1
|
Shin E, Kwon Y, Jung E, Kim YJ, Kim C, Hong S, Kim J. TM4SF19 controls GABP-dependent YAP transcription in head and neck cancer under oxidative stress conditions. Proc Natl Acad Sci U S A 2024; 121:e2314346121. [PMID: 38315837 PMCID: PMC10873613 DOI: 10.1073/pnas.2314346121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Tobacco and alcohol are risk factors for human papillomavirus-negative head and neck squamous cell carcinoma (HPV- HNSCC), which arises from the mucosal epithelium of the upper aerodigestive tract. Notably, despite the mutagenic potential of smoking, HPV- HNSCC exhibits a low mutational load directly attributed to smoking, which implies an undefined role of smoking in HPV- HNSCC. Elevated YAP (Yes-associated protein) mRNA is prevalent in HPV- HNSCC, irrespective of the YAP gene amplification status, and the mechanism behind this upregulation remains elusive. Here, we report that oxidative stress, induced by major risk factors for HPV- HNSCC such as tobacco and alcohol, promotes YAP transcription via TM4SF19 (transmembrane 4 L six family member 19). TM4SF19 modulates YAP transcription by interacting with the GABP (Guanine and adenine-binding protein) transcription factor complex. Mechanistically, oxidative stress induces TM4SF19 dimerization and topology inversion in the endoplasmic reticulum membrane, which in turn protects the GABPβ1 subunit from proteasomal degradation. Conversely, depletion of TM4SF19 impairs the survival, proliferation, and migration of HPV- HNSCC cells, highlighting the potential therapeutic relevance of targeting TM4SF19. Our findings reveal the roles of the key risk factors of HPV- HNSCC in tumor development via oxidative stress, offering implications for upcoming therapeutic approaches in HPV- HNSCC.
Collapse
Affiliation(s)
- Eunbie Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| | - Yongsoo Kwon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| | - Eunji Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| | - Yong Joon Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul03722, South Korea
| | - Changgon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| | - Semyeong Hong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| |
Collapse
|
2
|
Hasan MM, Alam MA, Shoombuatong W, Kurata H. IRC-Fuse: improved and robust prediction of redox-sensitive cysteine by fusing of multiple feature representations. J Comput Aided Mol Des 2021; 35:315-323. [PMID: 33392948 DOI: 10.1007/s10822-020-00368-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022]
Abstract
Redox-sensitive cysteine (RSC) thiol contributes to many biological processes. The identification of RSC plays an important role in clarifying some mechanisms of redox-sensitive factors; nonetheless, experimental investigation of RSCs is expensive and time-consuming. The computational approaches that quickly and accurately identify candidate RSCs using the sequence information are urgently needed. Herein, an improved and robust computational predictor named IRC-Fuse was developed to identify the RSC by fusing of multiple feature representations. To enhance the performance of our model, we integrated the probability scores evaluated by the random forest models implementing different encoding schemes. Cross-validation results exhibited that the IRC-Fuse achieved accuracy and AUC of 0.741 and 0.807, respectively. The IRC-Fuse outperformed exiting methods with improvement of 10% and 13% on accuracy and MCC, respectively, over independent test data. Comparative analysis suggested that the IRC-Fuse was more effective and promising than the existing predictors. For the convenience of experimental scientists, the IRC-Fuse online web server was implemented and publicly accessible at http://kurata14.bio.kyutech.ac.jp/IRC-Fuse/ .
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan. .,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Md Ashad Alam
- Tulane Center of Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan.
| |
Collapse
|
3
|
|
4
|
Liu C, Dai SK, Sun Z, Wang Z, Liu PP, Du HZ, Yu S, Liu CM, Teng ZQ. GA-binding protein GABPβ1 is required for the proliferation of neural stem/progenitor cells. Stem Cell Res 2019; 39:101501. [PMID: 31344652 DOI: 10.1016/j.scr.2019.101501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023] Open
Abstract
GA binding protein (GABP) is a ubiquitously expressed transcription factor that regulates the development of multiple cell types, including osteoblast, hematopoietic stem cells, B cells and T cells. However, so little is known about its biological function in the development of central nervous system. In this report, we show that GABP is highly expressed in neural stem/progenitor cells (NSPCs) and down-regulated in neurons, and that GABPβ1 is required for the proper proliferation of NSPCs. Knockdown of GABPα resulted in an elevated expression level of GABPβ1, and GABPβ1 down-regulation significantly decreased the proliferation of NSPCs, whereas GABPβ2 knockdown did not result in any changes in the proliferation of NSPCs. We observed that there was nearly a 21-fold increase of the GABPβ1S mRNA level in GABPβ1L KO NSPCs compared to WT cells, and knocking down of GABPβ1S in GABPβ1L KO NSPCs could further reduce their proliferation potential. We also found that knockdown of GABPβ1 promoted neuronal and astrocytic differentiation of NSPCs. Finally, we identified dozens of downstream target genes of GABPβ1, which are closely associated with the cell proliferation and differentiation. Collectively, our results suggest that both GABPβ1L and GABPβ1S play an essential role in regulating the proper proliferation and differentiation of NSPCs.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhuo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Niopek K, Üstünel BE, Seitz S, Sakurai M, Zota A, Mattijssen F, Wang X, Sijmonsma T, Feuchter Y, Gail AM, Leuchs B, Niopek D, Staufer O, Brune M, Sticht C, Gretz N, Müller-Decker K, Hammes HP, Nawroth P, Fleming T, Conkright MD, Blüher M, Zeigerer A, Herzig S, Berriel Diaz M. A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage. Cell Rep 2017; 20:1422-1434. [PMID: 28793265 DOI: 10.1016/j.celrep.2017.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/24/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Increased pro-inflammatory signaling is a hallmark of metabolic dysfunction in obesity and diabetes. Although both inflammatory and energy substrate handling processes represent critical layers of metabolic control, their molecular integration sites remain largely unknown. Here, we identify the heterodimerization interface between the α and β subunits of transcription factor GA-binding protein (GAbp) as a negative target of tumor necrosis factor alpha (TNF-α) signaling. TNF-α prevented GAbpα and β complex formation via reactive oxygen species (ROS), leading to the non-energy-dependent transcriptional inactivation of AMP-activated kinase (AMPK) β1, which was identified as a direct hepatic GAbp target. Impairment of AMPKβ1, in turn, elevated downstream cellular cholesterol biosynthesis, and hepatocyte-specific ablation of GAbpα induced systemic hypercholesterolemia and early macro-vascular lesion formation in mice. As GAbpα and AMPKβ1 levels were also found to correlate in obese human patients, the ROS-GAbp-AMPK pathway may represent a key component of a hepato-vascular axis in diabetic long-term complications.
