1
|
Sugandhi VV, Pangeni R, Vora LK, Poudel S, Nangare S, Jagwani S, Gadhave D, Qin C, Pandya A, Shah P, Jadhav K, Mahajan HS, Patravale V. Pharmacokinetics of vitamin dosage forms: A complete overview. Food Sci Nutr 2024; 12:48-83. [PMID: 38268871 PMCID: PMC10804103 DOI: 10.1002/fsn3.3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 01/26/2024] Open
Abstract
Vitamins are crucial for sustaining life because they play an essential role in numerous physiological processes. Vitamin deficiencies can lead to a wide range of severe health issues. In this context, there is a need to administer vitamin supplements through appropriate routes, such as the oral route, to ensure effective treatment. Therefore, understanding the pharmacokinetics of vitamins provides critical insights into absorption, distribution, and metabolism, all of which are essential for achieving the desired pharmacological response. In this review paper, we present information on vitamin deficiencies and emphasize the significance of understanding vitamin pharmacokinetics for improved clinical research. The pharmacokinetics of several vitamins face various challenges, and thus, this work briefly outlines the current issues and their potential solutions. We also discuss the feasibility of enhanced nanocarrier-based pharmaceutical formulations for delivering vitamins. Recent studies have shown a preference for nanoformulations, which can address major limitations such as stability, solubility, absorption, and toxicity. Ultimately, the pharmacokinetics of pharmaceutical dosage forms containing vitamins can impede the treatment of diseases and disorders related to vitamin deficiency.
Collapse
Affiliation(s)
| | - Rudra Pangeni
- Department of PharmaceuticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Sagun Poudel
- Department of PharmaceuticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Sopan Nangare
- Department of PharmaceuticsH. R. Patel Institute of Pharmaceutical Education and ResearchShirpurMaharashtraIndia
| | - Satveer Jagwani
- KLE College of PharmacyKLE Academy of Higher Education and ResearchBelagaviKarnatakaIndia
| | - Dnyandev Gadhave
- Department of PharmaceuticsSinhgad Technical Education SocietySinhgad Institute of PharmacyPuneMaharashtraIndia
| | - Chaolong Qin
- Department of PharmaceuticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Anjali Pandya
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| | - Purav Shah
- Thoroughbred Remedies ManufacturingTRM Industrial EstateNewbridgeIreland
| | - Kiran Jadhav
- KLE College of PharmacyKLE Academy of Higher Education and ResearchBelagaviKarnatakaIndia
| | - Hitendra S. Mahajan
- Department of PharmaceuticsR. C. Patel Institute of Pharmaceutical Education and ResearchShirpurMaharashtraIndia
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| |
Collapse
|
2
|
Zhang RX, Dong K, Wang Z, Miao R, Lu W, Wu XY. Nanoparticulate Drug Delivery Strategies to Address Intestinal Cytochrome P450 CYP3A4 Metabolism towards Personalized Medicine. Pharmaceutics 2021; 13:1261. [PMID: 34452222 PMCID: PMC8399842 DOI: 10.3390/pharmaceutics13081261] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Drug dosing in clinical practice, which determines optimal efficacy, toxicity or ineffectiveness, is critical to patients' outcomes. However, many orally administered therapeutic drugs are susceptible to biotransformation by a group of important oxidative enzymes, known as cytochrome P450s (CYPs). In particular, CYP3A4 is a low specificity isoenzyme of the CYPs family, which contributes to the metabolism of approximately 50% of all marketed drugs. Induction or inhibition of CYP3A4 activity results in the varied oral bioavailability and unwanted drug-drug, drug-food, and drug-herb interactions. This review explores the need for addressing intestinal CYP3A4 metabolism and investigates the opportunities to incorporate lipid-based oral drug delivery to enable precise dosing. A variety of lipid- and lipid-polymer hybrid-nanoparticles are highlighted to improve drug bioavailability. These drug carriers are designed to target different intestinal regions, including (1) local saturation or inhibition of CYP3A4 activity at duodenum and proximal jejunum; (2) CYP3A4 bypass via lymphatic absorption; (3) pH-responsive drug release or vitamin-B12 targeted cellular uptake in the distal intestine. Exploitation of lipidic nanosystems not only revives drugs removed from clinical practice due to serious drug-drug interactions, but also provide alternative approaches to reduce pharmacokinetic variability.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (R.X.Z.); (R.M.); (W.L.)
| | - Ken Dong
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| | - Zhigao Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China;
| | - Ruimin Miao
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (R.X.Z.); (R.M.); (W.L.)
| | - Weijia Lu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (R.X.Z.); (R.M.); (W.L.)
| | - Xiao Yu Wu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| |
Collapse
|
3
|
Nieto-Orellana A, Li H, Rosiere R, Wauthoz N, Williams H, Monteiro CJ, Bosquillon C, Childerhouse N, Keegan G, Coghlan D, Mantovani G, Stolnik S. Targeted PEG-poly(glutamic acid) complexes for inhalation protein delivery to the lung. J Control Release 2019; 316:250-262. [PMID: 31678655 DOI: 10.1016/j.jconrel.2019.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/02/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
Pulmonary delivery is increasingly seen as an attractive, non-invasive route for the delivery of forthcoming protein therapeutics. In this context, here we describe protein complexes with a new 'complexing excipient' - vitamin B12-targeted poly(ethylene glycol)-block-poly(glutamic acid) copolymers. These form complexes in sub-200nm size with a model protein, suitable for cellular targeting and intracellular delivery. Initially we confirmed expression of vitamin B12-internalization receptor (CD320) by Calu-3 cells of the in vitro lung epithelial model used, and demonstrated enhanced B12 receptor-mediated cellular internalization of B12-targeted complexes, relative to non-targeted counterparts or protein alone. To develop an inhalation formulation, the protein complexes were spray dried adopting a standard protocol into powders with aerodynamic diameter within the suitable range for lower airway deposition. The cellular internalization of targeted complexes from dry powders applied directly to Calu-3 model was found to be 2-3 fold higher compared to non-targeted complexes. The copolymer complexes show no complement activation, and in vivo lung tolerance studies demonstrated that repeated administration of formulated dry powders over a 3 week period in healthy BALB/c mice induced no significant toxicity or indications of lung inflammation, as assessed by cell population count and quantification of IL-1β, IL-6, and TNF-α pro-inflammatory markers. Importantly, the in vivo data appear to suggest that B12-targeted polymer complexes administered as dry powder enhance lung retention of their protein payload, relative to protein alone and non-targeted counterparts. Taken together, our data illustrate the potential developability of novel B12-targeted poly(ethylene glycol)-poly(glutamic acid) copolymers as excipients suitable to be formulated into a dry powder product for the inhalation delivery of proteins, with no significant lung toxicity, and with enhanced protein retention at their in vivo target tissue.
