1
|
Wang Y, Fernandez A, Pei X, Liu B, Shen L, Yan Y, Solanki HS, Yang L, Zhou M, Guo Y, Wu J, Reckamp KL, Zheng L, Shen B. EGFR-mediated HSP70 phosphorylation facilitates PCNA association with chromatin and DNA replication. Nucleic Acids Res 2024:gkae938. [PMID: 39470734 DOI: 10.1093/nar/gkae938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/01/2024] Open
Abstract
Efficient DNA replication requires highly coordinated programs for the timely recruitment of protein complexes to DNA replication forks. Defects in this process result in replication stress, which in turn activates cell cycle checkpoints, suppresses cell proliferation and induces apoptosis. In response to persistent cell growth signals that speed up DNA replication processes, cells accelerate the recruitment of DNA replication proteins to avoid DNA replication stress. The mechanisms by which cell growth signals induce processes to facilitate the recruitment of DNA replication proteins onto the replication sites remain unclear. Here, we report that the epidermal growth factor receptor (EGFR) phosphorylates heat shock protein 70 (HSP70) for DNA replication. Such a modification promotes nuclear localization and chromatin association of HSP70, which interacts with the DNA replication coordinator, proliferating cell nuclear antigen (PCNA). HSP70 subsequently facilitates the loading of PCNA onto chromatin. Knockdown or chemical inhibition of HSP70 suppresses PCNA association with chromatin and impairs DNA synthesis and Okazaki fragment maturation, leading to replicative DNA double-strand breaks and apoptosis. Furthermore, chemical inhibition of HSP70 potentiates EGFR-tyrosine kinase inhibitor-induced tumor reduction in vivo. This work expands our understanding of oncogenesis-induced DNA replication processes and provides a foundation for improved treatments for EGFR-mutated lung cancer by simultaneously targeting HSP70.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Anthony Fernandez
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Xinyu Pei
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Bing Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
- CSL Sequirus, 225 Wyman St., Waltham, MA 02451, USA
| | - Lei Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Yao Yan
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Hitendra S Solanki
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Lin Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjia Ln, Gulou, Nanjing, Jiangsu, China, 210009, China
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Yuming Guo
- Animal Resource Center, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jun Wu
- Animal Resource Center, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Karen L Reckamp
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Mohammedali A, Biernacka K, Barker RM, Holly JMP, Perks CM. The Role of Insulin-like Growth Factor Binding Protein (IGFBP)-2 in DNA Repair and Chemoresistance in Breast Cancer Cells. Cancers (Basel) 2024; 16:2113. [PMID: 38893232 PMCID: PMC11171178 DOI: 10.3390/cancers16112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The role if insulin-like growth factor binding protein-2 (IGFBP-2) in mediating chemoresistance in breast cancer cells has been demonstrated, but the mechanism of action is unclear. This study aimed to further investigate the role of IGFBP-2 in the DNA damage response induced by etoposide in MCF-7, T47D (ER+ve), and MDA-MB-231 (ER-ve) breast cancer cell lines. In the presence or absence of etoposide, IGFBP-2 was silenced using siRNA in the ER-positive cell lines, or exogenous IGFBP-2 was added to the ER-negative MDA-MB-231 cells. Cell number and death were assessed using trypan blue dye exclusion assay, changes in abundance of proteins were monitored using Western blotting of whole cell lysates, and localization and abundance were determined using immunofluorescence and cell fractionation. Results from ER-positive cell lines demonstrated that upon exposure to etoposide, loss of IGFBP-2 enhanced cell death, and this was associated with a reduction in P-DNA-PKcs and an increase in γH2AX. Conversely, with ER-negative cells, the addition of IGFBP-2 in the presence of etoposide resulted in cell survival, an increase in P-DNA-PKcs, and a reduction in γH2AX. In summary, IGFBP-2 is a survival factor for breast cancer cells that is associated with enhancement of the DNA repair mechanism.
Collapse
Affiliation(s)
- Alaa Mohammedali
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Kalina Biernacka
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Rachel M. Barker
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Jeff M. P. Holly
- Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK;
| | - Claire M. Perks
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| |
Collapse
|
3
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
4
|
Koch JP, Roth SM, Quintin A, Gavini J, Orlando E, Riedo R, Pozzato C, Hayrapetyan L, Aebersold R, Stroka DM, Aebersold DM, Medo M, Zimmer Y, Medová M. A DNA-PK phosphorylation site on MET regulates its signaling interface with the DNA damage response. Oncogene 2023; 42:2113-2125. [PMID: 37188738 PMCID: PMC10289896 DOI: 10.1038/s41388-023-02714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
The DNA damage response (DDR) is intertwined with signaling pathways downstream of oncogenic receptor tyrosine kinases (RTKs). To drive research into the application of targeted therapies as radiosensitizers, a better understanding of this molecular crosstalk is necessary. We present here the characterization of a previously unreported MET RTK phosphosite, Serine 1016 (S1016) that represents a potential DDR-MET interface. MET S1016 phosphorylation increases in response to irradiation and is mainly targeted by DNA-dependent protein kinase (DNA-PK). Phosphoproteomics unveils an impact of the S1016A substitution on the overall long-term cell cycle regulation following DNA damage. Accordingly, the abrogation of this phosphosite strongly perturbs the phosphorylation of proteins involved in the cell cycle and formation of the mitotic spindle, enabling cells to bypass a G2 arrest upon irradiation and leading to the entry into mitosis despite compromised genome integrity. This results in the formation of abnormal mitotic spindles and a lower proliferation rate. Altogether, the current data uncover a novel signaling mechanism through which the DDR uses a growth factor receptor system for regulating and maintaining genome stability.