Collapse
Affiliation(s)
- Katharina Niopek
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Bilgen Ekim Üstünel
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Susanne Seitz
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Minako Sakurai
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Annika Zota
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Frits Mattijssen
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Xiaoyue Wang
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Tjeerd Sijmonsma
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yvonne Feuchter
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Anna M Gail
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Barbara Leuchs
- Division of Tumor Virology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Dominik Niopek
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Bioinformatics and Functional Genomics, Institute for Pharmacy and Biotechnology and BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Oskar Staufer
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Maik Brune
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Klinikum Mannheim, 68167 Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Klinikum Mannheim, 68167 Mannheim, Germany
| | - Karin Müller-Decker
- Core Facility Tumor Models, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, University Medicine Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Peter Nawroth
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany; Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael D Conkright
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Cooper CDO, Newman JA, Aitkenhead H, Allerston CK, Gileadi O. Structures of the Ets Protein DNA-binding Domains of Transcription Factors Etv1, Etv4, Etv5, and Fev: DETERMINANTS OF DNA BINDING AND REDOX REGULATION BY DISULFIDE BOND FORMATION. J Biol Chem 2015; 290:13692-709. [PMID: 25866208 PMCID: PMC4447949 DOI: 10.1074/jbc.m115.646737] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 12/31/2022] Open
Abstract
Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40–200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors.
Collapse
Affiliation(s)
- Christopher D O Cooper
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Joseph A Newman
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Hazel Aitkenhead
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Charles K Allerston
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Opher Gileadi
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
7
|
Kanno M, Yazawa T, Kawabe S, Imamichi Y, Usami Y, Ju Y, Matsumura T, Mizutani T, Fujieda S, Miyamoto K. Sex-determining region Y-box 2 and GA-binding proteins regulate the transcription of liver receptor homolog-1 in early embryonic cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:406-14. [DOI: 10.1016/j.bbagrm.2014.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/08/2023]
|
8
|
Qin F, Tian J, Zhou D, Chen L. Mst1 and Mst2 kinases: regulations and diseases. Cell Biosci 2013; 3:31. [PMID: 23985272 PMCID: PMC3849747 DOI: 10.1186/2045-3701-3-31] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/03/2013] [Indexed: 01/22/2023] Open
Abstract
The Hippo signaling pathway has emerged as a critical regulator for organ size control. The serine/threonine protein kinases Mst1 and Mst2, mammalian homologs of the Hippo kinase from Drosophila, play the central roles in the Hippo pathway controlling the cell proliferation, differentiation, and apoptosis during development. Mst1/2 can be activated by cellular stressors and the activation of Mst1/2 might enforce a feedback stimulation system to regulate oxidant levels through several mechanisms, in which regulation of cellular redox state might represent a tumor suppressor function of Mst1/2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in multiple organs, although considerable diversification in the pathway composition and regulation is observed in some of them. Generally, loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by the reduction or elimination of YAP. The Hippo pathway integrates with other signaling pathways e.g. Wnt and Notch pathways and coordinates with them to impact on the tumor pathogenesis and development. Furthermore, Mst1/2 kinases also act as an important regulator in immune cell activation, adhesion, migration, growth, and apoptosis. This review will focus on the recent updates on those aspects for the roles of Mst1/2 kinases.
Collapse
Affiliation(s)
- Funiu Qin
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiang'An South Road, Xiang'An District, Xiamen, Fujian 361102, China
| | - Jing Tian
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiang'An South Road, Xiang'An District, Xiamen, Fujian 361102, China
| | - Dawang Zhou
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiang'An South Road, Xiang'An District, Xiamen, Fujian 361102, China
| | - Lanfen Chen
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiang'An South Road, Xiang'An District, Xiamen, Fujian 361102, China
| |
Collapse
|
9
|
Hayashi R, Takeuchi N, Ueda T. Nuclear Respiratory Factor 2β (NRF-2β) recruits NRF-2α to the nucleus by binding to importin-α:β via an unusual monopartite-type nuclear localization signal. J Mol Biol 2013; 425:3536-48. [PMID: 23856623 DOI: 10.1016/j.jmb.2013.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 11/28/2022]
Abstract
Nuclear respiratory factor 2 (NRF-2) is a mammalian transcription factor composed of two distinct and unrelated proteins: NRF-2α, which binds to DNA through its Ets domain, and NRF-2β, which contains the transcription activation domain. The activity of NRF-2 in neurons is regulated by nuclear localization; however, the mechanism by which NRF-2 is imported into the nucleus remains unknown. By using in vitro nuclear import assays and immuno-cytofluorescence, we dissect the nuclear import pathways of NRF-2. We show that both NRF-2α and NRF-2β contain intrinsic nuclear localization signals (NLSs): the Ets domain within NRF-2α and the NLS within NRF-2β (amino acids 311/321: EEPPAKRQCIE) that is recognized by importin-α:β. When NRF-2α and NRF-2β form a complex, the nuclear import of NRF-2αβ becomes strictly dependent on the NLS within NRF-2β. Therefore, the nuclear import mechanism of NRF-2 is unique among Ets factors. The NRF-2β NLS contains only two lysine/arginine residues, unlike other known importin-α:β-dependent NLSs. Using ELISA-based binding assays, we show that it is bound by importin-α in almost the same manner and with similar affinity to that of the classical monopartite NLSs, such as c-myc and SV40 T-antigen NLSs. However, the part of the tryptophan array of importin-α that is essential for the recognition of classical monopartite NLSs by generating apolar pockets for the P3 and the P5 lysine/arginine side chains is not required for the recognition of the NRF-2β NLS. We conclude that the NRF-2β NLS is an unusual but is, nevertheless, a bona fide monopartite-type NLS.
Collapse
Affiliation(s)
- Rippei Hayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan.
| | | | | |
Collapse
|
10
|
Jiang H, Wu Q, Jin J, Sheng L, Yan H, Cheng B, Zhu S. Genome-wide identification and expression profiling of ankyrin-repeat gene family in maize. Dev Genes Evol 2013; 223:303-18. [PMID: 23839078 DOI: 10.1007/s00427-013-0447-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/08/2013] [Indexed: 01/10/2023]
Abstract
Members of the ankyrin repeats (ANK) gene family encode ANK domain that are common in diverse organisms and play important roles in cell growth and development, such as cell-cell signal transduction and cell cycle regulation. Recently, genome-wide identification and evolutionary analyses of the ANK gene family have been carried out in Arabidopsis and rice. However, little is known regarding the ANK genes in the entire maize genome. In this study, we described the identification and structural characterization of 71 ANK genes in maize (ZmANK). Then, comprehensive bioinformatics analyses of ZmANK genes family were performed including phylogenetic, domain and motif analysis, chromosomal localization, intron/exon structural patterns, gene duplications and expression profiling. Domain composition analyses showed that ZmANK genes formed ten subfamilies. Five tandem duplications and 14 segmental duplications were identified in ZmANK genes. Furthermore, we took comparative analysis of the total ANK gene family in Arabidopsis, rice and maize, ZmANKs were more closely paired with OsANKs than with AtANKs. At last, expression profile analyses were performed. Forty-one members of ZmANK genes held EST sequences records. Semi-quantitative expression and microarray data analysis of these 41 ZmANK genes demonstrated that ZmANK genes exhibit a various expression pattern, suggesting that functional diversification of ZmANK genes family. The results will present significant insights to explore ANK genes expression and function in future studies in maize.
