1
|
Cherf GM, Lee RB, Mehta N, Clifford C, Torres K, Kintzing JR, Cochran JR. An engineered ultrahigh affinity bi-paratopic uPAR targeting agent confers enhanced tumor targeting. Biotechnol Bioeng 2024; 121:3169-3180. [PMID: 38965775 DOI: 10.1002/bit.28790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is overexpressed on tumor cells in multiple types of cancer and contributes to disease progression and metastasis. In this work, we engineered a novel bi-paratopic uPAR targeting agent by fusing the binding domains of two native uPAR ligands: uPA and vitronectin, with a flexible peptide linker. The linker length was optimized to facilitate simultaneous engagement of both domains to their adjacent epitopes on uPAR, resulting in a high affinity and avid binding interaction. Furthermore, the individual domains were affinity-matured using yeast surface display and directed evolution, resulting in a bi-paratopic protein with affinity in the picomolar to femtomolar range. This engineered uPAR targeting agent demonstrated significantly enhanced tumor localization in mouse tumor models compared to the native uPAR ligand and warrants further investigation as a diagnostic and therapeutic agent for cancer.
Collapse
Affiliation(s)
- Gerald M Cherf
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Robert B Lee
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Nishant Mehta
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Claire Clifford
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Kathleen Torres
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Chang YC, Wu CZ, Cheng CW, Chen JS, Chang LC. Redrawing Urokinase Receptor (uPAR) Signaling with Cancer Driver Genes for Exploring Possible Anti-Cancer Targets and Drugs. Pharmaceuticals (Basel) 2023; 16:1435. [PMID: 37895906 PMCID: PMC10610195 DOI: 10.3390/ph16101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
During tumorigenesis, urokinase (uPA) and uPA receptor (uPAR) play essential roles in mediating pathological progression in many cancers. To understand the crosstalk between the uPA/uPAR signaling and cancer, as well as to decipher their cellular pathways, we proposed to use cancer driver genes to map out the uPAR signaling. In the study, an integrated pharmaceutical bioinformatics approach that combined modulator identification, driver gene ontology networking, protein targets prediction and networking, pathway analysis and uPAR modulator screening platform construction was employed to uncover druggable targets in uPAR signaling for developing a novel anti-cancer modality. Through these works, we found that uPAR signaling interacted with 10 of 21 KEGG cancer pathways, indicating the important role of uPAR in mediating intracellular cancerous signaling. Furthermore, we verified that receptor tyrosine kinases (RTKs) and ribosomal S6 kinases (RSKs) could serve as signal hubs to relay uPAR-mediated cellular functions on cancer hallmarks such as angiogenesis, proliferation, migration and metastasis. Moreover, we established an in silico virtual screening platform and a uPAR-driver gene pair rule for identifying potential uPAR modulators to combat cancer. Altogether, our results not only elucidated the complex networking between uPAR modulation and cancer but also provided a paved way for developing new chemical entities and/or re-positioning clinically used drugs against cancer.
Collapse
Affiliation(s)
- Yu-Ching Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City 114201, Taiwan;
| | - Chung-Ze Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110301, Taiwan;
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110301, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114201, Taiwan
| | - Jin-Shuen Chen
- Department of Education and Research, Kaohsiung Veteran General Hospital, Kaohsiung City 813414, Taiwan
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114202, Taiwan
| | - Li-Chien Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City 114201, Taiwan;
- School of Pharmacy, National Defense Medical Center, Taipei City 114201, Taiwan
| |
Collapse
|
3
|
Tamai S, Ichinose T, Tsutsui T, Tanaka S, Garaeva F, Sabit H, Nakada M. Tumor Microenvironment in Glioma Invasion. Brain Sci 2022; 12:brainsci12040505. [PMID: 35448036 PMCID: PMC9031400 DOI: 10.3390/brainsci12040505] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
A major malignant trait of gliomas is their remarkable infiltration capacity. When glioma develops, the tumor cells have already reached the distant part. Therefore, complete removal of the glioma is impossible. Recently, research on the involvement of the tumor microenvironment in glioma invasion has advanced. Local hypoxia triggers cell migration as an environmental factor. The transcription factor hypoxia-inducible factor (HIF) -1α, produced in tumor cells under hypoxia, promotes the transcription of various invasion related molecules. The extracellular matrix surrounding tumors is degraded by proteases secreted by tumor cells and simultaneously replaced by an extracellular matrix that promotes infiltration. Astrocytes and microglia become tumor-associated astrocytes and glioma-associated macrophages/microglia, respectively, in relation to tumor cells. These cells also promote glioma invasion. Interactions between glioma cells actively promote infiltration of each other. Surgery, chemotherapy, and radiation therapy transform the microenvironment, allowing glioma cells to invade. These findings indicate that the tumor microenvironment may be a target for glioma invasion. On the other hand, because the living body actively promotes tumor infiltration in response to the tumor, it is necessary to reconsider whether the invasion itself is friend or foe to the brain.
Collapse
|
4
|
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med 2022; 20:135. [PMID: 35303878 PMCID: PMC8932206 DOI: 10.1186/s12967-022-03329-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Collapse
Affiliation(s)
- Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ya-Jun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
5
|
Gonias SL. Plasminogen activator receptor assemblies in cell signaling, innate immunity, and inflammation. Am J Physiol Cell Physiol 2021; 321:C721-C734. [PMID: 34406905 DOI: 10.1152/ajpcell.00269.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) are serine proteases and major activators of fibrinolysis in mammalian systems. Because fibrinolysis is an essential component of the response to tissue injury, diverse cells, including cells that participate in the response to injury, have evolved receptor systems to detect tPA and uPA and initiate appropriate cell-signaling responses. Formation of functional receptor systems for the plasminogen activators requires assembly of diverse plasma membrane proteins, including but not limited to: the urokinase receptor (uPAR); integrins; N-formyl peptide receptor-2 (FPR2), receptor tyrosine kinases (RTKs), the N-methyl-d-aspartate receptor (NMDA-R), and low-density lipoprotein receptor-related protein-1 (LRP1). The cell-signaling responses elicited by tPA and uPA impact diverse aspects of cell physiology. This review describes rapidly evolving knowledge regarding the structure and function of plasminogen activator receptor assemblies. How these receptor assemblies regulate innate immunity and inflammation is then considered.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, University of California, San Diego, California
| |
Collapse
|
6
|
Rysenkova KD, Klimovich PS, Shmakova AA, Karagyaur MN, Ivanova KA, Aleksandrushkina NA, Tkachuk VA, Rubina KA, Semina EV. Urokinase receptor deficiency results in EGFR-mediated failure to transmit signals for cell survival and neurite formation in mouse neuroblastoma cells. Cell Signal 2020; 75:109741. [PMID: 32822758 DOI: 10.1016/j.cellsig.2020.109741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
Urokinase-type plasminogen activator uPA and its receptor (uPAR) are the central players in extracellular matrix proteolysis, which facilitates cancer invasion and metastasis. EGFR is one of the important components of uPAR interactome. uPAR/EGFR interaction controls signaling pathways that regulate cell survival, proliferation and migration. We have previously established that uPA binding to uPAR stimulates neurite elongation in neuroblastoma cells, while blocking uPA/uPAR interaction induces neurite branching and new neurite formation. Here we demonstrate that blocking the uPA binding to uPAR with anti-uPAR antibody decreases the level of pEGFR and its downstream pERK1/2, but does increase phosphorylation of Akt, p38 and c-Src Since long-term uPAR blocking results in a severe DNA damage, accompanied by PARP-1 proteolysis and Neuro2a cell death, we surmise that Akt, p38 and c-Src activation transmits a pro-apoptotic signal, rather than a survival. Serum deprivation resulting in enhanced neuritogenesis is accompanied by an upregulated uPAR mRNA expression, while EGFR mRNA remains unchanged. EGFR activation by EGF stimulates neurite growth only in uPAR-overexpressing cells but not in control or uPAR-deficient cells. In addition, AG1478-mediated inhibition of EGFR activity impedes neurite growth in control and uPAR-deficient cells, but not in uPAR-overexpressing cells. Altogether these data implicate uPAR as an important regulator of EGFR and ERK1/2 signaling, representing a novel mechanism which implicates urokinase system in neuroblastoma cell survival and differentiation.
Collapse
Affiliation(s)
- K D Rysenkova
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia; Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - P S Klimovich
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Shmakova
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - M N Karagyaur
- Institute of Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - K A Ivanova
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - N A Aleksandrushkina
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia; Institute of Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - V A Tkachuk
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia; Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - K A Rubina
- Laboratory of Morphogenesis and Tissue Reparation, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.
| | - E V Semina
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia; Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
7
|
Li XG, Hong XY, Wang YL, Zhang SJ, Zhang JF, Li XC, Liu YC, Sun DS, Feng Q, Ye JW, Gao Y, Ke D, Wang Q, Li HL, Ye K, Liu GP, Wang JZ. Tau accumulation triggers STAT1-dependent memory deficits by suppressing NMDA receptor expression. EMBO Rep 2019; 20:embr.201847202. [PMID: 31085626 DOI: 10.15252/embr.201847202] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 11/09/2022] Open
Abstract
Intracellular tau accumulation forming neurofibrillary tangles is hallmark pathology of Alzheimer's disease (AD), but how tau accumulation induces synapse impairment is elusive. By overexpressing human full-length wild-type tau (termed hTau) to mimic tau abnormality as seen in the brain of sporadic AD patients, we find that hTau accumulation activates JAK2 to phosphorylate STAT1 (signal transducer and activator of transcription 1) at Tyr701 leading to STAT1 dimerization, nuclear translocation, and its activation. STAT1 activation suppresses expression of N-methyl-D-aspartate receptors (NMDARs) through direct binding to the specific GAS element of GluN1, GluN2A, and GluN2B promoters, while knockdown of STAT1 by AAV-Cre in STAT1flox/flox mice or expressing dominant negative Y701F-STAT1 efficiently rescues hTau-induced suppression of NMDAR expression with amelioration of synaptic functions and memory performance. These findings indicate that hTau accumulation impairs synaptic plasticity through JAK2/STAT1-induced suppression of NMDAR expression, revealing a novel mechanism for hTau-associated synapse and memory deficits.