Collapse
Affiliation(s)
- A Nieto-Orellana
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - H Li
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - R Rosiere
- Laboratory of Pharmaceutics and Biopharmaceutics (ULBGAL), Université Libre de Bruxelles, Bruxelles, BE, Belgium
| | - N Wauthoz
- Laboratory of Pharmaceutics and Biopharmaceutics (ULBGAL), Université Libre de Bruxelles, Bruxelles, BE, Belgium
| | - H Williams
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - C J Monteiro
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - C Bosquillon
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - G Keegan
- Vectura Group plc, Chippenhafm, UK
| | | | - G Mantovani
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK.
| | - S Stolnik
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
4
|
Juul CB, Fedosov SN, Nexo E, Heegaard CW. Kinetic analysis of transcellular passage of the cobalamin-transcobalamin complex in Caco-2 monolayers. Mol Biol Cell 2018; 30:467-477. [PMID: 30565973 PMCID: PMC6594447 DOI: 10.1091/mbc.e18-09-0571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We suggest a novel kinetic approach to quantifying receptor–ligand interactions via the cellular transport and/or accumulation of the ligand. The system of cobalamin (Cbl, vitamin B12) transport was used as a model, because Cbl is an obligatory cofactor, taken up by animal cells with the help of a transport protein and a membrane receptor. Bovine transcobalamin (bTC) stimulated the cellular accumulation and transcytosis of radioactive [57Co]Cbl in polarized monolayers of Caco-2 cells. The bovine protein was much more efficient than human TC. The transport was inhibited in a dose-dependent manner by the unlabeled bTC-Cbl complex, the ligand-free bTC, and the receptor-associated protein (RAP). This inhibition pattern implied the presence of a megalin-like receptor. Quantitative assessment of kinetic records by the suggested method revealed the apparent concentration of receptors in vitro (≈15 nM), as well as the dissociation constants of bTC–Cbl (Kd = 13 nM) and RAP (Kd = 1.3 nM). The data were used to estimate the effective luminal concentrations of TC-specific receptors in kidneys (3.8 µM) and intestine (50 nM), the tissues resembling polarized Caco-2 cells.
Collapse
Affiliation(s)
- Christian B Juul
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Sergey N Fedosov
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Ebba Nexo
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Christian W Heegaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Hannibal L, Bolisetty K, Axhemi A, DiBello PM, Quadros EV, Fedosov S, Jacobsen DW. Transcellular transport of cobalamin in aortic endothelial cells. FASEB J 2018; 32:5506-5519. [PMID: 29741927 DOI: 10.1096/fj.201701141rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cobalamin [Cbl (or B12)] deficiency causes megaloblastic anemia and a variety of neuropathies. However, homeostatic mechanisms of cyanocobalamin (CNCbl) and other Cbls by vascular endothelial cells are poorly understood. Herein, we describe our investigation into whether cultured bovine aortic endothelial cells (BAECs) perform transcytosis of B12, namely, the complex formed between serum transcobalamin and B12, designated as holo-transcobalamin (holo-TC). We show that cultured BAECs endocytose [57Co]-CNCbl-TC (source material) via the CD320 receptor. The bound Cbl is transported across the cell both via exocytosis in its free form, [57Co]-CNCbl, and via transcytosis as [57Co]-CNCbl-TC. Transcellular mobilization of Cbl occurred in a bidirectional manner. A portion of the endocytosed [57Co]-CNCbl was enzymatically processed by methylmalonic aciduria combined with homocystinuria type C (cblC) with subsequent formation of hydroxocobalamin, methylcobalamin, and adenosylcobalamin, which were also transported across the cell in a bidirectional manner. This demonstrates that transport mechanisms for Cbl in vascular endothelial cells do not discriminate between various β-axial ligands of the vitamin. Competition studies with apoprotein- and holo-TC and holo-intrinsic factor showed that only holo-TC was effective at inhibiting transcellular transport of Cbl. Incubation of BAECs with a blocking antibody against the extracellular domain of the CD320 receptor inhibited uptake and transcytosis by ∼40%. This study reveals that endothelial cells recycle uncommitted intracellular Cbl for downstream usage by other cell types and suggests that the endothelium is self-sufficient for the specific acquisition and subsequent distribution of circulating B12 via the CD320 receptor. We posit that the endothelial lining of the vasculature is an essential component for the maintenance of serum-tissue homeostasis of B12.-Hannibal, L., Bolisetty, K., Axhemi, A., DiBello, P. M., Quadros, E. V., Fedosov, S., Jacobsen, D. W. Transcellular transport of cobalamin in aortic endothelial cells.
Collapse
Affiliation(s)
- Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department for Pediatrics, Medical Center, University of Freiburg, Freiburg, Germany.,Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Keerthana Bolisetty
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Armend Axhemi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Patricia M DiBello
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Edward V Quadros
- Department of Medicine, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, USA; and
| | - Sergey Fedosov
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Donald W Jacobsen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Alpers DH. Absorption and blood/cellular transport of folate and cobalamin: Pharmacokinetic and physiological considerations. Biochimie 2015; 126:52-6. [PMID: 26586110 DOI: 10.1016/j.biochi.2015.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/05/2015] [Indexed: 12/26/2022]
Abstract
The systems involving folate and cobalamin have several features in common: 1) their dietary forms require luminal digestion for absorption; 2) intestinal bacteria in the upper intestine synthesize and utilize both vitamins, creating possible competition for the nutrients; 3) there is one major intestinal brush border protein essential for absorption; 4) both are subject to extensive entero-hepatic circulation. Finally, human mutations have confirmed the role of specific transporters and receptors in these processes. There are other features, however, that distinguish the metabolism of these vitamins: 1) upper intestinal bacteria tend to produce folate, while cobalamin (cbl) utilization is more common; 2) cbl absorption requires a luminal binding protein, but folate does not; 3) folate absorption can occur throughout the small bowel, but the cbl receptor, cubilin, is restricted to the distal half of the small bowel; 4) movement into cells uses transporters, exchangers, and symporters, whereas cbl is transferred by receptor-mediated endocytosis; 5) folate is carried in the blood mostly in red blood cells, whereas cbl is carried on specific binding-proteins; 6) folate can enter cells via multiple systems, but cbl uptake into all tissues use the transcobalamin receptor (TC-R), with the asialoglycoprotein receptor (ASGP-R) present in hepatocytes for uptake of haptocorrin-cbl (HC-cbl) complexes. In summary, the systems for absorption and distribution of folate and cobalamin are complex. These complexities help to explain the variable clinical responses after oral administration of the vitamins, especially when provided as supplements.
