1
|
Shabbir A, Rehman K, Akbar M, Hamid Akash MS. Neuroprotective potential of curcuminoids in modulating Alzheimer's Disease via multiple signaling pathways. Curr Med Chem 2022; 29:5560-5581. [PMID: 35674299 DOI: 10.2174/0929867329666220607161328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/12/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive and frequent neurodegenerative disease of elderly people. In the 21st century, owing to the increasing prevalence of AD, there is a crucial need for finding better and effective pharmacotherapeutic approaches. This review article demonstrated the various sources and possible metabolic pathways of curcuminoids obtained from Curcuma longa herb, to prevent and treat AD but the information related to the metabolic fate of curcuminoids is deficient. Different in vitro and in vivo research studies demonstrating the mechanisms by which curcuminoids attenuated AD have been summarized. Administration of curcuminoids has been indicated to inhibit hyperphosphorylation of tau protein, deposition, and oligomerization of amyloid beta plaques in several AD models. Curcuminoids also chelate metals and form complexes, have antioxidant properties, mediates neuroinflammatory signaling pathways by modifying microglial cells activity, inhibit acetylcholinesterase activities and also modulates other associated signaling pathways including insulin signaling pathways and heme-oxygenase pathway. Briefly curcuminoids exhibit the capability to be more productive and efficacious compared to many recent treatments due to their antioxidant, delayed neuron degeneration and anti-inflammatory potential. Although their effectiveness as a curative agent is considered to be reduced due to their low bioavailability, If the issue of curcuminoids' low bioavailability is resolved then curcuminoid-based medications are hopefully on the horizon against AD.
Collapse
Affiliation(s)
- Anam Shabbir
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Moazzama Akbar
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
2
|
Zou HY, Guo L, Zhang B, Chen S, Wu XR, Liu XD, Xu XY, Li BY, Chen S, Xu NJ, Sun S. Aberrant miR-339-5p/neuronatin signaling causes prodromal neuronal calcium dyshomeostasis in mutant presenilin mice. J Clin Invest 2022; 132:e149160. [PMID: 35426376 PMCID: PMC9012292 DOI: 10.1172/jci149160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
Mushroom spine loss and calcium dyshomeostasis are early hallmark events of age-related neurodegeneration, such as Alzheimer's disease (AD), that are connected with neuronal hyperactivity in early pathology of cognitive brain areas. However, it remains elusive how these key events are triggered at the molecular level for the neuronal abnormality that occurs at the initial stage of disease. Here, we identify downregulated miR-339-5p and its upregulated target protein, neuronatin (Nnat), in cortex neurons from the presenilin-1 M146V knockin (PSEN1-M146V KI) mouse model of familial AD (FAD). Inhibition of miR-339-5p or overexpression of Nnat recapitulates spine loss and endoplasmic reticulum calcium overload in cortical neurons with the PSEN1 mutation. Conversely, either overexpression of miR-339-5p or knockdown of Nnat restores spine morphogenesis and calcium homeostasis. We used fiber photometry recording during the object-cognitive process to further demonstrate that the PSEN1 mutant causes defective habituation in neuronal reaction in the retrosplenial cortex and that this can be rescued by restoring the miR-339-5p/Nnat pathway. Our findings thus reveal crucial roles of the miR-339-5p/Nnat pathway in FAD that may serve as potential diagnostic and therapeutic targets for early pathogenesis.
Collapse
Affiliation(s)
- Hao-Yu Zou
- Department of Neurology and Institute of Neurology, Ruijin Hospital
| | - Lin Guo
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Department of Anatomy and Physiology, and
| | - Bei Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital
| | - Si Chen
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Department of Anatomy and Physiology, and
| | - Xin-Rong Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital
| | - Xian-Dong Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Department of Anatomy and Physiology, and
| | - Xin-Yu Xu
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Department of Anatomy and Physiology, and
| | - Bin-Yin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital
| | - Nan-Jie Xu
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Department of Anatomy and Physiology, and
- Shanghai Key Laboratory of Reproductive Medicine, and
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suya Sun
- Department of Neurology and Institute of Neurology, Ruijin Hospital
| |
Collapse
|
3
|
Eggert S, Kins S, Endres K, Brigadski T. Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer's disease. Biol Chem 2022; 403:43-71. [PMID: 34619027 DOI: 10.1515/hsz-2021-0330] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an important modulator for a variety of functions in the central nervous system (CNS). A wealth of evidence, such as reduced mRNA and protein level in the brain, cerebrospinal fluid (CSF), and blood samples of Alzheimer's disease (AD) patients implicates a crucial role of BDNF in the progression of this disease. Especially, processing and subcellular localization of BDNF and its receptors TrkB and p75 are critical determinants for survival and death in neuronal cells. Similarly, the amyloid precursor protein (APP), a key player in Alzheimer's disease, and its cleavage fragments sAPPα and Aβ are known for their respective roles in neuroprotection and neuronal death. Common features of APP- and BDNF-signaling indicate a causal relationship in their mode of action. However, the interconnections of APP- and BDNF-signaling are not well understood. Therefore, we here discuss dimerization properties, localization, processing by α- and γ-secretase, relevance of the common interaction partners TrkB, p75, sorLA, and sortilin as well as shared signaling pathways of BDNF and sAPPα.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| |
Collapse
|
4
|
Song XW, Zhao F, Yang J, Yuan QN, Zeng ZY, Shen M, Tang Y, Cao M, Shen YF, Li SH, Yang YJ, Wu H, Zhao XX, Hu ST. Cardiovascular-Specific PSEN1 Deletion Leads to Abnormalities in Calcium homeostasis. Cell Biol Int 2021; 46:475-487. [PMID: 34939719 DOI: 10.1002/cbin.11753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 11/10/2022]
Abstract
Mutations of PSEN1 have been reported in dilated cardiomyopathy pedigrees. Understanding the effects and mechanisms of PSEN1 in cardiomyocytes might have important implications for treatment of heart diseases. Here, we showed that PSEN1 was down-regulated in ischemia-induced failing hearts. Functionally, cardiovascular specific PSEN1 deletion led to spontaneous death of the mice due to cardiomyopathy. At the age of 11 months, the ratio of the heart weight/body weight was slightly lower in the Sm22a-PSEN1-KO mice compared with that of the WT mice. Echocardiography showed that the percentage of ejection fraction and fractional shortening was significantly reduced in the Sm22a-PSEN1-KO group compared with the percent of these measures in the WT group, indicating that PSEN1-KO resulted in heart failure. The abnormally regulated genes resulted from PSEN1-KO were detected to be enriched in muscle development and dilated cardiomyopathy. Among them, several genes encode Ca2+ ion channels, promoting us to investigate the effects of PSEN1 KO on regulation of Ca2+ in isolated adult cardiomyocytes. Consistently, in isolated adult cardiomyocytes, PSEN1-KO increased the concentration of cytosolic Ca2+ and reduced Ca2+ concentration inside the sarcoplasmic reticulum (SR) lumen at the resting stage. Additionally, SR Ca2+ was decreased in the failing hearts of WT mice, but with the lowest levels observed in the failing hearts of PSEN1 knockout mice. These results indicate that the process of Ca2+ release from SR into cytoplasm was affected by PSEN1 KO. Therefore, the abnormalities in Ca2+ homeostasis resulted from downregulation of PSEN1 in failing hearts might contribute to aging-related cardiomyopathy, which might had important implications for the treatment of aging-related heart diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiao-Wei Song
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Feng Zhao
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Jing Yang
- Department of Cardiology, Changhai Hospital, Shanghai, China.,Department of Physiology, Ningxia Medical University, Yinchuan, China
| | - Qing-Ning Yuan
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Zhen-Yu Zeng
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Ming Shen
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Ying Tang
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Mi Cao
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Ya-Feng Shen
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Song-Hua Li
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Yong-Ji Yang
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Hong Wu
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Shu-Ting Hu
- Department of Physiology, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
5
|
Elevating the Levels of Calcium Ions Exacerbate Alzheimer's Disease via Inducing the Production and Aggregation of β-Amyloid Protein and Phosphorylated Tau. Int J Mol Sci 2021; 22:ijms22115900. [PMID: 34072743 PMCID: PMC8198078 DOI: 10.3390/ijms22115900] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with a high incidence rate. The main pathological features of AD are β-amyloid plaques (APs), which are formed by β-amyloid protein (Aβ) deposition, and neurofibrillary tangles (NFTs), which are formed by the excessive phosphorylation of the tau protein. Although a series of studies have shown that the accumulation of metal ions, including calcium ions (Ca2+), can promote the formation of APs and NFTs, there is no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD. In view of this, the current review summarizes the mechanisms by which Ca2+ is transported into and out of cells and organelles, such as the cell, endoplasmic reticulum, mitochondrial and lysosomal membranes to affect the balance of intracellular Ca2+ levels. In addition, dyshomeostasis of Ca2+ plays an important role in modulating the pathogenesis of AD by influencing the production and aggregation of Aβ peptides and tau protein phosphorylation and the ways that disrupting the metabolic balance of Ca2+ can affect the learning ability and memory of people with AD. In addition, the effects of these mechanisms on the synaptic plasticity are also discussed. Finally, the molecular network through which Ca2+ regulates the pathogenesis of AD is introduced, providing a theoretical basis for improving the clinical treatment of AD.