Collapse
Affiliation(s)
- Xiao-Guang Li
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Yue Hong
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Li Wang
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Shu-Juan Zhang
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Fei Zhang
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia-Chun Li
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Chao Liu
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Shen Sun
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Feng
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Wang Ye
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Ke
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Lian Li
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Gong-Ping Liu
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jian-Zhi Wang
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
8
|
Abstract
In the past decade, the field of the cellular microbiology of group A Streptococcus (S. pyogenes) infection has made tremendous advances and touched upon several important aspects of pathogenesis, including receptor biology, invasive and evasive phenomena, inflammasome activation, strain-specific autophagic bacterial killing, and virulence factor-mediated programmed cell death. The noteworthy aspect of S. pyogenes-mediated cell signaling is the recognition of the role of M protein in a variety of signaling events, starting with the targeting of specific receptors on the cell surface and on through the induction and evasion of NETosis, inflammasome, and autophagy/xenophagy to pyroptosis and apoptosis. Variations in reports on S. pyogenes-mediated signaling events highlight the complex mechanism of pathogenesis and underscore the importance of the host cell and S. pyogenes strain specificity, as well as in vitro/in vivo experimental parameters. The severity of S. pyogenes infection is, therefore, dependent on the virulence gene expression repertoire in the host environment and on host-specific dynamic signaling events in response to infection. Commonly known as an extracellular pathogen, S. pyogenes finds host macrophages as safe havens wherein it survives and even multiplies. The fact that endothelial cells are inherently deficient in autophagic machinery compared to epithelial cells and macrophages underscores the invasive nature of S. pyogenes and its ability to cause severe systemic diseases. S. pyogenes is still one of the top 10 causes of infectious mortality. Understanding the orchestration of dynamic host signaling networks will provide a better understanding of the increasingly complex mechanism of S. pyogenes diseases and novel ways of therapeutically intervening to thwart severe and often fatal infections.
Collapse
|
9
|
Jaiswal RK, Varshney AK, Yadava PK. Diversity and functional evolution of the plasminogen activator system. Biomed Pharmacother 2018; 98:886-898. [PMID: 29571259 DOI: 10.1016/j.biopha.2018.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023] Open
Abstract
The urokinase plasminogen activator system is a family of serine proteases which consists of uPA (urokinase plasminogen activator), uPAR (urokinase type plasminogen activator receptor) and PAI-1 (plasminogen activator inhibitor 1). In addition to their significant roles in activation, these proteases act as key regulators of the tumor microenvironment and are involved in the metastatic process in many cancers. High levels of uPA system proteases in many human cancer predicts poor patient prognosis and strongly indicated a key role of uPA system in cancer metastasis. Individual components of uPA system are found to be differentially expressed in cancer cells compared to normal cells and therefore are potential therapeutic targets. In this review, we present the molecular and cellular mechanisms underlying the role of uPA system in cancer progression. Epithelial to mesenchymal transitions (EMT) is the main cause of the cancer cell metastasis. We have also attempted to relate the role of uPA signaling in EMT of cancer cells.
Collapse
Affiliation(s)
- Rishi Kumar Jaiswal
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akhil Kumar Varshney
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
10
|
Hayward CPM, Liang M, Tasneem S, Soomro A, Waye JS, Paterson AD, Rivard GE, Wilson MD. The duplication mutation of Quebec platelet disorder dysregulates PLAU, but not C10orf55, selectively increasing production of normal PLAU transcripts by megakaryocytes but not granulocytes. PLoS One 2017; 12:e0173991. [PMID: 28301587 PMCID: PMC5354430 DOI: 10.1371/journal.pone.0173991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
Quebec Platelet disorder (QPD) is a unique bleeding disorder that markedly increases urokinase plasminogen activator (uPA) in megakaryocytes and platelets but not in plasma or urine. The cause is tandem duplication of a 78 kb region of chromosome 10 containing PLAU (the uPA gene) and C10orf55, a gene of unknown function. QPD increases uPA in platelets and megakaryocytes >100 fold, far more than expected for a gene duplication. To investigate the tissue-specific effect that PLAU duplication has on gene expression and transcript structure in QPD, we tested if QPD leads to: 1) overexpression of normal or unique PLAU transcripts; 2) increased uPA in leukocytes; 3) altered levels of C10orf55 mRNA and/or protein in megakaryocytes and leukocytes; and 4) global changes in megakaryocyte gene expression. Primary cells and cultured megakaryocytes from donors were prepared for quantitative reverse polymerase chain reaction analyses, RNA-seq and protein expression analyses. Rapidly isolated blood leukocytes from QPD subjects showed only a 3.9 fold increase in PLAU transcript levels, in keeping with the normal to minimally increased uPA in affinity purified, QPD leukocytes. All subjects had more uPA in granulocytes than monocytes and minimal uPA in lymphocytes. QPD leukocytes expressed PLAU alleles in proportions consistent with an extra copy of PLAU on the disease chromosome, unlike QPD megakaryocytes. QPD PLAU transcripts were consistent with reference gene models, with a much higher proportion of reads originating from the disease chromosome in megakaryocytes than granulocytes. QPD and control megakaryocytes contained minimal reads for C10orf55, and C10orf55 protein was not increased in QPD megakaryocytes or platelets. Finally, our QPD megakaryocyte transcriptome analysis revealed a global down regulation of the interferon type 1 pathway. We suggest that the low endogenous levels of uPA in blood are actively regulated, and that the regulatory mechanisms are disrupted in QPD in a megakaryocyte-specific manner.
Collapse
Affiliation(s)
- Catherine P. M. Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
- * E-mail: (CPMH); (MDW)
| | - Minggao Liang
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Asim Soomro
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - John S. Waye
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
| | - Andrew D. Paterson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Dalla Lana School of Public Health and Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Georges E. Rivard
- Hematology/ Oncology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
- * E-mail: (CPMH); (MDW)
| |
Collapse
|
11
|
Guo XX, Wu HT, Zhuang SH, Chen ZH, Liang RL, Chen Y, Wu YS, Liu TC. Detection of Janus-activated kinase-1 and its interacting proteins by the method of luminescent oxygen channeling. RSC Adv 2017. [DOI: 10.1039/c6ra27424b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Janus-activated kinase-1 (JAK1) plays an important role in many signaling pathways, including the JAK–STAT and SOCS pathways.
Collapse
Affiliation(s)
- Xin-Xin Guo
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Han-Tao Wu
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Si-Hui Zhuang
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Zhen-Hua Chen
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Rong-Liang Liang
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Yao Chen
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Ying-Song Wu
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Tian-Cai Liu
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| |
Collapse
|
12
|
Endocytic regulation of cytokine receptor signaling. Cytokine Growth Factor Rev 2016; 32:63-73. [DOI: 10.1016/j.cytogfr.2016.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
|
13
|
Hwang IH, Kwon YK, Cho CK, Lee YW, Sung JS, Joo JC, Lee KB, Yoo HS, Jang IS. Modified Panax ginseng Extract Inhibits uPAR-Mediated α5β1-Integrin Signaling by Modulating Caveolin-1 to Induce Early Apoptosis in Lung Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1081-97. [PMID: 27430913 DOI: 10.1142/s0192415x16500609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urokinase receptor (uPAR) is enhanced in many human cancer cells and is frequently an indicator of poor prognosis. Activation of [Formula: see text]1-integrin requires caveolin-1 and is regulated by uPAR. However, the underlying molecular mechanism responsible for the interaction between uPAR and [Formula: see text]1-integrin remains obscure. We found that modified regular Panax ginseng extract (MRGX) had a negative modulating effect on the uPAR/[Formula: see text]1-integrin interaction, disrupted the uPAR/integrin interaction by modulating caveoline-1, and caused early apoptosis in cancer cells. Additionally, we found that siRNA-mediated caveoline-1 downregulation inhibited uPAR-mediated [Formula: see text]1-integrin signaling, whereas caveoline-1 up-regulation stimulated the signaling, which suppressed p53 expression, thereby indicating negative crosstalk exists between the integrin [Formula: see text]1 and the p53 pathways. Thus, these findings identify a novel mechanism whereby the inhibition of [Formula: see text]1 integrin and the activation of p53 modulate the expression of the anti-apoptotic proteins that are crucially involved in inducing apoptosis in A549 lung cancer cells. Furthermore, MRGX causes changes in the expressions of members of the Bcl-2 family (Bax and Bcl-2) in a pro-apoptotic manner. In addition, MGRX-mediated inhibition of [Formula: see text]1 integrin attenuates ERK phosphorylation (p-ERK), which up-regulates caspase-8 and Bax. Therefore, ERK may affect mitochondria through a negative regulation of caspase-8 and Bax. Taken together, these findings reveal that MRGX is involved in uPAR-[Formula: see text]1-integrin signaling by modulating caveolin-1 signaling to induce early apoptosis in A549 lung-cancer cells and strongly indicate that MRGX might be useful as a herbal medicine and may lead to the development of new herbal medicine that would suppress the growth of lung-cancer cells.
