1
|
Cullati SN, Akizuki K, Shan Y, Zhang E, Ren L, Guillen RX, Turner LA, Chen JS, Navarrete-Perea J, Elmore ZC, Gygi SP, Gould KL. The DNA Damage Repair Function of Fission Yeast CK1 Involves Targeting Arp8, a Subunit of the INO80 Chromatin Remodeling Complex. Mol Cell Biol 2024:1-15. [PMID: 39387272 DOI: 10.1080/10985549.2024.2408016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
The CK1 family are conserved serine/threonine kinases with numerous substrates and cellular functions. The fission yeast CK1 orthologues Hhp1 and Hhp2 were first characterized as regulators of DNA repair, but the mechanism(s) by which CK1 activity promotes DNA repair had not been investigated. Here, we found that deleting Hhp1 and Hhp2 or inhibiting CK1 catalytic activities in yeast or in human cells increased double-strand breaks (DSBs). The primary pathways to repair DSBs, homologous recombination and nonhomologous end joining, were both less efficient in cells lacking Hhp1 and Hhp2 activity. To understand how Hhp1 and Hhp2 promote DNA damage repair, we identified new substrates of these enzymes using quantitative phosphoproteomics. We confirmed that Arp8, a component of the INO80 chromatin remodeling complex, is a bona fide substrate of Hhp1 and Hhp2 important for DNA repair. Our data suggest that Hhp1 and Hhp2 facilitate DNA repair by phosphorylating multiple substrates, including Arp8.
Collapse
Affiliation(s)
- Sierra N Cullati
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kazutoshi Akizuki
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yufan Shan
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eric Zhang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Rodrigo X Guillen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lesley A Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Zachary C Elmore
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Harold RL, Tulsian NK, Narasimamurthy R, Yaitanes N, Ayala Hernandez MG, Lee HW, Crosby P, Tripathi SM, Virshup DM, Partch CL. Isoform-specific C-terminal phosphorylation drives autoinhibition of Casein kinase 1. Proc Natl Acad Sci U S A 2024; 121:e2415567121. [PMID: 39356670 PMCID: PMC11474029 DOI: 10.1073/pnas.2415567121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Casein kinase 1δ (CK1δ) controls essential biological processes including circadian rhythms and wingless-related integration site (Wnt) signaling, but how its activity is regulated is not well understood. CK1δ is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, δ1 and δ2, are known to have very different effects on circadian rhythms. These variants differ only in the last 16 residues of the tail, referred to as the extreme C termini (XCT), but with marked changes in potential phosphorylation sites. Here, we test whether the XCT of these variants have different effects in autoinhibition of the kinase. Using NMR and hydrogen/deuterium exchange mass spectrometry, we show that the δ1 XCT is preferentially phosphorylated by the kinase and the δ1 tail makes more extensive interactions across the kinase domain. Mutation of δ1-specific XCT phosphorylation sites increases kinase activity both in vitro and in cells and leads to changes in the circadian period, similar to what is reported in vivo. Mechanistically, loss of the phosphorylation sites in XCT disrupts tail interaction with the kinase domain. δ1 autoinhibition relies on conserved anion-binding sites around the CK1 active site, demonstrating a common mode of product inhibition of CK1δ. These findings demonstrate how a phosphorylation cycle controls the activity of this essential kinase.
Collapse
Affiliation(s)
- Rachel L. Harold
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Nikhil K. Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
- Merck Sharp & Dohme International GmBH (Singapore), Neuros, Singapore138665, Singapore
| | - Rajesh Narasimamurthy
- Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Noelle Yaitanes
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Maria G. Ayala Hernandez
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Hsiau-Wei Lee
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Priya Crosby
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Sarvind M. Tripathi
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore169857, Singapore
- Department of Pediatrics, Duke University Medical Center, Durham, NC27710
| | - Carrie L. Partch
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
- Center for Circadian Biology, University of California San Diego, La Jolla, CA92093
- HHMI, University of California, Santa Cruz, CA95064
| |
Collapse
|
3
|
Harold RL, Tulsian NK, Narasimamurthy R, Yaitanes N, Hernandez MGA, Lee HW, Crosby P, Tripathi SM, Virshup DM, Partch CL. Isoform-specific C-terminal phosphorylation drives autoinhibition of Casein Kinase 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.24.538174. [PMID: 39131317 PMCID: PMC11312495 DOI: 10.1101/2023.04.24.538174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Casein kinase 1 δ (CK1δ) controls essential biological processes including circadian rhythms and Wnt signaling, but how its activity is regulated is not well understood. CK1δ is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, δ 1 and δ 2 , are known to have very different effects on circadian rhythms. These variants differ only in the last 16 residues of the tail, referred to as the extreme C-termini (XCT), but with marked changes in potential phosphorylation sites. Here we test if the XCT of these variants have different effects in autoinhibition of the kinase. Using NMR and HDX-MS, we show that the δ 1 XCT is preferentially phosphorylated by the kinase and the δ 1 tail makes more extensive interactions across the kinase domain. Mutation of δ1 -specific XCT phosphorylation sites increases kinase activity both in vitro and in cells and leads to changes in circadian period, similar to what is reported in vivo. Mechanistically, loss of the phosphorylation sites in XCT disrupts tail interaction with the kinase domain. δ1 autoinhibition relies on conserved anion binding sites around the CK1 active site, demonstrating a common mode of product inhibition of CK1δ . These findings demonstrate how a phosphorylation cycle controls the activity of this essential kinase.
Collapse
Affiliation(s)
- Rachel L. Harold
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Nikhil K. Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- MSD International GmBH (Singapore), Neuros, 8 Biomedical Grove, Singapore, 138665
| | | | - Noelle Yaitanes
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Maria G. Ayala Hernandez
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Hsiau-Wei Lee
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Priya Crosby
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Sarvind M. Tripathi
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Carrie L. Partch
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093
- Lead contact
| |
Collapse
|
4
|
Cullati SN, Akizuki K, Chen JS, Johnson JL, Yaron-Barir TM, Cantley LC, Gould KL. Substrate displacement of CK1 C-termini regulates kinase specificity. SCIENCE ADVANCES 2024; 10:eadj5185. [PMID: 38728403 PMCID: PMC11086627 DOI: 10.1126/sciadv.adj5185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
CK1 kinases participate in many signaling pathways, and their regulation is of meaningful biological consequence. CK1s autophosphorylate their C-terminal noncatalytic tails, and eliminating these tails increases substrate phosphorylation in vitro, suggesting that the autophosphorylated C-termini act as inhibitory pseudosubstrates. To test this prediction, we comprehensively identified the autophosphorylation sites on Schizosaccharomyces pombe Hhp1 and human CK1ε. Phosphoablating mutations increased Hhp1 and CK1ε activity toward substrates. Peptides corresponding to the C-termini interacted with the kinase domains only when phosphorylated, and substrates competitively inhibited binding of the autophosphorylated tails to the substrate binding grooves. Tail autophosphorylation influenced the catalytic efficiency with which CK1s targeted different substrates, and truncating the tail of CK1δ broadened its linear peptide substrate motif, indicating that tails contribute to substrate specificity as well. Considering autophosphorylation of both T220 in the catalytic domain and C-terminal sites, we propose a displacement specificity model to describe how autophosphorylation modulates substrate specificity for the CK1 family.
Collapse
Affiliation(s)
- Sierra N. Cullati
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kazutoshi Akizuki
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jared L. Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tomer M. Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
5
|
Rojas J, Oz T, Jonak K, Lyzak O, Massaad V, Biriuk O, Zachariae W. Spo13/MEIKIN ensures a Two-Division meiosis by preventing the activation of APC/C Ama1 at meiosis I. EMBO J 2023; 42:e114288. [PMID: 37728253 PMCID: PMC10577557 DOI: 10.15252/embj.2023114288] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Genome haploidization at meiosis depends on two consecutive nuclear divisions, which are controlled by an oscillatory system consisting of Cdk1-cyclin B and the APC/C bound to the Cdc20 activator. How the oscillator generates exactly two divisions has been unclear. We have studied this question in yeast where exit from meiosis involves accumulation of the APC/C activator Ama1 at meiosis II. We show that inactivation of the meiosis I-specific protein Spo13/MEIKIN results in a single-division meiosis due to premature activation of APC/CAma1 . In the wild type, Spo13 bound to the polo-like kinase Cdc5 prevents Ama1 synthesis at meiosis I by stabilizing the translational repressor Rim4. In addition, Cdc5-Spo13 inhibits the activity of Ama1 by converting the B-type cyclin Clb1 from a substrate to an inhibitor of Ama1. Cdc20-dependent degradation of Spo13 at anaphase I unleashes a feedback loop that increases Ama1's synthesis and activity, leading to irreversible exit from meiosis at the second division. Thus, by repressing the exit machinery at meiosis I, Cdc5-Spo13 ensures that cells undergo two divisions to produce haploid gametes.