Collapse
Affiliation(s)
- David H Alpers
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63130, USA.
| |
Collapse
|
7
|
Fowler R, Vllasaliu D, Falcone FH, Garnett M, Smith B, Horsley H, Alexander C, Stolnik S. Uptake and transport of B12-conjugated nanoparticles in airway epithelium. J Control Release 2013; 172:374-381. [PMID: 24008152 PMCID: PMC3898795 DOI: 10.1016/j.jconrel.2013.08.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 11/22/2022]
Abstract
Non-invasive delivery of biotherapeutics, as an attractive alternative to injections, could potentially be achieved through the mucosal surfaces, utilizing nanoscale therapeutic carriers. However, nanoparticles do not readily cross the mucosal barriers, with the epithelium presenting a major barrier to their translocation. The transcytotic pathway of vitamin B12 has previously been shown to 'ferry' B12-decorated nanoparticles across intestinal epithelial (Caco-2) cells. However, such studies have not been reported for the airway epithelium. Furthermore, the presence in the airways of the cell machinery responsible for transepithelial trafficking of B12 is not widely reported. Using a combination of molecular biology and immunostaining techniques, our work demonstrates that the bronchial cell line, Calu-3, expresses the B12-intrinsic factor receptor, the transcobalamin II receptor and the transcobalamin II carrier protein. Importantly, the work showed that sub-200 nm model nanoparticles chemically conjugated to B12 were internalised and transported across the Calu-3 cell layers, with B12 conjugation not only enhancing cell uptake and transepithelial transport, but also influencing intracellular trafficking. Our work therefore demonstrates that the B12 endocytotic apparatus is not only present in this airway model, but also transports ligand-conjugated nanoparticles across polarised epithelial cells, indicating potential for B12-mediated delivery of nanoscale carriers of biotherapeutics across the airways.
Collapse
Affiliation(s)
- Robyn Fowler
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Driton Vllasaliu
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Franco H Falcone
- Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martin Garnett
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Bryan Smith
- UCB Pharma, 208 Bath Road, Slough, Berkshire SL1 3WE, UK
| | - Helen Horsley
- UCB Pharma, 208 Bath Road, Slough, Berkshire SL1 3WE, UK
| | - Cameron Alexander
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Snow Stolnik
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
8
|
Quadros EV, Sequeira JM. Cellular uptake of cobalamin: transcobalamin and the TCblR/CD320 receptor. Biochimie 2013; 95:1008-18. [PMID: 23415653 PMCID: PMC3902480 DOI: 10.1016/j.biochi.2013.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/01/2013] [Indexed: 02/06/2023]
Abstract
Cellular uptake of cobalamin is facilitated by a receptor-mediated endocytosis process involving transcobalamin, a plasma protein that binds cobalamin and a cell surface receptor that specifically binds transcobalamin saturated with cobalamin. Intracellular Cbl concentration is maintained by modulating the expression of the receptor, which is cell cycle associated with highest expression in actively proliferating cells and an efflux system that shunts the excess cobalamin out of the cells for mobilization to other tissues where it is most needed. This review describes the process, proteins involved and genes encoding these proteins.
Collapse
Affiliation(s)
- Edward V Quadros
- Departments of Medicine / Cell Biology, SUNY- Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
9
|
Ou K, Percival SS, Zou T, Khoo C, Gu L. Transport of cranberry A-type procyanidin dimers, trimers, and tetramers across monolayers of human intestinal epithelial Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1390-1396. [PMID: 22263899 DOI: 10.1021/jf2040912] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A-type procyanidin oligomers in cranberries are known to inhibit the adhesion of uropathogenic bacteria. B-type procyanidin dimers and trimers are absorbed by humans. The absorption of A-type procyanidins from cranberries in humans has not been demonstrated. This study examined the transport of A-type cranberry procyanidin dimers, trimers, and tetramers on differentiated human intestinal epithelial Caco-2 cell monolayers. Procyanidins were extracted from cranberries and purified using chromatographic methods. Fraction I contained predominantly A-type procyanidin dimer A2 [epicatechin-(2-O-7, 4-8)-epicatechin]. Fraction II contained primarily A-type trimers and tetramers, with B-type trimers, A-type pentamers, and A-type hexamers being minor components. Fraction I or II in solution was added onto the apical side of the Caco-2 cell membranes. The media at the basolateral side of the membranes were analyzed using HPLC-MS(n) after 2 h. Data indicated that procyanidin dimer A2 in fraction I and A-type trimers and tetramers in fraction II traversed across Caco-2 cell monolayers with transport ratio of 0.6%, 0.4%, and 0.2%, respectively. This study demonstrated that A-type dimers, trimers, and tetramers were transported across Caco-2 cells at low rates, suggesting that they could be absorbed by humans after cranberry consumption.