Collapse
Affiliation(s)
- In-Hu Hwang
- Department of Physiology, Korea University College of Medicine, Seoul 136-705, Republic of Korea
| | - Yong-Kyun Kwon
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Chong-Kwan Cho
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Yeon-Weol Lee
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jong-Cheon Joo
- Department of Sasang Constitutional Medicine, Wonkwang University Oriental Medical Hospital, Jeonju 54887, Republic of Korea
| | - Kyung-Bok Lee
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Korea
| | - Hwa-Seung Yoo
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Ik-Soon Jang
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Korea
| |
Collapse
|
14
|
Mrkonjic S, Destaing O, Albiges-Rizo C. Mechanotransduction pulls the strings of matrix degradation at invadosome. Matrix Biol 2016; 57-58:190-203. [PMID: 27392543 DOI: 10.1016/j.matbio.2016.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023]
Abstract
Degradation of the extracellular matrix is a critical step of tumor cell invasion. Both protease-dependent and -independent mechanisms have been described as alternate processes in cancer cell motility. Interestingly, some effectors of protease-dependent degradation are focalized at invadosomes and are directly coupled with contractile and adhesive machineries composed of multiple mechanosensitive proteins. This review presents recent findings in protease-dependent mechanisms elucidating the ways the force affects extracellular matrix degradation by targeting protease expression and activity at invadosome. The aim is to highlight mechanosensing and mechanotransduction processes to direct the degradative activity at invadosomes, with the focus on membrane tension, proteases and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Sanela Mrkonjic
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France
| | - Olivier Destaing
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France.
| | - Corinne Albiges-Rizo
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France.
| |
Collapse
|
15
|
Gonias SL, Hu J. Urokinase receptor and resistance to targeted anticancer agents. Front Pharmacol 2015; 6:154. [PMID: 26283964 PMCID: PMC4515545 DOI: 10.3389/fphar.2015.00154] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022] Open
Abstract
The urokinase receptor (uPAR) is a GPI-anchored membrane protein, which regulates protease activity at the cell surface and, in collaboration with a system of co-receptors, triggers cell-signaling and regulates gene expression within the cell. In normal tissues, uPAR gene expression is limited; however, in cancer, uPAR is frequently over-expressed and the gene may be amplified. Hypoxia, which often develops in tumors, further increases uPAR expression by cancer cells. uPAR-initiated cell-signaling promotes cancer cell migration, invasion, metastasis, epithelial-mesenchymal transition, stem cell-like properties, survival, and release from states of dormancy. Newly emerging data suggest that the pro-survival cell-signaling activity of uPAR may allow cancer cells to "escape" from the cytotoxic effects of targeted anticancer drugs. Herein, we review the molecular properties of uPAR that are responsible for its activity in cancer cells and its ability to counteract the activity of anticancer drugs.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, School of Medicine, University of California, San Diego , San Diego, CA, USA
| | - Jingjing Hu
- Department of Pathology, School of Medicine, University of California, San Diego , San Diego, CA, USA
| |
Collapse
|
16
|
Bao YN, Cao X, Luo DH, Sun R, Peng LX, Wang L, Yan YP, Zheng LS, Xie P, Cao Y, Liang YY, Zheng FJ, Huang BJ, Xiang YQ, Lv X, Chen QY, Chen MY, Huang PY, Guo L, Mai HQ, Guo X, Zeng YX, Qian CN. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis. Cell Cycle 2014; 13:1958-69. [PMID: 24763226 DOI: 10.4161/cc.28921] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignancies in southern China and Southeast Asia, with the highest metastasis rate among head and neck cancers. The mechanisms underlying NPC progression remain poorly understood. Genome-wide expression profiling on 18 NPC vs. 18 noncancerous nasopharyngeal tissues together with GeneGo pathway analysis and expression verification in NPC cells and tissues revealed a potential role of urokinase-type plasminogen activator receptor (uPAR) in NPC progression, which has not been investigated in NPC. We then observed that uPAR expression is increased in poorly differentiated, highly metastatic NPC cells compared with lowly metastatic cells or differentiated NPC cells. In vitro studies demonstrated that uPAR regulates NPC cell growth, colony formation, migration, and invasion and promotes the epithelial-mesenchymal transition (EMT). Additional tumor xenograft and spontaneous metastasis experiments revealed that uPAR promotes NPC cell growth and metastasis in vivo. The JAK-STAT pathway is involved in uPAR-regulated signaling in NPC cells as determined by immunoblotting. Moreover, uPAR-mediated growth and motility is partially abolished upon treatment with the Jak1/Jak2 inhibitor INCB018424. We suppressed uPA expression in uPAR-overexpressing NPC cells and found that uPAR-mediated cellular growth and motility is not exclusively dependent on uPA. In summary, uPAR is a significant regulator of NPC progression and could serve as a promising therapeutic target.
Collapse
Affiliation(s)
- Ying-Na Bao
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China; Department of Radiotherapy; Affiliated Hospital of Inner Mongolia Medical University; Hohhot City, Inner Mongolia Autonomous Region, China
| | - Xue Cao
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Dong-Hua Luo
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Lin Wang
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | | | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Ping Xie
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Yun Cao
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Ying-Ying Liang
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Fang-Jing Zheng
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Yan-Qun Xiang
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Xing Lv
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Qiu-Yan Chen
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Pei-Yu Huang
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Ling Guo
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Xiang Guo
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China; Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| |
Collapse
|
17
|
Asuthkar S, Gogineni VR, Rao JS, Velpula KK. Nuclear Translocation of Hand-1 Acts as a Molecular Switch to Regulate Vascular Radiosensitivity in Medulloblastoma Tumors: The Protein uPAR Is a Cytoplasmic Sequestration Factor for Hand-1. Mol Cancer Ther 2014; 13:1309-22. [DOI: 10.1158/1535-7163.mct-13-0892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Tkachuk VA. Role of multidomain structure of urokinase in regulation of growth and remodeling of vessels. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
19
|
Biermann M, Maueröder C, Brauner JM, Chaurio R, Janko C, Herrmann M, Muñoz LE. Surface code--biophysical signals for apoptotic cell clearance. Phys Biol 2013; 10:065007. [PMID: 24305041 DOI: 10.1088/1478-3975/10/6/065007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called 'find-me', 'eat me' and 'tolerate me' signals. Mononuclear phagocytes are attracted by various 'find-me' signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via 'stay away' signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main 'eat me' signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as 'tolerate me' signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes.
Collapse
Affiliation(s)
- Mona Biermann
- Friedrich-Alexander Universität, Department of Internal Medicine 3-Rheumatology and Immunology, D-91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Bramswig KH, Poettler M, Unseld M, Wrba F, Uhrin P, Zimmermann W, Zielinski CC, Prager GW. Soluble carcinoembryonic antigen activates endothelial cells and tumor angiogenesis. Cancer Res 2013; 73:6584-96. [PMID: 24121495 DOI: 10.1158/0008-5472.can-13-0123] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carcinoembryonic antigen (CEA, CD66e, CEACAM-5) is a cell-surface-bound glycoprotein overexpressed and released by many solid tumors that has an autocrine function in cancer cell survival and differentiation. Soluble CEA released by tumors is present in the circulation of patients with cancer, where it is used as a marker for cancer progression, but whether this form of CEA exerts any effects in the tumor microenvironment is unknown. Here, we present evidence that soluble CEA is sufficient to induce proangiogenic endothelial cell behaviors, including adhesion, spreading, proliferation, and migration in vitro and tumor microvascularization in vivo. CEA-induced activation of endothelial cells was dependent on integrin β-3 signals that activate the focal-adhesion kinase and c-Src kinase and their downstream MAP-ERK kinase/extracellular signal regulated kinase and phosphoinositide 3-kinase/Akt effector pathways. Notably, while interference with VEGF signaling had no effect on CEA-induced endothelial cell activation, downregulation with the CEA receptor in endothelial cells attenuated CEA-induced signaling and tumor angiogenesis. Corroborating these results clinically, we found that tumor microvascularization was higher in patients with colorectal cancer exhibiting higher serum levels of soluble CEA. Together, our results elucidate a novel function for soluble CEA in tumor angiogenesis.
Collapse
Affiliation(s)
- Kira H Bramswig
- Authors' Affiliations: Clinical Division of Oncology, Department of Medicine I and Comprehensive Cancer Center; Institute of Clinical Pathology; Department of Vascular Biology and Thrombosis Research, Centre for Bio-Molecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria; and Tumor Immunology Laboratory, LIFE-Center, Klinikum Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Transforming growth factor-Beta and urokinase-type plasminogen activator: dangerous partners in tumorigenesis-implications in skin cancer. ISRN DERMATOLOGY 2013; 2013:597927. [PMID: 23984088 PMCID: PMC3732602 DOI: 10.1155/2013/597927] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 06/18/2013] [Indexed: 01/01/2023]
Abstract
Transforming growth factor-beta (TGF-β) is a pleiotropic factor, with several different roles in health and disease. TGF-β has been postulated as a dual factor in tumor progression, since it represses epithelial tumor development in early stages, whereas it stimulates tumor progression in advanced stages. During tumorigenesis, cancer cells acquire the capacity to migrate and invade surrounding tissues and to metastasize different organs. The urokinase-type plasminogen activator (uPA) system, comprising uPA, the uPA cell surface receptor, and plasminogen-plasmin, is involved in the proteolytic degradation of the extracellular matrix and regulates key cellular events by activating intracellular signal pathways, which together allow cancer cells to survive, thus, enhancing cell malignance during tumor progression. Due to their importance, uPA and its receptor are tightly transcriptionally regulated in normal development, but are deregulated in cancer, when their activity and expression are related to further development of cancer. TGF-β regulates uPA expression in cancer cells, while uPA, by plasminogen activation, may activate the secreted latent TGF-β, thus, producing a pernicious cycle which contributes to the enhancement of tumor progression. Here we review the specific roles and the interplay between TGF-β and uPA system in cancer cells and their implication in skin cancer.