Collapse
Affiliation(s)
- Julie Rojas
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Tugce Oz
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Katarzyna Jonak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Oleksii Lyzak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Vinal Massaad
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Olha Biriuk
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Wolfgang Zachariae
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
6
|
Lambert M, Gebel J, Trejtnar C, Wesch N, Bozkurt S, Adrian-Allgood M, Löhr F, Münch C, Dötsch V. Fuzzy interactions between the auto-phosphorylated C-terminus and the kinase domain of CK1δ inhibits activation of TAp63α. Sci Rep 2023; 13:16423. [PMID: 37777570 PMCID: PMC10542812 DOI: 10.1038/s41598-023-43515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
The p53 family member TAp63α plays an important role in maintaining the genetic integrity in oocytes. DNA damage, in particular DNA double strand breaks, lead to the transformation of the inhibited, only dimeric conformation into the active tetrameric one that results in the initiation of an apoptotic program. Activation requires phosphorylation by the kinase CK1 which phosphorylates TAp63α at four positions. The third phosphorylation event is the decisive step that transforms TAp63α into the active state. This third phosphorylation, however, is ~ 20 times slower than the first two phosphorylation events. This difference in the phosphorylation kinetics constitutes a safety mechanism that allows oocytes with a low degree of DNA damage to survive. So far these kinetic investigations of the phosphorylation steps have been performed with the isolated CK1 kinase domain. However, all CK1 enzymes contain C-terminal extensions that become auto-phosphorylated and inhibit the activity of the kinase. Here we have investigated the effect of auto-phosphorylation of the C-terminus in the kinase CK1δ and show that it slows down phosphorylation of the first two sites in TAp63α but basically inhibits the phosphorylation of the third site. We have identified up to ten auto-phosphorylation sites in the CK1δ C-terminal domain and show that all of them interact with the kinase domain in a "fuzzy" way in which not a single site is particularly important. Through mutation analysis we further show that hydrophobic amino acids following the phosphorylation site are important for a substrate to be able to successfully compete with the auto-inhibitory effect of the C-terminal domain. This auto-phosphorylation adds a new layer to the regulation of apoptosis in oocytes.
Collapse
Affiliation(s)
- Mahil Lambert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Jakob Gebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Charlotte Trejtnar
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Nicole Wesch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Süleyman Bozkurt
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt/Main, Germany
| | - Martin Adrian-Allgood
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt/Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Frankfurt/Main, Germany
- Cardio-Pulmonary Institute, Frankfurt/Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|
7
|
Cullati SN, Akizuki K, Chen JS, Gould KL. Substrate displacement of CK1 C-termini regulates kinase specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547285. [PMID: 37425826 PMCID: PMC10327203 DOI: 10.1101/2023.06.30.547285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
CK1 kinases participate in many signaling pathways; how these enzymes are regulated is therefore of significant biological consequence. CK1s autophosphorylate their C-terminal non-catalytic tails, and eliminating these modifications increases substrate phosphorylation in vitro, suggesting that the autophosphorylated C-termini act as inhibitory pseudosubstrates. To test this prediction, we comprehensively identified the autophosphorylation sites on Schizosaccharomyces pombe Hhp1 and human CK1ε. Peptides corresponding to the C-termini interacted with the kinase domains only when phosphorylated, and phosphoablating mutations increased Hhp1 and CK1ε activity towards substrates. Interestingly, substrates competitively inhibited binding of the autophosphorylated tails to the substrate binding grooves. The presence or absence of tail autophosphorylation influenced the catalytic efficiency with which CK1s targeted different substrates, indicating that tails contribute to substrate specificity. Combining this mechanism with autophosphorylation of the T220 site in the catalytic domain, we propose a displacement specificity model to describe how autophosphorylation regulates substrate specificity for the CK1 family.
Collapse
Affiliation(s)
- Sierra N. Cullati
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kazutoshi Akizuki
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
8
|
Philpott JM, Freeberg AM, Park J, Lee K, Ricci CG, Hunt SR, Narasimamurthy R, Segal DH, Robles R, Cai Y, Tripathi S, McCammon JA, Virshup DM, Chiu JC, Lee C, Partch CL. PERIOD phosphorylation leads to feedback inhibition of CK1 activity to control circadian period. Mol Cell 2023; 83:1677-1692.e8. [PMID: 37207626 DOI: 10.1016/j.molcel.2023.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
PERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ. Co-crystal structures in conjunction with molecular dynamics simulations reveal how pFASP phosphoserines dock into conserved anion binding sites near the active site of CK1δ. Limiting phosphorylation of the FASP serine cluster reduces product inhibition, decreasing PER2 stability and shortening circadian period in human cells. We found that Drosophila PER also regulates CK1δ via feedback inhibition through the phosphorylated PER-Short domain, revealing a conserved mechanism by which PER phosphorylation near the CK1BD regulates CK1 kinase activity.
Collapse
Affiliation(s)
- Jonathan M Philpott
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alfred M Freeberg
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jiyoung Park
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Kwangjun Lee
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Clarisse G Ricci
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sabrina R Hunt
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rajesh Narasimamurthy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - David H Segal
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rafael Robles
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Yao Cai
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Choogon Lee
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Cullati SN, Zhang E, Shan Y, Guillen RX, Chen JS, Navarrete-Perea J, Elmore ZC, Ren L, Gygi SP, Gould KL. Fission yeast CK1 promotes DNA double-strand break repair through both homologous recombination and non-homologous end joining. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538600. [PMID: 37162912 PMCID: PMC10168346 DOI: 10.1101/2023.04.27.538600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The CK1 family are conserved serine/threonine kinases with numerous substrates and cellular functions. The fission yeast CK1 orthologues Hhp1 and Hhp2 were first characterized as regulators of DNA repair, but the mechanism(s) by which CK1 activity promotes DNA repair had not been investigated. Here, we found that deleting Hhp1 and Hhp2 or inhibiting CK1 catalytic activities in yeast or in human cells activated the DNA damage checkpoint due to persistent double-strand breaks (DSBs). The primary pathways to repair DSBs, homologous recombination and non-homologous end joining, were both less efficient in cells lacking Hhp1 and Hhp2 activity. In order to understand how Hhp1 and Hhp2 promote DSB repair, we identified new substrates using quantitative phosphoproteomics. We confirmed that Arp8, a component of the INO80 chromatin remodeling complex, is a bona fide substrate of Hhp1 and Hhp2 that is important for DSB repair. Our data suggest that Hhp1 and Hhp2 facilitate DSB repair by phosphorylating multiple substrates, including Arp8.
Collapse
Affiliation(s)
- Sierra N. Cullati
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric Zhang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Current address: Columbia University Medical Center, New York, NY, USA
| | - Yufan Shan
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rodrigo X. Guillen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Zachary C. Elmore
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Current address: Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
10
|
Wang B, Zhang J, Zhang D, Lu C, Liu H, Gao Q, Niu T, Yin M, Cui S. Casein Kinase 1α as a Novel Factor Affects Thyrotropin Synthesis via PKC/ERK/CREB Signaling. Int J Mol Sci 2023; 24:7034. [PMID: 37108197 PMCID: PMC10138882 DOI: 10.3390/ijms24087034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Casein kinase 1α (CK1α) is present in multiple cellular organelles and plays various roles in regulating neuroendocrine metabolism. Herein, we investigated the underlying function and mechanisms of CK1α-regulated thyrotropin (thyroid-stimulating hormone (TSH)) synthesis in a murine model. Immunohistochemistry and immunofluorescence staining were performed to detect CK1α expression in murine pituitary tissue and its localization to specific cell types. Tshb mRNA expression in anterior pituitary was detected using real-time and radioimmunoassay techniques after CK1α activity was promoted and inhibited in vivo and in vitro. Relationships among TRH/L-T4, CK1α, and TSH were analyzed with TRH and L-T4 treatment, as well as thyroidectomy, in vivo. In mice, CK1α was expressed at higher levels in the pituitary gland tissue than in the thyroid, adrenal gland, or liver. However, inhibiting endogenous CK1α activity in the anterior pituitary and primary pituitary cells significantly increased TSH expression and attenuated the inhibitory effect of L-T4 on TSH. In contrast, CK1α activation weakened TSH stimulation by thyrotropin-releasing hormone (TRH) by suppressing protein kinase C (PKC)/extracellular signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling. CK1α, as a negative regulator, mediates TRH and L-T4 upstream signaling by targeting PKC, thus affecting TSH expression and downregulating ERK1/2 phosphorylation and CREB transcriptional activity.
Collapse
Affiliation(s)
- Bingjie Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Jinglin Zhang
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China
| | - Chenyang Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Qiao Gao
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China
| | - Tongjuan Niu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Mengqing Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
11
|
Zhuang X, Guo X, Gu T, Xu X, Qin L, Xu K, He Z, Zhang K. Phosphorylation of plant virus proteins: Analysis methods and biological functions. Front Microbiol 2022; 13:935735. [PMID: 35958157 PMCID: PMC9360750 DOI: 10.3389/fmicb.2022.935735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation is one of the most extensively investigated post-translational modifications that orchestrate a variety of cellular signal transduction processes. The phosphorylation of virus-encoded proteins plays an important regulatory role in the infection cycle of such viruses in plants. In recent years, molecular mechanisms underlying the phosphorylation of plant viral proteins have been widely studied. Based on recent publications, our study summarizes the phosphorylation analyses of plant viral proteins and categorizes their effects on biological functions according to the viral life cycle. This review provides a theoretical basis for elucidating the molecular mechanisms of viral infection. Furthermore, it deepens our understanding of the biological functions of phosphorylation in the interactions between plants and viruses.