Collapse
Affiliation(s)
- Jonas P Koch
- Department for BioMedical Research, Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010, Bern, Switzerland
| | - Selina M Roth
- Department for BioMedical Research, Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010, Bern, Switzerland
| | - Aurélie Quintin
- Department for BioMedical Research, Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, 3008, Bern, Switzerland
| | - Jacopo Gavini
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Eleonora Orlando
- Department for BioMedical Research, Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010, Bern, Switzerland
| | - Rahel Riedo
- Department for BioMedical Research, Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, 3008, Bern, Switzerland
| | - Chiara Pozzato
- Department for BioMedical Research, Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, 3008, Bern, Switzerland
| | - Liana Hayrapetyan
- Department for BioMedical Research, Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010, Bern, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zürich, Switzerland
- Faculty of Science, University of Zürich, 8057, Zürich, Switzerland
| | - Deborah M Stroka
- Department for BioMedical Research, Visceral Surgery, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Daniel M Aebersold
- Department for BioMedical Research, Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, 3008, Bern, Switzerland
| | - Matúš Medo
- Department for BioMedical Research, Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, 3008, Bern, Switzerland
| | - Yitzhak Zimmer
- Department for BioMedical Research, Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, 3008, Bern, Switzerland
| | - Michaela Medová
- Department for BioMedical Research, Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, 3008, Bern, Switzerland.
| |
Collapse
|
5
|
Izawa N, Masuishi T, Takahashi N, Shoji H, Yamamoto Y, Matsumoto T, Sugiyama K, Kajiwara T, Kawakami K, Aomatsu N, Kondoh C, Kawakami H, Takegawa N, Esaki T, Shimokawa M, Nishio K, Narita Y, Hara H, Sunakawa Y, Boku N, Moriwaki T, Eguchi Nakajima T, Muro K. A Phase II Trial of Trifluridine/Tipiracil in Combination with Cetuximab Rechallenge in Patients with RAS Wild-Type mCRC Refractory to Prior Anti-EGFR Antibodies: WJOG8916G Trial. Target Oncol 2023; 18:369-381. [PMID: 37148491 DOI: 10.1007/s11523-023-00963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Trifluridine/tipiracil (FTD/TPI) improved the overall survival in patients with metastatic colorectal cancer (mCRC) who had previously received standard chemotherapies; however, the clinical outcomes remain poor. OBJECTIVE A multicenter phase II study aimed to assess the efficacy and safety of FTD/TPI plus cetuximab rechallenge. PATIENTS AND METHODS Patients with histologically confirmed RAS wild-type mCRC refractory to prior anti-epidermal growth factor receptor (anti-EGFR) antibody were enrolled and treated with FTD/TPI (35 mg/m2 twice daily on days 1-5 and 8-12) plus cetuximab (initially 400 mg/m2, followed by weekly 250 mg/m2) every 4 weeks. The primary endpoint was disease control rate (DCR), expecting a target DCR of 65% and null hypothesis of 45% with 90% power and 10% one-sided alpha error. Gene alterations of RAS, BRAF, EGFR, PIK3CA, ERBB2, and MET in pre-treatment circulating tumor DNA were evaluated using the Guardant360 assay. RESULTS A total of 56 patients (median age 60 years; left-sided tumors 91%; objective partial or complete response during the prior anti-EGFR therapy 61%) were enrolled. The DCR was 54% (80% confidence interval [CI] 44-63; P = 0.12), with a partial response rate of 3.6%. Median progression-free survival (PFS) was 2.4 months (95% CI 2.1-3.7). In the circulating tumor DNA analysis, patients without any alterations of the six genes (n = 20) demonstrated higher DCR (75% vs. 39%; P = 0.02) and longer PFS (median 4.7 vs. 2.1 months; P < 0.01) than those with any gene alterations (n = 33). The most common grade 3/4 hematologic adverse event was neutropenia (55%). No treatment-related deaths occurred. CONCLUSIONS FTD/TPI plus cetuximab rechallenge did not demonstrate clinically meaningful efficacy in all mCRC patients, but might be beneficial for the molecularly selected population.