Collapse
|
22
|
Asuthkar S, Gondi CS, Nalla AK, Velpula KK, Gorantla B, Rao JS. Urokinase-type plasminogen activator receptor (uPAR)-mediated regulation of WNT/β-catenin signaling is enhanced in irradiated medulloblastoma cells. J Biol Chem 2012; 287:20576-89. [PMID: 22511755 DOI: 10.1074/jbc.m112.348888] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Urokinase plasminogen activator receptor (uPAR) is known to promote invasion, migration, and metastasis in cancer cells. In this report, we showed that ionizing radiation (IR)-induced uPAR has a role in WNT-β-catenin signaling and mediates induction of cancer stem cell (CSC)-like properties in medulloblastoma cell lines UW228 and D283. We observed that IR induced the expression of uPAR and CSC markers, such as Musashi-1 and CD44, and activated WNT-7a-β-catenin signaling molecules. Overexpression of uPAR alone or with IR treatment led to increased WNT-7a-β-catenin-TCF/LEF-mediated transactivation, thereby promoting cancer stemness. In contrast, treatment with shRNA specific for uPAR (pU) suppressed WNT-7a-β-catenin-TCF/LEF-mediated transactivation both in vitro and in vivo. Quercetin, a potent WNT/β-catenin inhibitor, suppressed uPAR and uPAR-mediated WNT/β-catenin activation, and furthermore, addition of recombinant human WNT-7a protein induced uPAR, indicating the existence of a mutual regulatory relationship between uPAR and WNT/β-catenin signaling. We showed that uPAR was physically associated with the WNT effector molecule β-catenin on the membrane, cytoplasm, and nucleus of IR-treated cells and CSC. Most interestingly, we demonstrated for the first time that localization of uPAR in the nucleus was associated with transcription factors (TF) and their specific response elements. We observed from uPAR-ChIP, TF protein, and protein/DNA array analyses that uPAR associates with activating enhancer-binding protein 2α (AP2a) and mediates β-catenin gene transcription. Moreover, association of uPAR with the β-catenin·TCF/LEF complex and various other TF involved during embryonic development and cancer indicates that uPAR is a potent activator of stemness, and targeting of uPAR in combination with radiation has significant therapeutic implications.
Collapse
Affiliation(s)
- Swapna Asuthkar
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61605, USA
| | | | | | | | | | | |
Collapse
|
23
|
Shetty SK, Marudamuthu AS, Abernathy D, Shetty RS, Shetty P, Fu J, Idell S, Bhandary YP, Ji H, Liu MC, Shetty S. Regulation of urokinase expression at the posttranscription level by lung epithelial cells. Biochemistry 2011; 51:205-13. [PMID: 22166006 DOI: 10.1021/bi201293x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urokinase-type plasminogen activator (uPA) is expressed by lung epithelial cells and regulates fibrin turnover and epithelial cell viability. PMA, LPS, and TNF-alpha, as well as uPA itself, induce uPA expression in lung epithelial cells. PMA, LPS, and TNF-alpha induce uPA expression through increased synthesis as well as stabilization of uPA mRNA, while uPA increases its own expression solely through uPA mRNA stabilization. The mechanism by which lung epithelial cells regulate uPA expression at the level of mRNA stability is unclear. To elucidate this process, we sought to characterize protein-uPA mRNA interactions that regulate uPA expression. Regulation of uPA at the level of mRNA stability involves the interaction of a ~40 kDa cytoplasmic-nuclear shuttling protein with a 66 nt uPA mRNA 3'UTR sequence. We purified the uPA mRNA 3'UTR binding protein and identified it as ribonucleotide reductase M2 (RRM2). We expressed recombinant RRM2 and confirmed its interaction with a specific 66 nt uPA 3'UTR sequence. Immunoprecipitation of cell lysates with anti-RRM2 antibody and RT-PCR for uPA mRNA confirmed that RRM2 binds to uPA mRNA. Treatment of Beas2B cells with uPA or LPS attenuated RRM2-endogenous uPA mRNA interactions, while overexpression of RRM2 inhibited uPA protein and mRNA expression through destabilization of uPA mRNA. LPS exposure of lung epithelial cells translocates RRM2 from the cytoplasm to the nucleus in a time-dependent manner, leading to stabilization of uPA mRNA. This newly recognized pathway could influence uPA expression and a broad range of uPA-dependent functions in lung epithelial cells in the context of lung inflammation and repair.
Collapse
Affiliation(s)
- Shwetha K Shetty
- Texas Lung Injury Institute, The University of Texas Health Science Center, Tyler, Texas 75708, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gogineni VR, Nalla AK, Gupta R, Dinh DH, Klopfenstein JD, Rao JS. Chk2-mediated G2/M cell cycle arrest maintains radiation resistance in malignant meningioma cells. Cancer Lett 2011; 313:64-75. [PMID: 21945852 DOI: 10.1016/j.canlet.2011.08.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
In continuation to our studies on radioresistance in meningioma, here we show that radiation treatment (7Gy) induces G2/M cell cycle arrest in meningioma cells. Phosphorylation of Chk2, Cdc25c and Cdc2 were found to be key events since interference with Chk2 activation and cyclin B1/Cdc2 interaction led to permanent arrest followed by apoptosis. Irradiated cells showed recovery and formed aggressive intracranial tumors with rapid spread and morbidity. Nevertheless, knock down of uPAR with or without radiation induced permanent arrest in G2/M phase and subsequent apoptosis in vitro and in vivo. In conclusion, our data suggest that combination treatment with radiation and uPAR knock down or other inhibitors resulting in non-reversible G2/M arrest may be beneficial in the management of meningiomas.
Collapse
Affiliation(s)
- Venkateswara Rao Gogineni
- Departments of Cancer Biology & Pharmacology and Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | | | | | | | | | | |
Collapse
|
25
|
Malla RR, Gopinath S, Gondi CS, Alapati K, Dinh DH, Gujrati M, Rao JS. Cathepsin B and uPAR knockdown inhibits tumor-induced angiogenesis by modulating VEGF expression in glioma. Cancer Gene Ther 2011; 18:419-34. [PMID: 21394106 PMCID: PMC3096680 DOI: 10.1038/cgt.2011.9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 11/02/2010] [Accepted: 01/17/2011] [Indexed: 01/15/2023]
Abstract
Angiogenesis, which is the process of sprouting of new blood vessels from pre-existing vessels, is vital for tumor progression. Proteolytic remodeling of extracellular matrix is a key event in vessel sprouting during angiogenesis. Urokinase type plasminogen activator receptor (uPAR) and cathepsin B are both known to be overexpressed and implicated in tumor angiogenesis. In the present study, we observed that knockdown of uPAR and cathepsin B using puPAR (pU), pCathepsin B (pC), and a bicistronic construct of uPAR and cathepsin B (pCU) caused significant inhibition of angiogenesis by disrupting the janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway-dependent expression of vascular endothelial growth factor (VEGF). Further, transcriptional suppression of uPAR and cathepsin B inhibited tumor-induced migration, proliferation of endothelial cells and decreased tumor-promoted expression of VEGF receptor-2, Rac1, gp91phox, cyclin D1, cyclin dependent kinase 4 and p-Rb in human dermal microvascular endothelial cell. Furthermore, U251 and SNB19 xenograft tissue sections from nude mice treated with pCU showed reduced expression of VEGF and CD31, which is a blood vessel visualization marker. Overall, results revealed that knockdown of uPAR and cathepsin B inhibited tumor-induced angiogenesis by disrupting the JAK/STAT pathway-dependent expression of VEGF. These data provide new insight in characterizing the pathways involved in the angiogenic cascade and for the identification of novel target proteins for use in therapeutic intervention for gliomas.
Collapse
Affiliation(s)
- Rama Rao Malla
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, One Illini Drive, Peoria, IL 61605
| | - Sreelatha Gopinath
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, One Illini Drive, Peoria, IL 61605
| | - Christopher S. Gondi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, One Illini Drive, Peoria, IL 61605
| | - Kiranmai Alapati
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, One Illini Drive, Peoria, IL 61605
| | - Dzung H. Dinh
- Department of Neurosurgery, University of Illinois College of Medicine, One Illini Drive, Peoria, IL 61605
| | - Meena Gujrati
- Department of Pathology, University of Illinois College of Medicine, One Illini Drive, Peoria, IL 61605
| | - Jasti S. Rao
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, One Illini Drive, Peoria, IL 61605
- Department of Neurosurgery, University of Illinois College of Medicine, One Illini Drive, Peoria, IL 61605
| |
Collapse
|
26
|
WOJTA J, KLUFT K, MEDCALF R, LIJNEN HR. Bernd Binder (January 7, 1945 - August 28, 2010). J Thromb Haemost 2010. [DOI: 10.1111/j.1538-7836.2010.04139.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Mekkawy AH, De Bock CE, Lin Z, Morris DL, Wang Y, Pourgholami MH. Novel protein interactors of urokinase-type plasminogen activator receptor. Biochem Biophys Res Commun 2010; 399:738-43. [PMID: 20696135 DOI: 10.1016/j.bbrc.2010.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) has been implicated in tumor growth and metastasis. The crystal structure of uPAR revealed that the external surface is largely free to interact with a number of proteins. Additionally, due to absence of an intracellular cytoplasmic protein domain, many of the biological functions of uPAR necessitate interactions with other proteins. Here, we used yeast two-hybrid screening of breast cancer cDNA library to identify hSpry1 and HAX1 proteins as putative candidate proteins that interact with uPAR bait constructs. Interaction between these two candidates and uPAR was confirmed by GST-pull down, co-immunoprecipitation assays and confocal microscopy. These novel interactions that have been identified may also provide further evidence that uPAR can interact with a number of other proteins which may influence a range of biological functions.
