understanding the molecular defects underlying cardiovascular disease is necessary for the development of therapeutics. The most common method to lower circulating lipids, which reduces the incidence of cardiovascular disease, is statins, but other drugs are now entering the clinic, some of which have been approved. Nevertheless, patients cannot tolerate some of these therapeutics, the drugs are costly, and/or the treatments are approved for only rare forms of disease. Efforts to find alternative treatments have focused on other factors, such as apolipoproteinB (apoB), which transports cholesterol in the blood stream. The levels of apoB are regulated by endoplasmic reticulum (ER) associated degradation as well as by a post ER degradation pathway in model systems, and we suggest that these events provide novel therapeutic targets. We discuss first how cardiovascular disease arises and how cholesterol is regulated, and then summarize the mechanisms of action of existing treatments for cardiovascular disease. We then review the apoB biosynthetic pathway, focusing on steps that might be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Lynley M Doonan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Edward A Fisher
- Departments of Medicine (Cardiology) and Cell Biology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
18
|
Liu Y, Conlon DM, Bi X, Slovik KJ, Shi J, Edelstein HI, Millar JS, Javaheri A, Cuchel M, Pashos EE, Iqbal J, Hussain MM, Hegele RA, Yang W, Duncan SA, Rader DJ, Morrisey EE. Lack of MTTP Activity in Pluripotent Stem Cell-Derived Hepatocytes and Cardiomyocytes Abolishes apoB Secretion and Increases Cell Stress. Cell Rep 2018; 19:1456-1466. [PMID: 28514664 DOI: 10.1016/j.celrep.2017.04.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/22/2017] [Accepted: 04/21/2017] [Indexed: 01/26/2023] Open
Abstract
Abetalipoproteinemia (ABL) is an inherited disorder of lipoprotein metabolism resulting from mutations in microsomal triglyceride transfer protein (MTTP). In addition to expression in the liver and intestine, MTTP is expressed in cardiomyocytes, and cardiomyopathy has been reported in several ABL cases. Using induced pluripotent stem cells (iPSCs) generated from an ABL patient homozygous for a missense mutation (MTTPR46G), we show that human hepatocytes and cardiomyocytes exhibit defects associated with ABL disease, including loss of apolipoprotein B (apoB) secretion and intracellular accumulation of lipids. MTTPR46G iPSC-derived cardiomyocytes failed to secrete apoB, accumulated intracellular lipids, and displayed increased cell death, suggesting intrinsic defects in lipid metabolism due to loss of MTTP function. Importantly, these phenotypes were reversed after the correction of the MTTPR46G mutation by CRISPR/Cas9 gene editing. Together, these data reveal clear cellular defects in iPSC-derived hepatocytes and cardiomyocytes lacking MTTP activity, including a cardiomyocyte-specific regulated stress response to elevated lipids.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donna M Conlon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xin Bi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine J Slovik
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianting Shi
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hailey I Edelstein
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John S Millar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Javaheri
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Cuchel
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evanthia E Pashos
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, State University of New York Downstate Medicine Center, Brooklyn, NY 11203, USA
| | - M Mahmood Hussain
- Department of Cell Biology and Pediatrics, State University of New York Downstate Medicine Center, Brooklyn, NY 11203, USA
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Wenli Yang
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J 2017; 474:445-469. [PMID: 28159894 DOI: 10.1042/bcj20160582] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research.
Collapse
|
20
|
Choi H, Jin UH, Kang SK, Abekura F, Park JY, Kwon KM, Suh SJ, Cho SH, Ha KT, Lee YC, Chung TW, Kim CH. Monosialyl Ganglioside GM3 Decreases Apolipoprotein B-100 Secretion in Liver Cells. J Cell Biochem 2017; 118:2168-2181. [PMID: 28019668 DOI: 10.1002/jcb.25860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
Some sialic acid-containing glycolipids are known to regulate development of atherosclerosis with accumulated plasma apolipoprotein B-100 (Apo-B)-containing lipoproteins, because Apo-B as an atherogenic apolipoprotein is assembled mainly in VLDL and LDL. Previously, we have elucidated that disialyl GD3 promotes the microsomal triglyceride transfer protein (MTP) gene expression and secretion of triglyceride (TG)-assembled ApoB, claiming the GD3 role in ApoB lipoprotein secretion in liver cells. In the synthetic pathway of gangliosides, GD3 is synthesized by addition of a sialic acid residue to GM3. Thus, there should be some regulatory links between GM3 and GD3. In this study, exogenous and endogenous monosialyl GM3 has been examined how GM3 plays a role in ApoB secretion in Chang liver cells in a view point of MTP and ApoB degradation in the same cells. The level of GM3 ganglioside in the GM3 synthase gene-transfected cells was increased in the cell extract, but not in the medium. In addition, GM3 synthase gene-transfected cells showed a diminished secretion of TG-enriched ApoB with a lower content of TG in the medium. Exogenous GM3 treatment for 24 h exerted a dose dependent inhibitory effect on ApoB secretion together with TG, while a liver-specific albumin was unchanged, indicating that GM3 effect is limited to ApoB secretion. GM3 decreased the mRNA level of MTP gene, too. ApoB protein assembly dysregulated by GM3 indicates the impaired ApoB secretion is caused by a proteasome-dependent pathway. Treatment with small interfering RNAs (siRNAs) decreased ApoB secretion, but GM3-specific antibody did not. These results indicate that plasma membrane associated GM3 inhibits ApoB secretion, lowers development of atherosclerosis by decreasing the secretion of TG-enriched ApoB containing lipoproteins, suggesting that GM3 is an inhibitor of ApoB and TG secretion in liver cells. J. Cell. Biochem. 118: 2168-2181, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hyunju Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea
| | - Un-Ho Jin
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea
| | - Sung-Koo Kang
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea
| | - Kyung-Min Kwon
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea.,Research Institute, Davinch-K Co., Ltd., Geumcheon-gu, Seoul 153-719, Korea
| | - Seok-Jong Suh
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases Research, Korea National Institute of Health, Heungdeok-gu, Cheongju 363-951, Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Korea
| | - Young-Coon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea.,Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
21
|
van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1558-1572. [PMID: 28411170 DOI: 10.1016/j.bbamem.2017.04.006] [Citation(s) in RCA: 878] [Impact Index Per Article: 109.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/27/2017] [Accepted: 04/09/2017] [Indexed: 12/11/2022]
Abstract