Collapse
Affiliation(s)
- Keqin Ou
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | |
Collapse
|
10
|
Sarti F, Iqbal J, Müller C, Shahnaz G, Rahmat D, Bernkop-Schnürch A. Poly(acrylic acid)–cysteine for oral vitamin B12 delivery. Anal Biochem 2012; 420:13-9. [DOI: 10.1016/j.ab.2011.08.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
11
|
Petrus AK, Fairchild TJ, Doyle RP. Traveling the vitamin B12 pathway: oral delivery of protein and peptide drugs. Angew Chem Int Ed Engl 2009; 48:1022-8. [PMID: 19072807 DOI: 10.1002/anie.200800865] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oral routes of administration for therapeutic peptides and proteins face two major barriers: proteolytic degradation in the stomach and an inadequate absorption mechanism for polypeptides within the intestinal lumen. As a result, peptide-based therapeutics are administered by injection, a painful process associated with lower patient compliance. The development of a means of overcoming these two major obstacles and enabling the successful delivery of peptide therapeutics by the oral route of administration has therefore been the target of extensive scientific endeavor. This Minireview focuses on oral peptide/protein delivery by the dietary uptake pathway for vitamin B(12). Recent progress in this field includes the delivery of erythropoietin, granulocyte-colony-stimulating factor, luteinizing-hormone-releasing hormone, and insulin.
Collapse
Affiliation(s)
- Amanda K Petrus
- Department of Chemistry, Syracuse University, Syracuse, NY 13244-4100, USA
| | | | | |
Collapse
|
12
|
Petrus A, Fairchild T, Doyle R. Orale Verabreichung von Protein- und Peptidwirkstoffen entlang der Vitamin-B12-Route. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200800865] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
The protein and the gene encoding the receptor for the cellular uptake of transcobalamin-bound cobalamin. Blood 2008; 113:186-92. [PMID: 18779389 DOI: 10.1182/blood-2008-05-158949] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcobalamin (TC, TCII) receptor (TCblR) on the plasma membrane binds TC- cobalamin (Cbl) and internalizes the complex by endocytosis. This receptor was purified from human placental membranes by affinity chromatography. Tryptic digest of the protein extracted from a sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel and subjected to liquid chromatography/mass spectrometry identified 4 peptides that matched with a membrane protein in the data bank. TCblR belongs to the low-density lipoprotein receptor family, with 2 low-density lipoprotein receptor type A domains separated by a complement-like cysteine-rich region. The 282-amino acid sequence includes a signal peptide of 31 residues, extracellular domain of 198 residues, a transmembrane region of 21 residues, and a cytoplasmic domain of 32 residues. The binding of TC-Cbl does not require the cytoplasmic domain or its orientation in the plasma membrane because the recombinant extracellular domain binds TC-Cbl with high affinity and specificity. The protein is heavily glycosylated and accounts for the 58-kDa size by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The human gene first identified as 8D6A and more recently as CD 320 encoding TCblR is located at p13.2 on the short arm of chromosome 19, spans a length of 6.224 kb, and is composed of 5 exons and 4 introns.
Collapse
|
14
|
Bose S, Kalra S, Yammani RR, Ahuja R, Seetharam B. Plasma membrane delivery, endocytosis and turnover of transcobalamin receptor in polarized human intestinal epithelial cells. J Physiol 2007; 581:457-66. [PMID: 17347267 PMCID: PMC2075189 DOI: 10.1113/jphysiol.2007.129171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cells that are metabolically active and in a high degree of differentiation and proliferation require cobalamin (Cbl: vitamin B(12)) and they obtain it from the circulation bound to transcobalamin (TC) via the transcobalamin receptor (TC-R). This study has investigated the plasma membrane dynamics of TC-R expression in polarized human intestinal epithelial Caco-2 cells using techniques of pulse-chase labelling, domain-specific biotinylation and cell fractionation. Endogenously synthesized TC-R turned over with a half-life (T(1/2)) of 8 h following its delivery to the basolateral plasma membrane (BLM). The T(1/2) of BLM delivery was 15 min and TC-R delivered to the BLM was endocytosed and subsequently degraded by leupeptin-sensitive proteases. However, about 15% of TC-R endocytosed from the BLM was transcytosed (T(1/2), 45 min) to the apical membranes (BBM) where it underwent endocytosis and was degraded. TC-R delivery to both BLM and BBM was inhibited by Brefeldin A and tunicamycin, but not by wortmannin or leupeptin. Colchicine inhibited TC-R delivery to BBM, but not BLM. At steady state, apical TC-R was associated with megalin and both these proteins were enriched in an intracellular compartment which also contained Rab5 and transferrin receptor. These results indicate that following rapid delivery to both plasma membrane domains of Caco-2 cells, TC-R undergoes constitutive endocytosis and degradation by leupeptin-sensitive proteases. TC-R expressed in apical BBM complexes with megalin during its transcytosis from the BLM.
Collapse
Affiliation(s)
- Santanu Bose
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin and Veterans Administration Medical Center, Milwaukee, Wisconsin 53295, USA
| | | | | | | | | |
Collapse
|
15
|
Quadros EV, Nakayama Y, Sequeira JM. The binding properties of the human receptor for the cellular uptake of vitamin B12. Biochem Biophys Res Commun 2005; 327:1006-10. [PMID: 15652495 DOI: 10.1016/j.bbrc.2004.12.103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Indexed: 11/24/2022]
Abstract
Cellular uptake of vitamin B(12) (cobalamin, Cbl) is mediated by a receptor expressed on the plasma membrane that binds transcobalamin (TC) saturated with Cbl and internalizes the TC-Cbl by endocytosis. A few reports have described the characterization of the receptor protein. However, many discrepancies have emerged in the functional and structural properties of the receptor and therefore, the identity and primary structure of this protein remains unconfirmed. In this report, we provide evidence of a 58 kDa monomeric protein as the likely receptor for the uptake of TC-Cbl and that the functional activity is not associated with a 72/144 kDa monomer/dimer with immunoglobulin Fc structural domain that has been purported to be the receptor in a number of publications.