Collapse
Affiliation(s)
- Haiyang Jiang
- Key Laboratory of Crop Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Wu H, Xiao Y, Zhang S, Ji S, Wei L, Fan F, Geng J, Tian J, Sun X, Qin F, Jin C, Lin J, Yin ZY, Zhang T, Luo L, Li Y, Song S, Lin SC, Deng X, Camargo F, Avruch J, Chen L, Zhou D. The Ets transcription factor GABP is a component of the hippo pathway essential for growth and antioxidant defense. Cell Rep 2013; 3:1663-77. [PMID: 23684612 DOI: 10.1016/j.celrep.2013.04.020] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/15/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
The transcriptional coactivator Yes-associated protein (YAP) plays an important role in organ-size control and tumorigenesis. However, how Yap gene expression is regulated remains unknown. This study shows that the Ets family member GABP binds to the Yap promoter and activates YAP transcription. The depletion of GABP downregulates YAP, resulting in a G1/S cell-cycle block and increased cell death, both of which are substantially rescued by reconstituting YAP. GABP can be inactivated by oxidative mechanisms, and acetaminophen-induced glutathione depletion inhibits GABP transcriptional activity and depletes YAP. In contrast, activating YAP by deleting Mst1/Mst2 strongly protects against acetaminophen-induced liver injury. Similar to its effects on YAP, Hippo signaling inhibits GABP transcriptional activity through several mechanisms. In human liver cancers, enhanced YAP expression is correlated with increased nuclear expression of GABP. Therefore, we conclude that GABP is an activator of Yap gene expression and a potential therapeutic target for cancers driven by YAP.
Collapse
Affiliation(s)
- Hongtan Wu
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiang'an District, Xiamen, Fujian 361102, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pandit A, Vadnal J, Houston S, Freeman E, McDonough J. Impaired regulation of electron transport chain subunit genes by nuclear respiratory factor 2 in multiple sclerosis. J Neurol Sci 2009; 279:14-20. [PMID: 19187944 DOI: 10.1016/j.jns.2009.01.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 12/09/2008] [Accepted: 01/08/2009] [Indexed: 11/27/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease. Recently, decreased expression of nuclear encoded electron transport chain genes was found in neurons in MS cortex. To understand the transcriptional mechanisms responsible for the coordinate down regulation of these genes, we performed electrophoretic mobility shifts with nuclear extracts isolated from gray matter from nonlesion areas of postmortem MS and control cortex. Nine tissue blocks from eight different MS brains and six matched control blocks from five control brains were analyzed. We identified a decrease in a transcription factor complex containing nuclear respiratory factor 2 (NRF-2) in nuclear extracts isolated from MS cortex. This decrease is correlated with decreased expression of electron transport chain subunit genes and increased oxidative damage measured by increased anti-nitrotyrosine immunoreactivity. We conclude that in MS cortex a chronic increase in oxidative stress leads to aberrant regulation of transcription of genes involved in energy metabolism.
Collapse
Affiliation(s)
- Ashish Pandit
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | | | | | | | | |
Collapse
|
13
|
Kang HS, Nelson ML, Mackereth CD, Schärpf M, Graves BJ, McIntosh LP. Identification and structural characterization of a CBP/p300-binding domain from the ETS family transcription factor GABP alpha. J Mol Biol 2008; 377:636-46. [PMID: 18295234 DOI: 10.1016/j.jmb.2008.01.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 12/20/2022]
Abstract
Using NMR spectroscopy, we identified and characterized a previously unrecognized structured domain near the N-terminus (residues 35-121) of the ETS family transcription factor GABP alpha. The monomeric domain folds as a five-stranded beta-sheet crossed by a distorted helix. Although globally resembling ubiquitin, the GABP alpha fragment differs in its secondary structure topology and thus appears to represent a new protein fold that we term the OST (On-SighT) domain. The surface of the GABP alpha OST domain contains two predominant clusters of negatively-charged residues suggestive of electrostatically driven interactions with positively-charged partner proteins. Following a best-candidate approach to identify such a partner, we demonstrated through NMR-monitored titrations and glutathione S-transferase pulldown assays that the OST domain binds to the CH1 and CH3 domains of the co-activator histone acetyltransferase CBP/p300. This provides a direct structural link between GABP and a central component of the transcriptional machinery.
Collapse
Affiliation(s)
- Hyun-Seo Kang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Ichihara S, Obata K, Yamada Y, Nagata K, Noda A, Ichihara G, Yamada A, Kato T, Izawa H, Murohara T, Yokota M. Attenuation of cardiac dysfunction by a PPAR-alpha agonist is associated with down-regulation of redox-regulated transcription factors. J Mol Cell Cardiol 2006; 41:318-29. [PMID: 16806263 DOI: 10.1016/j.yjmcc.2006.05.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Revised: 05/01/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is a key regulator of lipid and glucose metabolism and is implicated in inflammation. We investigated the effects of the PPAR-alpha activator fenofibrate on, as well as the role of redox-regulated transcription factors, in the development of left ventricular (LV) hypertrophy and heart failure in Dahl salt-sensitive (DS) rats. DS rats were fed a high-salt diet and treated with either fenofibrate (30 or 50 mg/kg per day) or vehicle from 7 weeks of age. Fenofibrate inhibited the development of compensated hypertensive LV hypertrophy, attenuated the LV relaxation abnormality and systolic dysfunction, and improved the survival rate in DS rats. It also prevented a decrease in the ratio of reduced to oxidized glutathione and inhibited up-regulation of the DNA binding activities of the redox-regulated transcription factors NF-kappaB, AP-1, Egr-1, SP1, and Ets-1 induced in the left ventricle by the high-salt diet. Expression of target genes for these transcription factors, including those for adhesion molecules (VCAM-1, ICAM-1), cytokines (MCP-1), growth factors (TGF-beta, PDGF-B), and osteopontin, was also increased by the high-salt diet in a manner sensitive to treatment with fenofibrate. Furthermore, the infiltration of macrophages and T lymphocytes into the left ventricle and the increase in the plasma concentration of C-reactive protein were inhibited by fenofibrate. The PPAR-alpha activator fenofibrate thus attenuated the progression of heart failure and improved the survival rate in this rat model. These effects were associated with inhibition of the inflammatory response and of activation of redox-regulated transcription factors in the left ventricle.