Collapse
Affiliation(s)
- Naoki Izawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Toshiki Masuishi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Naoki Takahashi
- Department of Gastroenterology, Saitama Cancer Center Hospital, Kita-Adachi, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiyuki Yamamoto
- Department of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Keiji Sugiyama
- Department of Medical Oncology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Takeshi Kajiwara
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Kentaro Kawakami
- Department of Medical Oncology, Keiyukai Sapporo Hospital, Sapporo, Japan
| | - Naoki Aomatsu
- Department of Surgery, Aomatsu memorial hospital, Izumisano, Japan
| | - Chihiro Kondoh
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
| | - Hisato Kawakami
- Department of Medical Oncology Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Naoki Takegawa
- Department of Gastroenterology, Hyogo Cancer Center Hospital, Akashi, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Faculty of Medicine, Kindai University, Higashi-Osaka, Japan
| | - Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hiroki Hara
- Department of Gastroenterology, Saitama Cancer Center Hospital, Kita-Adachi, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Toshikazu Moriwaki
- Department of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takako Eguchi Nakajima
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan.
- Department of Early Clinical Development, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| |
Collapse
|
6
|
Novotny JP, Mariño-Enríquez A, Fletcher JA. Targeting DNA-PK. Cancer Treat Res 2023; 186:299-312. [PMID: 37978142 DOI: 10.1007/978-3-031-30065-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
This chapter explores the multifaceted roles of DNA-PK with particular focus on its functions in non-homologous end-joining (NHEJ) DNA repair. DNA-PK is the primary orchestrator of NHEJ but also regulates other biologic processes. The growing understanding of varied DNA-PK biologic roles highlights new avenues for cancer treatment. However, these multiple roles also imply challenges, particularly in combination therapies, with perhaps a higher risk of clinical toxicities than was previously envisioned. These considerations underscore the need for compelling and innovative strategies to accomplish effective clinical translation.
Collapse
|
7
|
Aghbash PS, Hemmat N, Fathi H, Baghi HB. Monoclonal antibodies in cervical malignancy-related HPV. Front Oncol 2022; 12:904790. [PMID: 36276117 PMCID: PMC9582116 DOI: 10.3389/fonc.2022.904790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Despite many efforts to treat HPV infection, cervical cancer survival is still poor for several reasons, including resistance to chemotherapy and relapse. Numerous treatments such as surgery, radiation therapy, immune cell-based therapies, siRNA combined with various drugs, and immunotherapy are being studied and performed to provide the best treatment. Depending on the stage and size of the tumor, methods such as radical hysterectomy, pelvic lymphadenectomy, or chemotherapy can be utilized to treat cervical cancer. While accepted, these treatments lead to interruptions in cellular pathways and immune system homeostasis. In addition to a low survival rate, cervical neoplasm incidence has been rising significantly. However, new strategies have been proposed to increase patient survival while reducing the toxicity of chemotherapy, including targeted therapy and monoclonal antibodies. In this article, we discuss the types and potential therapeutic roles of monoclonal antibodies in cervical cancer.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Fathi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Ding J, Li X, Khan S, Zhang C, Gao F, Sen S, Wasylishen AR, Zhao Y, Lozano G, Koul D, Alfred Yung WK. EGFR suppresses p53 function by promoting p53 binding to DNA-PKcs: a noncanonical regulatory axis between EGFR and wild-type p53 in glioblastoma. Neuro Oncol 2022; 24:1712-1725. [PMID: 35474131 PMCID: PMC9527520 DOI: 10.1093/neuonc/noac105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) amplification and TP53 mutation are the two most common genetic alterations in glioblastoma multiforme (GBM). A comprehensive analysis of the TCGA GBM database revealed a subgroup with near mutual exclusivity of EGFR amplification and TP53 mutations indicative of a role of EGFR in regulating wild-type-p53 (wt-p53) function. The relationship between EGFR amplification and wt-p53 function remains undefined and this study describes the biological significance of this interaction in GBM. METHODS Mass spectrometry was used to identify EGFR-dependent p53-interacting proteins. The p53 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) interaction was detected by co-immunoprecipitation. We used CRISPR-Cas9 gene editing to knockout EGFR and DNA-PKcs and the Edit-R CRIPSR-Cas9 system for conditional knockout of EGFR. ROS activity was measured with a CM-H2DCFDA probe, and real-time PCR was used to quantify expression of p53 target genes. RESULTS Using glioma sphere-forming cells (GSCs), we identified, DNA-PKcs as a p53 interacting protein that functionally inhibits p53 activity. We demonstrate that EGFR knockdown increased wt-p53 transcriptional activity, which was associated with decreased binding between p53 and DNA-PKcs. We further show that inhibition of DNA-PKcs either by siRNA or an inhibitor (nedisertib) increased wt-p53 transcriptional activity, which was not enhanced further by EGFR knockdown, indicating that EGFR suppressed wt-p53 activity through DNA-PKcs binding with p53. Finally, using conditional EGFR-knockout GSCs, we show that depleting EGFR increased animal survival in mice transplanted with wt-p53 GSCs. CONCLUSION This study demonstrates that EGFR signaling inhibits wt-p53 function in GBM by promoting an interaction between p53 and DNA-PKcs.