Collapse
Affiliation(s)
- Edward V Quadros
- Department of Biochemistry, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | | | |
Collapse
|
16
|
Bose S, Basu M, Banerjee AK. Role of nucleolin in human parainfluenza virus type 3 infection of human lung epithelial cells. J Virol 2004; 78:8146-58. [PMID: 15254186 PMCID: PMC446124 DOI: 10.1128/jvi.78.15.8146-8158.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 03/15/2004] [Indexed: 11/20/2022] Open
Abstract
Human parainfluenza virus type 3 (HPIV-3) is an airborne pathogen that infects human lung epithelial cells from the apical (luminal) plasma membrane domain. In the present study, we have identified cell surface-expressed nucleolin as a cellular cofactor required for the efficient cellular entry of HPIV-3 into human lung epithelial A549 cells. Nucleolin was enriched on the apical cell surface domain of A549 cells, and HPIV-3 interacted with nucleolin during entry. The importance of nucleolin during HPIV-3 replication was borne out by the observation that HPIV-3 replication was significantly inhibited following (i). pretreatment of cells with antinucleolin antibodies and (ii). preincubation of HPIV-3 with purified nucleolin prior to its addition to the cells. Moreover, HPIV-3 cellular internalization and attachment assays performed in the presence of antinucleolin antibodies and purified nucleolin revealed the requirement of nucleolin during HPIV-3 internalization but not during attachment. Thus, these results suggest that nucleolin expressed on the surfaces of human lung epithelial A549 cells plays an important role during HPIV-3 cellular entry.
Collapse
Affiliation(s)
- Santanu Bose
- Department of Virology, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
17
|
Kalra S, Li N, Seetharam S, Alpers DH, Seetharam B. Function and stability of human transcobalamin II: role of intramolecular disulfide bonds C98-C291 and C147-C187. Am J Physiol Cell Physiol 2003; 285:C150-60. [PMID: 12660150 DOI: 10.1152/ajpcell.00496.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current studies have investigated the role of three disulfide bonds of human transcobalamin II (TC II), a plasma transporter of cobalamin (Cbl; vitamin B12), in its function and stability. When translated in vitro in the presence or absence of microsomal vesicles, TC II constructs with a single substitution, C3S or C249S, demonstrated synthesis of a stable functional protein. However, TC II synthesized in the presence of microsomal vesicles using constructs with a single (C98S, C147S, C187S, C291S), double (C3/147/S, C98/147/S) or triple (C3/98/147/S) substitution was unstable. In the absence of microsomal vesicles, the percentage of binding to Cbl-Sepharose matrix by TC II expressed by constructs C3S, C3/147/S, C98/147/S, or C3/98/147/S was 100, 49, 52, and 35%, respectively. Upon their reductive alkylation, the binding of TC II expressed by these constructs was reduced to approximately 25-30%. TC II constructs C3S or C249S, when expressed in TC II-deficient fibroblasts, produced a stable functional protein, but those expressed by constructs C147S, C187S, C291S, C3/147/S, C98/147/S, or C3/98/147/S were rapidly degraded. The intracellular degradation of TC II expressed by these constructs was inhibited by lactacystin or MG-132 but not by the lysosomal degradation inhibitors ammonium chloride or chloroquine. These studies suggest that optimal binding of Cbl by human TC II is supported by disulfide bonds C98-C291 and C147-C187 and that their disruption results in loss of Cbl binding and their rapid degradation by the proteasomal machinery.
Collapse
Affiliation(s)
- Seema Kalra
- Department of Medicine, Medical College of Wisconsin and Veterans Adminstration Medical Center, Milwaukee, WI 53295, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Transcytosis, the vesicular transport of macromolecules from one side of a cell to the other, is a strategy used by multicellular organisms to selectively move material between two environments without altering the unique compositions of those environments. In this review, we summarize our knowledge of the different cell types using transcytosis in vivo, the variety of cargo moved, and the diverse pathways for delivering that cargo. We evaluate in vitro models that are currently being used to study transcytosis. Caveolae-mediated transcytosis by endothelial cells that line the microvasculature and carry circulating plasma proteins to the interstitium is explained in more detail, as is clathrin-mediated transcytosis of IgA by epithelial cells of the digestive tract. The molecular basis of vesicle traffic is discussed, with emphasis on the gaps and uncertainties in our understanding of the molecules and mechanisms that regulate transcytosis. In our view there is still much to be learned about this fundamental process.
Collapse
Affiliation(s)
- Pamela L Tuma
- Hunterian 119, Department of Cell Biology, 725 N Wolfe St, Baltimore, MD 21205, USA
| | | |
Collapse
|
19
|
Yammani RR, Seetharam S, Dahms NM, Seetharam B. Transcobalamin II receptor interacts with megalin in the renal apical brush border membrane. J Membr Biol 2003; 193:57-66. [PMID: 12879166 DOI: 10.1007/s00232-002-2007-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Indexed: 10/26/2022]
Abstract
Purified human transcobalamin II receptor (TC II-R) binds to megalin, a 600 kDa endocytic receptor with an association constant, K(a), of 66 n M and bound(max) of 1.1 mole of TC II-R/mole of megalin both in the presence and absence of its ligand, transcobalamin II (TC II). Immunoprecipitation followed by immunoblotting of Triton X-100 extracts of the apical brush border membrane (BBM) from rabbit renal cortex revealed association of these two proteins. (35)[S]-TC II complexed with cobalamin (Cbl; Vitamin B(12)) bound to Sepharose-megalin affinity matrix and the binding was enhanced 5-fold when TC II-R was prebound to megalin. Megalin antiserum inhibited both the TC II-R-dependent and -independent binding of (35)[S]-TC II-Cbl to megalin, while TC II-R antiserum inhibited only the TC II-R-dependent binding. In rabbits with circulating antiserum to megalin, renal apical BBM megalin was present as an immune complex, but its levels were not altered. However, the protein levels of both TC II-R and the cation-independent mannose 6-phosphate receptor (CIMPR) were drastically reduced and the urinary excretion of TC II, albumin, and other low-molecular weight proteins was significantly increased. These results suggest that megalin contains a distinct single high-affinity binding site for TC II-R and their association in the native renal BBM is important for tubular reabsorption of many proteins, including TC II.