Collapse
Affiliation(s)
- Sahoko Ichihara
- Department of Cardiovascular Genome Science, Nagoya University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mandell KE, Vallone PM, Owczarzy R, Riccelli PV, Benight AS. Studies of DNA dumbbells VIII. Melting analysis of DNA dumbbells with dinucleotide repeat stem sequences. Biopolymers 2006; 82:199-221. [PMID: 16345003 DOI: 10.1002/bip.20425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melting curves and circular dichroism spectra were measured for a number of DNA dumbbell and linear molecules containing dinucleotide repeat sequences of different lengths. To study effects of different sequences on the melting and spectroscopic properties, six DNA dumbbells whose stems contain the central sequences (AA)(10), (AC)(10), (AG)(10), (AT)(10), (GC)(10), and (GG)(10) were prepared. These represent the minimal set of 10 possible dinucleotide repeats. To study effects of dinucleotide repeat length, dumbbells with the central sequences (AG)(n), n = 5 and 20, were prepared. Control molecules, dumbbells with a random central sequence, (RN)(n), n = 5, 10, and 20, were also prepared. The central sequence of each dumbbell was flanked on both sides by the same 12 base pairs and T(4) end-loops. Melting curves were measured by optical absorbance and differential scanning calorimetry in solvents containing 25, 55, 85, and 115 mM Na(+). CD spectra were collected from 20 to 45 degrees C and [Na(+)] from 25 to 115 mM. The spectral database did not reveal any apparent temperature dependence in the pretransition region. Analysis of the melting thermodynamics evaluated as a function of Na(+) provided a means for quantitatively estimating the counterion release with melting for the different sequences. Results show a very definite sequence dependence, indicating the salt-dependent properties of duplex DNA are also sequence dependent. Linear DNA molecules containing the (AG)(n) and (RN)(n), sequences, n = 5, 10, 20, and 30, were also prepared and studied. The linear DNA molecules had the exact sequences of the dumbbell stems. That is, the central repeat sequence in each linear duplex was flanked on both sides by the same 12-bp sequence. Melting and CD studies were also performed on the linear DNA molecules. Comparison of results obtained for the same sequences in dumbbell and linear molecular environments reveals several interesting features of the interplay between sequence-dependent structural variability, sequence length, and the unconstrained (linear) or constrained (dumbbell) molecular environments.
Collapse
Affiliation(s)
- Kathleen E Mandell
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Room 4500, 60607, USA
| | | | | | | | | |
Collapse
|
16
|
Patton J, Block S, Coombs C, Martin ME. Identification of functional elements in the murine Gabp alpha/ATP synthase coupling factor 6 bi-directional promoter. Gene 2005; 369:35-44. [PMID: 16309857 DOI: 10.1016/j.gene.2005.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/26/2005] [Accepted: 10/10/2005] [Indexed: 11/19/2022]
Abstract
The GA-repeat binding protein (GABP) is a ubiquitous transcription factor involved in transcriptional regulation of genes encoding proteins involved in a variety of cellular processes including adipocyte differentiation, mitochondrial respiration, and neuromuscular signaling. GABP is composed of two subunits; the GABP alpha subunit is a member of the Ets-family of transcription factors, and the unrelated ankyrin repeat containing GABP beta subunit. We previously identified a bidirectional promoter directing the expression of Gabpa (GAA) gene in one direction and ATP Synthase Coupling Factor 6 (Atp5j) (CF6) gene in the other [Chinenov, Y., Coombs, C. and Martin, M. E., 2000a. "Isolation of a bi-directional promoter directing the expression of the mouse GABP alpha and ATP Synthase Coupling Factor 6 genes. Gene 261:311-320.]. In this study we characterize sequence elements and regulatory factors contributing to the promoter activities of the GAA/CF6 bidirectional promoter. The core of the GAA/CF6 bidirectional promoter is retained within a 400 bp sequence and contains four GABP binding sites, a Sp1/3 binding site and an YY1 binding site. Site-directed mutagenesis demonstrated that while no single factor binding site was essential for promoter activity in either direction, the GA1 site located proximal to the previously mapped transcription start sites functioned cooperatively with the other GABP binding sites and with the Sp1/3 and YY1 sites to provide transcriptional activation of the GAA and CF6 promoters. The other GABP sites and the Sp1/3 and YY1 binding sites were functionally redundant for basal promoter activities in both directions. Electrophoretic mobility shift assays identified multiple DNA-protein complexes containing GABP alpha, GABP beta, Sp1, Sp3 or YY1 proteins, including one ternary complex containing GABP alpha, GABP beta and Sp1 proteins. Binding of GABP to the GAA/CF6 bi-directional promoter provides the potential for autoregulation of GABP alpha expression and confirms the importance of GABP in the coordinate expression of respiratory chain components.
Collapse
Affiliation(s)
- John Patton
- Department of Biochemistry, University of Missouri, Columbia, MO 65212, USA
| | | | | | | |
Collapse
|
17
|
Desrosiers DC, Peng ZY. A Binding Free Energy Hot Spot in the Ankyrin Repeat Protein GABPβ Mediated Protein–Protein Interaction. J Mol Biol 2005; 354:375-84. [PMID: 16243355 DOI: 10.1016/j.jmb.2005.09.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 09/07/2005] [Accepted: 09/16/2005] [Indexed: 11/17/2022]
Abstract
The frequently observed ankyrin repeat motif represents a structural scaffold evolved for mediating protein-protein interactions. As such, these repeats modulate a diverse range of cellular functions. We thermodynamically characterized the heterodimeric GA-binding protein (GABP) alphabeta complex and focused specifically on the interaction mediated by the ankyrin repeat domain of the GABPbeta. Our isothermal titration calorimetric analysis of the interaction between the GABP subunits determined an association constant (K(A)) of 6.0 x 10(8) M(-1) and that the association is favorably driven by a significant change in enthalpy (DeltaH) and a minor change in entropy (-TDeltaS). A total of 16 GABPbeta interface residues were chosen for alanine scanning mutagenesis. The calorimetrically measured differences in the free energy of binding were compared to computationally calculated values resulting in a correlation coefficient r = 0.71. We identified three spatially contiguous hydrophobic and aromatic residues that form a binding free energy hot spot (DeltaDeltaG > 2.0 kcal/mol). One residue provides structural support to the hot spot residues. Three non-hot spot residues are intermediate contributors (DeltaDeltaG approximately 1.0 kcal/mol) and create a canopy-like structure over the hot spot residues to possibly occlude solvent and orientate the subunits. The remaining interface residues are located peripherally and have weak contributions. Finally, our mutational analysis revealed a significant entropy-enthalpy compensation for this interaction.