Collapse
Affiliation(s)
- Ahmed H Mekkawy
- Cancer Research Laboratories, Department of Surgery, St. George Hospital, University of New South Wales, Sydney, NSW 2217, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Howard M, Roux J, Lee H, Miyazawa B, Lee JW, Gartland B, Howard AJ, Matthay MA, Carles M, Pittet JF. Activation of the stress protein response inhibits the STAT1 signalling pathway and iNOS function in alveolar macrophages: role of Hsp90 and Hsp70. Thorax 2010; 65:346-53. [PMID: 20388761 DOI: 10.1136/thx.2008.101139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM Alveolar fluid clearance is impaired by inducible nitric oxide synthase (iNOS)/nitric oxide (NO)-dependent mechanisms in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The activation of the stress protein response (SPR) in alveolar macrophages on iNOS-dependent NO production in response to interferon gamma (IFNgamma), a major cytokine present in the airspace of patients with ALI, was investigated. METHODS The SPR was activated in murine and primary human alveolar macrophages prior to analysis of signal transducer and activator of transcription factor 1 (STAT1) activation, iNOS mRNA and protein synthesis, and NO production. RESULTS SPR activation resulted in inhibition of IFNgamma-mediated NO production (p=0.001) with >95% detergent insolubilisation of the STAT1 protein. Its subsequent proteasomal degradation was partially reversed with pretreatment of cells with the chemical chaperone glycerol. This early effect of the SPR was caused by the complete disruption of heat shock protein 90 (Hsp90)-STAT1 binding, as shown by immunoprecipitation. Recovery of STAT1 activation and recovery of iNOS synthesis occurred within 12 h after SPR activation (p=0.02). NO production (as compared with non-SPR controls) did not occur until 48 h later (p=0.02). SPR-induced Hsp70 (Hsp70i) expression caused a late inhibition of NO production (p=0.02). Inhibiting >50% Hsp70i expression recovered NO production to control levels whereas overexpressing Hsp70i in the absence of the SPR inhibited NO production (p=0.02). CONCLUSION Early inhibition of STAT1 following its dissociation from Hsp90, and later inhibition of iNOS activity by Hsp70i, represent novel mechanisms by which SPR activation modulates the IFNgamma signalling in alveolar macrophages. These results highlight a potential clinical application for Hsp90 inhibitors in modulating NO signalling during the early phase of acute lung injury.
Collapse
Affiliation(s)
- Marybeth Howard
- Laboratory of Surgical Research, Department of Anesthesia, University of California, San Francisco, CA 94110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation and tissue remodelling and in many human cancers, in which it frequently indicates poor prognosis. uPAR regulates proteolysis by binding the extracellular protease urokinase-type plasminogen activator (uPA; also known as urokinase) and also activates many intracellular signalling pathways. Coordination of extracellular matrix (ECM) proteolysis and cell signalling by uPAR underlies its important function in cell migration, proliferation and survival and makes it an attractive therapeutic target in cancer and inflammatory diseases. uPAR lacks transmembrane and intracellular domains and so requires transmembrane co-receptors for signalling. Integrins are essential uPAR signalling co-receptors and a second uPAR ligand, the ECM protein vitronectin, is also crucial for this process.
Collapse
Affiliation(s)
- Harvey W Smith
- Goodman Cancer Centre, McGill University, West Montreal, Quebec, H3A 1A3, Canada.
| | | |
Collapse
|
30
|
Komponenten des fibrinolytischen Systems. Hamostaseologie 2010. [DOI: 10.1007/978-3-642-01544-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
31
|
Extravasale Proteolyse: Funktion und Interaktion der Faktoren des fibrinolytischen Systems. Hamostaseologie 2010. [DOI: 10.1007/978-3-642-01544-1_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
32
|
Maupas-Schwalm F, Bedel A, Augé N, Grazide MH, Mucher E, Thiers JC, Salvayre R, Nègre-Salvayre A. Integrin alpha(v)beta(3), metalloproteinases, and sphingomyelinase-2 mediate urokinase mitogenic effect. Cell Signal 2009; 21:1925-34. [PMID: 19735728 DOI: 10.1016/j.cellsig.2009.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 12/27/2022]
Abstract
Plasminogen activators are implicated in the pathogenesis of several diseases such as inflammatory diseases and cancer. Beside their serine-protease activity, these agents trigger signaling pathways involved in cell migration, adhesion and proliferation. We previously reported a role for the sphingolipid pathway in the mitogenic effect of plasminogen activators, but the signaling mechanisms involved in neutral sphingomyelinase-2 (NSMase-2) activation (the first step of the sphingolipid pathway) are poorly known. This study was carried out to investigate how urokinase plasminogen activator (uPA) activates NSMase-2. We report that uPA, as well as its catalytically inactive N-amino fragment ATF, triggers the sequential activation of MMP-2, NSMase-2 and ERK1/2 in ECV304 cells that are required for uPA-induced ECV304 proliferation, as assessed by the inhibitory effect of Marimastat (a MMP inhibitor), MMP-2-specific siRNA, MMP-2 defect, and NSMase-specific siRNA. Moreover, upon uPA stimulation, uPAR, MT1-MMP, MMP-2 and NSMase-2 interacted with integrin alpha(v)beta(3), evidenced by co-immunoprecipitation and immunocytochemistry experiments. Moreover, the alpha(v)beta(3) blocking antibody inhibited the uPA-triggered MMPs/uPAR/integrin alpha(v)beta(3) interaction, NSMase-2 activation, Ki67 expression and DNA synthesis in ECV304. In conclusion, uPA triggers interaction between integrin alpha(v)beta(3), uPAR and MMPs that leads to NSMase-2 and ERK1/2 activation and cell proliferation. These findings highlight a new signaling mechanism for uPA, and suggest that, upon uPA stimulation, uPAR, MMPs, integrin alpha(v)beta(3) and NSMase-2 form a signaling complex that take part in mitogenic signaling in ECV304 cells.
Collapse
Affiliation(s)
- Françoise Maupas-Schwalm
- Inserm U858 Team 10, Dept of Biochemistry and Molecular Biology, Faculty of Medicine-Rangueil, University Paul Sabatier Toulouse-3, IFR-150, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Urokinase mediates endothelial cell survival via induction of the X-linked inhibitor of apoptosis protein. Blood 2009; 113:1383-90. [DOI: 10.1182/blood-2008-06-164210] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AbstractUrokinase-type plasminogen activator (uPA) additionally elicits a whole array of pro-angiogenic responses, such as differentiation, proliferation, and migration. In this study, we demonstrate that in endothelial cells uPA also protects against apoptosis by transcriptional up-regulation and partially by mRNA stabilization of inhibitor of apoptosis proteins, most prominently the X-linked inhibitor of apoptosis protein (XIAP). The antiapoptotic activity of uPA was dependent on its protease activity, the presence of uPA receptor (uPAR) and low-density lipoprotein receptor-related protein (LRP), but independent of the phosphatidylinositol 3 (PI3) kinase pathway, whereas vascular endothelial growth factor (VEGF)–induced antiapoptosis was PI3 kinase dependent. uPA-induced cell survival involved phosphorylation of p21-activated kinase 1 (Pak1) and the IκB kinase α that leads to nuclear factor κB (NF-κB) p52 activation. Indeed, blocking NF-κB activation by using specific NF-κB inhibitors abolished uPA-induced cell survival as it blocked uPA-induced XIAP up-regulation. Furthermore, down-regulating XIAP expression by small interfering RNA (siRNA) significantly reduced uPA-dependent endothelial cell survival. This mechanism is also important for VEGF-induced antiapoptosis because VEGF-dependent up-regulation of XIAP was found defective in uPA−/− endothelial cells. This led us to conclude that uPA is part of a novel NF-κB–dependent cell survival pathway.
Collapse
|
34
|
Schiller HB, Szekeres A, Binder BR, Stockinger H, Leksa V. Mannose 6-phosphate/insulin-like growth factor 2 receptor limits cell invasion by controlling alphaVbeta3 integrin expression and proteolytic processing of urokinase-type plasminogen activator receptor. Mol Biol Cell 2008; 20:745-56. [PMID: 19037107 DOI: 10.1091/mbc.e08-06-0569] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The multifunctional mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) is considered a tumor suppressor. We report here that RNA interference with M6P/IGF2R expression in urokinase-type plasminogen activator (uPA)/urokinase-type plasminogen activator receptor (uPAR) expressing human cancer and endothelial cells resulted in increased pericellular plasminogen activation, cell adhesion, and higher invasive potential through matrigel. M6P/IGF2R silencing led also to the cell surface accumulation of urokinase and plasminogen and enhanced expression of alphaV integrins. Genetic rescue experiments and inhibitor studies revealed that the enhanced plasminogen activation was due to a direct effect of M6P/IGF2R on uPAR, whereas increased cell adhesion to vitronectin was dependent on alphaV integrin expression and not uPAR. Increased cell invasion of M6P/IGF2R knockdown cells was rescued by cosilencing both uPAR and alphaV integrin. Furthermore, we found that M6P/IGF2R expression accelerates the cleavage of uPAR. M6P/IGF2R silencing resulted in an increased ratio of full-length uPAR to the truncated D2D3 fragment, incapable of binding most uPAR ligands. We conclude that M6P/IGF2R controls cell invasion by regulating alphaV integrin expression and by accelerating uPAR cleavage, leading to the loss of the urokinase/vitronectin/integrin-binding site on uPAR.