Collapse
Affiliation(s)
- Jie Ding
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaolong Li
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sabbir Khan
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chen Zhang
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Gao
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shayak Sen
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amanda R Wasylishen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yang Zhao
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Yang L, Lu P, Yang X, Li K, Chen X, Zhou Y, Qu S. Downregulation of annexin A3 promotes ionizing radiation-induced EGFR activation and nuclear translocation and confers radioresistance in nasopharyngeal carcinoma. Exp Cell Res 2022; 418:113292. [PMID: 35850266 DOI: 10.1016/j.yexcr.2022.113292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
Radioresistance currently poses a significant challenge to successful disease control of nasopharyngeal carcinoma (NPC). We previously uncovered that annexin A3 (ANXA3), a calcium-dependent phospholipid binding protein, is underexpressed in radioresistant NPC cells and mouse xenografts. This study aims to further unravel the mechanistic basis underlying ANXA3-mediated radioresistance in NPC. We show that either innate ANXA3 downregulation or short hairpin RNA(shRNA)-based knockdown of ANXA3 confers resistance to ionizing radiation (IR) in NPC both in vitro and in mouse xenograft models in vivo, whereas radiosensitization was observed when ANXA3 was ectopically expressed. Mechanistically, ANXA3 knockdown dramatically enhances IR-induced epidermal growth factor receptor (EGFR) phosphorylation and nuclear translocation, leading to increased post-IR phosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) concomitant with markedly accelerated DNA DSB repair. In addition, pretreatment with cetuximab efficiently abrogated the radioresistant phenotype of ANXA3-low cells as well as the ANXA3 knockdown-induced post-IR EGFR nuclear accumulation, suggesting that EGFR is an essential mediator for ANXA3 depletion-mediated radioprotection in NPC. Collectively, this work reveals for the first time a critical role of ANXA3 in radiation survival and DNA repair mechanism of NPC and provides mechanistic evidence to support ANXA3 as a potential therapeutic target to improve radiocurability for NPC.
Collapse
Affiliation(s)
- Liu Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Xiaohui Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Kaiguo Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Xuxia Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Yufei Zhou
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China; Key Laboratory of High-Incidence Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Autonomous Region, China; Guangxi Clinical Medicine Research Center of Nasopharyngeal Carcinoma, Nanning, 530021, Guangxi Autonomous Region, China.
| |
Collapse
|
10
|
Abbotts R, Dellomo AJ, Rassool FV. Pharmacologic Induction of BRCAness in BRCA-Proficient Cancers: Expanding PARP Inhibitor Use. Cancers (Basel) 2022; 14:2640. [PMID: 35681619 PMCID: PMC9179544 DOI: 10.3390/cancers14112640] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) family of proteins has been implicated in numerous cellular processes, including DNA repair, translation, transcription, telomere maintenance, and chromatin remodeling. Best characterized is PARP1, which plays a central role in the repair of single strand DNA damage, thus prompting the development of small molecule PARP inhibitors (PARPi) with the intent of potentiating the genotoxic effects of DNA damaging agents such as chemo- and radiotherapy. However, preclinical studies rapidly uncovered tumor-specific cytotoxicity of PARPi in a subset of cancers carrying mutations in the BReast CAncer 1 and 2 genes (BRCA1/2), which are defective in the homologous recombination (HR) DNA repair pathway, and several PARPi are now FDA-approved for single agent treatment in BRCA-mutated tumors. This phenomenon, termed synthetic lethality, has now been demonstrated in tumors harboring a number of repair gene mutations that produce a BRCA-like impairment of HR (also known as a 'BRCAness' phenotype). However, BRCA mutations or BRCAness is present in only a small subset of cancers, limiting PARPi therapeutic utility. Fortunately, it is now increasingly recognized that many small molecule agents, targeting a variety of molecular pathways, can induce therapeutic BRCAness as a downstream effect of activity. This review will discuss the potential for targeting a broad range of molecular pathways to therapeutically induce BRCAness and PARPi synthetic lethality.