Collapse
Affiliation(s)
- Xinjian Zhuang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tianxiao Gu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiaowei Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lang Qin
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhen He
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China,Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China,*Correspondence: Kun Zhang, ;
| |
Collapse
|
12
|
Cullati SN, Chaikuad A, Chen JS, Gebel J, Tesmer L, Zhubi R, Navarrete-Perea J, Guillen RX, Gygi SP, Hummer G, Dötsch V, Knapp S, Gould KL. Kinase domain autophosphorylation rewires the activity and substrate specificity of CK1 enzymes. Mol Cell 2022; 82:2006-2020.e8. [DOI: 10.1016/j.molcel.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 12/01/2022]
|
13
|
Casein kinase 1 and disordered clock proteins form functionally equivalent, phospho-based circadian modules in fungi and mammals. Proc Natl Acad Sci U S A 2022; 119:2118286119. [PMID: 35217617 PMCID: PMC8892514 DOI: 10.1073/pnas.2118286119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 02/02/2023] Open
Abstract
Circadian clocks rely on negative feedback loops. The core circadian inhibitors, FRQ in Neurospora and PERs in animals, are progressively hyperphosphorylated, inactivated, and degraded. CK1 is essential for these clocks. Despite our knowledge of the role of CK1, it is not known how many other kinases are required and how multisite phosphorylation might contribute to circadian timekeeping. We show here that CK1 alone is sufficient to slowly phosphorylate low-affinity sites in FRQ or PER2. The reaction is nearly temperature compensated, and the phosphorylation state of FRQ or PER2 corresponds to the time elapsed since the start of the reaction. Thus, CK1 and FRQ or PER2 form equivalent modules that are in principle capable of measuring time on a circadian scale. Circadian clocks are timing systems that rhythmically adjust physiology and metabolism to the 24-h day–night cycle. Eukaryotic circadian clocks are based on transcriptional–translational feedback loops (TTFLs). Yet TTFL-core components such as Frequency (FRQ) in Neurospora and Periods (PERs) in animals are not conserved, leaving unclear how a 24-h period is measured on the molecular level. Here, we show that CK1 is sufficient to promote FRQ and mouse PER2 (mPER2) hyperphosphorylation on a circadian timescale by targeting a large number of low-affinity phosphorylation sites. Slow phosphorylation kinetics rely on site-specific recruitment of Casein Kinase 1 (CK1) and access of intrinsically disordered segments of FRQ or mPER2 to bound CK1 and on CK1 autoinhibition. Compromising CK1 activity and substrate binding affects the circadian clock in Neurospora and mammalian cells, respectively. We propose that CK1 and the clock proteins FRQ and PERs form functionally equivalent, phospho-based timing modules in the core of the circadian clocks of fungi and animals.
Collapse
|
14
|
Ruhs S, Griesler B, Huebschmann R, Stroedecke K, Straetz N, Ihling C, Sinz A, Masch A, Schutkowski M, Gekle M, Grossmann C. Modulation of transcriptional mineralocorticoid receptor activity by casein kinase 1. FASEB J 2021; 36:e22059. [PMID: 34847273 DOI: 10.1096/fj.202100977rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/16/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
The mineralocorticoid receptor (MR) with its ligand aldosterone (aldo) physiologically regulates electrolyte homeostasis and blood pressure but it can also lead to pathophysiological effects in the cardiovascular system. Previous results show that posttranslational modifications (PTM) can influence MR signaling and function. Based on in silico and in vitro data, casein kinase 1 (CK1) was predicted as a candidate for MR phosphorylation. To gain a deeper mechanistic insight into MR activation, we investigated the influence of CK1 on MR function in HEK cells. Co-immunoprecipitation experiments indicated that the MR is located in a protein-protein complex with CK1α and CK1ε. Reporter gene assays with pharmacological inhibitors and MR constructs demonstrated that especially CK1ε acts as a positive modulator of GRE activity via the C-terminal MR domains CDEF. CK1 enhanced the binding affinity of aldosterone to the MR, facilitated nuclear translocation and DNA interaction of the MR, and led to expression changes of pathophysiologically relevant genes like Per-1 and Phlda1. By peptide microarray and site-directed mutagenesis experiments, we identified the highly conserved T800 as a direct CK1 phosphorylation site of the MR, which modulates the nuclear import and genomic activity of the receptor. Direct phosphorylation of the MR was unable to fully account for all of the CK1 effects on MR signaling, suggesting additional phosphorylation of MR co-regulators. By LC/MS/MS, we identified the MR-associated proteins NOLC1 and TCOF1 as candidates for such CK1-regulated co-factors. Overall, we found that CK1 acts as a co-activator of MR GRE activity through direct and indirect phosphorylation, which accelerates cytosolic-nuclear trafficking, facilitates nuclear accumulation and DNA binding of the MR, and increases the expression of pathologically relevant MR-target genes.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Bruno Griesler
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf Huebschmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Katharina Stroedecke
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Straetz
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Center for Structural Mass Spectrometry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Center for Structural Mass Spectrometry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Antonia Masch
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
15
|
Philpott JM, Torgrimson MR, Harold RL, Partch CL. Biochemical mechanisms of period control within the mammalian circadian clock. Semin Cell Dev Biol 2021; 126:71-78. [PMID: 33933351 DOI: 10.1016/j.semcdb.2021.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022]
Abstract
Genetically encoded biological clocks are found broadly throughout life on Earth, where they generate circadian (about a day) rhythms that synchronize physiology and behavior with the daily light/dark cycle. Although the genetic networks that give rise to circadian timing are now fairly well established, our understanding of how the proteins that constitute the molecular 'cogs' of this biological clock regulate the intrinsic timing, or period, of circadian rhythms has lagged behind. New studies probing the biochemical and structural basis of clock protein function are beginning to reveal how assemblies of dedicated clock proteins form and evolve through post-translational regulation to generate circadian rhythms. This review will highlight some recent advances providing important insight into the molecular mechanisms of period control in mammalian clocks with an emphasis on structural analyses related to CK1-dependent control of PER stability.
Collapse
Affiliation(s)
- Jonathan M Philpott
- Department of Chemistry and Biochemistry, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Megan R Torgrimson
- Department of Chemistry and Biochemistry, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Rachel L Harold
- Department of Chemistry and Biochemistry, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA; Center for Circadian Biology, UC San Diego, 9500 Gilman Drive, MC 0116, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Narasimamurthy R, Virshup DM. The phosphorylation switch that regulates ticking of the circadian clock. Mol Cell 2021; 81:1133-1146. [PMID: 33545069 DOI: 10.1016/j.molcel.2021.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
In our 24/7 well-lit world, it's easy to skip or delay sleep to work, study, and play. However, our circadian rhythms are not easily fooled; the consequences of jet lag and shift work are many and severe, including metabolic, mood, and malignant disorders. The internal clock that keeps track of time has at its heart the reversible phosphorylation of the PERIOD proteins, regulated by isoforms of casein kinase 1 (CK1). In-depth biochemical, genetic, and structural studies of these kinases, their mutants, and their splice variants have combined over the past several years to provide a robust understanding of how the core clock is regulated by a phosphoswitch whereby phosphorylation of a stabilizing site on PER blocks phosphorylation of a distant phosphodegron. The recent structure of a circadian mutant form of CK1 implicates an internal activation loop switch that regulates this phosphoswitch and points to new approaches to regulation of the clock.
Collapse
Affiliation(s)
- Rajesh Narasimamurthy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
17
|
Fulcher LJ, Sapkota GP. Functions and regulation of the serine/threonine protein kinase CK1 family: moving beyond promiscuity. Biochem J 2020; 477:4603-4621. [PMID: 33306089 PMCID: PMC7733671 DOI: 10.1042/bcj20200506] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Regarded as constitutively active enzymes, known to participate in many, diverse biological processes, the intracellular regulation bestowed on the CK1 family of serine/threonine protein kinases is critically important, yet poorly understood. Here, we provide an overview of the known CK1-dependent cellular functions and review the emerging roles of CK1-regulating proteins in these processes. We go on to discuss the advances, limitations and pitfalls that CK1 researchers encounter when attempting to define relationships between CK1 isoforms and their substrates, and the challenges associated with ascertaining the correct physiological CK1 isoform for the substrate of interest. With increasing interest in CK1 isoforms as therapeutic targets, methods of selectively inhibiting CK1 isoform-specific processes is warranted, yet challenging to achieve given their participation in such a vast plethora of signalling pathways. Here, we discuss how one might shut down CK1-specific processes, without impacting other aspects of CK1 biology.