Collapse
Affiliation(s)
- Daniel C Desrosiers
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06032, USA.
| | | |
Collapse
|
18
|
Wong-Riley MTT, Yang SJ, Liang HL, Ning G, Jacobs P. Quantitative immuno-electron microscopic analysis of nuclear respiratory factor 2 alpha and beta subunits: Normal distribution and activity-dependent regulation in mammalian visual cortex. Vis Neurosci 2005; 22:1-18. [PMID: 15842736 DOI: 10.1017/s0952523805221016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 11/07/2022]
Abstract
The macaque visual cortex is exquisitely organized into columns, modules, and streams, much of which can be correlated with its metabolic organization revealed by cytochrome oxidase (CO). Plasticity in the adult primate visual system has also been documented by changes in CO activity. Yet, the molecular mechanism of regulating this enzyme remains not well understood. Being one of only four bigenomic enzymes in mammalian cells, the transcriptional regulation of this enzyme necessitates a potential bigenomic coordinator. Nuclear respiratory factor 2 (NRF-2) or GA-binding protein is a transcription factor that may serve such a critical role. The goal of the present study was to determine if the two major subunits of NRF-2, 2alpha and 2beta, had distinct subcellular distribution in neurons of the rat and monkey visual cortex, if major metabolic neuronal types in the macaque exhibited different levels of the two subunits, and if they would respond differently to monocular impulse blockade. Quantitative immuno-electron microscopy was used. In both rats and monkeys, nuclear labeling of alpha and beta subunits was mainly over euchromatin rather than heterochromatin, consistent with their active participation in transcriptional activity. Cytoplasmic labeling was over free ribosomes, the Golgi apparatus, and occasionally the nuclear envelope, signifying sites of synthesis and possible posttranslational modifications. The density of both subunits was much higher in the nucleus than in the cytoplasm for all neurons examined, again indicating that their major sites of cellular action is in the nucleus.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | | | | | |
Collapse
|
19
|
Huerta-Yepez S, Vega M, Jazirehi A, Garban H, Hongo F, Cheng G, Bonavida B. Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-κB and inhibition of Bcl-xL expression. Oncogene 2004; 23:4993-5003. [PMID: 15048072 DOI: 10.1038/sj.onc.1207655] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to be selective in the induction of apoptosis in cancer cells with minimal toxicity to normal tissues and this prompted its potential therapeutic application in cancer. However, not all cancers are sensitive to TRAIL-mediated apoptosis and, therefore, TRAIL-resistant cancer cells must be sensitized first to become sensitive to TRAIL. Treatment of prostate cancer (CaP) cell lines (DU145, PC-3, CL-1, and LNCaP) with nitric oxide donors (e.g. (Z)-1-[2-(2-aminoethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1, 2-diolate (DETANONOate)) sensitized CaP cells to TRAIL-induced apoptosis and synergy was achieved. The mechanism by which DETANONOate mediated the sensitization was examined. DETANONOate inhibited the constitutive NF-kappa B activity as assessed by EMSA. Also, p50 was S-nitrosylated by DETANONOate resulting in inhibition of NF-kappa B. Inhibition of NF-kappa B activity by the chemical inhibitor Bay 11-7085, like DETANONOate, sensitized CaP to TRAIL apoptosis. In addition, DETANONOate downregulated the expression of Bcl-2 related gene (Bcl-(xL)) which is under the transcriptional regulation of NF-kappa B. The regulation of NF-kappa B and Bcl-(xL) by DETANONOate was corroborated by the use of Bcl-(xL) and Bcl-x kappa B reporter systems. DETANONOate inhibited luciferase activity in the wild type and had no effect on the mutant cells. Inhibition of NF-kappa B resulted in downregulation of Bcl-(xL) expression and sensitized CaP to TRAIL-induced apoptosis. The role of Bcl-(xL) in the regulation of TRAIL apoptosis was corroborated by inhibiting Bcl-(xL) function by the chemical inhibitor 2-methoxyantimycin A(3) and this resulted in sensitization of the cells to TRAIL apoptosis. Signaling by DETANONOate and TRAIL for apoptosis was examined. DETANONOate altered the mitochondria by inducing membrane depolarization and releasing modest amounts of cytochrome c and Smac/DIABLO in the absence of downstream activation of caspases 9 and 3. However, the combination of DETANONOate and TRAIL resulted in activation of the mitochondrial pathway and activation of caspases 9 and 3, and induction of apoptosis. These findings demonstrate that DETANONOate-mediated sensitization of CaP to TRAIL-induced apoptosis is via inhibition of constitutive NF-kappa B activity and Bcl-(xL) expression.
Collapse
Affiliation(s)
- Sara Huerta-Yepez
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Yang SJ, Liang HL, Ning G, Wong-Riley MTT. Ultrastructural study of depolarization-induced translocation of NRF-2 transcription factor in cultured rat visual cortical neurons. Eur J Neurosci 2004; 19:1153-62. [PMID: 15016074 DOI: 10.1111/j.1460-9568.2004.03250.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear respiratory factor (NRF)-2 or GA-binding protein is a potential transcriptional, bigenomic coordinator of mitochondrial and nuclear-encoded subunits of cytochrome oxidase genes. It is composed of an alpha subunit that binds DNA and a beta subunit that has the transactivating domain. Previously, we found that the level of NRF-2 paralleled that of cytochrome oxidase under normal and functionally altered states. The goal of our present study was to increase the resolution to the ultrastructural level and to quantify changes before and after depolarizing stimulation. We used a pre-embedding immunogold-silver method for the two subunits of NRF-2 in cultured rat visual cortical neurons. NRF-2alpha and beta were normally located in both the nucleus and the cytoplasm. In the nucleus, both subunits were associated primarily with euchromatin rather than heterochromatin, consistent with active involvement in transcription. In the cytoplasm, they were associated mainly with free ribosomes and occasionally with the Golgi apparatus and the outer membrane of the nuclear envelope. Labelling was not found in the mitochondria, confirming the specificity of the antibodies. Neuronal depolarization by KCl for 5 h induced a six- to seven-fold increase in the nuclear-to-cytoplasmic ratio of both subunits (P < 0.001) without increases in total labelling densities. These results strongly indicate that both NRF-2alpha and NRF-2beta respond to increased neuronal activity by translocating from the cytoplasm to the nucleus, where they engage in transcriptional activation of target genes. Our results also indicate that the cytoplasmic to nuclear movement of transcription factors is a dynamic process induced by neuronal activity.