Collapse
|
6
|
Substrate-Specific Activation of α-Secretase by 7-Deoxy-Trans-Dihydronarciclasine Increases Non-Amyloidogenic Processing of β-Amyloid Protein Precursor. Molecules 2020; 25:molecules25030646. [PMID: 32028607 PMCID: PMC7037359 DOI: 10.3390/molecules25030646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/04/2023] Open
Abstract
Accumulation of β-amyloid (Aβ) in the brain has been implicated in the pathology of Alzheimer’s disease (AD). Aβ is produced from the Aβ precursor protein (APP) through the amyloidogenic pathway by β-, and γ-secretase. Alternatively, APP can be cleaved by α-, and γ-secretase, precluding the production of Aβ. Thus, stimulating α-secretase mediated APP processing is considered a therapeutic option not only for decreasing Aβ production but for increasing neuroprotective sAPPα. We have previously reported that 7-deoxy-trans-dihydronarciclasine (E144), the active component of Lycoris chejuensis, decreases Aβ production by attenuating APP level, and retarding APP maturation. It can also improve cognitive function in the AD model mouse. In this study, we further analyzed the activating effect of E144 on α-secretase. Treatment of E144 increased sAPPα, but decreased β-secretase products from HeLa cells stably transfected with APP. E144 directly activated ADAM10 and ADAM17 in a substrate-specific manner both in cell-based and in cell-free assays. The Lineweaver–Burk plot analysis revealed that E144 enhanced the affinities of A Disintegrin and Metalloproteinases (ADAMs) towards the substrate. Consistent with this result, immunoprecipitation analysis showed that interactions of APP with ADAM10 and ADAM17 were increased by E144. Our results indicate that E144 might be a novel agent for AD treatment as a substrate-specific activator of α-secretase.
Collapse
|
7
|
Is brain iron trafficking part of the physiology of the amyloid precursor protein? J Biol Inorg Chem 2019; 24:1171-1177. [PMID: 31578640 DOI: 10.1007/s00775-019-01684-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022]
Abstract
The amyloid precursor protein is so named, because a proteolytic fragment of it was found associated with a neuropathic disorder now known as Alzheimer's disease. This fragment, Aβ, along with tau makes up the plaques and tangles that are the hallmark of AD. Iron (and other first-row transition metals) is found associated with these proteinaceous deposits. Much research has focused on the relationship of the plaques and iron to the etiology of the disease. This commentary asks another question, one only more recently addressed namely, what is the physiologic function of the amyloid precursor protein (APP) and of its secretase-generated soluble species? Overall, the data make clear that APP and its products have neurotrophic functions and some data indicate one of these may be to modulate the trafficking of iron in the brain.
Collapse
|
8
|
Chun YS, Kwon OH, Oh HG, Cho YY, Yang HO, Chung S. Justicidin A Reduces β-Amyloid via Inhibiting Endocytosis of β-Amyloid Precursor Protein. Biomol Ther (Seoul) 2019; 27:276-282. [PMID: 30332887 PMCID: PMC6513189 DOI: 10.4062/biomolther.2018.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/08/2018] [Accepted: 09/01/2018] [Indexed: 11/05/2022] Open
Abstract
β-amyloid precursor protein (APP) can be cleaved by α-, and γ-secretase at plasma membrane producing soluble ectodomain fragment (sAPPα). Alternatively, following endocytosis, APP is cleaved by β-, and γ-secretase at early endosomes generating β-amyloid (Aβ), the main culprit in Alzheimer's disease (AD). Thus, APP endocytosis is critical for Aβ production. Recently, we reported that Monsonia angustifolia, the indigenous vegetables consumed in Tanzania, improved cognitive function and decreased Aβ production. In this study, we examined the underlying mechanism of justicidin A, the active compound of M. angustifolia, on Aβ production. We found that justicidin A reduced endocytosis of APP, increasing sAPPα level, while decreasing Aβ level in HeLa cells overexpressing human APP with the Swedish mutation. The effect of justicidin A on Aβ production was blocked by endocytosis inhibitors, indicating that the decreased APP endocytosis by justicidin A is the underlying mechanism. Thus, justicidin A, the active compound of M. angustifolia, may be a novel agent for AD treatment.
Collapse
Affiliation(s)
- Yoon Sun Chun
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.,Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Oh-Hoon Kwon
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun Geun Oh
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yoon Young Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun Ok Yang
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sungkwon Chung
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Carter CJ. Autism genes and the leukocyte transcriptome in autistic toddlers relate to pathogen interactomes, infection and the immune system. A role for excess neurotrophic sAPPα and reduced antimicrobial Aβ. Neurochem Int 2019; 126:36-58. [PMID: 30862493 DOI: 10.1016/j.neuint.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Prenatal and early childhood infections have been implicated in autism. Many autism susceptibility genes (206 Autworks genes) are localised in the immune system and are related to immune/infection pathways. They are enriched in the host/pathogen interactomes of 18 separate microbes (bacteria/viruses and fungi) and to the genes regulated by bacterial toxins, mycotoxins and Toll-like receptor ligands. This enrichment was also observed for misregulated genes from a microarray study of leukocytes from autistic toddlers. The upregulated genes from this leukocyte study also matched the expression profiles in response to numerous infectious agents from the Broad Institute molecular signatures database. They also matched genes related to sudden infant death syndrome and autism comorbid conditions (autoimmune disease, systemic lupus erythematosus, diabetes, epilepsy and cardiomyopathy) as well as to estrogen and thyrotropin responses and to those upregulated by different types of stressors including oxidative stress, hypoxia, endoplasmic reticulum stress, ultraviolet radiation or 2,4-dinitrofluorobenzene, a hapten used to develop allergic skin reactions in animal models. The oxidative/integrated stress response is also upregulated in the autism brain and may contribute to myelination problems. There was also a marked similarity between the expression signatures of autism and Alzheimer's disease, and 44 shared autism/Alzheimer's disease genes are almost exclusively expressed in the blood-brain barrier. However, in contrast to Alzheimer's disease, levels of the antimicrobial peptide beta-amyloid are decreased and the levels of the neurotrophic/myelinotrophic soluble APP alpha are increased in autism, together with an increased activity of α-secretase. sAPPα induces an increase in glutamatergic and a decrease in GABA-ergic synapses creating and excitatory/inhibitory imbalance that has also been observed in autism. A literature survey showed that multiple autism genes converge on APP processing and that many are able to increase sAPPalpha at the expense of beta-amyloid production. A genetically programmed tilt of this axis towards an overproduction of neurotrophic/gliotrophic sAPPalpha and underproduction of antimicrobial beta-amyloid may explain the brain overgrowth and myelination dysfunction, as well as the involvement of pathogens in autism.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, 41C Marina, Saint Leonard's on Sea, TN38 0BU, East Sussex, UK.
| |
Collapse
|
10
|
Bazan NG. Docosanoids and elovanoids from omega-3 fatty acids are pro-homeostatic modulators of inflammatory responses, cell damage and neuroprotection. Mol Aspects Med 2018; 64:18-33. [PMID: 30244005 DOI: 10.1016/j.mam.2018.09.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
The functional significance of the selective enrichment of the omega-3 essential fatty acid docosahexaenoic acid (DHA; 22C and 6 double bonds) in cellular membrane phospholipids of the nervous system is being clarified by defining its specific roles on membrane protein function and by the uncovering of the bioactive mediators, docosanoids and elovanoids (ELVs). Here, we describe the preferential uptake and DHA metabolism in photoreceptors and brain as well as the significance of the Adiponectin receptor 1 in DHA retention and photoreceptor cell (PRC) survival. We now know that this integral membrane protein is engaged in DHA retention as a necessary event for the function of PRCs and retinal pigment epithelial (RPE) cells. We present an overview of how a) NPD1 selectively mediates preconditioning rescue of RPE and PR cells; b) NPD1 restores aberrant neuronal networks in experimental epileptogenesis; c) the decreased ability to biosynthesize NPD1 in memory hippocampal areas of early stages of Alzheimer's disease takes place; d) NPD1 protection of dopaminergic circuits in an in vitro model using neurotoxins; and e) bioactivity elicited by DHA and NPD1 activate a neuroprotective gene-expression program that includes the expression of Bcl-2 family members affected by Aβ42, DHA, or NPD1. In addition, we highlight ELOVL4 (ELOngation of Very Long chain fatty acids-4), specifically the neurological and ophthalmological consequences of its mutations, and their role in providing precursors for the biosynthesis of ELVs. Then we outline evidence of ELVs ability to protect RPE cells, which sustain PRC integrity. In the last section, we present a summary of the protective bioactivity of docosanoids and ELVs in experimental ischemic stroke. The identification of early mechanisms of neural cell survival mediated by DHA-synthesized ELVs and docosanoids contributes to the understanding of cell function, pro-homeostatic cellular modulation, inflammatory responses, and innate immunity, opening avenues for prevention and therapeutic applications in neurotrauma, stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Song SH, Jang WJ, Hwang J, Park B, Jang JH, Seo YH, Yang CH, Lee S, Jeong CH. Transcriptome profiling of whisker follicles in methamphetamine self-administered rats. Sci Rep 2018; 8:11420. [PMID: 30061674 PMCID: PMC6065325 DOI: 10.1038/s41598-018-29772-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine (MA) is a highly addictive psychostimulant that disturbs the central nervous system; therefore, diagnosis of MA addiction is important in clinical and forensic toxicology. In this study, a MA self-administration rat model was used to illustrate the gene expression profiling of the rewarding effect caused by MA. RNA-sequencing was performed to examine changes in gene expression in rat whisker follicles collected before self-administration, after MA self-administration, and after withdrawal sessions. We identified six distinct groups of genes, with statistically significant expression patterns. By constructing the functional association network of these genes and performing the subsequent topological analysis, we identified 43 genes, which have the potential to regulate MA reward and addiction. The gene pathways were then analysed using the Reactome and Knowledgebase for Addiction-Related Gene database, and it was found that genes and pathways associated with Alzheimer's disease and the heparan sulfate biosynthesis were enriched in MA self-administration rats. The findings suggest that changes of the genes identified in rat whisker follicles may be useful indicators of the rewarding effect of MA. Further studies are needed to provide a comprehensive understanding of MA addiction.