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in all mammalian cell membranes. In the 1950s, Eugene Kennedy and co-workers performed groundbreaking research that established the general outline of many of the pathways of phospholipid biosynthesis. In recent years, the importance of phospholipid metabolism in regulating lipid, lipoprotein and whole-body energy metabolism has been demonstrated in numerous dietary studies and knockout animal models. The purpose of this review is to highlight the unappreciated impact of phospholipid metabolism on health and disease. Abnormally high, and abnormally low, cellular PC/PE molar ratios in various tissues can influence energy metabolism and have been linked to disease progression. For example, inhibition of hepatic PC synthesis impairs very low density lipoprotein secretion and changes in hepatic phospholipid composition have been linked to fatty liver disease and impaired liver regeneration after surgery. The relative abundance of PC and PE regulates the size and dynamics of lipid droplets. In mitochondria, changes in the PC/PE molar ratio affect energy production. We highlight data showing that changes in the PC and/or PE content of various tissues are implicated in metabolic disorders such as atherosclerosis, insulin resistance and obesity. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Jelske N van der Veen
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - John P Kennelly
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Agricultural, Food and Nutritional Science, 4-002 Li Ka Shing Centre for Heath Research Innovations, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sereana Wan
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jean E Vance
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Dennis E Vance
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - René L Jacobs
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; Department of Agricultural, Food and Nutritional Science, 4-002 Li Ka Shing Centre for Heath Research Innovations, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
22
|
Singh RB, Dandekar SP, Elimban V, Gupta SK, Dhalla NS. Role of proteases in the pathophysiology of cardiac disease. Mol Cell Biochem 2016; 263:241-56. [PMID: 27520682 DOI: 10.1023/b:mcbi.0000041865.63445.40] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a major cause of death and thus a great deal of effort has been made in salvaging the diseased myocardium. Although various factors have been identified as possible causes of different cardiac diseases such as heart failure and ischemic heart disease, there is a real need to elucidate their role for the better understanding of the cardiac disease pathology and formulation of strategies for developing newer therapeutic interventions. In view of the intimate involvement of different types of proteases in maintaining cellular structure, the role of proteases in various cardiac diseases has become the focus of recent research. Proteases are present in the cytosol as well as are localized in a number of subcellular organelles in the cell. These are known to use extracellular matrix, cytoskeletal, sarcolemmal, sarcoplasmic reticular, mitochondrial and myofibrillar proteins as substrates. Work from different laboratories using a wide variety of techniques has shown that the activation of proteases causes alterations of a number of specific proteins leading to subcellular remodeling and cardiac dysfunction. Inhibition of protease action by different drugs and agents, therefore, has a clinical relevance and is expected to form a part of new treatment paradigm for improving heart function. This review examines the biochemistry and localization of some of the proteases in the cardiac tissue in addition to identification of the sites of action of some protease inhibitors. (Mol Cell Biochem 263: 241-256, 2004).
Collapse
Affiliation(s)
- Raja B Singh
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | - Sucheta P Dandekar
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | - Suresh K Gupta
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| |
Collapse
|
23
|
Buchanan BW, Lloyd ME, Engle SM, Rubenstein EM. Cycloheximide Chase Analysis of Protein Degradation in Saccharomyces cerevisiae. J Vis Exp 2016. [PMID: 27167179 DOI: 10.3791/53975] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Regulation of protein abundance is crucial to virtually every cellular process. Protein abundance reflects the integration of the rates of protein synthesis and protein degradation. Many assays reporting on protein abundance (e.g., single-time point western blotting, flow cytometry, fluorescence microscopy, or growth-based reporter assays) do not allow discrimination of the relative effects of translation and proteolysis on protein levels. This article describes the use of cycloheximide chase followed by western blotting to specifically analyze protein degradation in the model unicellular eukaryote, Saccharomyces cerevisiae (budding yeast). In this procedure, yeast cells are incubated in the presence of the translational inhibitor cycloheximide. Aliquots of cells are collected immediately after and at specific time points following addition of cycloheximide. Cells are lysed, and the lysates are separated by polyacrylamide gel electrophoresis for western blot analysis of protein abundance at each time point. The cycloheximide chase procedure permits visualization of the degradation kinetics of the steady state population of a variety of cellular proteins. The procedure may be used to investigate the genetic requirements for and environmental influences on protein degradation.
Collapse
Affiliation(s)
| | - Michael E Lloyd
- Department of Biology, Ball State University; Bioproduct Research & Development, Eli Lilly and Company
| | | | | |
Collapse
|
24
|
Magnolo L, Noto D, Cefalù AB, Averna M, Calandra S, Yao Z, Tarugi P. Characterization of a mutant form of human apolipoprotein B (Thr26_Tyr27del) associated with familial hypobetalipoproteinemia. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:371-9. [DOI: 10.1016/j.bbalip.2016.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/14/2015] [Accepted: 01/24/2016] [Indexed: 10/22/2022]
|
25
|
Gao F, Luo H, Fu Z, Zhang CT, Zhang R. Exome sequencing identifies novel ApoB loss-of-function mutations causing hypobetalipoproteinemia in type 1 diabetes. Acta Diabetol 2015; 52:531-7. [PMID: 25430706 DOI: 10.1007/s00592-014-0687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
AIM Diabetic patients commonly suffer from disturbances in production and clearance of plasma lipoproteins, known as diabetic dyslipidemia, resulting in an increased risk of coronary heart disease. The study aimed to examine the cause of hypobetalipoproteinemia in two patients with type 1 diabetes. METHODS The Diabetes Control and Complications Trial (DCCT) is a study demonstrating that intensive blood glucose control delays the onset and progression of type 1 diabetes complications. Hypobetalipoproteinemia was present in two DCCT subjects, IDs 1427 and 1078, whose LDL-C levels were 36 and 28 mg/dL, respectively, and triglyceride levels were 20 and 28 mg/dL, respectively. We performed exome sequencing on genomic DNA from the two patients with hypobetalipoproteinemia. RESULTS The subjects 1427 and 1078 had heterozygous loss-of-function mutations in the gene apolipoprotein B (ApoB), and these mutations resulted in premature stop codons at amino acid 1333 (ApoB-29) and 3680 (ApoB-81), respectively. Indeed, the plasma ApoB level of subject 1427 (19 mg/dL) was the lowest and that of subject 1078 (26 mg/dL) was the second to the lowest among all the 1,441 DCCT participants. Sequencing genomic DNA of family members showed that probands 1427 and 1078 inherited the mutations from the father and the mother, respectively. CONCLUSIONS The identification of ApoB loss-of-function mutations in type 1 diabetic patients presents innovative cases to study the interaction between hypobetalipoproteinemia and insulin deficiency.