Collapse
Affiliation(s)
- Shou Jing Yang
- Department of Cell Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
21
|
Vijayasarathy C, Damle S, Prabu SK, Otto CM, Avadhani NG. Adaptive changes in the expression of nuclear and mitochondrial encoded subunits of cytochrome c oxidase and the catalytic activity during hypoxia. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:871-9. [PMID: 12603320 DOI: 10.1046/j.1432-1033.2003.03447.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of physiologically relevant hypoxia on the catalytic activity of cytochrome c oxidase (CytOX), mitochondrial gene expression, and both nuclear and mitochondrial encoded CytOX mRNA levels were investigated in murine monocyte macrophages, mouse C2C12 skeletal myocytes and rat adrenal pheochromocytoma PC12 cells. Our results suggest a coordinated down regulation of mitochondrial genome-coded CytOX I and II and nuclear genome-coded CytOX IV and Vb mRNAs during hypoxia. Hypoxia also caused a severe decrease in mitochondrial transcription rates, and associated decrease in mitochondrial transcription factor A. The enzyme from hypoxia exposed cells exhibited altered subunit content as revealed by blue native gel electrophoresis. There was a generalized decline in mitochondrial function that led to a decrease in total cellular heme and ATP pools. We also observed a decrease in mitochondrial heme aa3 content and decreased levels of CytOX subunit I, IV and Vb, though the catalytic efficiency of the enzyme (TN for cytochrome c oxidase) remained nearly the same. Increased glycolytic flux and alterations in the kinetic characteristics of the CytOX might be the two mechanisms by which hypoxic cells maintain adequate ATP levels to sustain life processes. Reoxygenation nearly completely reversed hypoxia-mediated changes in CytOX mRNA contents, rate of mitochondrial transcription, and the catalytic activity of CytOX enzyme. Our results show adaptive changes in CytOX structure and activity during physiological hypoxia.
Collapse
Affiliation(s)
- C Vijayasarathy
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
H-bonds and cation-pi interactions between nucleic acid bases and amino acid side-chains are known to occur often concomitantly at the interface between protein and double-stranded DNA. Here we define and analyze stair-shaped motifs, which simultaneously involve base stacking, H-bond and cation-pi interactions. They consist of two successive bases along the DNA stack, one in cation-pi interaction with an amino acid side-chain that carries a total or partial positive charge, and the other H-bonded with the same side-chain. A survey of 52 high-resolution structures of protein/DNA complexes reveals the occurrence of such motifs in the majority of the complexes, the most frequent of these motifs involving Arg side-chains and G bases. These stair motifs are sometimes part of larger motifs, called multiple stair motifs, which contain several successive stairs; zinc finger proteins for example exhibit up to quadruple stairs. In another kind of stair motif extension, termed cation-pi chain motif, an amino acid side-chain or a nucleic acid base forms simultaneously two cation-pi interactions. Such a motif is observed in several homeodomains, where it involves a DNA base in cation-pi interactions with an Arg in the minor groove and an Asn in the major groove. A different cation-pi chain motif contains an Arg in cation-pi with a G and a Tyr, and is found in ets transcription factors. Still another chain motif is encountered in proteins that expulse a base from the DNA stack and replace it by an amino acid side-chain carrying a net or partial positive charge, which forms cation-pi interactions with the two neighboring bases along the DNA strand. The striking conservation of typical stair and cation-pi chain motifs within families of protein/DNA complexes suggests that they might play a structural and/or functional role and might moreover influence electron migration through the DNA double helix.
Collapse
Affiliation(s)
- Marianne Rooman
- Ingénierie Biomoléculaire - CP 165/64, Université Libre de Bruxelles, 50 avenue Roosevelt, B-1050 Bruxelles, Belgium.
| | | | | | | |
Collapse
|
23
|
Ayene IS, Stamato TD, Mauldin SK, Biaglow JE, Tuttle SW, Jenkins SF, Koch CJ. Mutation in the glucose-6-phosphate dehydrogenase gene leads to inactivation of Ku DNA end binding during oxidative stress. J Biol Chem 2002; 277:9929-35. [PMID: 11788599 DOI: 10.1074/jbc.m111366200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the oxidative pentose phosphate cycle, regulates the NADPH/NADP(+) ratio in eukaryotic cells. G6PD deficiency is one of the most common mutations in humans and is known to cause health problems for hundreds of millions worldwide. Although it is known that decreased G6PD functionality can result in increased susceptibility to oxidative stress, the molecular targets of this stress are not known. Using a Chinese hamster ovary G6PD-null mutant, we previously demonstrated that exposure to a thiol-specific oxidant, hydroxyethyldisulfide, caused enhanced radiation sensitivity and an inability to repair DNA double strand breaks. We now demonstrate a molecular mechanism for these observations: the direct inhibition of DNA end binding activity of the Ku heterodimer, a DNA repair protein, by oxidation of its cysteine residues. Inhibition of Ku DNA end binding was found to be reversible by treatment of the nuclear extract with dithiothreitol, suggesting that the homeostatic regulation of reduced cysteine residues in Ku is a critical function of G6PD and the oxidative pentose cycle. In summary, we have discovered a new layer of DNA damage repair, that of the functional maintenance of repair proteins themselves. In view of the rapidly escalating number of roles ascribed to Ku, these results may have widespread ramifications.
Collapse
Affiliation(s)
- Iraimoudi S Ayene
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Weitzel JM, Radtke C, Seitz HJ. Two thyroid hormone-mediated gene expression patterns in vivo identified by cDNA expression arrays in rat. Nucleic Acids Res 2001; 29:5148-55. [PMID: 11812848 PMCID: PMC97559 DOI: 10.1093/nar/29.24.5148] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thyroid hormone (T3) is essential for normal development, differentiation and metabolic balance. Only a limited number of T3-target genes have been identified so far and their complex regulation pattern is poorly understood. We performed cDNA expression array hybridisation to identify T3-regulated genes and to investigate their expression pattern after various time points in vivo. Radioactively labelled cDNA was prepared from hepatic RNA of hypothyroid and hyperthyroid rats 6, 24 and 48 h after the administration of T3. Labelled cDNA probes were hybridised to rat Atlas Arrays. Twenty-three of 588 genes were shown to be differentially regulated, 18 of which were previously not known to be regulated by T3. The expression of 19 genes was verified by independent northern blot hybridisation. Two different expression time courses of T3 expression were observed. In a first expression profile ('early' expression) the transcription level of the target genes rises within 6 h, drops by 24 h and increases again within 48 h after the administration of T3. In a second expression profile ('late' expression) the mRNA level rose in the first 6 h and rose further by 48 h, indicating an additional regulation mechanism. Nuclear respiratory factor (NRF)-1 and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1), but not NRF-2, were up-regulated within 6 h after T3 administration, suggesting NRF-1 and/or PGC-1 as key regulators for mediating the 'late' expression pattern.