Collapse
Affiliation(s)
- Luke J. Fulcher
- Department of Biochemistry, University of Oxford, Oxford, U.K
| | - Gopal P. Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, U.K
| |
Collapse
|
18
|
Janovská P, Normant E, Miskin H, Bryja V. Targeting Casein Kinase 1 (CK1) in Hematological Cancers. Int J Mol Sci 2020; 21:E9026. [PMID: 33261128 PMCID: PMC7730698 DOI: 10.3390/ijms21239026] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
The casein kinase 1 enzymes (CK1) form a family of serine/threonine kinases with seven CK1 isoforms identified in humans. The most important substrates of CK1 kinases are proteins that act in the regulatory nodes essential for tumorigenesis of hematological malignancies. Among those, the most important are the functions of CK1s in the regulation of Wnt pathways, cell proliferation, apoptosis and autophagy. In this review we summarize the recent developments in the understanding of biology and therapeutic potential of the inhibition of CK1 isoforms in the pathogenesis of chronic lymphocytic leukemia (CLL), other non-Hodgkin lymphomas (NHL), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and multiple myeloma (MM). CK1δ/ε inhibitors block CLL development in preclinical models via inhibition of WNT-5A/ROR1-driven non-canonical Wnt pathway. While no selective CK1 inhibitors have reached clinical stage to date, one dual PI3Kδ and CK1ε inhibitor, umbralisib, is currently in clinical trials for CLL and NHL patients. In MDS, AML and MM, inhibition of CK1α, acting via activation of p53 pathway, showed promising preclinical activities and the first CK1α inhibitor has now entered the clinical trials.
Collapse
Affiliation(s)
- Pavlína Janovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | | | - Hari Miskin
- TG Therapeutics, New York, NY 10014, USA; (E.N.); (H.M.)
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| |
Collapse
|
19
|
Kröber-Boncardo C, Lorenzen S, Brinker C, Clos J. Casein kinase 1.2 over expression restores stress resistance to Leishmania donovani HSP23 null mutants. Sci Rep 2020; 10:15969. [PMID: 32994468 PMCID: PMC7525241 DOI: 10.1038/s41598-020-72724-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/04/2020] [Indexed: 01/25/2023] Open
Abstract
Leishmania donovani is a trypanosomatidic parasite and causes the lethal kala-azar fever, a neglected tropical disease. The Trypanosomatida are devoid of transcriptional gene regulation and rely on gene copy number variations and translational control for their adaption to changing conditions. To survive at mammalian tissue temperatures, L. donovani relies on the small heat shock protein HSP23, the loss of which renders the parasites stress sensitive and impairs their proliferation. Here, we analysed a spontaneous escape mutant with wild type-like in vitro growth. Further selection of this escape strains resulted in a complete reversion of the phenotype. Whole genome sequencing revealed a correlation between stress tolerance and the massive amplification of a six-gene cluster on chromosome 35, with further analysis showing over expression of the casein kinase 1.2 gene as responsible. In vitro phosphorylation experiments established both HSP23 and the related P23 co-chaperone as substrates and modulators of casein kinase 1.2, providing evidence for another crucial link between chaperones and signal transduction protein kinases in this early branching eukaryote.
Collapse
Affiliation(s)
- Constanze Kröber-Boncardo
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany
| | - Stephan Lorenzen
- Department of Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christine Brinker
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany
| | - Joachim Clos
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany.
| |
Collapse
|
20
|
Bernatik O, Pejskova P, Vyslouzil D, Hanakova K, Zdrahal Z, Cajanek L. Phosphorylation of multiple proteins involved in ciliogenesis by Tau Tubulin kinase 2. Mol Biol Cell 2020; 31:1032-1046. [PMID: 32129703 PMCID: PMC7346730 DOI: 10.1091/mbc.e19-06-0334] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/23/2019] [Accepted: 02/25/2020] [Indexed: 11/11/2022] Open
Abstract
Primary cilia are organelles necessary for proper implementation of developmental and homeostasis processes. To initiate their assembly, coordinated actions of multiple proteins are needed. Tau tubulin kinase 2 (TTBK2) is a key player in the cilium assembly pathway, controlling the final step of cilia initiation. The function of TTBK2 in ciliogenesis is critically dependent on its kinase activity; however, the precise mechanism of TTBK2 action has so far not been fully understood due to the very limited information about its relevant substrates. In this study, we demonstrate that CEP83, CEP89, CCDC92, Rabin8, and DVL3 are substrates of TTBK2 kinase activity. Further, we characterize a set of phosphosites of those substrates and CEP164 induced by TTBK2 in vitro and in vivo. Intriguingly, we further show that identified TTBK2 phosphosites and consensus sequence delineated from those are distinct from motifs previously assigned to TTBK2. Finally, we show that TTBK2 is also required for efficient phosphorylation of many S/T sites in CEP164 and provide evidence that TTBK2-induced phosphorylations of CEP164 modulate its function, which in turn seems relevant for the process of cilia formation. In summary, our work provides important insight into the substrates-TTBK2 kinase relationship and suggests that phosphorylation of substrates on multiple sites by TTBK2 is probably involved in the control of ciliogenesis in human cells.
Collapse
Affiliation(s)
- Ondrej Bernatik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Petra Pejskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - David Vyslouzil
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Katerina Hanakova
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Cajanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
21
|
He T, Wu D, He L, Wang X, Yang B, Li S, Chen Y, Wang K, Chen R, Liu B, Zhang L, Rong L. Casein kinase 1 epsilon facilitates cartilage destruction in osteoarthritis through JNK pathway. FASEB J 2020; 34:6466-6478. [PMID: 32175635 DOI: 10.1096/fj.201902672r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is a high-morbidity skeletal disease worldwide and the exact mechanisms underlying OA pathogenesis are not fully understood. Casein kinase 1 epsilon (CK1ε) is a serine/threonine protein kinase, but its relationship with OA is still unknown. We demonstrated that CK1ε was upregulated in articular cartilage of human patients with OA and mice with experimentally induced OA. Activity of CK1ε, demonstrated by analysis of phosphorylated substrates, was significantly elevated in interleukin (IL)-1β-induced OA-mimicking chondrocytes. CK1ε inhibitor or CK1ε short hairpin RNA (shRNA) partially blocked matrix metalloproteinase (MMP) expression by primary chondrocytes induced by IL-1β, and also inhibited cartilage destruction in knee joints of experimental OA model mice. Conversely, overexpression of CK1ε promoted chondrocyte catabolism. Previous studies indicated that CK1ε was involved in canonical Wnt/β-catenin signaling and noncanonical Wnt/c-Jun N-terminal kinase (JNK) signaling pathway. Interestingly, the activity of JNK but not β-catenin decreased after CK1ε knockdown in IL-1β-treated chondrocytes in vitro, and JNK inhibition reduced MMP expression in chondrocytes overexpressing CK1ε, which illustrated that CK1ε-mediated OA was based on JNK pathway. In conclusion, our results demonstrate that CK1ε promotes OA development, and inhibition of CK1ε could be a potential strategy for OA treatment in the future.
Collapse
Affiliation(s)
- Tianwei He
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Depeng Wu
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Lei He
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Xuan Wang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Bu Yang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Shangfu Li
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Yuyong Chen
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Kun Wang
- Department of Joint Surgery and Orthopedic Trauma, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Ruiqiang Chen
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Bin Liu
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Liangming Zhang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Limin Rong
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| |
Collapse
|
22
|
Karpov PA, Sheremet YA, Blume YB, Yemets AI. Studying the Role of Protein Kinases CK1 in Organization of Cortical Microtubules in Arabidopsis thaliana Root Cells. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452719060033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Yuan F, Li D, Guo M, Fang T, Sun J, Qi F, Rao Q, Zhao Z, Huang P, Yang B, Xia J. IC261 suppresses progression of hepatocellular carcinoma in a casein kinase 1 δ/ε independent manner. Biochem Biophys Res Commun 2020; 523:809-815. [PMID: 31954519 DOI: 10.1016/j.bbrc.2019.12.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide that responds poorly to existing therapies. The Casein kinase 1 (CK1) isoforms CK1δ and CK1ε are reported to be highly expressed in several tumor types, and both genetic and pharmacological inhibition of CK1δ/ε activity has deleterious effects on tumor cell growth. IC261, an CK1δ/ε selectively inhibitor, shows anti-tumor effect against pancreatic tumor and glioblastoma, but its role in HCC remains poorly characterized. In our research, IC261 displayed time- and dose-dependent inhibition of HCC cell proliferation, and induced G2/M arrest and cell apoptosis in vitro. However, the anti-tumor effects of IC261 was independent of CK1δ/ε. Additionally, IC261 was verified to induce centrosome fragmentation during mitosis independent of CK1δ status, and intraperitoneal injection of IC261 to HCCLM3 xenograft models inhibited tumor growth. Taken together, our data indicated that IC261 has therapeutic potential for HCC.