Collapse
Affiliation(s)
- Feng Gao
- Department of Physics, Tianjin University, Tianjin, China
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Watts SG, Crowder JJ, Coffey SZ, Rubenstein EM. Growth-based determination and biochemical confirmation of genetic requirements for protein degradation in Saccharomyces cerevisiae. J Vis Exp 2015:e52428. [PMID: 25742191 DOI: 10.3791/52428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Regulated protein degradation is crucial for virtually every cellular function. Much of what is known about the molecular mechanisms and genetic requirements for eukaryotic protein degradation was initially established in Saccharomyces cerevisiae. Classical analyses of protein degradation have relied on biochemical pulse-chase and cycloheximide-chase methodologies. While these techniques provide sensitive means for observing protein degradation, they are laborious, time-consuming, and low-throughput. These approaches are not amenable to rapid or large-scale screening for mutations that prevent protein degradation. Here, a yeast growth-based assay for the facile identification of genetic requirements for protein degradation is described. In this assay, a reporter enzyme required for growth under specific selective conditions is fused to an unstable protein. Cells lacking the endogenous reporter enzyme but expressing the fusion protein can grow under selective conditions only when the fusion protein is stabilized (i.e. when protein degradation is compromised). In the growth assay described here, serial dilutions of wild-type and mutant yeast cells harboring a plasmid encoding a fusion protein are spotted onto selective and non-selective medium. Growth under selective conditions is consistent with degradation impairment by a given mutation. Increased protein abundance should be biochemically confirmed. A method for the rapid extraction of yeast proteins in a form suitable for electrophoresis and western blotting is also demonstrated. A growth-based readout for protein stability, combined with a simple protocol for protein extraction for biochemical analysis, facilitates rapid identification of genetic requirements for protein degradation. These techniques can be adapted to monitor degradation of a variety of short-lived proteins. In the example presented, the His3 enzyme, which is required for histidine biosynthesis, was fused to Deg1-Sec62. Deg1-Sec62 is targeted for degradation after it aberrantly engages the endoplasmic reticulum translocon. Cells harboring Deg1-Sec62-His3 were able to grow under selective conditions when the protein was stabilized.
Collapse
Affiliation(s)
| | | | - Samuel Z Coffey
- Department of Biology, Ball State University; Division of Nephrology, Cincinnati Children's Hospital
| | | |
Collapse
|
28
|
Levy E. Insights from human congenital disorders of intestinal lipid metabolism. J Lipid Res 2014; 56:945-62. [PMID: 25387865 DOI: 10.1194/jlr.r052415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 12/24/2022] Open
Abstract
The intestine must challenge the profuse daily flux of dietary fat that serves as a vital source of energy and as an essential component of cell membranes. The fat absorption process takes place in a series of orderly and interrelated steps, including the uptake and translocation of lipolytic products from the brush border membrane to the endoplasmic reticulum, lipid esterification, Apo synthesis, and ultimately the packaging of lipid and Apo components into chylomicrons (CMs). Deciphering inherited disorders of intracellular CM elaboration afforded new insight into the key functions of crucial intracellular proteins, such as Apo B, microsomal TG transfer protein, and Sar1b GTPase, the defects of which lead to hypobetalipoproteinemia, abetalipoproteinemia, and CM retention disease, respectively. These "experiments of nature" are characterized by fat malabsorption, steatorrhea, failure to thrive, low plasma levels of TGs and cholesterol, and deficiency of liposoluble vitamins and essential FAs. After summarizing and discussing the functions and regulation of these proteins for reader's comprehension, the current review focuses on their specific roles in malabsorptions and dyslipidemia-related intestinal fat hyperabsorption while dissecting the spectrum of clinical manifestations and managements. The influence of newly discovered proteins (proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 protein) on fat absorption has also been provided. Finally, it is stressed how the overexpression or polymorphism status of the critical intracellular proteins promotes dyslipidemia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Sainte-Justine and Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
29
|
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J Biomed Res 2014; 28:178-93. [PMID: 25013401 PMCID: PMC4085555 DOI: 10.7555/jbr.28.20140019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regulated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autophagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
Collapse
Affiliation(s)
- Eric Fisher
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Lake
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roger S McLeod
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
30
|
Conti BJ, Elferich J, Yang Z, Shinde U, Skach WR. Cotranslational folding inhibits translocation from within the ribosome-Sec61 translocon complex. Nat Struct Mol Biol 2014; 21:228-35. [PMID: 24561504 PMCID: PMC4351553 DOI: 10.1038/nsmb.2779] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/27/2014] [Indexed: 12/31/2022]
Abstract
Eukaryotic secretory proteins cross the endoplasmic reticulum (ER) membrane through a protein-conducting channel contained within the ribosome-Sec61translocon complex (RTC). Using a zinc-finger sequence as a folding switch, we show that cotranslational folding of a secretory passenger inhibits translocation in canine ER microsomes and in human cells. Folding occurs within a cytosolically inaccessible environment, after ER targeting but before initiation of translocation, and it is most effective when the folded domain is 15-54 residues beyond the signal sequence. Under these conditions, substrate is diverted into cytosol at the stage of synthesis in which unfolded substrate enters the ER lumen. Moreover, the translocation block is reversed by passenger unfolding even after cytosol emergence. These studies identify an enclosed compartment within the assembled RTC that allows a short span of nascent chain to reversibly abort translocation in a substrate-specific manner.
Collapse
Affiliation(s)
- Brian J Conti
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Johannes Elferich
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Zhongying Yang
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - William R Skach
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, Portland, Oregon, USA
| |
Collapse
|
31
|
Lum MA, Balaburski GM, Murphy ME, Black AR, Black JD. Heat shock proteins regulate activation-induced proteasomal degradation of the mature phosphorylated form of protein kinase C. J Biol Chem 2013; 288:27112-27127. [PMID: 23900841 DOI: 10.1074/jbc.m112.437095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although alterations in stimulus-induced degradation of PKC have been implicated in disease, mechanistic understanding of this process remains limited. Evidence supports the existence of both proteasomal and lysosomal mechanisms of PKC processing. An established pathway involves rate-limiting priming site dephosphorylation of the activated enzyme and proteasomal clearance of the dephosphorylated protein. However, here we show that agonists promote down-regulation of endogenous PKCα with minimal accumulation of a nonphosphorylated species in multiple cell types. Furthermore, proteasome and lysosome inhibitors predominantly protect fully phosphorylated PKCα, pointing to this form as a substrate for degradation. Failure to detect substantive dephosphorylation of activated PKCα was not due to rephosphorylation because inhibition of Hsp70/Hsc70, which is required for re-priming, had only a minor effect on agonist-induced accumulation of nonphosphorylated protein. Thus, PKC degradation can occur in the absence of dephosphorylation. Further analysis revealed novel functions for Hsp70/Hsc70 and Hsp90 in the control of agonist-induced PKCα processing. These chaperones help to maintain phosphorylation of activated PKCα but have opposing effects on degradation of the phosphorylated protein; Hsp90 is protective, whereas Hsp70/Hsc70 activity is required for proteasomal processing of this species. Notably, down-regulation of nonphosphorylated PKCα shows little Hsp70/Hsc70 dependence, arguing that phosphorylated and nonphosphorylated species are differentially targeted for proteasomal degradation. Finally, lysosomal processing of activated PKCα is not regulated by phosphorylation or Hsps. Collectively, these data demonstrate that phosphorylated PKCα is a direct target for agonist-induced proteasomal degradation via an Hsp-regulated mechanism, and highlight the existence of a novel pathway of PKC desensitization in cells.