Collapse
Affiliation(s)
- J M Weitzel
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | |
Collapse
|
25
|
Chinenov Y, Coombs C, Martin ME. Isolation of a bi-directional promoter directing expression of the mouse GABPalpha and ATP synthase coupling factor 6 genes. Gene 2000; 261:311-20. [PMID: 11167019 DOI: 10.1016/s0378-1119(00)00500-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The GA-binding protein (GABP) is a ubiquitous heteromeric transcription factor implicated in the regulation of several genes involved in mitochondrial energy metabolism including subunits of cytochrome c oxidase, ATP synthase, and mitochondrial transcription factor 1 (mtTF1). GABPalpha subunit binds the PEA3/Ets binding sites (EBS), while GABPbeta contains a transcription activation domain and mediates alphabeta dimer and alpha(2)beta(2) tetramer formation essential for activation of transcription. Here we report the cloning of 2449 bp of the mouse (m) GABPalpha promoter region including 201 bp of the 5' end of the published mGABPalpha cDNA sequence. Surprisingly, sequences homologous to the 5'UTR of mouse, rat and human mitochondrial ATP synthase coupling factor 6 (ATPsynCF6) cDNAs were found165-240 bp upstream of the mGABPalpha cDNA. A search of the non-redundant nucleotide database revealed a human genomic sequence derived from chromosome 21 (21q22) bearing significant homology to the mGABPalpha/ATPsynCF6 promoter region and encompassed the entire hGABPalpha and hATPsynCF6 genes. Primer extension analysis revealed multiple transcription start sites for both mGABPalpha and mATPsynCF6 mRNAs that mapped near the published cDNA 5' ends. Sequence analysis identified several binding sites upstream of the GABPalpha cDNA sequence including sites for GABP (-86, -104, -169, -257, and -994), YY1 (-57), Sp1 (-242 and -226), and NRF1 (-5). No 'TATA' motif was identified near either the GABPalpha or ATPsynCF6 transcription start sites. The human and mouse promoters retain significant sequence identity including binding sites for several tissue-specific transcription factors. Transient transfection assays using Luciferase reporter constructs containing the intergenic region and flanking sequences confirmed that this region of DNA promotes transcription in both directions.
Collapse
Affiliation(s)
- Y Chinenov
- Department of Biochemistry, University of Missouri at Columbia, MO, Columbia 65212, USA
| | | | | |
Collapse
|
26
|
Gong Q, Brown LJ, MacDonald MJ. Functional analysis of two promoters for the human mitochondrial glycerol phosphate dehydrogenase gene. J Biol Chem 2000; 275:38012-21. [PMID: 10954707 DOI: 10.1074/jbc.m004078200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial glycerol phosphate dehydrogenase (mGPD) is abundant in the normal pancreatic insulin cell, but its level is lowered 50% by diabetes. To evaluate mGPD expression, we cloned and characterized the 5'-flanking region of the human mGPD gene. The gene has two alternative first exons and two promoters. The downstream promoter (B) is 10 times more active than the upstream promoter (A) in insulin-secreting cells (INS-1) and HeLa cells. Promoter B has higher activity in INS-1 than in non-beta cells. Deletion and mutation analysis suggested that a NRF-2 binding site at -94 to -101 and an E2F binding site at -208 to -215 are important regulatory cis elements in promoter B. Gel mobility shift assays indicated that the -94 to -101 region binds the NRF-2 protein. When INS-1 cells were maintained in the presence of high glucose (25 mm) for 7 days, mGPD was the only 1 of 6 enzyme activities lowered (53%). mGPD promoter B activity was reduced by 60% in INS-1 cells by the high glucose, but in HepG2 cells and HeLa cells, promoter B activity was unchanged or slightly increased. Deletion analysis indicated the glucose responsiveness was distributed across the region from -340 to -260 in promoter B. The results indicate that mGPD gene transcription in the beta cell is regulated differently from other cells and that decreased mGPD promoter B transcription is at least in part the cause of the decreased beta cell mGPD levels in diabetes.
Collapse
Affiliation(s)
- Q Gong
- Children's Diabetes Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
27
|
Marshall HE, Merchant K, Stamler JS. Nitrosation and oxidation in the regulation of gene expression. FASEB J 2000; 14:1889-900. [PMID: 11023973 DOI: 10.1096/fj.00.011rev] [Citation(s) in RCA: 310] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A growing body of evidence suggests that the cellular response to oxidative and nitrosative stress is primarily regulated at the level of transcription. Posttranslational modification of transcription factors may provide a mechanism by which cells sense these redox changes. In bacteria, for example, OxyR senses redox-related changes via oxidation or nitrosylation of a free thiol in the DNA binding region. This mode of regulation may serve as a paradigm for redox-sensing by eukaryotic transcription factors as most-including NF-kappaB, AP-1, and p53-contain reactive thiols in their DNA binding regions, the modification of which alters binding in vitro. Several of these transcription factors have been found to be sensitive to both reactive oxygen species and nitric oxide-related species in vivo. It remains entirely unclear, however, if oxidation or nitrosylation of eukaryotic transcription factors is an important mode of regulation, or whether transcriptional activating pathways are principally controlled at other redox-sensitive levels.-Marshall, H. E., Merchant, K., Stamler, J. S. Nitrosation and oxidation in the regulation of gene expression.
Collapse
Affiliation(s)
- H E Marshall
- Howard Hughes Medical Institute, Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
28
|
Aurrekoetxea-Hernández K, Buetti E. Synergistic action of GA-binding protein and glucocorticoid receptor in transcription from the mouse mammary tumor virus promoter. J Virol 2000; 74:4988-98. [PMID: 10799572 PMCID: PMC110850 DOI: 10.1128/jvi.74.11.4988-4998.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes are among the first cells to be infected by mouse mammary tumor virus (MMTV), and they play a crucial role in its life cycle. To study transcriptional regulation of MMTV in B cells, we have analyzed two areas of the long terminal repeat (LTR) next to the glucocorticoid receptor binding site, fp1 (at position -139 to -146 from the cap site) and fp2 (at -157 to -164). Both showed B-cell-specific protection in DNase I in vitro footprinting assays and contain binding sites for Ets transcription factors, a large family of proteins involved in cell proliferation and differentiation and oncogenic transformation. In gel retardation assays, fp1 and fp2 bound the heterodimeric Ets factor GA-binding protein (GABP) present in B-cell nuclear extracts, which was identified by various criteria: formation of dimers and tetramers, sensitivity to pro-oxidant conditions, inhibition of binding by specific antisera, and comigration of complexes with those formed by recombinant GABP. Mutations which prevented complex formation in vitro abolished glucocorticoid-stimulated transcription from an MMTV LTR linked to a reporter gene in transiently transfected B-cell lines, whereas they did not affect the basal level. Exogenously expressed GABP resulted in an increased level of hormone response of the LTR reporter plasmid and produced a synergistic effect with the coexpressed glucocorticoid receptor, indicating cooperation between the two. This is the first example of GABP cooperation with a steroid receptor, providing the opportunity for studying the integration of their intracellular signaling pathways.