Collapse
Affiliation(s)
- Feifei Yuan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Donghe Li
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China; School of Life Sciences and Biotechnology and School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Mengzhou Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jialei Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Feng Qi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Qianwen Rao
- Minhang Hospital, Shanghai Medical School of Fudan University, Shanghai, 201100, PR China
| | - Zhiying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Peixin Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
24
|
Regulation of Multifunctional Calcium/Calmodulin Stimulated Protein Kinases by Molecular Targeting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:649-679. [PMID: 31646529 DOI: 10.1007/978-3-030-12457-1_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multifunctional calcium/calmodulin-stimulated protein kinases control a broad range of cellular functions in a multitude of cell types. This family of kinases contain several structural similarities and all are regulated by phosphorylation, which either activates, inhibits or modulates their kinase activity. As these protein kinases are widely or ubiquitously expressed, and yet regulate a broad range of different cellular functions, additional levels of regulation exist that control these cell-specific functions. Of particular importance for this specificity of function for multifunctional kinases is the expression of specific binding proteins that mediate molecular targeting. These molecular targeting mechanisms allow pools of kinase in different cells, or parts of a cell, to respond differently to activation and produce different functional outcomes.
Collapse
|
25
|
Xu P, Ianes C, Gärtner F, Liu C, Burster T, Bakulev V, Rachidi N, Knippschild U, Bischof J. Structure, regulation, and (patho-)physiological functions of the stress-induced protein kinase CK1 delta (CSNK1D). Gene 2019; 715:144005. [PMID: 31376410 PMCID: PMC7939460 DOI: 10.1016/j.gene.2019.144005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Members of the highly conserved pleiotropic CK1 family of serine/threonine-specific kinases are tightly regulated in the cell and play crucial regulatory roles in multiple cellular processes from protozoa to human. Since their dysregulation as well as mutations within their coding regions contribute to the development of various different pathologies, including cancer and neurodegenerative diseases, they have become interesting new drug targets within the last decade. However, to develop optimized CK1 isoform-specific therapeutics in personalized therapy concepts, a detailed knowledge of the regulation and functions of the different CK1 isoforms, their various splice variants and orthologs is mandatory. In this review we will focus on the stress-induced CK1 isoform delta (CK1δ), thereby addressing its regulation, physiological functions, the consequences of its deregulation for the development and progression of diseases, and its potential as therapeutic drug target.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Chiara Ianes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Congxing Liu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Timo Burster
- Department of Biology, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan 020000, Kazakhstan.
| | - Vasiliy Bakulev
- Ural Federal University named after the first President of Russia B. N. Eltsin, Technology for Organic Synthesis Laboratory, 19 Mirastr., 620002 Ekaterinburg, Russia.
| | - Najma Rachidi
- Unité de Parasitologie Moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, 25-28 Rue du Dr Roux, 75015 Paris, France.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
26
|
Guo G, Wang K, Hu SS, Tian T, Liu P, Mori T, Chen P, Johnson CH, Qin X. Autokinase Activity of Casein Kinase 1 δ/ε Governs the Period of Mammalian Circadian Rhythms. J Biol Rhythms 2019; 34:482-496. [PMID: 31392916 DOI: 10.1177/0748730419865406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian rhythms exist in nearly all organisms. In mammals, transcriptional and translational feedback loops (TTFLs) are believed to underlie the mechanism of the circadian clock. Casein kinase 1δ/ε (CK1δ/ε) are key kinases that phosphorylate clock components such as PER proteins, determining the pace of the clock. Most previous studies of the biochemical properties of the key kinases CK1ε and CK1δ in vitro have focused on the properties of the catalytic domains from which the autoinhibitory C-terminus has been deleted (ΔC); those studies ignored the significance of self-inhibition by autophosphorylation. By comparing the properties of the catalytic domain of CK1δ/ε with the full-length kinase that can undergo autoinhibition, we found that recombinant full-length CK1 showed a sequential autophosphorylation process that induces conformational changes to affect the overall kinase activity. Furthermore, a direct relationship between the period change and the autokinase activity among CK1δ, CK1ε, and CK1ε-R178C was observed. These data implicate the autophosphorylation activity of CK1δ and CK1ε kinases in setting the pace of mammalian circadian rhythms and indicate that the circadian period can be modulated by tuning the autophosphorylation rates of CK1δ/ε.
Collapse
Affiliation(s)
- Gaili Guo
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Kankan Wang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Shan-Shan Hu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Tian Tian
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Peng Liu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Tetsuya Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Peng Chen
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | | | - Ximing Qin
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| |
Collapse
|
27
|
Cullati SN, Gould KL. Spatiotemporal regulation of the Dma1-mediated mitotic checkpoint coordinates mitosis with cytokinesis. Curr Genet 2019; 65:663-668. [PMID: 30600396 DOI: 10.1007/s00294-018-0921-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/26/2022]
Abstract
During cell division, the timing of mitosis and cytokinesis must be ordered to ensure that each daughter cell receives a complete, undamaged copy of the genome. In fission yeast, the septation initiation network (SIN) is responsible for this coordination, and a mitotic checkpoint dependent on the E3 ubiquitin ligase Dma1 and the protein kinase CK1 controls SIN signaling to delay cytokinesis when there are errors in mitosis. The participation of kinases and ubiquitin ligases in cell cycle checkpoints that maintain genome integrity is conserved from yeast to human, making fission yeast an excellent model system in which to study checkpoint mechanisms. In this review, we highlight recent advances and remaining questions related to checkpoint regulation, which requires the synchronized modulation of protein ubiquitination, phosphorylation, and subcellular localization.
Collapse
|
28
|
Liu J, Zou X, Gotoh T, Brown AM, Jiang L, Wisdom EL, Kim JK, Finkielstein CV. Distinct control of PERIOD2 degradation and circadian rhythms by the oncoprotein and ubiquitin ligase MDM2. Sci Signal 2018; 11:11/556/eaau0715. [PMID: 30425162 DOI: 10.1126/scisignal.aau0715] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The circadian clock relies on posttranslational modifications to set the timing for degradation of core regulatory components, which drives clock progression. Ubiquitin-modifying enzymes that target clock components for degradation mainly recognize phosphorylated substrates. Degradation of the circadian clock component PERIOD 2 (PER2) is mediated by its phospho-specific recognition by β-transducin repeat-containing proteins (β-TrCPs), which are F-box-containing proteins that function as substrate recognition subunits of the SCFβ-TRCP ubiquitin ligase complex. However, this mode of regulating PER2 stability falls short of explaining the persistent oscillatory phenotypes reported in biological systems lacking functional elements of the phospho-dependent PER2 degradation machinery. We identified PER2 as a previously uncharacterized substrate for the ubiquitin ligase mouse double minute 2 homolog (MDM2) and found that MDM2 targeted PER2 for degradation in a manner independent of PER2 phosphorylation. Deregulation of MDM2 plays a major role in oncogenesis by contributing to the accumulation of genomic and epigenomic alterations that favor tumor development. MDM2-mediated PER2 turnover was important for defining the circadian period length in mammalian cells, a finding that emphasizes the connection between the circadian clock and cancer. Our results not only broaden the range of specific substrates of MDM2 beyond the cell cycle to include circadian components but also identify a previously unknown regulator of the clock as a druggable node that is often found to be deregulated during tumorigenesis.
Collapse
Affiliation(s)
- JingJing Liu
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Xianlin Zou
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Anne M Brown
- Research and Informatics, University Libraries, Virginia Tech, Blacksburg, VA, USA
| | - Liang Jiang
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Esther L Wisdom
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
29
|
Alternative splicing rewires Hippo signaling pathway in hepatocytes to promote liver regeneration. Nat Struct Mol Biol 2018; 25:928-939. [PMID: 30250226 PMCID: PMC6173981 DOI: 10.1038/s41594-018-0129-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022]
Abstract
During liver regeneration, most new hepatocytes arise via self-duplication; yet, the underlying mechanisms that drive hepatocyte proliferation following injury remain poorly defined. By combining high-resolution transcriptome- and polysome-profiling of hepatocytes purified from quiescent and toxin-injured mouse livers, we uncover pervasive alterations in the mRNA translation of metabolic and RNA processing factors, which modulate the protein levels of a set of splicing regulators. Specifically, downregulation of ESRP2 activates a neonatal alternative splicing program that rewires the Hippo signaling pathway in regenerating hepatocytes. We show that production of neonatal splice isoforms attenuates Hippo signaling, enables greater transcriptional activation of downstream target genes, and facilitates liver regeneration. We further demonstrate that ESRP2 deletion in mice causes excessive hepatocyte proliferation upon injury, whereas forced expression of ESRP2 inhibits proliferation by suppressing the expression of neonatal Hippo pathway isoforms. Thus, our findings reveal an ESRP2-Hippo pathway-alternative splicing axis that supports regeneration following chronic liver injury.