Collapse
Affiliation(s)
- Michelle A Lum
- From The Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | | | | - Adrian R Black
- From The Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Jennifer D Black
- From The Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263.
| |
Collapse
|
32
|
Sparks JD, O'Dell C, Chamberlain JM, Sparks CE. Insulin-dependent apolipoprotein B degradation is mediated by autophagy and involves class I and class III phosphatidylinositide 3-kinases. Biochem Biophys Res Commun 2013; 435:616-20. [PMID: 23685141 DOI: 10.1016/j.bbrc.2013.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/07/2013] [Indexed: 01/07/2023]
Abstract
Insulin acutely stimulates the degradation of apolipoprotein B (apo B) which decreases very low density lipoprotein (VLDL) secretion by liver. Insulin-dependent apo B degradation (IDAD) occurs following phosphatidylinositide 3-kinase (PI3K) activation and involves lysosomal degradation. Insulin suppression of apo B secretion is blocked by over-expression of phosphatase and tensin homologue (PTEN) in McArdle RH7777 (McA) cells suggesting the importance of Class I PI3K generated PI (3,4,5) triphosphate (PIP3) in IDAD. Classical autophagy inhibitors including 3-methyladenine, L-asparagine and bafilomycin A1 also blocked the ability of insulin to suppress apo B secretion by rat hepatocytes (RH) suggesting that IDAD occurs through an autophagy-related mechanism. IDAD is also blocked following over-expression in McA cells of a dominant negative kinase-defective Vps34, a class III PI3K that generates PI 3-monophosphate required for autophagy. Vps34 inhibition of IDAD occurs without altering insulin-dependent S473 phosphorylation of Akt indicating PI3K/PIP3/Akt signaling is intact. Cellular p62/SQSTM1, an inverse indicator of autophagy, is increased with insulin treatment consistent with the known ability of insulin to inhibit autophagy, and therefore the role of insulin in utilizing components of autophagy for apo B degradation is unexpected. Thapsigargan, an inducer of endoplasmic reticulum (ER) stress, and a recently demonstrated autophagy inhibitor, blocked apo B secretion which contrasted with other autophagy inhibitors and mutant Vps34 results which were permissive with respect to apo B secretion. Pulse chase studies indicated that intact B100 and B48 proteins were retained in cells treated with thapsigargan consistent with their accumulation in autophagosomal vacuoles. Differences between IDAD and ER stress-coupled autophagy mediated by thapsgargin suggest that IDAD involves an unique form of autophagy. Insulin action resulting in hepatic apo B degradation is novel and important in understanding regulation of hepatic VLDL metabolism.
Collapse
Affiliation(s)
- Janet D Sparks
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Box 626, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
33
|
Sparks DL, Chatterjee C. Purinergic signaling, dyslipidemia and inflammatory disease. Cell Physiol Biochem 2012; 30:1333-9. [PMID: 23095900 DOI: 10.1159/000343322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2012] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome is a compound obesity disorder, wherein the abnormal metabolism of glucose and lipid is associated with the development of chronic inflammatory diseases. The prevalence of this disease is increasing in the developed world, but the causative linkage between these metabolic disorders has remained obscure. Metabolic disease may be associated with chronic nucleotide secretion, purinergic signaling and activation of inflammatory pathways. Purinergic signaling has been implicated in impaired glucose metabolism and inflammatory disease and may contribute to dyslipidemia. Our research shows that purinergic signaling disrupts hepatic lipoprotein metabolism by blocking insulin receptor signaling and by activating cellular autophagic pathways. Chronic stimulation of purinergic signaling may therefore be causative to glucose and lipid metabolic disorders and associated with the development of cardiovascular disease.
Collapse
Affiliation(s)
- Daniel L Sparks
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada.
| | | |
Collapse
|
34
|
Rubenstein EM, Kreft SG, Greenblatt W, Swanson R, Hochstrasser M. Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase. ACTA ACUST UNITED AC 2012; 197:761-73. [PMID: 22689655 PMCID: PMC3373407 DOI: 10.1083/jcb.201203061] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Hrd1 ubiquitin ligase plays a role in quality control of two substrates associated with the Sec61 translocon. Little is known about quality control of proteins that aberrantly or persistently engage the endoplasmic reticulum (ER)-localized translocon en route to membrane localization or the secretory pathway. Hrd1 and Doa10, the primary ubiquitin ligases that function in ER-associated degradation (ERAD) in yeast, target distinct subsets of misfolded or otherwise abnormal proteins based primarily on degradation signal (degron) location. We report the surprising observation that fusing Deg1, a cytoplasmic degron normally recognized by Doa10, to the Sec62 membrane protein rendered the protein a Hrd1 substrate. Hrd1-dependent degradation occurred when Deg1-Sec62 aberrantly engaged the Sec61 translocon channel and underwent topological rearrangement. Mutations that prevent translocon engagement caused a reversion to Doa10-dependent degradation. Similarly, a variant of apolipoprotein B, a protein known to be cotranslocationally targeted for proteasomal degradation, was also a Hrd1 substrate. Hrd1 therefore likely plays a general role in targeting proteins that persistently associate with and potentially obstruct the translocon.
Collapse
Affiliation(s)
- Eric M Rubenstein
- Deptartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
35
|
Lian J, Quiroga AD, Li L, Lehner R. Ces3/TGH deficiency improves dyslipidemia and reduces atherosclerosis in Ldlr(-/-) mice. Circ Res 2012; 111:982-90. [PMID: 22872154 DOI: 10.1161/circresaha.112.267468] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RATIONALE Carboxylesterase 3/triacylglycerol hydrolase (TGH) has been shown to participate in hepatic very low-density lipoprotein (VLDL) assembly. Deficiency of TGH in mice lowers plasma lipids and atherogenic lipoproteins without inducing hepatic steatosis. OBJECTIVE To investigate the contribution of TGH to atherosclerotic lesion development in mice that lack low-density lipoprotein receptor (LDLR). METHODS AND RESULTS Mice deficient in LDL receptor (Ldlr(-/-)) and mice lacking both TGH and LDLR (Tgh(-/-)/Ldlr(-/-)) were fed with a Western-type diet for 12 weeks. Analysis of Tgh(-/-)/Ldlr(-/-) plasma showed an atheroprotective lipoprotein profile with decreased cholesterol in the VLDL and the LDL fractions, concomitant with elevated high-density lipoprotein cholesterol. Significantly reduced plasma apolipoprotein B levels were also observed in Tgh(-/-)/Ldlr(-/-) mice. Consequently, Tgh(-/-)/Ldlr(-/-) mice presented with a significant reduction (54%, P<0.01) of the high-fat, high-cholesterol dieteninduced atherosclerotic plaques when compared with Tgh(+/+)/Ldlr(-/-) mice in the cross-sectional aortic root analysis. TGH deficiency did not further increase liver steatosis despite lowering plasma lipids, mainly due to reduced hepatic lipogenesis. The ameliorated dyslipidemia in Tgh(-/-)/Ldlr(-/-) mice was accompanied with significantly improved insulin sensitivity. CONCLUSIONS Inhibition of TGH activity ameliorates atherosclerosis development and improves insulin sensitivity in Ldlr(-/-) mice.