Collapse
Affiliation(s)
- Sang-Hoon Song
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jihye Hwang
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jung-Hee Jang
- School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Young-Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chae Ha Yang
- College of Oriental Medicine, Daegu Hanny University, Daegu, 42158, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
12
|
Ma Y, Shi Q, Wang J, Xiao K, Sun J, Lv Y, Guo M, Zhou W, Chen C, Gao C, Zhang BY, Dong XP. Reduction of NF-κB (p65) in Scrapie-Infected Cultured Cells and in the Brains of Scrapie-Infected Rodents. ACS Chem Neurosci 2017; 8:2535-2548. [PMID: 28783945 DOI: 10.1021/acschemneuro.7b00273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription factor NF-κB functions as a pleiotropic regulator of target genes controlling physiological function as well as pathological processes of many different diseases, including some neurodegenerative diseases. However, the role of NF-κB in the pathogenesis of prion disease remains ambiguous. In this study, the status of NF-κB (p65) in a prion-infected cell line SMB-S15 was first evaluated. Significantly lower levels of p65 and the phosphorylated form of p65 (p-p65) were detected in SMB-S15 cells, compared with its normal partner cell line SMB-PS. Markedly slower responses of the NF-κB system to the stimulation of TNF-α were observed in SMB-S15 cells. Removal of PrPSc replication in SMB-S15 cells rescued the expression and activity of NF-κB. However, overexpression of p65 in SMB-S15 cells did not influence the propagation of PrPSc. Moreover, significant decline of p65 level was also observed in the brain tissues of mice infected with the lysates of SMB-S15 cells and hamsters infected with scrapie agent 263K at terminal stage. Immunofluorescence assays (IFAs) on brain sections from either normal or scrapie-infected rodents revealed colocalization of p65 with neuronal nuclear (NeuN) protein positive cells but not with glial fibrillary acidic protein (GFAP) positive cells. Assays of the agents involving in the regulation of NF-κB showed down-regulated phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB/Akt) both in SMB-S15 cells and in the brains of scrapie-infected rodents. Those data indicate a remarkable repression of the classical NF-κB pathway during prion infection both in vitro and in vivo. The alteration of NF-κB (p65) shows close association with the replication and accumulation of PrPSc in the cells.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment
of Infectious Diseases, Zhejiang University, Hangzhou, 310003, People’s Republic of China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment
of Infectious Diseases, Zhejiang University, Hangzhou, 310003, People’s Republic of China
| | - Jing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment
of Infectious Diseases, Zhejiang University, Hangzhou, 310003, People’s Republic of China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment
of Infectious Diseases, Zhejiang University, Hangzhou, 310003, People’s Republic of China
| | - Jing Sun
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment
of Infectious Diseases, Zhejiang University, Hangzhou, 310003, People’s Republic of China
| | - Yan Lv
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment
of Infectious Diseases, Zhejiang University, Hangzhou, 310003, People’s Republic of China
| | - Man Guo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment
of Infectious Diseases, Zhejiang University, Hangzhou, 310003, People’s Republic of China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment
of Infectious Diseases, Zhejiang University, Hangzhou, 310003, People’s Republic of China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment
of Infectious Diseases, Zhejiang University, Hangzhou, 310003, People’s Republic of China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment
of Infectious Diseases, Zhejiang University, Hangzhou, 310003, People’s Republic of China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment
of Infectious Diseases, Zhejiang University, Hangzhou, 310003, People’s Republic of China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment
of Infectious Diseases, Zhejiang University, Hangzhou, 310003, People’s Republic of China
- Key Laboratory
of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
13
|
Blockage of NOX2/MAPK/NF- κB Pathway Protects Photoreceptors against Glucose Deprivation-Induced Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5093473. [PMID: 29085555 PMCID: PMC5611869 DOI: 10.1155/2017/5093473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/08/2017] [Accepted: 07/18/2017] [Indexed: 01/08/2023]
Abstract
Acute energy failure is one of the critical factors contributing to the pathogenic mechanisms of retinal ischemia. Our previous study demonstrated that glucose deprivation can lead to a caspase-dependent cell death of photoreceptors. The aim of this study was to decipher the upstream signal pathway in glucose deprivation- (GD-) induced cell death. We mimicked acute energy failure by using glucose deprivation in photoreceptor cells (661W cells). GD-induced oxidative stress was evaluated by measuring ROS with the DCFH-DA assay and HO-1 expression by Western blot analysis. The activation of NOX2/MAPK/NF-κB signal was assessed by Western blot and immunohistochemical assays. The roles of these signals in GD-induced cell death were measured by using their specific inhibitors. Inhibition of Rac-1 and NOX2 suppressed GD-induced oxidative stress and protected photoreceptors against GD-induced cell death. NOX2 was an upstream signal in the caspase-dependent cell death cascade, yet the downstream MAPK pathways were activated and blocking MAPK signals rescued 661W cells from GD-induced death. In addition, GD caused the activation of NF-κB signal and inhibiting NF-κB significantly protected 661W cells. These observations may provide insights for treating retinal ischemic diseases and protecting retinal neurons from ischemia-induced cell death.
Collapse
|
14
|
Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 2017; 18:281-298. [PMID: 28360418 DOI: 10.1038/nrn.2017.29] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloid precursor protein (APP) gives rise to the amyloid-β peptide and thus has a key role in the pathogenesis of Alzheimer disease. By contrast, the physiological functions of APP and the closely related APP-like proteins (APLPs) remain less well understood. Studying these physiological functions has been challenging and has required a careful long-term strategy, including the analysis of different App-knockout and Aplp-knockout mice. In this Review, we summarize these findings, focusing on the in vivo roles of APP family members and their processing products for CNS development, synapse formation and function, brain injury and neuroprotection, as well as ageing. In addition, we discuss the implications of APP physiology for therapeutic approaches.
Collapse
|
15
|
Mockett BG, Richter M, Abraham WC, Müller UC. Therapeutic Potential of Secreted Amyloid Precursor Protein APPsα. Front Mol Neurosci 2017; 10:30. [PMID: 28223920 PMCID: PMC5293819 DOI: 10.3389/fnmol.2017.00030] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/25/2017] [Indexed: 11/26/2022] Open
Abstract
Cleavage of the amyloid precursor protein (APP) by α-secretase generates an extracellularly released fragment termed secreted APP-alpha (APPsα). Not only is this process of interest due to the cleavage of APP within the amyloid-beta sequence, but APPsα itself has many physiological properties that suggest its great potential as a therapeutic target. For example, APPsα is neurotrophic, neuroprotective, neurogenic, a stimulator of protein synthesis and gene expression, and enhances long-term potentiation (LTP) and memory. While most early studies have been conducted in vitro, effectiveness in animal models is now being confirmed. These studies have revealed that either upregulating α-secretase activity, acutely administering APPsα or chronic delivery of APPsα via a gene therapy approach can effectively treat mouse models of Alzheimer's disease (AD) and other disorders such as traumatic head injury. Together these findings suggest the need for intensifying research efforts to harness the therapeutic potential of this multifunctional protein.
Collapse
Affiliation(s)
- Bruce G. Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of OtagoOtago, New Zealand
| | - Max Richter
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| | - Wickliffe C. Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of OtagoOtago, New Zealand
| | - Ulrike C. Müller
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| |
Collapse
|
16
|
Hefter D, Draguhn A. APP as a Protective Factor in Acute Neuronal Insults. Front Mol Neurosci 2017; 10:22. [PMID: 28210211 PMCID: PMC5288400 DOI: 10.3389/fnmol.2017.00022] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/16/2017] [Indexed: 12/25/2022] Open
Abstract
Despite its key role in the molecular pathology of Alzheimer’s disease (AD), the physiological function of amyloid precursor protein (APP) is unknown. Increasing evidence, however, points towards a neuroprotective role of this membrane protein in situations of metabolic stress. A key observation is the up-regulation of APP following acute (stroke, cardiac arrest) or chronic (cerebrovascular disease) hypoxic-ischemic conditions. While this mechanism may increase the risk or severity of AD, APP by itself or its soluble extracellular fragment APPsα can promote neuronal survival. Indeed, different animal models of acute hypoxia-ischemia, traumatic brain injury (TBI) and excitotoxicity have revealed protective effects of APP or APPsα. The underlying mechanisms involve APP-mediated regulation of calcium homeostasis via NMDA receptors (NMDAR), voltage-gated calcium channels (VGCC) or internal calcium stores. In addition, APP affects the expression of survival- or apoptosis-related genes as well as neurotrophic factors. In this review, we summarize the current understanding of the neuroprotective role of APP and APPsα and possible implications for future research and new therapeutic strategies.