Collapse
Affiliation(s)
- Herbert B Schiller
- Department of Molecular Immunology, Center for Physiology, Pathophysiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
35
|
Saldanha RG, Xu N, Molloy MP, Veal DA, Baker MS. Differential proteome expression associated with urokinase plasminogen activator receptor (uPAR) suppression in malignant epithelial cancer. J Proteome Res 2008; 7:4792-806. [PMID: 18808175 DOI: 10.1021/pr800357h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dysregulation of the plasminogen activation cascade is a prototypic feature in many malignant epithelial cancers. Principally, this is thought to occur through activation of overexpressed urokinase plasminogen activator (uPA) concomitant with binding to its high specificity cell surface receptor urokinase plasminogen activator receptor (uPAR). Up-regulation of uPA and uPAR in cancer appears to potentiate the malignant phenotype, either (i) directly by triggering plasmin-mediated degradation or activation of uPA's or plasmin's proteolytic targets (e.g., extracellular matrix zymogen proteases or nascent growth factors) or indirectly by simultaneously altering a range of downstream functions including signal transduction pathways ( Romer, J. ; Nielsen, B. S. ; Ploug, M. The urokinase receptor as a potential target in cancer therapy Curr. Pharm. Des. 2004, 10 ( 19), 235976 ). Because many malignant epithelial cancers express high levels of uPAR, uPA or other components of the plasminogen activation cascade and because these are often associated with poor prognosis, characterizing how uPAR changes the downstream cellular "proteome" is fundamental to understanding any role in cancer. This study describes a carefully designed proteomic study of the effects of antisense uPAR suppression in a previously studied colon cancer cell line (HCT116). The study utilized replicate 2DE gels and two independent gel image analysis software packages to confidently identify 64 proteins whose expression levels changed (by > or =2 fold) coincident with a moderate ( approximately 40%) suppression of cell-surface uPAR. Not surprisingly, many of the altered proteins have previously been implicated in the regulation of tumor progression (e.g., p53 tumor suppressor protein and c-myc oncogene protein among many others). In addition, through a combination of proteomics and immunological methods, this study demonstrates that stathmin 1alpha, a cytoskeletal protein implicated in tumor progression, undergoes a basic isoelectric point shift (p I) following uPAR suppression, suggesting that post-translational modification of stathmin occur secondary to uPAR suppression. Overall, these results shed new light on the molecular mechanisms involved in uPAR signaling and how it may promulgate the malignant phenotype.
Collapse
Affiliation(s)
- Rohit G Saldanha
- Department of Chemistry and Biomolecular Sciences and Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | |
Collapse
|
36
|
Abstract
Tumour expression of the urokinase plasminogen activator correlates with invasive capacity. Consequently, inhibition of this serine protease by physiological inhibitors should decrease invasion and metastasis. However, of the two main urokinase inhibitors, high tumour levels of the type 1 inhibitor actually promote tumour progression, whereas high levels of the type 2 inhibitor decrease tumour growth and metastasis. We propose that the basis of this apparently paradoxical action of two similar serine protease inhibitors lies in key structural differences controlling interactions with components of the extracellular matrix and endocytosis-signalling co-receptors.
Collapse
Affiliation(s)
- David R Croucher
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales, Australia 2010
| | | | | | | |
Collapse
|
37
|
Zhang G, Eddy AA. Urokinase and its receptors in chronic kidney disease. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:5462-78. [PMID: 18508599 PMCID: PMC3142275 DOI: 10.2741/3093] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on the role of the serine protease urokinase-type plasminogen activator and its high affinity receptor uPAR/CD87 in chronic kidney disease (CKD) progression. An emerging theme is their organ- and site-specific effects. In addition to tubules, uPA is produced by macrophages and fibroblasts in CKD. By activating hepatocyte growth factor and degrading fibrinogen uPA may have anti-fibrotic effects. However renal fibrosis was similar between uPA wild-type and knockout mice in experimental CKD. The uPAR is expressed by renal parenchymal cells and inflammatory cells in a variety of kidney diseases. Such expression appears anti-fibrotic based on studies in uPAR-deficient mice. In CKD uPAR expression is associated with higher uPA activity but its most important effect appears to be due to effects on cell recruitment and migration that involve interactions with a variety of co-receptors and chemoattractant effects of soluble uPAR. Vitronectin and high molecular weight kininogen are alternate uPAR ligands, and receptors in addition to uPAR may also bind directly to uPA and activate cell signaling pathways.
Collapse
Affiliation(s)
- Guoqiang Zhang
- University of Washington and Children's Hospital and Regional Medical Center, Division of Nephrology, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | | |
Collapse
|
38
|
Dillon M, Minear J, Johnson J, Lannutti BJ. Expression of the GPI-anchored receptor Prv-1 enhances thrombopoietin and IL-3-induced proliferation in hematopoietic cell lines. Leuk Res 2007; 32:811-9. [PMID: 17980909 DOI: 10.1016/j.leukres.2007.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/25/2007] [Accepted: 09/27/2007] [Indexed: 12/20/2022]
Abstract
Prv-1 is a hematopoietic cell surface receptor that has been shown to be overexpressed in patients diagnosed with polycythemia vera (PV) and essential thrombocythemia (ET), yet its cellular function remains unclear. In this study, we assessed the role of Prv-1 in thrombopoietin (Tpo)/Mpl signaling with the goal of identifying molecular mechanisms which augment Tpo-induced proliferation. By engineering the cytokine-dependent hematopoietic cell line BaF3 to express both Prv-1 and wild-type or mutant forms of Mpl, we were able to follow the time course of Tpo-dependent proliferation. We report that the overexpression of Prv-1 increased Tpo as well as IL-3-induced proliferation of BaF3/Mpl and BaF3 cells. Cells co-expressing Prv-1 and an Mpl receptor containing a Box 1 motif mutation, which fails to activate Jak2, was completely deficient in Tpo-dependent proliferation. In addition, BaF3 and BaF3/Prv-1 cells stimulated with IL-3 in the presence of the Jak2 inhibitor, AG490, abrogated the proliferative response, indicating that Prv-1 requires a functional Jak2 for its signaling activities. Western blot analysis showed an increase in Tpo and IL-3-induced Stat3 and Stat5 tyrosine phosphorylation in BaF3/Mpl and BaF3 cells expressing Prv-1. These results indicate a novel function for Prv-1 as a signaling molecule in cytokine signaling cascades and may lead to a greater understanding of the mechanism of overexpression of Prv-1 in myeloproliferative disorders.
Collapse
Affiliation(s)
- Megan Dillon
- Puget Sound Blood Center, Seattle, WA 98104, United States
| | | | | | | |
Collapse
|
39
|
Chen L, Maures TJ, Jin H, Huo JS, Rabbani SA, Schwartz J, Carter-Su C. SH2B1beta (SH2-Bbeta) enhances expression of a subset of nerve growth factor-regulated genes important for neuronal differentiation including genes encoding urokinase plasminogen activator receptor and matrix metalloproteinase 3/10. Mol Endocrinol 2007; 22:454-76. [PMID: 17947375 DOI: 10.1210/me.2007-0384] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previous work showed that the adapter protein SH2B adapter protein 1beta (SH2B1) (SH2-B) binds to the activated form of the nerve growth factor (NGF) receptor TrkA and is critical for both NGF-dependent neurite outgrowth and maintenance. To identify SH2B1beta-regulated genes critical for neurite outgrowth, we performed microarray analysis of control PC12 cells and PC12 cells stably overexpressing SH2B1beta (PC12-SH2B1beta) or the dominant-negative SH2B1beta(R555E) [PC12-SH2B1beta(R555E)]. NGF-induced microarray expression of Plaur and Mmp10 genes was greatly enhanced in PC12-SH2B1beta cells, whereas NGF-induced Plaur and Mmp3 expression was substantially depressed in PC12-SH2B1beta(R555E) cells. Plaur, Mmp3, and Mmp10 are among the 12 genes most highly up-regulated after 6 h of NGF. Their protein products [urokinase plasminogen activator receptor (uPAR), matrix metalloproteinase 3 (MMP3), and MMP10] lie in the same pathway of extracellular matrix degradation; uPAR has been shown previously to be critical for NGF-induced neurite outgrowth. Quantitative real-time PCR analysis revealed SH2B1beta enhancement of NGF induction of all three genes and the suppression of NGF induction of all three when endogenous SH2B1 was reduced using short hairpin RNA against SH2B1 and in PC12-SH2B1beta(R555E) cells. NGF-induced levels of uPAR and MMP3/10 and neurite outgrowth through Matrigel (MMP3-dependent) were also increased in PC12-SH2B1beta cells. These results suggest that SH2B1beta stimulates NGF-induced neuronal differentiation at least in part by enhancing expression of a specific subset of NGF-sensitive genes, including Plaur, Mmp3, and/or Mmp10, required for neurite outgrowth.