Collapse
Affiliation(s)
- Jihong Lian
- Department of Pediatrics, Group on Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
36
|
Grenier E, Garofalo C, Delvin E, Levy E. Modulatory role of PYY in transport and metabolism of cholesterol in intestinal epithelial cells. PLoS One 2012; 7:e40992. [PMID: 22844422 PMCID: PMC3402548 DOI: 10.1371/journal.pone.0040992] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 06/19/2012] [Indexed: 12/17/2022] Open
Abstract
Background Gastrointestinal peptides are involved in modulating appetite. Other biological functions attributed to them include the regulation of lipid homeostasis. However, data concerning PYY remain fragmentary. The objectives of the study were: (i) To determine the effect of PYY on intestinal transport and synthesis of cholesterol, the biogenesis of apolipoproteins (apos) and assembly of lipoproteins and (ii) To analyze whether the effects of PYY are similar according to whether cells are exposed to PYY on apical or basolateral surface. Methodology/Principal Findings Caco-2/15 cells were incubated with PYY (1–36) administered either to the apical or basolateral medium, at concentrations of 50 or 200 nM for 24 hours. De novo synthesis of cholesterol, cholesterol uptake, and assembly of lipoproteins were evaluated through the incorporation of [14C]-acetate, [14C]-cholesterol, and [14C]-oleate, respectively. Biogenesis of apos (A-I, A-IV, E, B-48 and B-100) was examined by the incorporation of [35S]-methionine. The influence of PYY on protein and mRNA levels of many key mediators of lipid metabolism was analyzed by Western blot and PCR, respectively. Our results show that PYY influenced cholesterol metabolism in Caco-2/15 cells depending on the site of PYY delivery. Apical addition of PYY significantly lowered the incorporation of [14C]-cholesterol likely via the reduction of NPC1L1, stimulated intracellular cholesterol synthesis probably through an increase in SREBP-2 expression, whereas it concomitantly increased apo A-I synthesis and decreased LDL secretion. In contrast, basolateral PYY reduced the production of chylomicrons (CM) as well as the biogenesis of apos B-48 and B-100, while lowering the expression of the transcription factors RXRα and PPAR(α,β). Conclusions/Significance PYY is capable of influencing cholesterol homeostasis in intestinal Caco-2/15 cells depending on the site delivery. Apical PYY was able to decrease cholesterol uptake via NPC1L1 downregulation, whereas basolateral PYY diminished CM output through the biogenesis decline of apos B-48 and B-100.
Collapse
Affiliation(s)
- Emilie Grenier
- Research Centre, Centre Hospitalier Universitaire (CHU) Ste-Justine, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Carole Garofalo
- Research Centre, Centre Hospitalier Universitaire (CHU) Ste-Justine, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Centre, Centre Hospitalier Universitaire (CHU) Ste-Justine, Montreal, Quebec, Canada
- Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Centre, Centre Hospitalier Universitaire (CHU) Ste-Justine, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
37
|
Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2012; 32:2104-12. [PMID: 22796579 DOI: 10.1161/atvbaha.111.241463] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin plays a central role in regulating energy metabolism, including hepatic transport of very low-density lipoprotein (VLDL)-associated triglyceride. Hepatic hypersecretion of VLDL and consequent hypertriglyceridemia leads to lower circulating high-density lipoprotein levels and generation of small dense low-density lipoproteins characteristic of the dyslipidemia commonly observed in metabolic syndrome and type 2 diabetes mellitus. Physiological fluctuations of insulin modulate VLDL secretion, and insulin inhibition of VLDL secretion upon feeding may be the first pathway to become resistant in obesity that leads to VLDL hypersecretion. This review summarizes the role of insulin-related signaling pathways that determine hepatic VLDL production. Disruption in signaling pathways that reduce generation of the second messenger phosphatidylinositide (3,4,5) triphosphate downstream of activated phosphatidylinositide 3-kinase underlies the development of VLDL hypersecretion. As insulin resistance progresses, a number of pathways are altered that further augment VLDL hypersecretion, including hepatic inflammatory pathways. Insulin plays a complex role in regulating glucose metabolism, and it is not surprising that the role of insulin in VLDL and lipid metabolism will prove equally complex.
Collapse
Affiliation(s)
- Janet D Sparks
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine, Rochester, NY, USA
| | | | | |
Collapse
|
38
|
Chatterjee C, Sparks DL. Extracellular nucleotides inhibit insulin receptor signaling, stimulate autophagy and control lipoprotein secretion. PLoS One 2012; 7:e36916. [PMID: 22590634 PMCID: PMC3349634 DOI: 10.1371/journal.pone.0036916] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/16/2012] [Indexed: 01/15/2023] Open
Abstract
Hyperglycemia is associated with abnormal plasma lipoprotein metabolism and with an elevation in circulating nucleotide levels. We evaluated how extracellular nucleotides may act to perturb hepatic lipoprotein secretion. Adenosine diphosphate (ADP) (>10 µM) acts like a proteasomal inhibitor to stimulate apoB100 secretion and inhibit apoA-I secretion from human liver cells at 4 h and 24 h. ADP blocks apoA-I secretion by stimulating autophagy. The nucleotide increases cellular levels of the autophagosome marker, LC3-II, and increases co-localization of LC3 with apoA-I in punctate autophagosomes. ADP affects autophagy and apoA-I secretion through P2Y13. Overexpression of P2Y13 increases cellular LC3-II levels by ∼50% and blocks induction of apoA-I secretion. Conversely, a siRNA-induced reduction in P2Y13 protein expression of 50% causes a similar reduction in cellular LC3-II levels and a 3-fold stimulation in apoA-I secretion. P2Y13 gene silencing blocks the effects of ADP on autophagy and apoA-I secretion. A reduction in P2Y13 expression suppresses ERK1/2 phosphorylation, increases the phosphorylation of IR-β and protein kinase B (Akt) >3-fold, and blocks the inhibition of Akt phosphorylation by TNFα and ADP. Conversely, increasing P2Y13 expression significantly inhibits insulin-induced phosphorylation of insulin receptor (IR-β) and Akt, similar to that observed after treatment with ADP. Nucleotides therefore act through P2Y13, ERK1/2 and insulin receptor signaling to stimulate autophagy and affect hepatic lipoprotein secretion.