Collapse
Affiliation(s)
- Dimitri Hefter
- Institute of Physiology and Pathophysiology, Heidelberg UniversityHeidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University Heidelberg, Germany
| |
Collapse
|
17
|
He T, Santhanam AVR, Lu T, d'Uscio LV, Katusic ZS. Role of prostacyclin signaling in endothelial production of soluble amyloid precursor protein-α in cerebral microvessels. J Cereb Blood Flow Metab 2017; 37:106-122. [PMID: 26661245 PMCID: PMC5363732 DOI: 10.1177/0271678x15618977] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
Abstract
We tested hypothesis that activation of the prostacyclin (PGI2) receptor (IP receptor) signaling pathway in cerebral microvessels plays an important role in the metabolism of amyloid precursor protein (APP). In human brain microvascular endothelial cells activation of IP receptor with the stable analogue of PGI2, iloprost, stimulated expression of amyloid precursor protein and a disintegrin and metalloprotease 10 (ADAM10), resulting in an increased production of the neuroprotective and anticoagulant molecule, soluble APPα (sAPPα). Selective agonist of IP receptor, cicaprost, and adenylyl cyclase activator, forskolin, also enhanced expression of amyloid precursor protein and ADAM10. Notably, in cerebral microvessels of IP receptor knockout mice, protein levels of APP and ADAM10 were reduced. In addition, iloprost increased protein levels of peroxisome proliferator-activated receptor δ (PPARδ) in human brain microvascular endothelial cells. PPARδ-siRNA abolished iloprost-augmented protein expression of ADAM10. In contrast, GW501516 (a selective agonist of PPARδ) upregulated ADAM10 and increased production of sAPPα. Genetic deletion of endothelial PPARδ (ePPARδ-/-) in mice significantly reduced cerebral microvascular expression of ADAM10 and production of sAPPα. In vivo treatment with GW501516 increased sAPPα content in hippocampus of wild type mice but not in hippocampus of ePPARδ-/- mice. Our findings identified previously unrecognized role of IP-PPARδ signal transduction pathway in the production of sAPPα in cerebral microvasculature.
Collapse
Affiliation(s)
- Tongrong He
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anantha Vijay R Santhanam
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tong Lu
- Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Livius V d'Uscio
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
18
|
Keshavarz R, Bakhshinejad B, Babashah S, Baghi N, Sadeghizadeh M. Dendrosomal nanocurcumin and p53 overexpression synergistically trigger apoptosis in glioblastoma cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:1353-1362. [PMID: 28096969 PMCID: PMC5220242 DOI: 10.22038/ijbms.2016.7923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/30/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Glioblastoma is the most lethal tumor of the central nervous system. Here, we aimed to evaluate the effects of exogenous delivery of p53 and a nanoformulation of curcumin called dendrosomal curcumin (DNC), alone and in combination, on glioblastoma tumor cells. MATERIALS AND METHODS MTT assay was exploited to measure the viability of U87-MG cells against DNC treatment. Cells were separately subjected to DNC treatment and transfected with p53-containing vector and then were co-exposed to DNC and p53 overexpression[A GA1][B2]. Annexin-V-FLUOS staining followed by flow cytometry and real-time PCR were applied to examine apoptosis and analyze the expression levels of the genes involved in cell cycle and oncogenesis, respectively. RESULTS The results of cell viability assay through MTT indicated that DNC inhibits the proliferation of U87-MG cells in a time- and dose-dependent manner. Apoptosis evaluation revealed that p53 overexpression accompanied by DNC treatment can act in a synergistic manner to significantly enhance the number of apoptotic cells (90%) compared with their application alone (15% and 38% for p53 overexpression and DNC, respectively). Also, real-time PCR data showed that the concomitant exposure of cells to both DNC and p53 overexpression leads to an enhanced expression of GADD45 and a reduced expression of NF-κB and c-Myc. CONCLUSION The findings of the current study suggest that our combination strategy, which merges two detached gene (p53) and drug (curcumin) delivery systems into an integrated platform, may represent huge potential as a novel and efficient modality for glioblastoma treatment.
Collapse
Affiliation(s)
- Reihaneh Keshavarz
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Baghi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
19
|
Habib A, Sawmiller D, Tan J. Restoring Soluble Amyloid Precursor Protein α Functions as a Potential Treatment for Alzheimer's Disease. J Neurosci Res 2016; 95:973-991. [PMID: 27531392 DOI: 10.1002/jnr.23823] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/14/2022]
Abstract
Soluble amyloid precursor protein α (sAPPα), a secreted proteolytic fragment of nonamyloidogenic amyloid precursor protein (APP) processing, is known for numerous neuroprotective functions. These functions include but are not limited to proliferation, neuroprotection, synaptic plasticity, memory formation, neurogenesis, and neuritogenesis in cell culture and animal models. In addition, sAPPα influences amyloid-β (Aβ) production by direct modulation of APP β-secretase proteolysis as well as Aβ-related or unrelated tau pathology, hallmark pathologies of Alzheimer's disease (AD). Thus, the restoration of sAPPα levels and functions in the brain by increasing nonamyloidogenic APP processing and/or manipulation of its signaling could reduce AD pathology and cognitive impairment. It is likely that identification and characterization of sAPPα receptors in the brain, downstream effectors, and signaling pathways will pave the way for an attractive therapeutic target for AD prevention or intervention. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ahsan Habib
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
20
|
Qian LP, Shen SR, Chen JJ, Ji LL, Cao S. Peripheral KATP activation inhibits pain sensitization induced by skin/muscle incision and retraction via the nuclear factor-κB/c-Jun N-terminal kinase signaling pathway. Mol Med Rep 2016; 14:2632-8. [PMID: 27484116 DOI: 10.3892/mmr.2016.5546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 02/15/2016] [Indexed: 11/05/2022] Open
Abstract
The aim of the current study was to assess the effect of pinacidil activation of ATP‑sensitive potassium (KATP) channels prior to skin/muscle incision and retraction (SMIR) surgery on peripheral and central sensitization, and investigate molecular interferential targets for preventive analgesia. Male Sprague-Dawley rats were randomly assigned to one of the following five groups: Control, incision (sham surgery), incision plus retraction (SMIR) group, SMIR plus pinacidil (pinacidil) group and the SMIR plus pyrrolidine dithiocarbamate (PDTC) group. The rats in the pinacidil and PDTC groups were intraperitoneally injected with pinacidil or PDTC, respectively, prior to the SMIR procedure. The mechanical withdrawal threshold (MWT) was determined. Western blotting was performed to detect the alterations in the subunits of the KATP channels, Kir6.1 and SUR2, levels of nuclear factor‑κB (NF‑κB) in the tissue around the incision and c‑Jun N‑terminal kinase (JNK) in the spinal cord. There was a significant increase observed in the levels of NF‑κB and JNK following SMIR surgery compared with the control group, and a significant reduction in MWT and the levels of Kir6.1 and SUR2. Additionally, intraperitoneal administration of pinacidil inhibited the reduction in MWT, and Kir6.1 and SUR2 levels. SMIR was observed to result in increases in the levels of NF‑κB and JNK. In addition, in the PDTC group, the alterations in MWT, NF‑κB, JNK, Kir6.1 and SUR2 resulting from SMIR were blocked. The results of the current study suggest that the deteriorations in the microenvironment resulting from the SMIR procedure can induce peripheral and central sensitization, and that the activation of peripheral KATP by pinacidil prior to SMIR is able to inhibit peripheral and central sensitization via the NF‑κB/JNK signaling pathway, thus resulting in preventive analgesia.