Collapse
Affiliation(s)
- R R Yammani
- Division of Gastroenterology and Hepatology, Department of Medicine, Zablocki Veteran's Administration Medical Center and Medical College of Wisconsin, 5000 West National Avenue, Milwaukee, Wisconsin, 53295, USA
| | | | | | | |
Collapse
|
20
|
Vanamala SK, Seetharam S, Yammani RR, Seetharam B. Human transcobalamin II receptor binds to Staphylococcus aureus protein A: implications as to its structure and function. Arch Biochem Biophys 2003; 411:204-14. [PMID: 12623069 DOI: 10.1016/s0003-9861(03)00005-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Purified human placental transcobalamin II receptor (TC II-R) dimer of molecular mass 124 kDa bound to Sepharose-linked bacterial immunoglobulin (IgG) binding proteins protein A, protein G, and protein A/G. TC II-R dimer was detected directly, by blotting human placental and rabbit and rat kidney membrane proteins with 125I-protein A, or indirectly, using antiserum to TC II-R or IgG-Fc region and 125I-protein. TC II-R antiserum, but not protein A, protein G, protein A/G, or antiserum to the IgG-Fc region, when added to culture medium of human intestinal epithelial Caco-2 cells or umbilical vein endothelial cells, inhibited ligand binding. However, protein A, protein G, protein A/G, or antiserum to the Fc region inhibited the internalization of the ligand TC II-[57Co]cyanocobalamin. Taken together, these studies strongly suggest TC II-R is an IgG-like molecule that contains an Fc-like region which is important in ligand internalization but not binding.
Collapse
Affiliation(s)
- Sravan K Vanamala
- Gastroenterology and Hepatology Division, Department of Medicine, Milwaukee, Wisconsin 53295, USA
| | | | | | | |
Collapse
|
21
|
Bauer JA, Morrison BH, Grane RW, Jacobs BS, Dabney S, Gamero AM, Carnevale KA, Smith DJ, Drazba J, Seetharam B, Lindner DJ. Effects of interferon beta on transcobalamin II-receptor expression and antitumor activity of nitrosylcobalamin. J Natl Cancer Inst 2002; 94:1010-9. [PMID: 12096086 PMCID: PMC2020433 DOI: 10.1093/jnci/94.13.1010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The ubiquitous plasma membrane transcobalamin II receptor (TC II-R) mediates uptake of cobalamin (Cbl; vitamin B12), an essential micronutrient. Tumors often require more Cbl than normal tissue, and increased Cbl uptake may result from increased TC II-R expression. To examine whether Cbl could therefore be used as a carrier molecule to target a chemotherapy drug, we tested an analogue of Cbl with nitric oxide as a ligand, nitrosylcobalamin (NO-Cbl). Because interferon beta (IFN-beta) has antitumor effects and increases expression of some membrane receptors, we examined whether it may enhance the effects of NO-Cbl. METHODS Antiproliferative effects of NO-Cbl were assessed in 24 normal and cancer cell lines. Xenograft tumors of human ovarian cancer NIH-OVCAR-3 cells were established in athymic nude mice, and tumor growth was monitored after treatment with NO-Cbl and IFN-beta, both individually and concomitantly. TC II-R expression and apoptosis was monitored in vitro and in vivo. RNA protection assays and mitochondrial membrane potential assays were used to distinguish the extrinsic and intrinsic apoptotic pathways, respectively. RESULTS Cancer cell lines were more sensitive to NO-Cbl (with ID(50)s [the dose that inhibits growth by 50%] as low as 2 microM) than normal cell lines (with ID(50)s of 85-135 microM). Single-agent NO-Cbl and IFN-beta treatment of NIH-OVCAR-3 xenografts induced tumor regression, whereas combination treatment induced tumor eradication. IFN-beta treatment increased TC II-R expression in vitro and uptake of [(57)Co]cobalamin in vivo. Compared with NIH-OVCAR-3 cells treated with NO-Cbl, cells treated with NO-Cbl and IFN-beta were more apoptotic and expressed higher mRNA levels of various apoptosis-associated genes. No changes in mitochondrial membrane potential were observed in cells treated with NO-Cbl. CONCLUSION NO-Cbl inhibited tumor growth in vivo by activating the extrinsic apoptotic pathway. The increased expression of TC II-R induced by IFN-beta resulted in enhanced antitumor effects with NO-Cbl both in vitro and in vivo.
Collapse
Affiliation(s)
- Joseph A Bauer
- Taussig Cancer Center, Center for Cancer Drug Discovery and Development, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bruneau N, Nganga A, Bendayan M, Lombardo D. Transcytosis of pancreatic bile salt-dependent lipase through human Int407 intestinal cells. Exp Cell Res 2001; 271:94-108. [PMID: 11697886 DOI: 10.1006/excr.2001.5361] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In previous studies, we have shown that the bile-salt-dependent-lipase (BSDL), secreted by pancreatic acinar cells and secreted into the duodenal lumen, can be transcytosed through intestinal cells up to the lamina propria. In this study, we used an in vitro system to provide insights into the apical to basolateral transport of BSDL, across the intestinal barrier. The Int407 human epithelial cell line, grown under conditions that optimize polarity, was used as a tight epithelium model. We attempted to delineate uptake mechanisms and the transcytotic pathway followed by this pancreatic enzyme within the intestinal Int407 cells, which do not produce BSDL. When added to the apical reservoir of Transwell-grown Int407 cells, BSDL was shown to first interact with the apical membrane. Further, BSDL forms clusters that are internalized via clathrin-coated pits. Following endocytosis, BSDL is directed to a nocodazole- and colchicin-sensitive multivesicular compartment. Interestingly, this protein transits through the Golgi apparatus, where it was found to colocalize with the KDEL retrieval-receptor. Finally, enzymatically active intact BSDL was released at the basolateral membrane level. This is the first demonstration for an apical-to-basolateral transcytotic pathway of a secreted pancreatic digestive enzyme through polarized intestinal cells.