Collapse
Affiliation(s)
- Cynthia Chatterjee
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Daniel L. Sparks
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
39
|
Mancone C, Montaldo C, Santangelo L, Di Giacomo C, Costa V, Amicone L, Ippolito G, Pucillo LP, Alonzi T, Tripodi M. Ferritin heavy chain is the host factor responsible for HCV-induced inhibition of apoB-100 production and is required for efficient viral infection. J Proteome Res 2012; 11:2786-97. [PMID: 22443280 DOI: 10.1021/pr201128s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatic fat export occurs by apolipoprotein B-100-containing lipoprotein production, whereas impaired production leads to liver steatosis. Hepatitis C virus (HCV) infection is associated to dysregulation of apoB-100 secretion and steatosis; however, the molecular mechanism by which HCV affects the apoB-100 secretion is not understood. Here, combining quantitative proteomics and computational biology, we propose ferritin heavy chain (Fth) as being the cellular determinant of apoB-100 production inhibition. By means of molecular analyses, we found that HCV nonstructural proteins and NS5A appear to be sufficient for inducing Fth up-regulation. Fth in turn was found to inhibit apoB-100 secretion leading to increased intracellular degradation via proteasome. Notably, intracellular Fth down-regulation by siRNA restores apoB-100 secretion. The inverse correlation between ferritin and plasma apoB-100 concentrations was also found in JFH-1 HCV cell culture systems (HCVcc) and HCV-infected patients. Finally, Fth expression was found to be required for robust HCV infection. These observations provide a further molecular explanation for the onset of liver steatosis and allow for hypothesizing on new therapeutic and antiviral strategies.
Collapse
Affiliation(s)
- Carmine Mancone
- L. Spallanzani National Institute for Infectious Diseases, IRCCS, via Portuense 292, 00149, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fisher EA. The degradation of apolipoprotein B100: multiple opportunities to regulate VLDL triglyceride production by different proteolytic pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:778-81. [PMID: 22342675 DOI: 10.1016/j.bbalip.2012.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 12/12/2022]
Abstract
Very low density lipoproteins (VLDL) are a major secretory product of the liver. They serve to transport endogenously synthesized lipids, mainly triglycerides (but also some cholesterol and cholesteryl esters) to peripheral tissues. VLDL is also the precursor of LDL. ApoB100 is absolutely required for VLDL assembly and secretion. The amount of VLDL triglycerides secreted by the liver depends on the amount loaded onto each lipoprotein particle, as well as the number of particles. Each VLDL has one apoB100 molecule, making apoB100 availability a key determinant of the number of VLDL particles, and hence, triglycerides, that can be secreted by hepatic cells. Surprisingly, the pool of apoB100 in the liver is typically regulated not by its level of synthesis, which is relatively constant, but by its level of degradation. It is now recognized that there are multiple opportunities for the hepatic cell to intercept apoB100 molecules and to direct them to distinct degradative processes. This mini-review will summarize progress in understanding these processes, with an emphasis on autophagy, the most recently described pathway of apoB100 degradation, and the one with possibly the most physiologic relevance to common metabolic perturbations affecting VLDL production. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Edward A Fisher
- The Department of Medicine (Cardiology) and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, Smilow 7, 522 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
41
|
Suzuki M, Otsuka T, Ohsaki Y, Cheng J, Taniguchi T, Hashimoto H, Taniguchi H, Fujimoto T. Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol Biol Cell 2012; 23:800-10. [PMID: 22238364 PMCID: PMC3290640 DOI: 10.1091/mbc.e11-11-0950] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein B-100 after lipidation is dislocated from the ER lumen to the cytoplasmic surface of lipid droplets for proteasomal degradation. UBXD8 in lipid droplets and Derlin-1 in the ER membrane interact with each other and with ApoB and are engaged in the pre- and postdislocation steps, respectively. Apolipoprotein B-100 (ApoB) is the principal component of very low density lipoprotein. Poorly lipidated nascent ApoB is extracted from the Sec61 translocon and degraded by proteasomes. ApoB lipidated in the endoplasmic reticulum (ER) lumen is also subjected to proteasomal degradation, but where and how it dislocates to the cytoplasm remain unknown. In the present study, we demonstrate that ApoB after lipidation is dislocated to the cytoplasmic surface of lipid droplets (LDs) and accumulates as ubiquitinated ApoB in Huh7 cells. Depletion of UBXD8, which is almost confined to LDs in this cell type, decreases recruitment of p97 to LDs and causes an increase of both ubiquitinated ApoB on the LD surface and lipidated ApoB in the ER lumen. In contrast, abrogation of Derlin-1 function induces an accumulation of lipidated ApoB in the ER lumen but does not increase ubiquitinated ApoB on the LD surface. UBXD8 and Derlin-1 bind with each other and with lipidated ApoB and show colocalization around LDs. These results indicate that ApoB after lipidation is dislocated from the ER lumen to the LD surface for proteasomal degradation and that Derlin-1 and UBXD8 are engaged in the predislocation and postdislocation steps, respectively.
Collapse
Affiliation(s)
- Michitaka Suzuki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Grubb S, Guo L, Fisher EA, Brodsky JL. Protein disulfide isomerases contribute differentially to the endoplasmic reticulum-associated degradation of apolipoprotein B and other substrates. Mol Biol Cell 2011; 23:520-32. [PMID: 22190736 PMCID: PMC3279382 DOI: 10.1091/mbc.e11-08-0704] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ER-associated degradation (ERAD) rids the early secretory pathway of misfolded or misprocessed proteins. Some members of the protein disulfide isomerase (PDI) family appear to facilitate ERAD substrate selection and retrotranslocation, but a thorough characterization of PDIs during the degradation of diverse substrates has not been undertaken, in part because there are 20 PDI family members in mammals. PDIs can also exhibit disulfide redox, isomerization, and/or chaperone activity, but which of these activities is required for the ERAD of different substrate classes is unknown. We therefore examined the fates of unique substrates in yeast, which expresses five PDIs. Through the use of a yeast expression system for apolipoprotein B (ApoB), which is disulfide rich, we discovered that Pdi1 interacts with ApoB and facilitates degradation through its chaperone activity. In contrast, Pdi1's redox activity was required for the ERAD of CPY* (a misfolded version of carboxypeptidase Y that has five disulfide bonds). The ERAD of another substrate, the alpha subunit of the epithelial sodium channel, was Pdi1 independent. Distinct effects of mammalian PDI homologues on ApoB degradation were then observed in hepatic cells. These data indicate that PDIs contribute to the ERAD of proteins through different mechanisms and that PDI diversity is critical to recognize the spectrum of potential ERAD substrates.