Collapse
Affiliation(s)
- Li-Ping Qian
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shi-Ren Shen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jun-Jie Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Lu-Lu Ji
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Su Cao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
21
|
Abstract
Presenilin-1 and presenilin-2 are highly homologous genes located on chromosomes 14 and 1, respectively, that have recently been linked to some cases of early-onset autosomal dominant inherited forms of Alzhei mer's disease (AD). Presenilins are integral membrane proteins localized in the endoplasmic reticulum of neurons throughout the nervous system. Studies of presenilin-1 knockout mice, and of invertebrate homo logues of presenilins and their interacting proteins, suggest major roles for presenilins in normal develop ment. Presenilin-1 mutant knockin mice do not exhibit developmental abnormalities, which indicates that the pathogenic mechanism of presenilin mutations involves gain of an adverse property of the mutant protein. Expression of presenilin mutations in cultured neurons and transgenic mice results in increased sensitivity to apoptosis induced by trophic factor withdrawal and exposure to oxidative and metabolic insults, and also alters gene expression. The pathogenic mechanism of presenilin mutations may involve perturbed endo plasmic reticulum calcium homeostasis resulting in enhanced oxidative stress, altered proteolytic processing of the amyloid precursor protein (APP), and increased neuronal vulnerability to excitotoxicity. Studies of presenilins are rapidly increasing our understanding the molecular and cellular underpinnings of AD and are also elucidating novel roles of the endoplasmic reticulum in neuronal plasticity and cell death. NEURO SCIENTIST 5:112-124, 1999
Collapse
Affiliation(s)
- Mark P. Mattson
- Sanders-Brown Research Center on Aging Department of Anatomy and Neurobiology University of Kentucky Lexmgton, Kentucky
| | - Qing Guo
- Sanders-Brown Research Center on Aging Department of Anatomy and Neurobiology University of Kentucky Lexmgton, Kentucky
| |
Collapse
|
22
|
Kepp KP. Alzheimer's disease due to loss of function: A new synthesis of the available data. Prog Neurobiol 2016; 143:36-60. [PMID: 27327400 DOI: 10.1016/j.pneurobio.2016.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/11/2022]
Abstract
Alzheimer's Disease (AD) is a highly complex disease involving a broad range of clinical, cellular, and biochemical manifestations that are currently not understood in combination. This has led to many views of AD, e.g. the amyloid, tau, presenilin, oxidative stress, and metal hypotheses. The amyloid hypothesis has dominated the field with its assumption that buildup of pathogenic β-amyloid (Aβ) peptide causes disease. This paradigm has been criticized, yet most data suggest that Aβ plays a key role in the disease. Here, a new loss-of-function hypothesis is synthesized that accounts for the anomalies of the amyloid hypothesis, e.g. the curious pathogenicity of the Aβ42/Aβ40 ratio, the loss of Aβ caused by presenilin mutation, the mixed phenotypes of APP mutations, the poor clinical-biochemical correlations for genetic variant carriers, and the failure of Aβ reducing drugs. The amyloid-loss view accounts for recent findings on the structure and chemical features of Aβ variants and their coupling to human patient data. The lost normal function of APP/Aβ is argued to be metal transport across neuronal membranes, a view with no apparent anomalies and substantially more explanatory power than the gain-of-function amyloid hypothesis. In the loss-of-function scenario, the central event of Aβ aggregation is interpreted as a loss of soluble, functional monomer Aβ rather than toxic overload of oligomers. Accordingly, new research models and treatment strategies should focus on remediation of the functional amyloid balance, rather than strict containment of Aβ, which, for reasons rationalized in this review, has failed clinically.
Collapse
Affiliation(s)
- Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
23
|
APP Receptor? To Be or Not To Be. Trends Pharmacol Sci 2016; 37:390-411. [PMID: 26837733 DOI: 10.1016/j.tips.2016.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
Amyloid precursor protein (APP) and its metabolites play a key role in Alzheimer's disease pathogenesis. The idea that APP may function as a receptor has gained momentum based on its structural similarities to type I transmembrane receptors and the identification of putative APP ligands. We review the recent experimental evidence in support of this notion and discuss how this concept is viewed in the field. Specifically, we focus on the structural and functional characteristics of APP as a cell surface receptor, and on its interaction with adaptors and signaling proteins. We also address the importance of APP function as a receptor in Alzheimer's disease etiology and discuss how this function might be potentially important for the development of novel therapeutic approaches.
Collapse
|
24
|
Walter J. Twenty Years of Presenilins--Important Proteins in Health and Disease. Mol Med 2015; 21 Suppl 1:S41-8. [PMID: 26605647 DOI: 10.2119/molmed.2015.00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive decline in cognitive functions associated with depositions of aggregated proteins in the form of extracellular plaques and neurofibrillary tangles in the brain. Extracellular plaques contain characteristic fibrils of amyloid β peptides (Aβ); tangles consist of paired helical filaments of the microtubuli-associated protein tau. Although AD manifests predominantly at ages above 65 years, rare cases show a much earlier onset of disease symptoms with very similar neuropathological characteristics. In 1995, two homologous genes were identified, in which mutations are associated with dominantly inherited familial forms of early onset AD. The genes therefore were dubbed presenilins (PS) and encode polytopic transmembrane proteins. At this time the role of these proteins in the pathogenesis of AD and their biological function in general were completely unknown. However, individuals carrying PS mutations showed alterations in the composition of different length variants of Aβ peptides in blood and cerebrospinal fluid, which indicated the potential involvement of presenilins in the metabolism of Aβ. After 20 years of intense research, the roles of presenilins in Aβ generation as well as important functions in biological processes have been identified. Presenilins represent the catalytic components of protease complexes that directly cleave the amyloid precursor protein (APP) but also many other proteins with important physiological functions. Here, the progress in presenilin research from basic characterization of their cellular functions to the targeting in clinical trials for AD therapy, and potential future directions, will be discussed.
Collapse
Affiliation(s)
- Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| |
Collapse
|
25
|
Cavaleri F. Paradigm shift redefining molecular, metabolic and structural events in Alzheimer's disease involves a proposed contribution by transition metals. Defined lengthy preclinical stage provides new hope to circumvent advancement of disease- and age-related neurodegeneration. Med Hypotheses 2015; 84:460-9. [PMID: 25691377 DOI: 10.1016/j.mehy.2015.01.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 01/30/2015] [Indexed: 12/28/2022]
Abstract
It is estimated that 5.5 Million North Americans suffer from varying degrees of Alzheimer's disease (AD) and by the year 2050 it may be one in 85 people globally (100 Million). It will be shown that heavy metal toxicity plays a significant role in sporadic AD. Although current literature speaks to involvement of metal ions (via Fenton reaction), studies and reviewers have yet to link cellular events including known structural changes such as amyloid plaque development to this metal toxicity the way it is proposed here. Contrary to the current AD model which positions BACE1 (β-secretase) as an aberrant or AD-advancing enzyme, it is proposed herein that the neuron's protective counteraction to this metal toxicity is, in fact, a justified increase in BACE1 activity and amyloid precursor protein (APP) processing to yield more secreted APP (sAPP) and β-amyloid peptide in response to metal toxicity. This new perspective which justifies a functional role for APP, BACE1 enzyme activity and the peptide products from this activity may at first appear to be counterintuitive. Compelling evidence, however, is presented and a mechanism is shown herein that validate BACE1 recruitment and the resulting β-amyloid protein as strategic countermeasures serving the cell effectively against neuro-impeding disease. It is proposed that β-amyloid peptide chelates and sequesters free heavy metals in the extracellular medium to aggregate as amyloid plaque while unchelated β-amyloid migrates across the cell membrane to chelate intracellular free divalent metals. The sequestered intracellular metal is subsequently chaperoned as a metallo-peptide to cross the plasma membrane and aggregate as amyloid plaques extracellularly. The BACE1 countermeasure is not genetic or metabolic aberration; and this novel conclusion demonstrates that it must not be inhibited as currently targeted. APP, BACE1, β-amyloid peptide, and sAPP play positive roles against the preclinical oxidative load that predates AD symptoms for as long as 20 years. A healthy neuron may tolerate free metal toxicity, such as iron in the case of injury-induced amyloid, for as long as twenty years due to this very BACE1 activity. In later stages, the uncontrolled metals and ROS are compounded by other factors which together overcome this BACE1/β-amyloid protein countermeasure. This results in a sudden increase in IL-1 leading to Tau's hyperphosphorylation as cited and eventually to Tau dissociation from the microtubule cytoskeleton interrupting cell trafficking. At this later stage of AD the β-amyloid protein which once served as a vehicle to escort toxic metals to the extracellular medium and a trap to form a relatively benign extraneuronal disposal site is no longer translocated due to interruption of trafficking and now accumulates intracellularly facilitating hyper-oxidative ROS levels and contributes to irreversible neuron apoptosis.
Collapse
Affiliation(s)
- Franco Cavaleri
- Brain Research Center, UBC Hospital, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
26
|
Adenosine A2a receptors activate Nuclear Factor-Kappa B (NF-κB) in rat hippocampus after exposure to different doses of MDMA. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Ryan MM, Morris GP, Mockett BG, Bourne K, Abraham WC, Tate WP, Williams JM. Time-dependent changes in gene expression induced by secreted amyloid precursor protein-alpha in the rat hippocampus. BMC Genomics 2013; 14:376. [PMID: 23742273 PMCID: PMC3691674 DOI: 10.1186/1471-2164-14-376] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/24/2013] [Indexed: 01/19/2023] Open
Abstract
Background Differential processing of the amyloid precursor protein liberates either amyloid-ß, a causative agent of Alzheimer’s disease, or secreted amyloid precursor protein-alpha (sAPPα), which promotes neuroprotection, neurotrophism, neurogenesis and synaptic plasticity. The underlying molecular mechanisms recruited by sAPPα that underpin these considerable cellular effects are not well elucidated. As these effects are enduring, we hypothesised that regulation of gene expression may be of importance and examined temporally specific gene networks and pathways induced by sAPPα in rat hippocampal organotypic slice cultures. Slices were exposed to 1 nM sAPPα or phosphate buffered saline for 15 min, 2 h or 24 h and sAPPα-associated gene expression profiles were produced for each time-point using Affymetrix Rat Gene 1.0 ST arrays (moderated t-test using Limma: p < 0.05, and fold change ± 1.15). Results Treatment of organotypic hippocampal slice cultures with 1 nM sAPPα induced temporally distinct gene expression profiles, including mRNA and microRNA associated with Alzheimer’s disease. Having demonstrated that treatment with human recombinant sAPPα was protective against N-methyl d-aspartate-induced toxicity, we next explored the sAPPα-induced gene expression profiles. Ingenuity Pathway Analysis predicted that short-term exposure to sAPPα elicited a multi-level transcriptional response, including upregulation of immediate early gene transcription factors (AP-1, Egr1), modulation of the chromatin environment, and apparent activation of the constitutive transcription factors CREB and NF-κB. Importantly, dynamic regulation of NF-κB appears to be integral to the transcriptional response across all time-points. In contrast, medium and long exposure to sAPPα resulted in an overall downregulation of gene expression. While these results suggest commonality between sAPPα and our previously reported analysis of plasticity-related gene expression, we found little crossover between these datasets. The gene networks formed following medium and long exposure to sAPPα were associated with inflammatory response, apoptosis, neurogenesis and cell survival; functions likely to be the basis of the neuroprotective effects of sAPPα. Conclusions Our results demonstrate that sAPPα rapidly and persistently regulates gene expression in rat hippocampus. This regulation is multi-level, temporally specific and is likely to underpin the neuroprotective effects of sAPPα.