Collapse
|
29
|
Chinenov Y, Henzl M, Martin ME. The alpha and beta subunits of the GA-binding protein form a stable heterodimer in solution. Revised model of heterotetrameric complex assembly. J Biol Chem 2000; 275:7749-56. [PMID: 10713087 DOI: 10.1074/jbc.275.11.7749] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have studied the assembly of GA-binding protein (GABP) in solution and established the role of DNA in the assembly of the transcriptionally active GABPalpha(2)beta(2) heterotetrameric complex. GABP binds DNA containing a single PEA3/Ets-binding site (PEA3/EBS) exclusively as the alphabeta heterodimer complex, but readily binds as the GABPalpha(2)beta(2) heterotetramer complex on DNA containing two PEA3/EBSs. Positioning of the PEA3/EBSs on the same face of the DNA helix stabilizes heterotetramer complex binding. These observations suggest that GABPalphabeta heterodimers are the predominant molecular species in solution and that DNA containing two PEA3/EBSs promotes formation of the GABPalpha(2)beta(2) heterotetrameric complex. We analyzed the assembly of GABPalpha(2)beta(2) heteromeric complexes in solution by analytical ultracentrifugation. GABPalpha exists as a monomer in solution while GABPbeta exists in a monomer-dimer equilibrium (K(d) = 1.8 +/- 0.27 microM). In equimolar mixtures of the two subunits, GABPalpha and GABPbeta formed a stable heterodimer, with no heterotetramer complex detected. Thus, GABP exists in solution as the heterodimer previously shown to be a weak transcriptional activator. Assembly of the transcriptionally active GABPalpha(2)beta(2) heterotetramer complex requires the presence of specific DNA containing at least two PEA3/EBSs.
Collapse
Affiliation(s)
- Y Chinenov
- Department of Biochemistry, University of Missouri at Columbia, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|
30
|
The Effects of Bioenergetic Stress and Redox Balance on the Expression of Genes Critical to Mitochondrial Function. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1568-1254(00)80017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Jao CC, Weidman MK, Perez AR, Gharakhanian E. Cys9, Cys104 and Cys207 of simian virus 40 Vp1 are essential for inter-pentamer disulfide-linkage and stabilization in cell-free lysates. J Gen Virol 1999; 80 ( Pt 9):2481-2489. [PMID: 10501505 DOI: 10.1099/0022-1317-80-9-2481] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have implicated disulfide bonds between Vp1 molecules in the stabilization of the simian virus 40 (SV40) capsid. To identify the cysteine residues involved in intermolecular disulfide interactions, systematic oligo-directed mutagenesis of cysteine codons to serine codons was initiated. Wild-type and mutant Vp1 proteins were produced in rabbit reticulocyte lysates and were allowed to interact post-translationally. Disulfide-linked Vp1 complexes were assessed via non-reducing SDS-PAGE and via sucrose-gradient sedimentation. Wild-type Vp1 forms 7S pentamers followed by 12S disulfide-linked multi-pentameric complexes in cell-free lysates. Mutagenesis of all seven cysteine codons abolished Vp1 12S complexes, but did not affect pentamer formation. A quadruple Vp1 mutant at Cys49, Cys87, Cys254 and Cys267 continued to form 12S complexes, whereas the major products of the Cys9, Cys104 and Cys207 triple mutant Vp1 were 7S pentamers. Single and double mutant Vp1 proteins at the three cysteines affected continued to form 12S complexes, but to a lesser extent. Thus, inter-pentamer disulfide bonds at Cys9, Cys104 and Cys207 are essential and sufficient for stabilization of Vp1 complexes in cell-free lysates. These results are in agreement with previous structural studies of SV40 that implicated the same three residues in disulfide linkage in the capsid. Possible parameters for the involvement of the three cysteines are discussed.
Collapse
Affiliation(s)
- Christine C Jao
- California State University, Long Beach, Department of Biological Sciences, 1250 Bellflower Blvd, Long Beach, CA 90840, USA1
| | - Mary K Weidman
- California State University, Long Beach, Department of Biological Sciences, 1250 Bellflower Blvd, Long Beach, CA 90840, USA1
| | - Ana R Perez
- California State University, Long Beach, Department of Biological Sciences, 1250 Bellflower Blvd, Long Beach, CA 90840, USA1
| | - Editte Gharakhanian
- California State University, Long Beach, Department of Biological Sciences, 1250 Bellflower Blvd, Long Beach, CA 90840, USA1
| |
Collapse
|
32
|
Izmailova ES, Zehner ZE. An antisilencer element is involved in the transcriptional regulation of the human vimentin gene. Gene X 1999; 230:111-20. [PMID: 10196480 DOI: 10.1016/s0378-1119(99)00046-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vimentin is an intermediate filament protein normally expressed in cells of mesenchymal origin. The promoter of the human vimentin gene was previously reported to contain two positive-acting regions, separated by a negative region (Rittling, S.R., Baserga, R., 1987. Functional analysis and growth factor regulation of the human vimentin promoter. Mol. Cell. Biol. 7, 3908-3915). Here, detailed studies reveal two additional regulatory elements, a new positive transcriptional element located between -717 and -757, and a new repressor element at -780 to -821. In transient transfections, the positive-acting element is able to completely override the effect of different silencer elements when fused to a heterologous promoter. However, this element does not enhance gene activity when the silencer element is absent and thus cannot be viewed as a true enhancer. Since it appears to overcome the effect of a silencer element, we refer to it as an antisilencer element. Gel mobility shift assays, UV-cross-linking experiments, and Southwestern blots reveal that a 105-kDa protein specifically binds to this region.
Collapse
Affiliation(s)
- E S Izmailova
- Department of Biochemistry and Molecular Biophysics and the Massey Cancer Center, Medical College of Virginia Campus/ Virginia Commonwealth University, Richmond, VA 23298, USA
| | | |
Collapse
|
33
|
Tassone F, Villard L, Clancy K, Gardiner K. Structures, sequence characteristics, and synteny relationships of the transcription factor E4TF1, the splicing factor U2AF35 and the cystathionine beta synthetase genes from Fugu rubripes. Gene X 1999; 226:211-23. [PMID: 9931491 DOI: 10.1016/s0378-1119(98)00559-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
A cosmid containing the beta-amyloid precursor protein (APP) from Fugu rubripes has been completely sequenced. In addition to APP, the cosmid contains the E4TF1-60 transcription factor, the U2AF35 pre-mRNA splicing factor, and the cystathionine beta synthetase (CBS) gene. The human homologues of all four genes map to human chromosome 21 but are not clustered; APP and E4TF1-60 map within 21q21, whereas U2AF35 and CBS map approximately 20Mb distal in 21q22. 3. The protein sequences of the Fugu genes vary in their overall level of similarity to their mammalian homologues, but several regions of functional importance are almost identical. As expected, the intron/exon structures of the homologous pairs of genes are highly conserved, but there are significant differences in the compaction ratios. The introns of APP and E4TF1-60 are 49- and 24-fold smaller in Fugu than in human, and the intergenic distance is compressed at least 100-fold. For U2AF35 and CBS, the introns are compressed only five- to eightfold. These size differences were compared with those for a number of previously reported Fugu genes; in general, levels of compaction of Fugu genes are consistent with the isochore locations of the human homologues.
Collapse
Affiliation(s)
- F Tassone
- Eleanor Roosevelt Institute, 1899 Gaylord Street, Denver, CO 80206, USA
| | | | | | | |
Collapse
|