Collapse
Affiliation(s)
- Linyi Chen
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Bernstein AM, Twining SS, Warejcka DJ, Tall E, Masur SK. Urokinase receptor cleavage: a crucial step in fibroblast-to-myofibroblast differentiation. Mol Biol Cell 2007; 18:2716-27. [PMID: 17507651 PMCID: PMC1924808 DOI: 10.1091/mbc.e06-10-0912] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 04/24/2007] [Accepted: 05/03/2007] [Indexed: 01/20/2023] Open
Abstract
Fibroblasts migrate into and repopulate connective tissue wounds. At the wound edge, fibroblasts differentiate into myofibroblasts, and they promote wound closure. Regulated fibroblast-to-myofibroblast differentiation is critical for regenerative healing. Previous studies have focused on the role in fibroblasts of urokinase plasmingen activator/urokinase plasmingen activator receptor (uPA/uPAR), an extracellular protease system that promotes matrix remodeling, growth factor activation, and cell migration. Whereas fibroblasts have substantial uPA activity and uPAR expression, we discovered that cultured myofibroblasts eventually lost cell surface uPA/uPAR. This led us to investigate the relevance of uPA/uPAR activity to myofibroblast differentiation. We found that fibroblasts expressed increased amounts of full-length cell surface uPAR (D1D2D3) compared with myofibroblasts, which had reduced expression of D1D2D3 but increased expression of the truncated form of uPAR (D2D3) on their cell surface. Retaining full-length uPAR was found to be essential for regulating myofibroblast differentiation, because 1) protease inhibitors that prevented uPAR cleavage also prevented myofibroblast differentiation, and 2) overexpression of cDNA for a noncleavable form of uPAR inhibited myofibroblast differentiation. These data support a novel hypothesis that maintaining full-length uPAR on the cell surface regulates the fibroblast to myofibroblast transition and that down-regulation of uPAR is necessary for myofibroblast differentiation.
Collapse
Affiliation(s)
- Audrey M Bernstein
- Departments of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
41
|
Saldanha RG, Molloy MP, Bdeir K, Cines DB, Song X, Uitto PM, Weinreb PH, Violette SM, Baker MS. Proteomic identification of lynchpin urokinase plasminogen activator receptor protein interactions associated with epithelial cancer malignancy. J Proteome Res 2007; 6:1016-28. [PMID: 17330942 DOI: 10.1021/pr060518n] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Urokinase plasminogen activator (uPA) and its high affinity receptor (uPAR) play crucial proteolytic and non-proteolytic roles in cancer metastasis. In addition to promoting plasmin-mediated degradation of extracellular matrix barriers, cell surface engagement of uPA through uPAR binding results in the activation of a suite of diverse cellular signal transduction pathways. Because uPAR is bound to the plasma membrane through a glycosyl-phosphatidylinositol anchor, these signalling sequelae are thought to occur through the formation of multi-protein cell surface complexes involving uPAR. To further characterize uPAR-driven protein complexes, we co-immunoprecipitated uPAR from the human ovarian cancer cell line, OVCA 429, and employed sensitive proteomic methods to identify the uPAR-associated proteins. Using this strategy, we identified several known, as well as numerous novel, uPAR associating proteins, including the epithelial restricted integrin, alphavbeta6. Reverse immunoprecipitation using anti-beta6 integrin subunit monoclonal antibodies confirmed the co-purification of this protein with uPAR. Inhibition of uPAR and/or beta6 integrin subunit using neutralizing antibodies resulted in the inhibition of uPA-mediated ERK 1/2 phosphorylation and subsequent cell proliferation. These data suggest that the association of beta6 integrin (and possibly other lynchpin cancer regulatory proteins) with uPAR may be crucial in co-transmitting uPA signals that induce cell proliferation. Our findings support the notion that uPAR behaves as a lynchpin in promoting tumorigenesis by forming functionally active multiprotein complexes.
Collapse
Affiliation(s)
- Rohit G Saldanha
- Australian Proteome Analysis Facility Ltd and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, 2109, NSW Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mahanivong C, Yu J, Huang S. Elevated urokinase-specific surface receptor expression is maintained through its interaction with urokinase plasminogen activator. Mol Carcinog 2007; 46:165-75. [PMID: 17186542 DOI: 10.1002/mc.20249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Urokinase plasminogen activator (uPA) and its receptor (uPAR) are overexpressed in various neoplasms, and play a key role in tumor progression and metastasis. In this study, we examined uPA and uPAR expression in a variety of human breast cancer cell lines and found that lines with elevated uPA expression also exhibited high uPAR expression, suggesting the possibility that uPA and uPAR are regulated in concert. To test this possibility, we introduced antisense uPA RNA and antisense uPAR RNA in MDA-MB-231 and BT-549 lines that express high levels of uPA and uPAR. Antisense uPA RNA not only downregulated uPA expression, but also greatly reduced uPAR expression in both lines. However, antisense uPAR RNA-reduced uPAR expression with no apparent inhibitory effect on the levels of uPA. These results indicate that expression of uPAR requires uPA but not vice versa. With a panel of uPA and uPAR monoclonal antibodies (mAbs), we observed that the mAbs disrupting uPA and uPAR interaction, rather than mAb inhibiting uPA protease activity, reduced uPAR expression. Moreover, adding soluble single chain uPA (scuPA) to MDA-MB-231 or BT-549 cells expressing antisense uPA mRNA-restored uPAR expression. These findings suggest that uPA dictates uPAR expression and that uPA binding to uPAR transmits signals for uPAR expression. Finally, we provided evidence that Fyn, a Src family kinase, is involved in uPA-induced uPAR expression.
Collapse
Affiliation(s)
- Chitladda Mahanivong
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
43
|
Siddiqui RA, Harvey KA, Zaloga GP, Stillwell W. Modulation of lipid rafts by Omega-3 fatty acids in inflammation and cancer: implications for use of lipids during nutrition support. Nutr Clin Pract 2007; 22:74-88. [PMID: 17242459 DOI: 10.1177/011542650702200174] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Current understanding of biologic membrane structure and function is largely based on the concept of lipid rafts. Lipid rafts are composed primarily of tightly packed, liquid-ordered sphingolipids/cholesterol/saturated phospholipids that float in a sea of more unsaturated and loosely packed, liquid-disordered lipids. Lipid rafts have important clinical implications because many important membrane-signaling proteins are located within the raft regions of the membrane, and alterations in raft structure can alter activity of these signaling proteins. Because rafts are lipid-based, their composition, structure, and function are susceptible to manipulation by dietary components such as omega-3 polyunsaturated fatty acids and by cholesterol depletion. We review how alteration of raft lipids affects the raft/nonraft localization and hence the function of several proteins involved in cell signaling. We focus our discussion of raft-signaling proteins on inflammation and cancer.
Collapse
Affiliation(s)
- Rafat A Siddiqui
- Methodist Research Institute, Cellular Biochemistry, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
44
|
Sitrin RG, Emery SL, Sassanella TM, Blackwood RA, Petty HR. Selective localization of recognition complexes for leukotriene B4 and formyl-Met-Leu-Phe within lipid raft microdomains of human polymorphonuclear neutrophils. THE JOURNAL OF IMMUNOLOGY 2007; 177:8177-84. [PMID: 17114494 DOI: 10.4049/jimmunol.177.11.8177] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophilic polymorphonuclear leukocytes contain glycosphingolipid- and cholesterol-enriched lipid raft microdomains within the plasma membrane. Although there is evidence that lipid rafts function as signaling platforms for CXCR chemokine receptors, their role in recognition systems for other chemotaxins such as leukotriene B4 (LTB4) and fMLP is unknown. To address this question, human neutrophils were extracted with 1% Brij-58 and fractionated on sucrose gradients. B leukotriene receptor-1 (BLT-1), the primary LTB4 receptor, partitioned to low density fractions, co-isolating with the lipid raft marker, flotillin-1. By contrast, formyl peptide receptor (FPR), the primary fMLP receptor, partitioned to high density fractions, co-isolating with a non-raft marker, Cdc42. This pattern was preserved after the cells were stimulated with LTB4 or fMLP. Fluorescence resonance energy transfer (FRET) was performed to confirm the proximity of BLT-1 and FPR with these markers. FRET was detected between BLT1 and flotillin-1 but not Cdc42, whereas FRET was detected between FPR and Cdc42, but not flotillin-1. Pretreating neutrophils with methyl-beta-cyclodextrin, a lipid raft-disrupting agent, suppressed intracellular Ca(2+) mobilization and ERK1/2 phosphorylation in response to LTB4 but had no effect on either of these responses to fMLP. We conclude that BLT-1 is physically located within lipid raft microdomains of human neutrophils and that disrupting lipid raft integrity suppresses LTB4-induced activation. By contrast, FPR is not associated with lipid rafts, and fMLP-induced signaling does not require lipid raft integrity. These findings highlight the complexity of chemotaxin signaling pathways and offer one mechanism by which neutrophils may spatially organize chemotaxin signaling within the plasma membrane.
Collapse
Affiliation(s)
- Robert G Sitrin
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, 1150 West Medical Drive, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
45
|
Jo M, Thomas KS, Takimoto S, Gaultier A, Hsieh EH, Lester RD, Gonias SL. Urokinase receptor primes cells to proliferate in response to epidermal growth factor. Oncogene 2006; 26:2585-94. [PMID: 17043637 DOI: 10.1038/sj.onc.1210066] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidermal growth factor (EGF) expresses mitogenic activity by a mechanism that requires the EGF receptor (EGFR). We report that murine embryonic fibroblasts (MEFs) proliferate in response to EGF only when these cells express the urokinase receptor (uPAR). EGFR expression was equivalent in uPAR-/- and uPAR+/+ MEFs. In response to EGF, these cells demonstrated equivalent overall EGFR tyrosine phosphorylation and ERK/MAP kinase activation; however, phosphorylation of Tyr-845 in the EGFR, which has been implicated in cell growth, was substantially decreased in uPAR-/- MEFs. STAT5b activation also was decreased. As Tyr-845 is a c-Src target, we overexpressed c-Src in uPAR-/- MEFs and rescued EGF mitogenic activity. Rescue also was achieved by expressing murine but not human uPAR, suggesting a role for autocrine uPAR cell-signaling. In MDA-MB 231 breast cancer cells, EGF mitogenic activity was blocked by uPAR gene silencing, with antibodies that block uPA-binding to uPAR, and with a synthetic peptide that disrupts uPAR-dependent cell signaling. Again, c-Src overexpression rescued the mitogenic activity of EGF. We conclude that uPAR-dependent cell-signaling may prime cells to proliferate in response to EGF by promoting Tyr-845 phosphorylation and STAT5b activation. The importance of this pathway depends on the c-Src level in the cell.