Collapse
Affiliation(s)
- Margaret M Ryan
- Brain Health Research Centre, University of Otago, PO Box 56, Dunedin New Zealand.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
To date, no truly effective therapy has been developed for Alzheimer's disease or mild cognitive impairment. In searching for new approaches that may succeed where previous ones have failed, it may be instructive to consider the successful therapeutic developments for other chronic illnesses such as cancer and human immunodeficiency virus.
Collapse
|
29
|
Kermanian F, Soleimani M, Ebrahimzadeh A, Haghir H, Mehdizadeh M. Effects of adenosine A2a receptor agonist and antagonist on hippocampal nuclear factor-kB expression preceded by MDMA toxicity. Metab Brain Dis 2013; 28:45-52. [PMID: 23212481 DOI: 10.1007/s11011-012-9366-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/22/2012] [Indexed: 01/23/2023]
Abstract
There is an abundance of evidence showing that repeated use of 3,4-methlylenedioxymethamphetamine (MDMA; ecstasy) is associated with brain dysfunction, memory disturbance, locomotor hyperactivity, and hyperthermia. MDMA is toxic to both the serotonergic neurons and dopaminergic system. Adenosine is an endogenous purine nucleoside with a neuromodulatory function in the central nervous system. Nuclear factor kappa-B (NF-kB) plays a pivotal role in the initiation and perpetuation of an immune response by triggering the expression of major inflammatory mediators such as cytokines, chemokines, and adhesion molecules. Here, we investigated the effects of the A2a adenosine receptor (A2a-R) agonist (CGS) and antagonist (SCH) on NF-kB expression after MDMA administration. Male Sprague-Dawley rats were injected to MDMA (10 mg/kg) followed by intraperitoneal injection of either CGS or SCH (0.03 mg/kg each) to animals. The hippocampi were then removed for western blot and RT- PCR analyses. MDMA significantly elevated NF-kB expression. Our results show that administration of CGS following MDMA significantly elevated the NF-kB expression both at mRNA and protein levels. By contrast, administration of the A2a-R antagonist SCH resulted in a decrease in the NF-kB levels. Taken together, these results indicate that, co-administration of A2a agonist (CGS) can protect against MDMA neurotoxic effects by increasing NF-kB expression levels; suggesting a potential application for protection against the neurotoxic effects observed in MDMA users.
Collapse
Affiliation(s)
- Fatemeh Kermanian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | |
Collapse
|
30
|
Amyloid precursor protein-mediated modulation of capacitive calcium entry. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Venkataramani V, Thiele K, Behnes CL, Wulf GG, Thelen P, Opitz L, Salinas-Riester G, Wirths O, Bayer TA, Schweyer S. Amyloid Precursor Protein Is a Biomarker for Transformed Human Pluripotent Stem Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1636-52. [DOI: 10.1016/j.ajpath.2011.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/30/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
|
32
|
Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer's disease. Int J Neuropsychopharmacol 2012; 15:77-90. [PMID: 21329555 DOI: 10.1017/s1461145711000149] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Elevated levels of β-site APP cleaving enzyme 1 (BACE1) were found in the brain of some sporadic Alzheimer's disease (AD) patients; however, the underlying mechanism is unknown. BACE1 cleaves β-amyloid precursor protein (APP) to generate amyloid β protein (Aβ), a central component of neuritic plaques in AD brains. Nuclear factor-kappa B (NF-κB) signalling plays an important role in gene regulation and is implicated in inflammation, oxidative stress and apoptosis. In this report we found that both BACE1 and NF-κB p65 levels were significantly increased in the brains of AD patients. Two functional NF-κB-binding elements were identified in the human BACE1 promoter region. We found that NF-κB p65 expression resulted in increased BACE1 promoter activity and BACE1 transcription, while disruption of NF-κB p65 decreased BACE1 gene expression in p65 knockout (RelA-knockout) cells. In addition, NF-κB p65 expression leads to up-regulated β-secretase cleavage and Aβ production, while non-steroidal anti-inflammatory drugs (NSAIDs) inhibited BACE1 transcriptional activation induced by strong NF-κB activator tumour necrosis factor-alpha (TNF-α). Taken together, our results clearly demonstrate that NF-κB signalling facilitates BACE1 gene expression and APP processing, and increased BACE1 expression mediated by NF-κB signalling in the brain could be one of the novel molecular mechanisms underlying the development of AD in some sporadic cases. Furthermore, NSAIDs could block the inflammation-induced BACE1 transcription and Aβ production. Our study suggests that inhibition of NF-κB-mediated BACE1 expression may be a valuable drug target for AD therapy.
Collapse
|
33
|
Roles of amyloid precursor protein family members in neuroprotection, stress signaling and aging. Exp Brain Res 2011; 217:471-9. [PMID: 22086493 DOI: 10.1007/s00221-011-2932-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/28/2011] [Indexed: 12/24/2022]
Abstract
The roles of amyloid precursor protein (APP) family members in normal brain function are poorly understood. Under physiological conditions the majority of APP appears to be processed along the non-amyloidogenic pathway leading to the formation of the secreted N-terminal APP fragment sAPPα. This cleavage product of APP has been implicated in several physiological processes such as neuroprotection, synaptic plasticity, neurite outgrowth and synaptogenesis. In this review we focus on the role of APP family members in neuroprotection and summarize the cellular and molecular mechanisms which are believed to mediate this effect. We propose that a reduction of APP processing along the non-amyloidogenic pathway during brain aging could result in an enhanced susceptibility of neurons to cellular stress and could contribute to neurodegeneration in Alzheimer's disease.
Collapse
|
34
|
Huang X, Chen Y, Zhang H, Ma Q, Zhang YW, Xu H. Salubrinal attenuates β-amyloid-induced neuronal death and microglial activation by inhibition of the NF-κB pathway. Neurobiol Aging 2011; 33:1007.e9-17. [PMID: 22056200 DOI: 10.1016/j.neurobiolaging.2011.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/27/2011] [Accepted: 10/05/2011] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is characterized by the deposition of β-amyloid (Aβ) peptides in the brain, inducing neuronal cell death and microglial activation. Endoplasmic reticulum (ER) stress has been proposed to be a mediator of Aβ neurotoxicity. In this study, we test whether salubrinal, an ER stress inhibitor, can protect against Aβ-mediated neurotoxicity. We show in rat primary cortical neurons and mouse microglial BV-2 cells that short-term treatment with salubrinal attenuates Aβ-induced neuronal death and microglial activation. Remarkably, our results show that salubrinal's neuroprotective effects are not due to inhibition of ER stress. Rather, we demonstrate that salubrinal exerts its effects through the inhibition of IκB kinase (IKK) activation, IκB degradation, and the subsequent nuclear factor-kappa B (NF-κB) activation. These results elucidate inhibition of the NF-κB pathway as a new mechanism responsible for the protective effects of salubrinal against Aβ neurotoxicity. This study also suggests that modulation of Aβ-induced NF-κB activation could be a potential therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Xiumei Huang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | | | | | | | | | | |
Collapse
|
35
|
The characteristic long-term upregulation of hippocampal NF-κB complex in PTSD-like behavioral stress response is normalized by high-dose corticosterone and pyrrolidine dithiocarbamate administered immediately after exposure. Neuropsychopharmacology 2011; 36:2286-302. [PMID: 21734649 PMCID: PMC3176566 DOI: 10.1038/npp.2011.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nuclear factor-κB (NF-κB) is a ubiquitously expressed transcription factor for genes involved in cell survival, differentiation, inflammation, and growth. This study examined the role of NF-κB pathway in stress-induced PTSD-like behavioral response patterns in rats. Immunohistochemical technique was used to detect the expression of the NF-κB p50 and p65 subunits, I-κBα, p38, and phospho-p38 in the hippocampal subregions at 7 days after exposure to predator scent stress. Expression of p65 nuclear translocation was quantified by western blot as the level of NF-κB activation. The effects of intraperitoneally administered corticosterone or a selective NF-κB inhibitor (pyrrolidine dithiocarbamate (PDTC)) at 1 h post exposure on behavioral tests (elevated plus-maze and acoustic startle response) were evaluated 7 days later. Hippocampal expressions of those genes were subsequently evaluated. All data were analyzed in relation to individual behavior patterns. Extreme behavioral responder animals displayed significant upregulation of p50 and p65 with concomitant downregulation of I-κBα, p38, and phospho-p38 levels in hippocampal structures compared with minimal behavioral responders and controls. Immediate post-exposure treatment with high-dose corticosterone and PDTC significantly reduced prevalence rates of extreme responders and normalized the expression of those genes. Stress-induced upregulation of NF-κB complex in the hippocampus may contribute to the imbalance between what are normally precisely orchestrated and highly coordinated physiological and behavioral processes, thus associating it with stress-related disorders.