Collapse
|
30
|
Abstract
Our innate circadian clocks control myriad aspects of behavior and physiology. Disruption of our clocks by shift work, jet lag, or inherited mutation leads to metabolic dysregulation and contributes to diseases, including diabetes and cancer. A central step in clock control is phosphorylation of the PERIOD 2 (PER2) protein. Here we conclusively identify the elusive PER2 priming kinase and find it to be the well-known circadian kinase, casein kinase 1 (CK1). Surprisingly, different forms of CK1 have differing abilities to phosphorylate the PER2 priming site, adding to the complexity of circadian regulation. These insights into the phosphoregulation of PER2 will be of broad interest to circadian biologists, computational modelers, and those seeking to pharmacologically manipulate the circadian clock. Multisite phosphorylation of the PERIOD 2 (PER2) protein is the key step that determines the period of the mammalian circadian clock. Previous studies concluded that an unidentified kinase is required to prime PER2 for subsequent phosphorylation by casein kinase 1 (CK1), an essential clock component that is conserved from algae to humans. These subsequent phosphorylations stabilize PER2, delay its degradation, and lengthen the period of the circadian clock. Here, we perform a comprehensive biochemical and biophysical analysis of mouse PER2 (mPER2) priming phosphorylation and demonstrate, surprisingly, that CK1δ/ε is indeed the priming kinase. We find that both CK1ε and a recently characterized CK1δ2 splice variant more efficiently prime mPER2 for downstream phosphorylation in cells than the well-studied splice variant CK1δ1. While CK1 phosphorylation of PER2 was previously shown to be robust to changes in the cellular environment, our phosphoswitch mathematical model of circadian rhythms shows that the CK1 carboxyl-terminal tail can allow the period of the clock to be sensitive to cellular signaling. These studies implicate the extreme carboxyl terminus of CK1 as a key regulator of circadian timing.
Collapse
|
31
|
Elmore ZC, Guillen RX, Gould KL. The kinase domain of CK1 enzymes contains the localization cue essential for compartmentalized signaling at the spindle pole. Mol Biol Cell 2018; 29:1664-1674. [PMID: 29742018 PMCID: PMC6080649 DOI: 10.1091/mbc.e18-02-0129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CK1 protein kinases contribute to multiple biological processes, but how they are tailored to function in compartmentalized signaling events is largely unknown. Hhp1 and Hhp2 (Hhp1/2) are the soluble CK1 family members in Schizosaccharomyces pombe. One of their functions is to inhibit the septation initiation network (SIN) during a mitotic checkpoint arrest. The SIN is assembled by Sid4 at spindle pole bodies (SPBs), and though Hhp1/2 colocalize there, it is not known how they are targeted there or whether their SPB localization is required for SIN inhibition. Here, we establish that Hhp1/2 localize throughout the cell cycle to SPBs, as well as to the nucleus, cell tips, and division site. We find that their catalytic domains but not their enzymatic function are used for SPB targeting and that this targeting strategy is conserved in human CK1δ/ε localization to centrosomes. Further, we pinpoint amino acids in the Hhp1 catalytic domain required for SPB interaction; mutation of these residues disrupts Hhp1 association with the core SPB protein Ppc89, and the inhibition of cytokinesis in the setting of spindle stress. Taken together, these data have enabled us to define a molecular mechanism used by CK1 enzymes to target a specific cellular locale for compartmentalized signaling.
Collapse
Affiliation(s)
- Zachary C Elmore
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Rodrigo X Guillen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
32
|
Akizuki K, Toyama T, Yamashita M, Sugiyama Y, Ishida A, Kameshita I, Sueyoshi N. Facile preparation of highly active casein kinase 1 using Escherichia coli constitutively expressing lambda phosphatase. Anal Biochem 2018; 549:99-106. [DOI: 10.1016/j.ab.2018.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 11/27/2022]
|
33
|
Bozatzi P, Dingwell KS, Wu KZ, Cooper F, Cummins TD, Hutchinson LD, Vogt J, Wood NT, Macartney TJ, Varghese J, Gourlay R, Campbell DG, Smith JC, Sapkota GP. PAWS1 controls Wnt signalling through association with casein kinase 1α. EMBO Rep 2018; 19:e44807. [PMID: 29514862 PMCID: PMC5891436 DOI: 10.15252/embr.201744807] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
The BMP and Wnt signalling pathways determine axis specification during embryonic development. Our previous work has shown that PAWS1 (also known as FAM83G) interacts with SMAD1 and modulates BMP signalling. Here, surprisingly, we show that overexpression of PAWS1 in Xenopus embryos activates Wnt signalling and causes complete axis duplication. Consistent with these observations in Xenopus, Wnt signalling is diminished in U2OS osteosarcoma cells lacking PAWS1, while BMP signalling is unaffected. We show that PAWS1 interacts and co-localises with the α isoform of casein kinase 1 (CK1), and that PAWS1 mutations incapable of binding CK1 fail both to activate Wnt signalling and to elicit axis duplication in Xenopus embryos.
Collapse
Affiliation(s)
- Polyxeni Bozatzi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | | | - Kevin Zl Wu
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | | | - Timothy D Cummins
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Luke D Hutchinson
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Janis Vogt
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Nicola T Wood
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Joby Varghese
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Robert Gourlay
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - David G Campbell
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | | | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| |
Collapse
|
34
|
van Kappel EC, Maurice MM. Molecular regulation and pharmacological targeting of the β-catenin destruction complex. Br J Pharmacol 2017. [PMID: 28634996 PMCID: PMC5727331 DOI: 10.1111/bph.13922] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The β‐catenin destruction complex is a dynamic cytosolic multiprotein assembly that provides a key node in Wnt signalling regulation. The core components of the destruction complex comprise the scaffold proteins axin and adenomatous polyposis coli and the Ser/Thr kinases casein kinase 1 and glycogen synthase kinase 3. In unstimulated cells, the destruction complex efficiently drives degradation of the transcriptional coactivator β‐catenin, thereby preventing the activation of the Wnt/β‐catenin pathway. Mutational inactivation of the destruction complex is a major pathway in the pathogenesis of cancer. Here, we review recent insights in the regulation of the β‐catenin destruction complex, including newly identified interaction interfaces, regulatory elements and post‐translationally controlled mechanisms. In addition, we discuss how mutations in core destruction complex components deregulate Wnt signalling via distinct mechanisms and how these findings open up potential therapeutic approaches to restore destruction complex activity in cancer cells. Linked Articles This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc
Collapse
Affiliation(s)
- Eline C van Kappel
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Madelon M Maurice
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
35
|
Eng GWL, Edison, Virshup DM. Site-specific phosphorylation of casein kinase 1 δ (CK1δ) regulates its activity towards the circadian regulator PER2. PLoS One 2017; 12:e0177834. [PMID: 28545154 PMCID: PMC5435336 DOI: 10.1371/journal.pone.0177834] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
Circadian rhythms are intrinsic ~24 hour cycles that regulate diverse aspects of physiology, and in turn are regulated by interactions with the external environment. Casein kinase 1 delta (CK1δ, CSNK1D) is a key regulator of the clock, phosphorylating both stabilizing and destabilizing sites on the PER2 protein, in a mechanism known as the phosphoswitch. CK1δ can itself be regulated by phosphorylation on its regulatory domain, but the specific sites involved, and the role this plays in control of circadian rhythms as well as other CK1-dependent processes is not well understood. Using a sensitized PER2::LUC reporter assay, we identified a specific phosphorylation site, T347, on CK1δ, that regulates CK1δ activity towards PER2. A mutant CK1δ T347A was more active in promoting PER2 degradation. This CK1δ regulatory site is phosphorylated in cells in trans by dinaciclib- and staurosporine-sensitive kinases, consistent with their potential regulation by cyclin dependent and other proline-directed kinases. The regulation of CK1δ by site-specific phosphorylation via the cell cycle and other signaling pathways provides a mechanism to couple external stimuli to regulation of CK1δ-dependent pathways including the circadian clock.
Collapse
Affiliation(s)
- Gracie Wee Ling Eng
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Edison
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M. Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
36
|
Yang Y, Xu T, Zhang Y, Qin X. Molecular basis for the regulation of the circadian clock kinases CK1δ and CK1ε. Cell Signal 2017; 31:58-65. [PMID: 28057520 DOI: 10.1016/j.cellsig.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 01/13/2023]
Abstract
CK1δ and CK1ε are unique in the casein kinase 1 family and play critical roles in a number of physiological intracellular pathways. In particular, these kinases are involved in composing the mammalian circadian clock by phosphorylating core clock proteins. Considering that CK1δ/ε phosphorylate other key biological molecules, such as β-catenin and p53, understanding how the kinase activity is regulated would be greatly significant, since they are potential targets to develop pharmacological agents against cancer, pain, and circadian disorders. In this review, we summarize current knowledge attributed to kinase regulation including expression regulation, post-translational regulation, and kinase activity modulation by small molecules. Finally, we discuss how the kinase activity is regulated from a structural point of view.