Collapse
Affiliation(s)
- M Jo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Shetty S, Rao GN, Cines DB, Bdeir K. Urokinase induces activation of STAT3 in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 291:L772-80. [PMID: 16751220 DOI: 10.1152/ajplung.00476.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) is a serine protease that plays a major role in diverse physiological and pathological processes. Studies from our laboratory have shown that exposure of human lung epithelial cells to uPA induces proliferation. To understand uPA mitogenic signaling events, we sought to elucidate its effects on tyrosine phosphorylation in a human bronchial epithelial cell line (Beas2B). uPA induced tyrosine phosphorylation of several proteins in a time-dependent manner. One of these proteins was identified as the 91-kDa signal transduction activator transcription (Stat)3 moiety. Tyrosine phosphorylation of Stat3 by uPA was time dependent. uPA induced Stat3-DNA binding activity in a time-dependent manner. uPA-induced Stat3 activation does not require uPA catalytic activity, as the uPA amino-terminal fragment alone was as potent as active two-chain uPA (tcuPA) in causing this effect. Single-chain uPA likewise induced tyrosine phosphorylation of Stat3 to a similar extent as intact tcuPA. Plasmin did not alter uPA-induced Stat3 activation. Furthermore, transfection of Beas2B cells with dominant-negative Stat3 blocked uPA-induced DNA synthesis. These results reveal for the first time that the uPA-uPAR interaction leads to activation of Stat3, independent of its catalytic activity but dependent on its interaction with its receptor, uPAR, leading to DNA synthesis in lung epithelial cells.
Collapse
Affiliation(s)
- Sreerama Shetty
- Department of Specialty Care Services, The University of Texas Health Center at Tyler, 11937 U.S. Highway 271, Tyler, TX 75708, USA.
| | | | | | | |
Collapse
|
47
|
Shushakova N, Tkachuk N, Dangers M, Tkachuk S, Park JK, Zwirner J, Hashimoto K, Haller H, Dumler I. Urokinase-induced activation of the gp130/Tyk2/Stat3 pathway mediates a pro-inflammatory effect in human mesangial cells via expression of the anaphylatoxin C5a receptor. J Cell Sci 2005; 118:2743-53. [PMID: 15944400 DOI: 10.1242/jcs.02409] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glomerular mesangial cells (MCs) are central to the pathogenesis of progressive glomeruli-associated renal diseases. However, molecular mechanisms underlying changes in MC functions still remain poorly understood. Here, we show that in MCs, the urokinase-type plasminogen activator (uPA) induces, via its specific receptor (uPAR, CD87), upregulated expression of the complement anaphylatoxin C5a receptor (C5aR, CD88), and modulates C5a-dependent functional responses. This effect is mediated via the interaction of the uPA-specific receptor (uPAR, CD87) and gp130, a signal transducing subunit of the receptor complexes for the IL-6 cytokine family. The Janus kinase Tyk2 and the transcription factor Stat3 serve as downstream components in the signaling cascade resulting in upregulation of C5aR expression. In vivo, expression of C5aR and uPAR was increased in the mesangium of wild-type mice in a lipopolysaccharide (LPS)-induced model of inflammation, whereas in uPAR(-/-) animals C5aR expression remained unchanged. This is the first demonstration in vitro and in vivo that uPA acts in MCs as a modulator of immune responses via control of immune-competent receptors. The data suggest a novel role for uPA/uPAR in glomeruli-associated renal failure via a signaling cross-talk between the fibrinolytic and immune systems.
Collapse
|
48
|
Li Q, Wang M, Tan L, Wang C, Ma J, Li N, Li Y, Xu G, Li J. Docosahexaenoic acid changes lipid composition and interleukin-2 receptor signaling in membrane rafts. J Lipid Res 2005; 46:1904-13. [PMID: 15930520 DOI: 10.1194/jlr.m500033-jlr200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyunsaturated fatty acids, including docosahexaenoic acid (DHA, 22:6n-3), modulate immune responses and exert beneficial immunosuppressive effects, but the molecular mechanisms inhibiting T-cell activation are not yet elucidated. Lipid rafts have been shown to play an important role in the compartmentalization and modulation of cell signaling. We investigated the role of DHA in modulating the lipid composition in lipid rafts and membrane subdomain distribution of interleukin-2 (IL-2) receptor signaling molecules. We found that DHA altered lipid components of rafts and modified the IL-2-induced Janus kinase-signal transducer and activator of transcription (STAT) signaling pathway by partially displacing IL-2 receptors from lipid rafts. We fractionated plasma membrane subcellular compartments and discovered that certain amounts of STAT5a and STAT5b existed in detergent-resistant plasma membrane fractions of T-cells. After DHA treatment, STAT5a and STAT5b were not detected in lipid raft fractions and were located in detergent-soluble fractions. These data demonstrate for the first time that DHA alters the lipid composition of membrane microdomains and suppresses IL-2 receptor signaling in T-cells. Thus, our data provide evidence for a functional modification in lipid rafts by DHA treatment and explain PUFA-mediated immunosuppressive effects.
Collapse
Affiliation(s)
- Qiurong Li
- Institute of General Surgery, Jinling Hospital, Nanjing 210002, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jin H, Song YP, Boel G, Kochar J, Pancholi V. Group A streptococcal surface GAPDH, SDH, recognizes uPAR/CD87 as its receptor on the human pharyngeal cell and mediates bacterial adherence to host cells. J Mol Biol 2005; 350:27-41. [PMID: 15922359 DOI: 10.1016/j.jmb.2005.04.063] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 11/16/2022]
Abstract
Streptococcal surface dehydrogenase (SDH) is a multifunctional, anchorless protein present on the surface of group A Streptococcus (GAS). It plays a regulatory role in GAS-mediated intracellular signaling events in human pharyngeal cells. Using ligand-binding assays, we have identified an approximately 55 kDa protein as an SDH-specific receptor protein on the surface of Detroit human pharyngeal cells. LC-MS/MS analyses identified this SDH-binding pharyngeal cell-surface-exposed membrane-bound protein as uPAR (urokinase plasminogen activator receptor)/CD87. Ligand-binding assays also revealed that only the N-terminal domain (D1) of uPAR bound to SDH. uPAR-D1 more specifically bound to the C-terminal alpha-helix and two immediate flanking regions of the S-loop of the SDH molecule. Site-directed mutagenesis in GAS resulting in SDH with altered C-terminal ends, and the removal of uPAR from pharyngeal cells by phosphatidylinositol-phopsholipase C treatment decreased GAS ability to adhere to pharyngeal cells. When compared to uninfected Detroit pharyngeal cells, GAS-infected pharyngeal cells showed a transient but a significant increase in the expression of uPAR-specific mRNA, and a prolonged recycling process of uPAR on the cell surface. Together, these results indicate that the specific streptococcal surface protein-pharyngeal cell receptor interaction mediated by SDH and uPAR is modulated during GAS infection of human pharyngeal cells. This interaction significantly contributes to bacterial adherence and thus may play a significant role in GAS pathogenesis by regulating intracellular signaling events in pharyngeal cells.
Collapse
Affiliation(s)
- Hong Jin
- Laboratory of Bacterial Pathogenesis, Public Health Research Institute, At The International Center for Public Health, 225 Warren Street, Newark, NJ 07103-3535, USA
| | | | | | | | | |
Collapse
|
50
|
Margheri F, D'Alessio S, Serratí S, Pucci M, Annunziato F, Cosmi L, Liotta F, Angeli R, Angelucci A, Gravina GL, Rucci N, Bologna M, Teti A, Monia B, Fibbi G, Del Rosso M. Effects of blocking urokinase receptor signaling by antisense oligonucleotides in a mouse model of experimental prostate cancer bone metastases. Gene Ther 2005; 12:702-14. [PMID: 15674398 DOI: 10.1038/sj.gt.3302456] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An important factor implicated in tumor cell predisposition for invasion and metastasis is the malignancy-related upregulation of urokinase plasminogen activator receptor (uPAR). uPAR signals by activating different tyrosine kinases in different cells. We examined the effects of inhibiting uPAR signaling by inhibition of uPAR expression with antisense oligonucleotides (aODNs) in PC3 human prostate cancer cells and evaluated aODN effect in a mouse model of prostate cancer bone metastasis. Following uPAR aODN treatment, PC3 cells exhibited a strong decrease in uPAR expression, evaluated by flow cytometry and by polymerase chain reaction, and of FAK/JNK/Jun phosphorylation. The synthesis of cyclins A, B, D1 and D3 was inhibited, as shown by Western blotting, flow cytometry and polymerase chain reaction, and PC3 cells accumulated in the G2 phase of the cell cycle. PC3 cells' adhesion was unaffected, while proliferation and invasion of Matrigel were impaired. A total of 60 mice were subjected to intracardiac injection of PC3 cells and were randomly assigned to three groups: aODN (treated with 0.5 mg intraperitoneum/mouse/day), dODN (treated with the same amounts of a degenerated ODN) and control (injected with a saline solution). At 28 days after heart injection, mice were subjected to a digital scan of total body radiography, which revealed 80% reduction in mice affected by bone metastasis. The use of uPAR aODNs produced a substantial prophylactic effect against prostate cancer bone metastasis, which has to be ascribed to downregulation of uPAR expression.
Collapse
Affiliation(s)
- F Margheri
- Department of Experimental Pathology and Oncology, University of Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|