Collapse
|
36
|
Camandola S, Mattson MP. Aberrant subcellular neuronal calcium regulation in aging and Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:965-73. [PMID: 20950656 PMCID: PMC3032815 DOI: 10.1016/j.bbamcr.2010.10.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 02/06/2023]
Abstract
In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer's disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | | |
Collapse
|
37
|
Manuvakhova MS, Johnson GG, White MC, Ananthan S, Sosa M, Maddox C, McKellip S, Rasmussen L, Wennerberg K, Hobrath JV, White EL, Maddry JA, Grimaldi M. Identification of novel small molecule activators of nuclear factor-κB with neuroprotective action via high-throughput screening. J Neurosci Res 2011; 89:58-72. [PMID: 21046675 PMCID: PMC3280078 DOI: 10.1002/jnr.22526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neuronal noncytokine-dependent p50/p65 nuclear factor-κB (the primary NF-κB complex in the brain) activation has been shown to exert neuroprotective actions. Thus neuronal activation of NF-κB could represent a viable neuroprotective target. We have developed a cell-based assay able to detect NF-κB expression enhancement, and through its use we have identified small molecules able to up-regulate NF-κB expression and hence trigger its activation in neurons. We have successfully screened approximately 300,000 compounds and identified 1,647 active compounds. Cluster analysis of the structures within the hit population yielded 14 enriched chemical scaffolds. One high-potency and chemically attractive representative of each of these 14 scaffolds and four singleton structures were selected for follow-up. The experiments described here highlighted that seven compounds caused noncanonical long-lasting NF-κB activation in primary astrocytes. Molecular NF-κB docking experiments indicate that compounds could be modulating NF-κB-induced NF-κB expression via enhancement of NF-κB binding to its own promoter. Prototype compounds increased p65 expression in neurons and caused its nuclear translocation without affecting the inhibitor of NF-κB (I-κB). One of the prototypical compounds caused a large reduction of glutamate-induced neuronal death. In conclusion, we have provided evidence that we can use small molecules to activate p65 NF-κB expression in neurons in a cytokine receptor-independent manner, which results in both long-lasting p65 NF-κB translocation/activation and decreased glutamate neurotoxicity.
Collapse
Affiliation(s)
- Marina S. Manuvakhova
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama
| | - Guyla G. Johnson
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama
| | - Misti C. White
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama
| | - Subramaniam Ananthan
- Department of Medicinal Chemistry, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama
| | - Melinda Sosa
- High Throughput Screening Center, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama
| | - Clinton Maddox
- High Throughput Screening Center, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama
| | - Sara McKellip
- High Throughput Screening Center, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama
| | - Lynn Rasmussen
- High Throughput Screening Center, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama
| | - Krister Wennerberg
- Assay Development Laboratory, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama
| | - Judith V. Hobrath
- Department of Medicinal Chemistry, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama
| | - E. Lucile White
- High Throughput Screening Center, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama
| | - Joseph A. Maddry
- Department of Medicinal Chemistry, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama
| | - Maurizio Grimaldi
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama
| |
Collapse
|
38
|
Pollen DA, Baker S, Hinerfeld D, Swearer J, Evans BA, Evans JE, Caselli R, Rogaeva E, St George-Hyslop P, Moonis M. Prevention of Alzheimer's disease in high risk groups: statin therapy in subjects with PSEN1 mutations or heterozygosity for apolipoprotein E epsilon 4. ALZHEIMERS RESEARCH & THERAPY 2010; 2:31. [PMID: 21062519 PMCID: PMC2983440 DOI: 10.1186/alzrt55] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Daniel A Pollen
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Galan C, Jardín I, Dionisio N, Salido G, Rosado JA. Role of oxidant scavengers in the prevention of Ca²+ homeostasis disorders. Molecules 2010; 15:7167-87. [PMID: 20953160 PMCID: PMC6259185 DOI: 10.3390/molecules15107167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/09/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023] Open
Abstract
A number of disorders, such as Alzheimer disease and diabetes mellitus, have in common the alteration of the redox balance, resulting in an increase in reactive oxygen species (ROS) generation that might lead to the development of apoptosis and cell death. It has long been known that ROS can significantly alter Ca²+ mobilization, an intracellular signal that is involved in the regulation of a wide variety of cellular functions. Cells have a limited capability to counteract the effects of oxidative stress, but evidence has been provided supporting the beneficial effects of exogenous ROS scavengers. Here, we review the effects of oxidative stress on intracellular Ca²+ homeostasis and the role of antioxidants in the prevention and treatment of disorders associated to abnormal Ca²+ mobilization induced by ROS.
Collapse
Affiliation(s)
| | | | | | | | - Juan A. Rosado
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34 927257139; Fax: +34 927257110
| |
Collapse
|
40
|
Yu JT, Chang RCC, Tan L. Calcium dysregulation in Alzheimer's disease: from mechanisms to therapeutic opportunities. Prog Neurobiol 2009; 89:240-55. [PMID: 19664678 DOI: 10.1016/j.pneurobio.2009.07.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 11/28/2022]
Abstract
Calcium is involved in many facets of neuronal physiology, including activity, growth and differentiation, synaptic plasticity, and learning and memory, as well as pathophysiology, including necrosis, apoptosis, and degeneration. Though disturbances in calcium homeostasis in cells from Alzheimer's disease (AD) patients have been observed for many years, much more attention was focused on amyloid-beta (Abeta) and tau as key causative factors for the disease. Nevertheless, increasing lines of evidence have recently reported that calcium dysregulation plays a central role in AD pathogenesis. Systemic calcium changes accompany almost the whole brain pathology process that is observed in AD, including synaptic dysfunction, mitochondrial dysfunction, presenilins mutation, Abeta production and Tau phosphorylation. Given the early and ubiquitous involvement of calcium dysregulation in AD pathogenesis, it logically presents a variety of potential therapeutic targets for AD prevention and treatment, such as calcium channels in the plasma membrane, calcium channels in the endoplasmic reticulum membrane, Abeta-formed calcium channels, calcium-related proteins. The review aims to provide an overview of the current understanding of the molecular mechanisms involved in calcium dysregulation in AD, and an insight on how to exploit calcium regulation as therapeutic opportunities in AD.
Collapse
Affiliation(s)
- Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 5 Donghai Middle Road, Qingdao, Shandong Province 266071, China
| | | | | |
Collapse
|
41
|
Ray B, Lahiri DK. Neuroinflammation in Alzheimer's disease: different molecular targets and potential therapeutic agents including curcumin. Curr Opin Pharmacol 2009; 9:434-44. [DOI: 10.1016/j.coph.2009.06.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 12/30/2022]
|
42
|
Reddy PH. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer's disease. Exp Neurol 2009; 218:286-92. [PMID: 19358844 PMCID: PMC2710427 DOI: 10.1016/j.expneurol.2009.03.042] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 03/24/2009] [Accepted: 03/27/2009] [Indexed: 11/29/2022]
Abstract
Mitochondria are the major source of energy for the normal functioning of brain cells. Increasing evidence suggests that the amyloid precursor protein (APP) and amyloid beta (Abeta) accumulate in mitochondrial membranes, cause mitochondrial structural and functional damage, and prevent neurons from functioning normally. Oligomeric Abeta is reported to induce intracellular Ca(2+) levels and to promote the excess accumulation of intracellular Ca(2+) into mitochondria, to induce the mitochondrial permeability transition pore to open, and to damage mitochondrial structure. Based on recent gene expression studies of APP transgenic mice and AD postmortem brains, and APP/Abeta and mitochondrial structural studies, we propose that the overexpression of APP and the increased production of Abeta may cause structural changes of mitochondria, including an increase in the production of defective mitochondria, a decrease in mitochondrial trafficking, and the alteration of mitochondrial dynamics in neurons affected by AD. This article discusses some critical issues of APP/Abeta associated with mitochondria, mitochondrial structural and functional damage, and abnormal intracellular calcium regulation in neurons from AD patients. This article also discusses the link between Abeta and impaired mitochondrial dynamics in AD.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, 97006, USA.
| |
Collapse
|
43
|
Kontogiorgis CA, Xu Y, Hadjipavlou-Litina D, Luo Y. Coumarin derivatives protection against ROS production in cellular models of Aβtoxicities. Free Radic Res 2009; 41:1168-80. [PMID: 17886039 DOI: 10.1080/10715760701447884] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of oxidative stress and free radicals in the development of Alzheimer's disease (AD) has been the focus of many recent studies. The role of hydrogen peroxide (H(2)O(2)) in AD is thought to be associated with Abeta (amyloid - beta) damage in cells. A number of coumarin derivatives were previously found to be potent anti-inflammatory and antioxidant agents. Herein, these coumarin derivatives were tested as H(2)O(2) scavengers with the DCF assay using two types of neuronal cells: (a) wild type (N2a) neuroblastoma cells and (b) APP/PS1 transgenic cell line expressing Abeta. Their scavenging activity was varied between the types of cell cultures and it was found to be concentration and time dependent in the mutant cells. Their protective role against cell death further supports this notion. These results suggest that these compounds could be used as a template in the design of new molecules with a possible role in AD.