Collapse
Affiliation(s)
- Rachel Abbotts
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Anna J. Dellomo
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Feyruz V. Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Dylgjeri E, Knudsen KE. DNA-PKcs: A Targetable Protumorigenic Protein Kinase. Cancer Res 2022; 82:523-533. [PMID: 34893509 PMCID: PMC9306356 DOI: 10.1158/0008-5472.can-21-1756] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a pleiotropic protein kinase that plays critical roles in cellular processes fundamental to cancer. DNA-PKcs expression and activity are frequently deregulated in multiple hematologic and solid tumors and have been tightly linked to poor outcome. Given the potentially influential role of DNA-PKcs in cancer development and progression, therapeutic targeting of this kinase is being tested in preclinical and clinical settings. This review summarizes the latest advances in the field, providing a comprehensive discussion of DNA-PKcs functions in cancer and an update on the clinical assessment of DNA-PK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Emanuela Dylgjeri
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E. Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Corresponding Author: Karen E. Knudsen, Thomas Jefferson University, 233 South 10th Street, BLSB 1050, Philadelphia, PA 19107. Phone: 215-503-5692; E-mail:
| |
Collapse
|
12
|
Ansari SMR, Hijazi FS, Souchelnytskyi S. Targeted and systemic insights into the crosstalk between DNA-dependent protein kinase catalytic subunit and receptors of estrogen, progesterone and epidermal growth factor in the context of cancer. Mol Biol Rep 2021; 49:587-594. [PMID: 34731368 DOI: 10.1007/s11033-021-06797-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/01/2021] [Indexed: 01/17/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has emerged as a regulator of carcinogenesis. Increased expression of DNA-PKcs correlates with metastatic cancers. Here we review recently reported crosstalk of DNA-PKcs with estrogen (ER), progesterone (PR) and epidermal growth factor (EGFR) receptors. The reports show an extensive network of functional and direct interactions. Targeted studies focused on specific molecular mechanisms, and a systems biology network analysis shows unbiasedly engagement of various cellular functions. Feedforward regulation between expression and activities of DNA-PKcs and ER, DNA-PKcs-dependent phosphorylation of PR and an impact on PR-dependent transcription, and DNA-PKcs-promoted EGFR-dependent aggressiveness and metastases are examples of the results of targeted studies. Systems biology approach extracted many more genes and proteins engaged by DNA-PKcs in interaction with ER, PR, and EGFR. Examples are such regulators and predictors of breast tumorigenesis as BRCA1, TP53, and 18 genes of the MammaPrint signature. Reviewed here data suggest that the diagnostic value of DNA-PKcs in the context of ER, PR and EGFR signaling is defined by a network signature rather than by single markers. This review summarizes mechanisms of DNA-PKcs interaction with ER, PR, and EGFR, highlights tumor suppressors and oncogenes engaged by DNA-PKcs, and emphasizes the importance of diagnostic network-based signatures.
Collapse
Affiliation(s)
| | | | - Serhiy Souchelnytskyi
- College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar. .,Oranta CancerDiagnostics AB, 75263, Uppsala, Sweden. .,Lviv State University, Lviv, 79010, Ukraine. .,Bukovinian State Medical University, Chernivtsi, 58000, Ukraine.
| |
Collapse
|
13
|
Genomic instability as a major mechanism for acquired resistance to EGFR tyrosine kinase inhibitors in cancer. Protein Cell 2021; 13:82-89. [PMID: 34319535 PMCID: PMC8783936 DOI: 10.1007/s13238-021-00855-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
|
14
|
Fang T, Zhang Y, Chang VY, Roos M, Termini CM, Signaevskaia L, Quarmyne M, Lin PK, Pang A, Kan J, Yan X, Javier A, Pohl K, Zhao L, Scott P, Himburg HA, Chute JP. Epidermal growth factor receptor-dependent DNA repair promotes murine and human hematopoietic regeneration. Blood 2020; 136:441-454. [PMID: 32369572 PMCID: PMC7378456 DOI: 10.1182/blood.2020005895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy and irradiation cause DNA damage to hematopoietic stem cells (HSCs), leading to HSC depletion and dysfunction and the risk of malignant transformation over time. Extrinsic regulation of HSC DNA repair is not well understood, and therapies to augment HSC DNA repair following myelosuppression remain undeveloped. We report that epidermal growth factor receptor (EGFR) regulates DNA repair in HSCs following irradiation via activation of the DNA-dependent protein kinase-catalytic subunit (DNA-PKcs) and nonhomologous end joining (NHEJ). We show that hematopoietic regeneration in vivo following total body irradiation is dependent upon EGFR-mediated repair of DNA damage via activation of DNA-PKcs. Conditional deletion of EGFR in hematopoietic stem and progenitor cells (HSPCs) significantly decreased DNA-PKcs activity following irradiation, causing increased HSC DNA damage and depressed HSC recovery over time. Systemic administration of epidermal growth factor (EGF) promoted HSC DNA repair and rapid hematologic recovery in chemotherapy-treated mice and had no effect on acute myeloid leukemia growth in vivo. Further, EGF treatment drove the recovery of human HSCs capable of multilineage in vivo repopulation following radiation injury. Whole-genome sequencing analysis revealed no increase in coding region mutations in HSPCs from EGF-treated mice, but increased intergenic copy number variant mutations were detected. These studies demonstrate that EGF promotes HSC DNA repair and hematopoietic regeneration in vivo via augmentation of NHEJ. EGF has therapeutic potential to promote human hematopoietic regeneration, and further studies are warranted to assess long-term hematopoietic effects.