Collapse
Affiliation(s)
- N Bruneau
- Unité de Recherche de Physiopathologie des cellules épithéliales, INSERM U-559, Marseilles, France
| | | | | | | |
Collapse
|
23
|
Adkins Y, Lönnerdal B. High affinity binding of the transcobalamin II-cobalamin complex and mRNA expression of haptocorrin by human mammary epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1528:43-8. [PMID: 11514097 DOI: 10.1016/s0304-4165(01)00171-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Little is known about the acquisition of cobalamin by the mammary gland and its secretion into milk. Human milk and plasma contain at least two types of cobalamin binding proteins: transcobalamin II (TC) and haptocorrin (HC). In plasma, TC is responsible for the transport of cobalamin to tissues and cells; however, cobalamin in milk is present exclusively bound to HC. We show that human mammary epithelial cells (HMEC) exhibit high affinity for TC; Scatchard analysis revealed a single class of binding sites for the TC-[(57)Co]cyanocobalamin complex with a dissociation constant (K(d)) of 4.9 x 10(-11) M. Uptake of the TC-[(57)Co]cyanocobalamin complex at 37 degrees C was saturable by 24 h. Binding of free [(57)Co]cyanocobalamin to HMEC was not saturable and very limited binding of the HC-[(57)Co]cyanocobalamin complex was observed. Expression of the haptocorrin gene by HMEC was confirmed by Northern blot and PCR analysis. Thus, a specific cell surface receptor for the TC-cobalamin complex exists in the mammary gland and once cobalamin is internalized, it may be transferred to HC and subsequently secreted into milk as a HC-cobalamin complex.
Collapse
Affiliation(s)
- Y Adkins
- Department of Nutrition, University of California, One Shields Ave, Davis, CA 95616, USA
| | | |
Collapse
|
24
|
Alsenz J, Russell-Jones GJ, Westwood S, Levet-Trafit B, de Smidt PC. Oral absorption of peptides through the cobalamin (vitamin B12) pathway in the rat intestine. Pharm Res 2000; 17:825-32. [PMID: 10990201 DOI: 10.1023/a:1007556108673] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE This study was aimed at examining the extent and mechanism of uptake of cobalamin (Cbl)-conjugated peptides in vitro and in vivo. METHODS To enable acquisition of quantitative absorption data of Cbl-peptides, metabolically stable octapeptides (DP3), with (Cbl-Hex-DP3) or without a hexyl spacer (Cbl-DP3), were coupled to Cbl and radiolabeled. For comparison, LHRH coupled to Cbl was used as metabolically susceptible peptide. Biological recognition of Cbl-peptides was studied in the physiological order: binding by Intrinsic Factor (IF), recognition and transport of the IF-complexes by IF-Cbl receptors (IFCR) on Caco-2 monolayers and oral absorption of the Cbl-conjugates in the rat. RESULTS All Cbl-peptides bound to IF and the IF-complexes were recognized by IFCR receptors on Caco-2 monolayers. Binding was saturable and could be inhibited by a 20-fold excess of IF-Cbl, but not of Non-intrinsic Factor (NIF)-Cbl. Oral administration of these ligands to rats resulted in absorption of 53%, 45%, 42%, and 23% of the applied radioactivity for Cbl, Cbl-LHRH, Cbl-Hex-DP3, and Cbl-DP3, respectively. Simultaneous administration of a >10(5)-fold excess of unlabeled Cbl reduced uptake of all compounds to <4%. Tissue distribution and elimination of the metabolically stable Cbl-conjugates were comparable to Cbl. CONCLUSIONS The endogenous Cbl uptake pathway can be exploited for oral peptide delivery as indicated by the specific and high (40-45%) uptake of metabolically stable Cbl-coupled octapeptides.
Collapse
Affiliation(s)
- J Alsenz
- Preclinical Research Department, F. Hoffman-La Roche Ltd., Basle, Switzerland.
| | | | | | | | | |
Collapse
|
25
|
Collins DA, Hogenkamp HP, O'Connor MK, Naylor S, Benson LM, Hardyman TJ, Thorson LM. Biodistribution of radiolabeled adenosylcobalamin in patients diagnosed with various malignancies. Mayo Clin Proc 2000; 75:568-80. [PMID: 10852417 DOI: 10.4065/75.6.568] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To study the biodistribution of a vitamin B12 analog, indium In 111-labeled diethylenetriaminepentaacetate adenosylcobalamin (In 111 DAC), in patients recently diagnosed as having primary or recurrent malignancy. PATIENTS AND METHODS Thirty patients (14 women and 16 men) with radiographically or clinically diagnosed breast, lung, colon, sarcomatous, thyroid, or central nervous system malignancies were studied prior to definitive surgery or biopsy. A maximum of 650 microCi (2.2 microg) of In 111 DAC was administered intravenously. Vitamin B12 and folate levels were determined prior to injection. Serum clearance and urinary and stool excretion of the tracer were measured. Images were routinely obtained at 0.5, 3 to 5, and 20 to 24 hours after injection. Biodistribution of In 111 DAC was determined by computer analysis of regions of interest. RESULTS Serum T1/2 clearance was 7 minutes. Average urinary and stool excretion of the injected dose over 24 hours was 26.1% and 0.4%, respectively. The greatest focal uptake of In 111 DAC occurred in the liver and spleen, followed by the nasal cavity and salivary and lacrimal glands. The average tumor uptake of the injected dose was 2% at 30 minutes and 1.5% at 24 hours. High-grade primary and metastatic breast, lung, colon, thyroid, and sarcomatous malignancies were all imaged at 3 to 5 hours after injection. Central nervous system tumors and advanced metastatic prostate cancer were best identified at 24 hours. Mammographically occult, palpable, and nonpalpable breast cancers were delineated by In 111 DAC. Low-grade malignancies as well as early skeletal metastatic disease were not effectively imaged by the vitamin B12 tracer. Patients with elevated baseline vitamin B12 or those concurrently taking corticosteroids appeared to have optimal visualization of their malignancies. CONCLUSION Vitamin B12 may be a useful vehicle for delivering diagnostic and therapeutic agents to various malignancies. Further evaluation of cobalamin analogs and their interaction with transport proteins and cellular receptors within malignant tissue and infection is warranted.
Collapse
Affiliation(s)
- D A Collins
- Section of Nuclear Medicine, Mayo Clinic, Rochester, Minn 55905, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Recent studies have isolated and characterized human gastric intrinsic factor (IF) and transcobalamin II (TC II) genes, whose products mediate the import of cobalamin (Cbl; Vitamin B-12) across cellular plasma membranes. Analyses of cDNA and genomic clones of IF and TC II have provided some important insights into their sites of expression, structure and function. IF and TC II genes contain the same number, size and position of exons, and four of their eight intron-exon boundaries are identical. In addition, they share high homology in certain regions that are localized to different exons, indicating that IF and TC II may have evolved from a common ancestral gene. Both IF and TC II mediate transmembrane transport of Cbl via their respective receptors that function as oligomers in the plasma membrane. IF-mediated import of Cbl is limited to the apical membranes of epithelial cells; it occurs via a multipurpose receptor recently termed "cubilin," and the imported Cbl is usually exported out of these cells bound to endogenous TC II. On the other hand, TC II-mediated Cbl import occurs in all cells, including epithelial cells via a specific receptor, and the Cbl imported is usually retained, converted to its coenzyme forms, methyl-Cbl and 5'-deoxyadenosyl-Cbl, and utilized.