Collapse
Affiliation(s)
- Christos A Kontogiorgis
- Aristotle University of Thessaloniki, School of Pharmacy, Department of Pharmaceutical Chemistry, Thessaloniki, Greece.
| | | | | | | |
Collapse
|
44
|
|
45
|
Patel JR, Brewer GJ. Age-related differences in NFkappaB translocation and Bcl-2/Bax ratio caused by TNFalpha and Abeta42 promote survival in middle-age neurons and death in old neurons. Exp Neurol 2008; 213:93-100. [PMID: 18625500 PMCID: PMC2597588 DOI: 10.1016/j.expneurol.2008.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 04/02/2008] [Accepted: 05/02/2008] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease is associated with an age-related accumulation of Abeta and inflammation. The inflammatory mediator, TNFalpha activates a signaling cascade involving NFkappaB translocation to the nucleus and a beneficial or detrimental transcriptional response, depending on the age of the neurons and the type of stress applied. Relative to treatment with Abeta42 alone, previously we found that TNFalpha plus Abeta42, applied to old rat neurons (24 month) is toxic, while the same treatment of middle-age neurons (10 month) is protective. In contrast to improved survival of middle-age rat cortical neurons, neurons from old rats are killed by TNFalpha plus Abeta42 despite greater p50 nuclear translocation. In middle-age neurons, blocking TNFR1 does not affect NFkappaB translocation, whereas blocking TNFR2 results in an increase in NFkappaB translocation. For old neurons, blocking either receptor, does not change NFkappaB translocation, but improves cell survival. To account for these effects on cell viability in response to TNF+Abeta, measures of the Bcl-2/Bax ratio positively correlate with survival. In the setting of old neurons, these results suggest that overactivated nuclear translocation of NFkappaB and lower Bcl-2 levels promote death that is reduced by inhibition of either TNFR1 or R2.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/physiology
- Aging/drug effects
- Aging/metabolism
- Alzheimer Disease/drug therapy
- Alzheimer Disease/metabolism
- Alzheimer Disease/physiopathology
- Amyloid beta-Peptides/metabolism
- Amyloid beta-Peptides/toxicity
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Cell Death/drug effects
- Cell Death/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Male
- NF-kappa B/metabolism
- Nerve Degeneration/chemically induced
- Nerve Degeneration/drug therapy
- Nerve Degeneration/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Peptide Fragments/metabolism
- Peptide Fragments/toxicity
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Rats
- Rats, Inbred F344
- Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/toxicity
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Jigisha R. Patel
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University, School of Medicine, Springfield, IL
| | - Gregory J. Brewer
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University, School of Medicine, Springfield, IL
- Department of Neurology, Southern Illinois University, School of Medicine, Springfield, IL
| |
Collapse
|
46
|
Kloskowska E, Malkiewicz K, Winblad B, Benedikz E, Bruton JD. APPswe mutation increases the frequency of spontaneous Ca2+-oscillations in rat hippocampal neurons. Neurosci Lett 2008; 436:250-4. [PMID: 18403114 DOI: 10.1016/j.neulet.2008.03.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 03/03/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
Altered calcium homeostasis is implicated in the pathogenesis of Alzheimer's disease (AD). Much effort has been put into understanding the association between protein mutations causative of this devastating neurodegenerative disease and perturbed calcium signaling. Whereas the presenilin mutations have received most attention in the context of neuronal calcium signaling, we focused on the effects of APP with the so-called Swedish mutation (APPswe) on spontaneous neuronal activity. We observed that primary hippocampal neurons from an APPswe transgenic rat showed increased frequency and unaltered amplitude of spontaneous calcium oscillations as compared to wild-type neurons. We found that the altered calcium signaling of APPswe transgenic neurons was unlikely to be due to modulation of the NMDA or nicotinic neurotransmitter systems, and did not depend on secreted APP derivates. The implications of this effect of APP are discussed.
Collapse
Affiliation(s)
- Ewa Kloskowska
- Karolinska Institutet, NVS Department, Div. Neurodegeneration, Novum Plan 5, 14186 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
47
|
Fisher L, Samuelsson M, Jiang Y, Ramberg V, Figueroa R, Hallberg E, Langel U, Iverfeldt K. Targeting cytokine expression in glial cells by cellular delivery of an NF-kappaB decoy. J Mol Neurosci 2008; 31:209-19. [PMID: 17726227 DOI: 10.1385/jmn:31:03:209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/18/2006] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Inhibition of nuclear factor (NF)-kappaB has emerged as an important strategy for design of anti-inflammatory therapies. In neurodegenerative disorders like Alzheimer's disease, inflammatory reactions mediated by glial cells are believed to promote disease progression. Here, we report that uptake of a double-stranded oligonucleotide NF-kappaB decoy in rat primary glial cells is clearly facilitated by noncovalent binding to a cell-penetrating peptide, transportan 10, via a complementary peptide nucleic acid (PNA) sequence. Fluorescently labeled oligonucleotide decoy was detected in the cells within 1 h only when cells were incubated with the decoy in the presence of cell-penetrating peptide. Cellular delivery of the decoy also inhibited effects induced by a neurotoxic fragment of the Alzheimer beta-amyloid peptide in the presence of the inflammatory cytokine interleukin (IL)-1beta. Pretreatment of the cells with the complex formed by the decoy and the cell-penetrating peptide-PNA resulted in 80% and 50% inhibition of the NF-kappaB binding activity and IL-6 mRNA expression, respectively.
Collapse
Affiliation(s)
- Linda Fisher
- Department of Neurochemistry, Stockholm University, SE10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
48
|
NF-κB activated by ER calcium release inhibits Aβ-mediated expression of CHOP protein: Enhancement by AD-linked mutant presenilin 1. Exp Neurol 2007; 208:169-76. [DOI: 10.1016/j.expneurol.2007.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 04/19/2007] [Accepted: 04/24/2007] [Indexed: 02/03/2023]
|
49
|
Bojarski L, Herms J, Kuznicki J. Calcium dysregulation in Alzheimer's disease. Neurochem Int 2007; 52:621-33. [PMID: 18035450 DOI: 10.1016/j.neuint.2007.10.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 09/12/2007] [Accepted: 10/01/2007] [Indexed: 12/21/2022]
Abstract
Alzheimer disease (AD) is the most common form of adult dementia. Its pathological hallmarks are synaptic degeneration, deposition of amyloid plaques and neurofibrillary tangles, leading to neuronal loss. A few hypotheses have been proposed to explain AD pathogenesis. The beta-amyloid (Abeta) and hyperphosphorylated tau hypotheses suggest that these proteins are the main players in AD development. Another hypothesis proposes that the dysregulation of calcium homeostasis may be a key factor in accelerating other pathological changes. Although Abeta and tau have been extensively studied, recently published data provide a growing body of evidence supporting the critical role of calcium signalling in AD. For example, presenilins, which are mutated in familial cases of AD, were demonstrated to form low conductance calcium channels in the ER and elevated cytosolic calcium concentration increases amyloid generation. Moreover, memantine, an antagonist of the NMDA-calcium channel receptor, has been found to have a beneficial effect for AD patients offering novel possibilities for a calcium signalling targeted therapy of AD. This review underscores the growing importance of calcium ions in AD development and focuses on the relevant aspects of calcium homeostasis.
Collapse
Affiliation(s)
- Lukasz Bojarski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | |
Collapse
|
50
|
Tounai H, Hayakawa N, Kato H, Araki T. Immunohistochemical study on distribution of NF-kappaB and p53 in gerbil hippocampus after transient cerebral ischemia: effect of pitavastatin. Metab Brain Dis 2007; 22:89-104. [PMID: 17226097 DOI: 10.1007/s11011-006-9040-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 11/08/2006] [Indexed: 11/26/2022]
Abstract
We investigated the immunohistochemical alterations of the transcription nuclear factor kappa-B (NF-kappaB) and transcription factor p53 in the hippocampus after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pitavastatin against the alterations of NF-kappaB, p53 and neuronal nuclei in the hippocampus after ischemia. Severe neuronal damage was observed in the hippocampal CA1 neurons 5 and 14 days after ischemia. In the present study, the increase of NF-kappaB immunoreactivity in glial cells and p53 immunoreactivity in neurons preceded neuronal damage in the hippocampal CA1 sector after ischemia. Thereafter, NF-kappaB immunoreactivity was induced highly in reactive astrocytes and microglia of the hippocampal CA1 sector where severe neuronal damage was observed. Our immunohistochemical study showed that pitavastatin prevented the alterations of NF-kappaB and p53 in the hippocampal CA1 sector 5 days after transient ischemia. Furthermore, our results with neuronal nuclei immunostaining indicate that pitavastatin dose-dependently prevented the neuronal cell death in the hippocampal CA1 sector 5 days after transient cerebral ischemia. These results suggest that the up-regulations of NF-kappaB in glia and p53 in neurons can cause neuronal cell death after ischemia. Our findings also support the hypothesis that NF-kappaB- and/or p53-mediated neuronal cell death is prevented through decreasing oxidative stress by pitavastatin. Thus, NF-kappaB and p53 may provide an attractive target for the development of novel therapeutic approaches for brain stroke.
Collapse
Affiliation(s)
- Hiroko Tounai
- Department of Drug Metabolism and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan
| | | | | | | |
Collapse
|