Collapse
Affiliation(s)
- Sarah Grubb
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
43
|
Xu Q, Metzler B, Jahangiri M, Mandal K. Molecular chaperones and heat shock proteins in atherosclerosis. Am J Physiol Heart Circ Physiol 2011; 302:H506-14. [PMID: 22058161 DOI: 10.1152/ajpheart.00646.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In response to stress stimuli, mammalian cells activate an ancient signaling pathway leading to the transient expression of heat shock proteins (HSPs). HSPs are a family of proteins serving as molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. Physiologically, HSPs play a protective role in the homeostasis of the vessel wall but have an impact on immunoinflammatory processes in pathological conditions involved in the development of atherosclerosis. For instance, some members of HSPs have been shown to have immunoregulatory properties and modification of innate and adaptive response to HSPs, and can protect the vessel wall from the disease. On the other hand, a high degree of sequence homology between microbial and mammalian HSPs, due to evolutionary conservation, carries a risk of misdirected autoimmunity against HSPs expressed on the stressed cells of vascular endothelium. Furthermore, HSPs and anti-HSP antibodies have been shown to elicit production of proinflammatory cytokines. Potential therapeutic use of HSP in prevention of atherosclerosis involves achieving optimal balance between protective and immunogenic effects of HSPs and in the progress of research on vaccination. In this review, we update the progress of studies on HSPs and the integrity of the vessel wall, discuss the mechanism by which HSPs exert their role in the disease development, and highlight the potential clinic translation in the research field.
Collapse
Affiliation(s)
- Qingbo Xu
- Cardiovascular Division, King's British Heart Foundation Center, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|
44
|
Cole LK, Vance JE, Vance DE. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:754-61. [PMID: 21979151 DOI: 10.1016/j.bbalip.2011.09.009] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 12/28/2022]
Abstract
Phosphatidylcholine (PC) is the major phospholipid component of all plasma lipoprotein classes. PC is the only phospholipid which is currently known to be required for lipoprotein assembly and secretion. Impaired hepatic PC biosynthesis significantly reduces the levels of circulating very low density lipoproteins (VLDLs) and high density lipoproteins (HDLs). The reduction in plasma VLDLs is due in part to impaired hepatic secretion of VLDLs. Less PC within the hepatic secretory pathway results in nascent VLDL particles with reduced levels of PC. These particles are recognized as being defective and are degraded within the secretory system by an incompletely defined process that occurs in a post-endoplasmic reticulum compartment, consistent with degradation directed by the low-density lipoprotein receptor and/or autophagy. Moreover, VLDL particles are taken up more readily from the circulation when the PC content of the VLDLs is reduced, likely due to a preference of cell surface receptors and/or enzymes for lipoproteins that contain less PC. Impaired PC biosynthesis also reduces plasma HDLs by inhibiting hepatic HDL formation and by increasing HDL uptake from the circulation. These effects are mediated by elevated expression of ATP-binding cassette transporter A1 and hepatic scavenger receptor class B type 1, respectively. Hepatic PC availability has recently been linked to the progression of liver and heart disease. These findings demonstrate that hepatic PC biosynthesis can regulate the amount of circulating lipoproteins and suggest that hepatic PC biosynthesis may represent an important pharmaceutical target. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Laura K Cole
- Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
45
|
Choi SH, Ginsberg HN. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol Metab 2011; 22:353-63. [PMID: 21616678 PMCID: PMC3163828 DOI: 10.1016/j.tem.2011.04.007] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022]
Abstract
Insulin resistance (IR) affects not only the regulation of carbohydrate metabolism but all aspects of lipid and lipoprotein metabolism. IR is associated with increased secretion of VLDL and increased plasma triglycerides, as well as with hepatic steatosis, despite the increased VLDL secretion. Here we link IR with increased VLDL secretion and hepatic steatosis at both the physiologic and molecular levels. Increased VLDL secretion, together with the downstream effects on high density lipoprotein (HDL) cholesterol and low density lipoprotein (LDL) size, is proatherogenic. Hepatic steatosis is a risk factor for steatohepatitis and cirrhosis. Understanding the complex inter-relationships between IR and these abnormalities of liver lipid homeostasis will provide insights relevant to new therapies for these increasing clinical problems.
Collapse
Affiliation(s)
- Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, Korea
| | - Henry N Ginsberg
- Columbia University College of Physicians and Surgeons, New York, NY, USA
- whom correspondence should be addressed.
| |
Collapse
|
46
|
Xiao C, Hsieh J, Adeli K, Lewis GF. Gut-liver interaction in triglyceride-rich lipoprotein metabolism. Am J Physiol Endocrinol Metab 2011; 301:E429-46. [PMID: 21693689 DOI: 10.1152/ajpendo.00178.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The liver and intestine have complementary and coordinated roles in lipoprotein metabolism. Despite their highly specialized functions, assembly and secretion of triglyceride-rich lipoproteins (TRL; apoB-100-containing VLDL in the liver and apoB-48-containing chylomicrons in the intestine) are regulated by many of the same hormonal, inflammatory, nutritional, and metabolic factors. Furthermore, lipoprotein metabolism in these two organs may be affected in a similar fashion by certain disorders. In insulin resistance, for example, overproduction of TRL by both liver and intestine is a prominent component of and underlies other features of a complex dyslipidemia and increased risk of atherosclerosis. The intestine is gaining increasing recognition for its importance in affecting whole body lipid homeostasis, in part through its interaction with the liver. This review aims to integrate recent advances in our understanding of these processes and attempts to provide insight into the factors that coordinate lipid homeostasis in these two organs in health and disease.
Collapse
|
47
|
Qiu W, Zhang J, Dekker MJ, Wang H, Huang J, Brumell JH, Adeli K. Hepatic autophagy mediates endoplasmic reticulum stress-induced degradation of misfolded apolipoprotein B. Hepatology 2011; 53:1515-25. [PMID: 21360721 DOI: 10.1002/hep.24269] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED Induction of endoplasmic reticulum (ER) stress was previously shown to impair hepatic apolipoprotein B100 (apoB) production by enhancing cotranslational and posttranslational degradation of newly synthesized apoB. Here, we report the involvement of autophagy in ER stress-induced degradation of apoB and provide evidence for a significant role of autophagy in regulating apoB biogenesis in primary hepatocyte systems. Induction of ER stress following short-term glucosamine treatment of McA-RH7777 cells resulted in significantly increased colocalization of apoB with green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3), referred to as apoB-GFP-LC3 puncta, in a dose-dependent manner. Colocalization with this autophagic marker correlated positively with the reduction in newly synthesized apoB100. Treatment of McA-RH7777 cells with 4-phenyl butyric acid, a chemical ER stress inhibitor, prevented glucosamine- and tunicamycin-induced increases in GRP78 and phosphorylated eIF2α, rescued newly synthesized [(35) S]-labeled apoB100, and substantially blocked the colocalization of apoB with GFP-LC3. Autophagic apoB degradation was also observed in primary rat and hamster hepatocytes at basal conditions as well as upon the induction of ER stress. In contrast, this pathway was inactive in HepG2 cells under ER stress conditions, unless proteasomal degradation was blocked with N-acetyl-leucinyl-leucinyl-norleucinal and the medium was supplemented with oleate. Transient transfection of McA-RH7777 cells with a wild-type protein kinase R-like ER kinase (PERK) complementary DNA resulted in dramatic induction of apoB autophagy. In contrast, transfection with a kinase inactive mutant PERK gave rise to reduced apoB autophagy, suggesting that apoB autophagy may occur via a PERK signaling-dependent mechanism. CONCLUSION Taken together, these data suggest that induction of ER stress leads to markedly enhanced apoB autophagy in a PERK-dependent pathway, which can be blocked with the chemical chaperone 4-phenyl butyric acid. ApoB autophagy rather than proteasomal degradation may be a more pertinent physiological mechanism regulating hepatic lipoprotein production in primary hepatocytes.