Collapse
Affiliation(s)
- B Seetharam
- Division of Gastroenterology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
27
|
Namour F, Guy M, Aimone-Gastin I, de Nonancourt M, Mrabet N, Guéant JL. Isoelectrofocusing phenotype and relative concentration of transcobalamin II isoproteins related to the codon 259 Arg/Pro polymorphism. Biochem Biophys Res Commun 1998; 251:769-74. [PMID: 9790985 DOI: 10.1006/bbrc.1998.9463] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated transcobalamin II (TC) isoelectrofocusing (IEF) phenotype and codon 259 polymorphism, in Caco-2 and HT-29 cells and in blood drawn from 39 healthy Caucasians. Caco-2 cells expressed a single TC variant (259-Arg), while HT-29 cells expressed TC with either Arg or Pro at codon 259 and exhibited two isoproteins in IEF with urea, but only one in IEF without urea. Among the Caucasians, 7 subjects expressed the TC 259-Arg variant, 10 the 259-Pro variant, and 22 were heterozygous. The TC 259-Pro isoprotein issued from HT-29 cells and heterozygous caucasian sera, was, respectively, 2. 4-fold and 1.6-fold higher than the TC 259-Arg isoprotein. Apo-TC and vitamin B12 serum concentrations in 259-Pro homozygotes were, respectively, 1.7 and 1.4-fold higher than those in 259-Arg homozygotes (p<0.005 and p=0.05). In conclusion, the 259-Arg/Pro polymorphism yields two TC variants only titratable in denaturing conditions and affects the blood level of both Apo-TC and vitamin B12.
Collapse
Affiliation(s)
- F Namour
- Laboratoire de Pathologie Cellulaire et Moléculaire en Nutrition, EP CNRS 616, Vandoeuvre les Nancy, Cedex, 54505, France
| | | | | | | | | | | |
Collapse
|
28
|
Bose S, Chapin SJ, Seetharam S, Feix J, Mostov KE, Seetharam B. Brefeldin A (BFA) inhibits basolateral membrane (BLM) delivery and dimerization of transcobalamin II receptor in human intestinal epithelial Caco-2 cells. BFA effects on BLM cholesterol content. J Biol Chem 1998; 273:16163-9. [PMID: 9632671 DOI: 10.1074/jbc.273.26.16163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brefeldin A (BFA) treatment of Caco-2 cells (5 microg/ml for 12 h) reduced by 90% the cholesterol, but not the phospholipid (PL), levels of the basolateral membrane (BLM), thus altering its PL/cholesterol molar ratio from 2.6 to 22.0, and decreasing its steady state fluorescent anisotropy (rs) from 0.27 to 0.15. BFA treatment for 12 h also resulted in complete loss of transcobalamin II receptor (TC II-R) activity/protein levels in the BLM and the disappearance of trans-Golgi network (TGN) morphology as revealed by confocal immunofluorescence microscopy using antibody to TGN 38. However, BFA treatment had no effect on either total cellular cholesterol, TC II-R activity, or PL levels. When cells treated with BFA for 12 h were exposed to BFA-free medium for 0-24 h, all of the effects were reversed, including reappearance of normal TGN morphology. TC II-R delivered to the BLM during this period was progressively sialylated and changed its physical state from a monomer (8 h) to a dimer (12 h), coinciding with increased delivery (11-53 pmol) of cholesterol to the BLM and an increase in the BLM rs from 0.15 to 0.21. These results indicate that cholesterol, but not PL, delivery to the BLM of Caco-2 cells is BFA-sensitive, and cholesterol, by influencing the higher order of the BLM, is essential for TC II-R dimerization.
Collapse
Affiliation(s)
- S Bose
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin and Veterans Affairs Medical Center, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
29
|
Bose S, Seetharam B. Effect of disulfide bonds of transcobalamin II receptor on its activity and basolateral targeting in human intestinal epithelial Caco-2 cells. J Biol Chem 1997; 272:20920-8. [PMID: 9252420 DOI: 10.1074/jbc.272.33.20920] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcobalamin II-receptor (TC II-R) contains 10 half-cysteines, of which 8 are involved in intramolecular disulfide bonding. Reduction followed by alkylation with N-ethylmaleimide (NEM) of the 62-kDa TC II-R monomer in vitro or treatment of human intestinal epithelial Caco-2 cells with low concentrations (10(-6) M) of NEM resulted in TC II-R exhibiting a loss of ligand binding and an increase in its apparent molecular mass by 10 kDa to 72 kDa. Domain-specific biotinylation studies using NEM-treated filter-grown cells revealed loss of TC II-R but not cation-independent mannose 6-phosphate receptor protein at the basolateral cell surface. Pulse-chase labeling of NEM-treated cells with [35S]methionine revealed that the modified 72-kDa TC II-R, like the native 62-kDa TC II-R in untreated cells, turned over rapidly with a t1/2 of 7.5 h and was sensitive to treatment with peptide N-glycosidase F, sialidase alone, or sialidase and O-glycanase but not to treatment with endoglycosidase H. Labeled 72-kDa TC II-R, which was retained intracellularly following treatment of Caco-2 cells with methyl methanethiosulfonate, returned to the basolateral cell surface following withdrawal of cells from methyl methanethiosulfonate treatment and exposure to dithiothreitol. Based on these results, we suggest that formation and maintenance of intramolecular disulfide bonds of TC II-R is important for its acquisition of ligand binding and post-trans-Golgi trafficking to basolateral surface membranes but not for its turnover and exit from the endoplasmic reticulum or trafficking through the Golgi.
Collapse
Affiliation(s)
- S Bose
- Department of Biochemistry, Medical College of Wisconsin and Veterans Administration Medical Center, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|