Collapse
Affiliation(s)
- Yu Yang
- Institute of Health Sciences, Anhui University, Hefei, Anhui Province 230601, China
| | - Tingting Xu
- Institute of Health Sciences, Anhui University, Hefei, Anhui Province 230601, China
| | - Yunfei Zhang
- Modern Experiment Technology Center, Anhui University, Hefei, Anhui Province 230601, China
| | - Ximing Qin
- Institute of Health Sciences, Anhui University, Hefei, Anhui Province 230601, China.
| |
Collapse
|
37
|
Ianes C, Xu P, Werz N, Meng Z, Henne-Bruns D, Bischof J, Knippschild U. CK1δ activity is modulated by CDK2/E- and CDK5/p35-mediated phosphorylation. Amino Acids 2016; 48:579-92. [PMID: 26464264 DOI: 10.1007/s00726-015-2114-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 10/23/2022]
Abstract
CK1 protein kinases form a family of serine/threonine kinases which are highly conserved through different species and ubiquitously expressed. CK1 family members can phosphorylate numerous substrates thereby regulating different biological processes including membrane trafficking, cell cycle regulation, circadian rhythm, apoptosis, and signal transduction. Deregulation of CK1 activity and/or expression contributes to the development of neurological diseases and cancer. Therefore, CK1 became an interesting target for drug development and it is relevant to further understand the mechanisms of its regulation. In the present study, Cyclin-dependent kinase 2/Cyclin E (CDK2/E) and Cyclin-dependent kinase 5/p35 (CDK5/p35) were identified as cellular kinases able to modulate CK1δ activity through site-specific phosphorylation of its C-terminal domain. Furthermore, pre-incubation of CK1δ with CDK2/E or CDK5/p35 reduces CK1δ activity in vitro, indicating a functional impact of the interaction between CK1δ and CDK/cyclin complexes. Interestingly, inhibition of Cyclin-dependent kinases by Dinaciclib increases CK1δ activity in pancreatic cancer cells. In summary, these results suggest that CK1δ activity can be modulated by the interplay between CK1δ and CDK2/E or CDK5/p35. These findings extend our knowledge about CK1δ regulation and may be of use for future development of CK1-related therapeutic strategies in the treatment of neurological diseases or cancer.
Collapse
Affiliation(s)
- Chiara Ianes
- Department of General and Visceral Surgery, Surgery Centre, Ulm University Hospital, Albert‑Einstein‑Allee 23, 89081 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Xing L, An Y, Shi G, Yan J, Xie P, Qu Z, Zhang Z, Liu Z, Pan D, Xu Y. Correlated evolution between CK1δ Protein and the Serine-rich Motif Contributes to Regulating the Mammalian Circadian Clock. J Biol Chem 2016; 292:161-171. [PMID: 27879317 DOI: 10.1074/jbc.m116.751214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/21/2016] [Indexed: 11/06/2022] Open
Abstract
Understanding the mechanism underlying the physiological divergence of species is a long-standing issue in evolutionary biology. The circadian clock is a highly conserved system existing in almost all organisms that regulates a wide range of physiological and behavioral events to adapt to the day-night cycle. Here, the interactions between hCK1ϵ/δ/DBT (Drosophila ortholog of CK1δ/ϵ) and serine-rich (SR) motifs from hPER2 (ortholog of Drosophila per) were reconstructed in a Drosophila circadian system. The results indicated that in Drosophila, the SR mutant form hPER2S662G does not recapitulate the mouse or human mutant phenotype. However, introducing hCK1δ (but not DBT) shortened the circadian period and restored the SR motif function. We found that hCK1δ is catalytically more efficient than DBT in phosphorylating the SR motif, which demonstrates that the evolution of CK1δ activity is required for SR motif modulation. Moreover, an abundance of phosphorylatable SR motifs and the striking emergence of putative SR motifs in vertebrate proteins were observed, which provides further evidence that the correlated evolution between kinase activity and its substrates set the stage for functional diversity in vertebrates. It is possible that such correlated evolution may serve as a biomarker associated with the adaptive benefits of diverse organisms. These results also provide a concrete example of how functional synthesis can be achieved through introducing evolutionary partners in vivo.
Collapse
Affiliation(s)
- Lijuan Xing
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Yang An
- the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Guangsen Shi
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Jie Yan
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Pancheng Xie
- the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhipeng Qu
- the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhihui Zhang
- the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhiwei Liu
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Dejing Pan
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Ying Xu
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and .,the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| |
Collapse
|
39
|
Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies. Blood 2016; 129:88-99. [PMID: 27784673 DOI: 10.1182/blood-2016-08-731240] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/12/2016] [Indexed: 12/20/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) and the proteasome pathway are both involved in activating the mechanistic target of rapamycin (mTOR). Because mTOR signaling is required for initiation of messenger RNA translation, we hypothesized that cotargeting the PI3K and proteasome pathways might synergistically inhibit translation of c-Myc. We found that a novel PI3K δ isoform inhibitor TGR-1202, but not the approved PI3Kδ inhibitor idelalisib, was highly synergistic with the proteasome inhibitor carfilzomib in lymphoma, leukemia, and myeloma cell lines and primary lymphoma and leukemia cells. TGR-1202 and carfilzomib (TC) synergistically inhibited phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), leading to suppression of c-Myc translation and silencing of c-Myc-dependent transcription. The synergistic cytotoxicity of TC was rescued by overexpression of eIF4E or c-Myc. TGR-1202, but not other PI3Kδ inhibitors, inhibited casein kinase-1 ε (CK1ε). Targeting CK1ε using a selective chemical inhibitor or short hairpin RNA complements the effects of idelalisib, as a single agent or in combination with carfilzomib, in repressing phosphorylation of 4E-BP1 and the protein level of c-Myc. These results suggest that TGR-1202 is a dual PI3Kδ/CK1ε inhibitor, which may in part explain the clinical activity of TGR-1202 in aggressive lymphoma not found with idelalisib. Targeting CK1ε should become an integral part of therapeutic strategies targeting translation of oncogenes such as c-Myc.
Collapse
|
40
|
Activation of CK1ɛ by PP2A/PR61ɛ is required for the initiation of Wnt signaling. Oncogene 2016; 36:429-438. [PMID: 27321178 DOI: 10.1038/onc.2016.209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 03/18/2016] [Accepted: 05/08/2016] [Indexed: 12/21/2022]
Abstract
Canonical Wnt signaling induces the stabilization of β-catenin, its translocation to the nucleus and the activation of target promoters. This pathway is initiated by the binding of Wnt ligands to the Frizzled receptor, the association of the LRP5/6 co-receptor and the formation of a complex comprising Dvl-2, Axin and protein kinases CK1α, ɛ, γ and GSK3. Among these, activation of CK1ɛ, constitutively bound to LRP5/6 through p120-catenin, is required for the association of the rest of the components. We describe here that CK1ɛ is activated by the PP2A/PR61ɛ phosphatase. Binding of Wnt ligands promotes the interaction of LRP5/6-associated CK1ɛ with Frizzled-bound PR61ɛ regulatory subunit, facilitating the access of PP2A catalytic subunit to CK1ɛ and its activation, what enables the recruitment of Dvl-2 to the receptor complex and the initiation of the Wnt pathway. Our results uncover the mechanism of activation of the canonical Wnt pathway by its ligands.
Collapse
|
41
|
Qin X, Mori T, Zhang Y, Johnson CH. PER2 Differentially Regulates Clock Phosphorylation versus Transcription by Reciprocal Switching of CK1ε Activity. J Biol Rhythms 2016; 30:206-16. [PMID: 25994100 DOI: 10.1177/0748730415582127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Casein kinase 1ε (CK1ε) performs key phosphorylation reactions in the circadian clock mechanism that determine period. We show that the central clock protein PERIOD2 (PER2) not only acts as a transcriptional repressor but also inhibits the autoinactivation of CK1ε, thereby promoting CK1ε activity. Moreover, PER2 reciprocally regulates CK1ε's ability to phosphorylate other substrates. On output pathway substrates (e.g., P53), PER2 inhibits the activity of CK1ε. However, in the case of central clock proteins (e.g., CRYPTOCHROME2), PER2 stimulates the CK1ε-mediated phosphorylation of CRY2. CK1ε activity is temperature compensated on the core clock substrate CRY2 but not on output substrates, for example, the physiological output protein substrate P53 and its nonphysiological correlate, bovine serum albumin (BSA). These results indicate heretofore unrecognized pivotal roles of PER2; it not only regulates the central transcription/translation feedback loop but also differentially controls kinase activity CK1ε in its phosphorylation of central clock (e.g., CRY2) versus output (e.g., P53) substrates.
Collapse
Affiliation(s)
- Ximing Qin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Tetsuya Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Yunfei Zhang
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
42
|
Madarampalli B, Yuan Y, Liu D, Lengel K, Xu Y, Li G, Yang J, Liu X, Lu Z, Liu DX. ATF5 Connects the Pericentriolar Materials to the Proximal End of the Mother Centriole. Cell 2015. [PMID: 26213385 DOI: 10.1016/j.cell.2015.06.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although it is known that the centrioles play instructive roles in pericentriolar material (PCM) assembly and that the PCM is essential for proper centriole formation, the mechanism that governs centriole-PCM interaction is poorly understood. Here, we show that ATF5 forms a characteristic 9-fold symmetrical ring structure in the inner layer of the PCM outfitting the proximal end of the mother centriole. ATF5 controls the centriole-PCM interaction in a cell-cycle- and centriole-age-dependent manner. Interaction of ATF5 with polyglutamylated tubulin (PGT) on the mother centriole and with PCNT in the PCM renders ATF5 as a required molecule in mother centriole-directed PCM accumulation and in PCM-dependent centriole formation. ATF5 depletion blocks PCM accumulation at the centrosome and causes fragmentation of centrioles, leading to the formation of multi-polar mitotic spindles and genomic instability. These data show that ATF5 is an essential structural protein that is required for the interaction between the mother centriole and the PCM.