Collapse
Affiliation(s)
- Wei Qiu
- The Hospital for Sick Children, University of Toronto, Ontario,Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Ronis MJJ, Hennings L, Stewart B, Basnakian AG, Apostolov EO, Albano E, Badger TM, Petersen DR. Effects of long-term ethanol administration in a rat total enteral nutrition model of alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2011; 300:G109-19. [PMID: 21051528 PMCID: PMC3025509 DOI: 10.1152/ajpgi.00145.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Male Sprague-Dawley rats were chronically fed a high-unsaturated-fat diet for 130 days by using total enteral nutrition (TEN), or the same diet in which ethanol (EtOH) isocalorically replaced carbohydrate calories. Additional groups were supplemented with the antioxidant N-acetylcysteine (NAC) at 1.7 g·kg(-1)·day(-1). Relative to an ad libitum chow-fed group, the high-fat-fed controls had three- to fourfold greater expression of fatty acid transporter CD36 mRNA and developed mild steatosis but little other hepatic pathology. NAC treatment resulted in increased somatic growth relative to controls (4.0 ± 0.1 vs. 3.1 ± 0.1 g/day) and increased hepatic steatosis score (3.5 ± 0.6 vs. 2.7 ± 1.2), associated with suppression of the triglyceride hydrolyzing protein adiponutrin, but produced no elevation in serum alanine aminotransferase (ALT). Chronic EtOH treatment increased expression of fatty acid transport protein FATP-2 mRNA twofold, resulting in marked hepatic steatosis, oxidative stress, and a twofold elevation in serum ALT. However, no changes in tumor necrosis factor-α or transforming growth factor-β expression were observed. Fibrosis, as measured by Masson's trichrome and picrosirius red staining, and a twofold increase in expression of type I and type III collagen mRNA, was only observed after EtOH treatment. Long-term EtOH treatment increased hepatocyte proliferation but did not modify the hepatic mRNAs for hedgehog pathway ligands or target genes or genes regulating epithelial-to-mesenchymal transition. Although the effects of NAC on EtOH-induced fibrosis could not be fully evaluated, NAC had additive effects on hepatocyte proliferation and prevented EtOH-induced oxidative stress and necrosis, despite a failure to reverse hepatic steatosis.
Collapse
Affiliation(s)
- Martin J. J. Ronis
- Departments of 1Pharmacology and Toxicology, ,2University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, Little Rock, Arkansas;
| | | | - Ben Stewart
- 4Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado; and
| | | | | | - Emanuele Albano
- 5Department of Medical Sciences, University A Avogadro of East Piedmonte, Novara, Italy
| | - Thomas M. Badger
- 6Physiology and Biophysics, ,2University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, Little Rock, Arkansas;
| | - Dennis R. Petersen
- 4Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado; and
| |
Collapse
|
49
|
Grove DE, Fan CY, Ren HY, Cyr DM. The endoplasmic reticulum-associated Hsp40 DNAJB12 and Hsc70 cooperate to facilitate RMA1 E3-dependent degradation of nascent CFTRDeltaF508. Mol Biol Cell 2010; 22:301-14. [PMID: 21148293 PMCID: PMC3031462 DOI: 10.1091/mbc.e10-09-0760] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A specialized Hsp40 protein, DNAJB12, was found to function on the cytoplasmic face of the ER with the RMA1 E3 ligase to regulate the folding efficiency of CFTR. Relative contributions of folding kinetics versus protein quality control (QC) activity in the partitioning of non-native proteins between life and death are not clear. Cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis serves as an excellent model to study this question because folding of nascent CFTR is inefficient and deletion of F508 causes accumulation of CFTRΔF508 in a kinetically trapped, but foldable state. Herein, a novel endoplasmic reticulum (ER)-associated Hsp40, DNAJB12 (JB12) is demonstrated to play a role in control of CFTR folding efficiency. JB12 cooperates with cytosolic Hsc70 and the ubiquitin ligase RMA1 to target CFTR and CFTRΔF508 for degradation. Modest elevation of JB12 decreased nascent CFTR and CFTRΔF508 accumulation while increasing association of Hsc70 with ER forms of CFTR and the RMA1 E3 complex. Depletion of JB12 increased CFTR folding efficiency up to threefold and permitted a pool of CFTRΔF508 to fold and escape the ER. Introduction of the V510D misfolding suppressor mutation into CFTRΔF508 modestly increased folding efficiency, whereas combined inactivation of JB12 and suppression of intrinsic folding defects permitted CFTRΔF508 to fold at 50% of wild-type efficiency. Therapeutic correction of CFTRΔF508 misfolding in cystic fibrosis patients may require repair of defective folding kinetics and suppression of ER QC factors, such as JB12.
Collapse
Affiliation(s)
- Diane E Grove
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
50
|
Meex SJR, Andreo U, Sparks JD, Fisher EA. Huh-7 or HepG2 cells: which is the better model for studying human apolipoprotein-B100 assembly and secretion? J Lipid Res 2010; 52:152-8. [PMID: 20956548 DOI: 10.1194/jlr.d008888] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein-B100 (apoB100) is the essential protein for the assembly and secretion of very low density lipoproteins (VLDL) from liver. The hepatoma HepG2 cell line has been the cell line of choice for the study of synthesis and secretion of human apoB-100. Despite the general use of HepG2 cells to study apoB100 metabolism, they secrete relatively dense, lipid-poor particles compared with VLDL secreted in vivo. Recently, Huh-7 cells were adopted as an alternative model to HepG2 cells, with the implicit assumption that Huh-7 cells were superior in some respects of lipoprotein metabolism, including VLDL secretion. In this study we addressed the hypothesis that the spectrum of apoB100 lipoprotein particles secreted by Huh-7 cells more closely resembles the native state in human liver. We find that Huh-7 cells resemble HepG2 cells in the effects of exogenous lipids, microsomal triglyceride transfer protein (MTP)-inhibition, and proteasome inhibitors of apoB100 secretion, recovery, and degradation. In contrast to HepG2 cells, however, MEK-ERK inhibition does not correct the defect in VLDL secretion. Huh-7 cells do not appear to offer any advantages over HepG2 cells as a general model of human apoB100-lipoprotein metabolism.
Collapse
Affiliation(s)
- Steven J R Meex
- Department of Medicine (Leon H. Charney Division of Cardiology), New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|