Collapse
Affiliation(s)
| | | | - Vivian Y Chang
- Pediatric Hematology/Oncology
- Jonsson Comprehensive Cancer Center
| | - Martina Roos
- Jonsson Comprehensive Cancer Center
- Division of Hematology/Oncology, Department of Medicine
- Broad Stem Cell Research Center, and
| | | | | | | | - Paulina K Lin
- Division of Hematology/Oncology, Department of Medicine
| | - Amara Pang
- Division of Hematology/Oncology, Department of Medicine
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine
| | - Xiao Yan
- Department of Molecular and Medical Pharmacology
| | - Anna Javier
- Division of Hematology/Oncology, Department of Medicine
| | | | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine
| | - Peter Scott
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | | | - John P Chute
- Jonsson Comprehensive Cancer Center
- Division of Hematology/Oncology, Department of Medicine
- Broad Stem Cell Research Center, and
| |
Collapse
|
15
|
Kumar R, George B, Campbell MR, Verma N, Paul AM, Melo-Alvim C, Ribeiro L, Pillai MR, da Costa LM, Moasser MM. HER family in cancer progression: From discovery to 2020 and beyond. Adv Cancer Res 2020; 147:109-160. [PMID: 32593399 DOI: 10.1016/bs.acr.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases (RTKs) are among the first layer of molecules that receive, interpret, and transduce signals leading to distinct cancer cell phenotypes. Since the discovery of the tooth-lid factor-later characterized as the epidermal growth factor (EGF)-and its high-affinity binding EGF receptor, HER kinases have emerged as one of the commonly upregulated or hyperactivated or mutated kinases in epithelial tumors, thus allowing HER1-3 family members to regulate several hallmarks of cancer development and progression. Each member of the HER family exhibits shared and unique structural features to engage multiple receptor activation modes, leading to a range of overlapping and distinct phenotypes. EGFR, the founding HER family member, provided the roadmap for the development of the cell surface RTK-directed targeted cancer therapy by serving as a prototype/precursor for the currently used HER-directed cancer drugs. We herein provide a brief account of the discoveries, defining moments, and historical context of the HER family and guidepost advances in basic, translational, and clinical research that solidified a prominent position of the HER family in cancer research and treatment. We also discuss the significance of HER3 pseudokinase in cancer biology; its unique structural features that drive transregulation among HER1-3, leading to a superior proximal signaling response; and potential role of HER3 as a shared effector of acquired therapeutic resistance against diverse oncology drugs. Finally, we also narrate some of the current drawbacks of HER-directed therapies and provide insights into postulated advances in HER biology with extensive implications of these therapies in cancer research and treatment.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India; Department of Medicine, Division of Hematology & Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States; Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Bijesh George
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Marcia R Campbell
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Nandini Verma
- Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| | - Aswathy Mary Paul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Cecília Melo-Alvim
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Leonor Ribeiro
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - M Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Luis Marques da Costa
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mark M Moasser
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States.
| |
Collapse
|
16
|
Pariente-Pérez T, Aguilar-Alonso F, Solano JD, Vargas-Olvera C, Curiel-Muñiz P, Mendoza-Rodríguez CA, Tenorio-Hernández D, Ibarra-Rubio ME. Differential behavior of NF-κB, IκBα and EGFR during the renal carcinogenic process in an experimental model in vivo. Oncol Lett 2020; 19:3153-3164. [PMID: 32256811 PMCID: PMC7074249 DOI: 10.3892/ol.2020.11436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of cancer of the adult kidney. It is generally asymptomatic even at advanced stages, so opportune diagnosis is rare, making it almost impossible to study this cancer at its early stages. RCC tumors induced by ferric nitrilotriacetate (FeNTA) in rats histologically correspond to the human clear cell RCC subtype (ccRCC) and the exposure to this carcinogen during either one or two months leads to different early stages of neoplastic development. High levels of nuclear factor kappa B (NF-κB) and epidermal growth factor receptor (EGFR) as well as low levels of NF-κB inhibitor alpha (IκBα) are frequent in human RCC, but their status in FeNTA-induced tumors and their evolution along renal carcinogenesis is unclear. On this basis, in the present study NF-κB, IκBα and EGFR behavior was analyzed at different stages of the experimental renal carcinogenesis model. Similar to patients with RCC, neoplastic tissue showed high levels of p65, one of the predominant subunits of NF-κB in ccRCC and of EGFR (protein and mRNA), as well as a decrease in the levels of NF-κB's main inhibitor, IκBα, resulting in a classic oncogenic combination. Conversely, different responses were observed at early stages of carcinogenesis. After one month of FeNTA-exposure, NF-κB activity and EGFR levels augmented; but unexpectedly, IκBα also did. While after two months, NF-κB activity diminished, but EGFR and IκBα levels remained elevated. In conclusion, FeNTA-induced tumors and RCC human neoplasms are analogues regarding to the classic NF-κB, IκBα and EGFR behavior, and distinctive non-conventional combination of changes is developed at each early stage studied. The results obtained suggest that the dysregulation of the analyzed molecules could be related to different signaling pathways and therefore, to particular effects depending on the phase of the carcinogenic process.