Collapse
Affiliation(s)
- Bhanupriya Madarampalli
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Yunsheng Yuan
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Dan Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Kathleen Lengel
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Yidi Xu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Guangfu Li
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Jinming Yang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Xinyuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David X Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA.
| |
Collapse
|
43
|
Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer 2014; 13:231. [PMID: 25306547 PMCID: PMC4201705 DOI: 10.1186/1476-4598-13-231] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/26/2014] [Indexed: 12/13/2022] Open
Abstract
Isoforms of the casein kinase 1 (CK1) family have been shown to phosphorylate key regulatory molecules involved in cell cycle, transcription and translation, the structure of the cytoskeleton, cell-cell adhesion and receptor-coupled signal transduction. They regulate key signaling pathways known to be critically involved in tumor progression. Recent results point to an altered expression or activity of different CK1 isoforms in tumor cells. This review summarizes the expression and biological function of CK1 family members in normal and malignant cells and the evidence obtained so far about their role in tumorigenesis.
Collapse
|
44
|
Cruciat CM. Casein kinase 1 and Wnt/β-catenin signaling. Curr Opin Cell Biol 2014; 31:46-55. [PMID: 25200911 DOI: 10.1016/j.ceb.2014.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022]
Abstract
Casein kinase 1 (CK1) members play a critical and evolutionary conserved role in Wnt/β-catenin signaling. They phosphorylate several pathway components and exert a dual function, acting as both Wnt activators and Wnt inhibitors. Recent discoveries suggest that CK1 members act in a coordinated manner to regulate early responses to Wnt and notably that their enzymatic activity is regulated. Here, I provide a brief update of CK1 function and regulation in Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014; 114:6661-714. [PMID: 24901537 PMCID: PMC4095937 DOI: 10.1021/cr400695p] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Francois-Xavier Theillet
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andres Binolfi
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Tamara Frembgen-Kesner
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Karan Hingorani
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Mohona Sarkar
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Ciara Kyne
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Conggang Li
- Key Laboratory
of Magnetic Resonance in Biological Systems, State Key Laboratory
of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center
for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Lila Gierasch
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Gary J. Pielak
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Adrian H. Elcock
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Anne Gershenson
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Philipp Selenko
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
46
|
Zeringo NA, Bellizzi JJ. A PER2-derived mechanism-based bisubstrate analog for casein kinase 1ε. Chem Biol Drug Des 2014; 84:697-703. [PMID: 24985607 DOI: 10.1111/cbdd.12363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/20/2014] [Accepted: 05/28/2014] [Indexed: 11/30/2022]
Abstract
Casein kinase 1ε (CK1ε) plays an important regulatory role in various cellular processes including circadian rhythms. Mutations in CK1ε or the recognition site on its substrate PER2 result in modulation of the circadian period length. In particular, the tau mutation (R178C) in the catalytic domain of CK1ε was identified as the molecular basis for a dose-dependent heritable shortened circadian period in hamsters. However, the biochemical basis for the physiological effects of the tau mutant remains unclear. It has been reported that the tau mutation has reduced in vitro activity against some substrates but increased in vitro activity against other substrates. To better understand the effects of the CK1ε tau mutation, an ATP-phosphopeptide conjugate was synthesized to yield a transition-state bisubstrate analog. Kinase activity assays determined that the tau mutant has 80% reduced activity and a fourfold decrease in sensitivity to the bisubstrate analog compared to wild type. This confirms that Arg178 is important in the recognition of the preferred phosphosubstrates of CK1ε.
Collapse
Affiliation(s)
- Nicholas A Zeringo
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft St. MS 602, Toledo, OH, 43606, USA
| | | |
Collapse
|
47
|
Microtubules depolymerization caused by the CK1 inhibitor IC261 may be not mediated by CK1 blockage. PLoS One 2014; 9:e100090. [PMID: 24937750 PMCID: PMC4061085 DOI: 10.1371/journal.pone.0100090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/21/2014] [Indexed: 12/18/2022] Open
Abstract
The ubiquitously expressed serine/threonine specific casein kinase 1 (CK1) family plays important roles in the regulation of various physiological processes. Small-molecule inhibitors, such as the CK1δ/ε selectively inhibitor IC261, have been used to antagonize CK1 phosphorylation events in cells in many studies. Here we present data to show that, similarly to the microtubule destabilizing agent nocodazole, IC261 depolymerizes microtubules in interphase cells. IC261 treatment of interphase cells affects the morphology of the TGN and Golgi apparatus as well as the localization of CK1δ, which co-localizes with COPI positive membranes. IC261-induced depolymerization of microtubules is rapid, reversible and can be antagonized by pre-treatment of cells with taxol. At lower concentrations of IC261, mitotic spindle microtubule dynamics are affected; this leads to cell cycle arrest and, depending on the cellular background, to apoptosis in a dose-dependent manner. In addition, FACS analysis revealed that IC261 could induce apoptosis independent of cell cycle arrest. In summary this study provides additional and valuable information about various IC261-induced effects that could be caused by microtubule depolymerization rather than by inhibition of CK1. Data from studies that have used IC261 as an inhibitor of CK1 should be interpreted in light of these observations.
Collapse
|
48
|
Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol 2014; 4:96. [PMID: 24904820 PMCID: PMC4032983 DOI: 10.3389/fonc.2014.00096] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022] Open
Abstract
Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Marc Krüger
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Julia Richter
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Balbina García-Reyes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Christian Peifer
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Jakob Halekotte
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Vasiliy Bakulev
- Department of Organic Synthesis, Ural Federal University , Ekaterinburg , Russia
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| |
Collapse
|
49
|
Zhu G, Fan Z, Ding M, Mu L, Liang J, Ding Y, Fu Y, Huang B, Wu W. DNA damage induces the accumulation of Tiam1 by blocking β-TrCP-dependent degradation. J Biol Chem 2014; 289:15482-94. [PMID: 24737324 DOI: 10.1074/jbc.m114.553388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Rac1/JNK cascade plays important roles in DNA damage-induced apoptosis. However, how this cascade is activated upon DNA damage remains to be fully understood. We show here that, in untreated cells, Tiam1, a Rac1-specific guanine nucleotide exchange factor, is phosphorylated by casein kinase 1 (CK1) at its C terminus, leading to Skp, Cullin, F-box-containing(β-TrCP) recognition, ubiquitination, and proteasome-mediated degradation. Upon DNA-damaging anticancer drug treatment, CK1/β-TrCP-mediated Tiam1 degradation is abolished, and the accumulated Tiam1 contributes to downstream activation of Rac1/JNK. Consistently, tumor cells overexpressing Tiam1 are hypersensitive to DNA-damaging drug treatment. In xenograft mice, Tiam1-high cells are more susceptible to doxorubicin treatment. Thus, our results uncover that inhibition of proteasome-mediated Tiam1 degradation is an upstream event leading to Rac1/JNK activation and cell apoptosis in response to DNA-damaging drug treatment.
Collapse
Affiliation(s)
- Guixin Zhu
- From the Key Laboratory of Protein Science of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China, the Tsinghua-Peking Center for Life Sciences, Beijing 100084, China, and
| | - Zhongyun Fan
- From the Key Laboratory of Protein Science of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Miao Ding
- the School of Life Sciences, Peking University, Beijing 100871, China
| | - Libing Mu
- From the Key Laboratory of Protein Science of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juan Liang
- From the Key Laboratory of Protein Science of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yajie Ding
- From the Key Laboratory of Protein Science of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Fu
- From the Key Laboratory of Protein Science of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Binlu Huang
- From the Key Laboratory of Protein Science of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Wu
- From the Key Laboratory of Protein Science of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China,
| |
Collapse
|
50
|
Han N, Chen C, Shi Z, Cheng D. Structure of the kinase domain of Gilgamesh from Drosophila melanogaster. Acta Crystallogr F Struct Biol Commun 2014; 70:438-43. [PMID: 24699734 PMCID: PMC3976058 DOI: 10.1107/s2053230x14004774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/02/2014] [Indexed: 11/10/2022] Open
Abstract
The CK1 family kinases regulate multiple cellular aspects and play important roles in Wnt/Wingless and Hedgehog signalling. The kinase domain of Drosophila Gilgamesh isoform I (Gilgamesh-I), a homologue of human CK1-γ, was purified and crystallized. Crystals of methylated Gilgamesh-I kinase domain with a D210A mutation diffracted to 2.85 Å resolution and belonged to space group P43212, with unit-cell parameters a = b = 52.025, c = 291.727 Å. The structure of Gilgamesh-I kinase domain, which was determined by molecular replacement, has conserved catalytic elements and an active conformation. Structural comparison indicates that an extended loop between the α1 helix and the β4 strand exists in the Gilgamesh-I kinase domain. This extended loop may regulate the activity and function of Gilgamesh-I.
Collapse
Affiliation(s)
- Ni Han
- Department of Biology, Qingdao University, Qingdao, Shandong 266021, People’s Republic of China
| | - CuiCui Chen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People’s Republic of China
| | - Zhubing Shi
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People’s Republic of China
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, People’s Republic of China
| | - Dianlin Cheng
- Department of Biology, Qingdao University, Qingdao, Shandong 266021, People’s Republic of China
| |
Collapse
|