Collapse
Affiliation(s)
- Telma Pariente-Pérez
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| | - Francisco Aguilar-Alonso
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| | - José Dolores Solano
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| | - Chabetty Vargas-Olvera
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| | - Patricia Curiel-Muñiz
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| | | | - Daniela Tenorio-Hernández
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| | - María Elena Ibarra-Rubio
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| |
Collapse
|
17
|
Radiation resistance in head and neck squamous cell carcinoma: dire need for an appropriate sensitizer. Oncogene 2020; 39:3638-3649. [PMID: 32157215 PMCID: PMC7190570 DOI: 10.1038/s41388-020-1250-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 01/11/2023]
Abstract
Radiation is a significant treatment for patients with head and neck cancer. Despite advances to improve treatment, many tumors acquire radiation resistance resulting in poor survival. Radiation kills cancer cells by inducing DNA double-strand breaks. Therefore, radiation resistance is enhanced by efficient repair of damaged DNA. Head and neck cancers overexpress EGFR and have a high frequency of p53 mutations, both of which enhance DNA repair. This review discusses the clinical criteria for radiation resistance in patients with head and neck cancer and summarizes how cancer cells evade radiation-mediated apoptosis by p53- and epidermal growth factor receptor (EGFR)-mediated DNA repair. In addition, we explore the role of cancer stem cells in promoting radiation resistance, and how the abscopal effect provides rationale for combination strategies with immunotherapy.
Collapse
|
18
|
Brinkman JA, Liu Y, Kron SJ. Small-molecule drug repurposing to target DNA damage repair and response pathways. Semin Cancer Biol 2020; 68:230-241. [PMID: 32113999 DOI: 10.1016/j.semcancer.2020.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
For decades genotoxic therapy has been a mainstay in the treatment of cancer, based on the understanding that the deregulated growth and genomic instability that drive malignancy also confer a shared vulnerability. Although chemotherapy and radiation can be curative, only a fraction of patients benefit, while nearly all are subjected to the harmful side-effects. Drug repurposing, defined here as retooling existing drugs and compounds as chemo or radiosensitizers, offers an attractive route to identifying otherwise non-toxic agents that can potentiate the benefits of genotoxic cancer therapy to enhance the therapeutic ratio. This review seeks to highlight recent progress in defining cellular mechanisms of the DNA damage response including damage sensing, chromatin modification, DNA repair, checkpoint signaling, and downstream survival and death pathways, as a framework to determine which drugs and natural products may offer the most potential for repurposing as chemo- and/or radiosensitizers. We point to classical examples and recent progress that have identified drugs that disrupt cellular responses to DNA damage and may offer the greatest clinical potential. The most important next steps may be to initiate prospective clinical trials toward translating these laboratory discoveries to benefit patients.
Collapse
Affiliation(s)
- Jacqueline A Brinkman
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, United States
| | - Yue Liu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, United States
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
19
|
Qi Y, Lang J, Zhu X, Huang J, Li L, Yi G. Retracted Article: Down-regulation of the radiation-induced pEGFR Thr654 mediated activation of DNA-PK by Cetuximab in cervical cancer cells. RSC Adv 2020; 10:1132-1141. [PMID: 35494466 PMCID: PMC9047960 DOI: 10.1039/c9ra04962b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022] Open
Abstract
The phosphorylation of EGFRThr654 is required for nuclear EGFR importing, and our previous study has shown that pEGFRThr654 is an independent prognostic factor for the low survival rate of patients with cervical squamous carcinoma. Now, we aim to examine the role of pEGFRThr654 in the activation of DNA-PK and radio resistance. Either CaSki or HeLa cells were exposed to a dose of 4 Gy with a 6 MV X-ray in the presence or absence of Cetuximab or Gefitinib, then EGFR, pEGFRThr654, DNA-PKcs and pDNA-PKThr2609 levels were determined using a western blot. DNA damage was quantified with γH2AX foci analysis and the response of CaSki and HeLa cells to irradiation was determined using a colony formation assay. In CaSki and HeLa cells, irradiation induced nuclear EGFR accumulation, and pEGFRThr654 and pDNA-PKThr2609 levels were both significantly increased. Cetuximab pre-treatment significantly reduced the expression of pEGFRThr654 and pDNA-PKThr2609 and enhanced the γH2AX foci per cell and sensitivity enhancement ratio in CaSki cells. Gefitinib pre-treatment had a similar but weaker effect. In HeLa cells, similar effects of Cetuximab and Gefitinib on pEGFRThr654 and pDNA-PKThr2609 were observed, and no significant difference was found. We found that Cetuximab had a better effect than Gefitinib on attenuating the radio resistance in cervical squamous carcinoma cells via inhibiting pEGFRThr654-mediated nuclear EGFR transport and related DNA-PKT2609-mediated DNA repair. However, in adenocarcinoma cells, both EGFR-targeted drugs had no remarkable effects on the radio sensitivity. Taken together, radiotherapy combined with Cetuximab may be a promising strategy to improve the therapeutic gain for cervical squamous carcinoma patients. The phosphorylation of EGFRThr654 is required for nuclear EGFR importing, and our previous study has shown that pEGFRThr654 is an independent prognostic factor for the low survival rate of patients with cervical squamous carcinoma.![]()
Collapse
Affiliation(s)
- Yunxiang Qi
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Jinyi Lang
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Xiaodong Zhu
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Jianming Huang
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Lu Li
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Guangming Yi
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| |
Collapse
|
20
|
Orlando E, Aebersold DM, Medová M, Zimmer Y. Oncogene addiction as a foundation of targeted cancer therapy: The paradigm of the MET receptor tyrosine kinase. Cancer Lett 2019; 443:189-202. [DOI: 10.1016/j.canlet.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
|
21
|
Khan C, Muliyil S, Rao BJ. Genome Damage Sensing Leads to Tissue Homeostasis in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 345:173-224. [PMID: 30904193 DOI: 10.1016/bs.ircmb.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA repair is a critical cellular process required for the maintenance of genomic integrity. It is now well appreciated that cells employ several DNA repair pathways to take care of distinct types of DNA damage. It is also well known that a cascade of signals namely DNA damage response or DDR is activated in response to DNA damage which comprise cellular responses, such as cell cycle arrest, DNA repair and cell death, if the damage is irreparable. There is also emerging literature suggesting a cross-talk between DNA damage signaling and several signaling networks within a cell. Moreover, cell death players themselves are also well known to engage in processes outside their canonical function of apoptosis. This chapter attempts to build a link between DNA damage, DDR and signaling from the studies mainly conducted in mammals and Drosophila model systems, with a special emphasis on their relevance in overall tissue homeostasis and development.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sonia Muliyil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - B J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
22
|
Zhou Z, Lu H, Zhu S, Gomaa A, Chen Z, Yan J, Washington K, El-Rifai W, Dang C, Peng D. Activation of EGFR-DNA-PKcs pathway by IGFBP2 protects esophageal adenocarcinoma cells from acidic bile salts-induced DNA damage. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:13. [PMID: 30626422 PMCID: PMC6327430 DOI: 10.1186/s13046-018-1021-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022]
Abstract
Background The incidence of esophageal adenocarcinoma (EAC) is rising rapidly in the US and Western countries. The development of Barrett’s esophagus (BE) and its progression to EAC have been linked to chronic gastroesophageal reflux disease (GERD). Exposure of BE and EAC cells to acidic bile salts (ABS) in GERD conditions induces high levels of oxidative stress and DNA damage. In this study, we investigated the role of insulin-like growth factor binding protein 2 (IGFBP2) in regulating ABS-induced DNA double-strand breaks. Methods Real-time RT-PCR, western blot, immunohistochemistry, immunofluorescence, co-immunoprecipitation, flow cytometry, and cycloheximide (CHX) chase assays were used in this study. To mimic GERD conditions, a cocktail of acidic bile salts (pH 4) was used in 2D and 3D organotypic culture models. Overexpression and knockdown of IGFBP2 in EAC cells were established to examine the functional and mechanistic roles of IGFBP2 in ABS-induced DNA damage. Results Our results demonstrated high levels of IGFBP2 mRNA and protein in EAC cell lines as compared to precancerous Barrett’s cell lines, and IGFBP2 is frequently overexpressed in EACs (31/57). Treatment of EAC cells with ABS, to mimic GERD conditions, induced high levels of IGFBP2 expression. Knocking down endogenous IGFBP2 in FLO1 cells (with constitutive high levels of IGFBP2) led to a significant increase in DNA double-strand breaks and apoptosis, following transient exposure to ABS. On the other hand, overexpression of exogenous IGFBP2 in OE33 cells (with low endogenous levels of IGFBP2) had a protective effect against ABS-induced double-strand breaks and apoptosis. We found that IGFBP2 is required for ABS-induced nuclear accumulation and phosphorylation of EGFR and DNA-PKcs, which are necessary for DNA damage repair activity. Using co-immunoprecipitation assay, we detected co-localization of IGFBP2 with EGFR and DNA-PKcs, following acidic bile salts treatment. We further demonstrated, using cycloheximide chase assay, that IGFBP2 promotes EGFR protein stability in response to ABS exposure. Conclusions IGFBP2 protects EAC cells against ABS-induced DNA damage and apoptosis through stabilization and activation of EGFR - DNA-PKcs signaling axis. Electronic supplementary material The online version of this article (10.1186/s13046-018-1021-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhangjian Zhou
- Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta W. Road, Xi'an, 710061, Shaanxi, China.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Ahmed Gomaa
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Jin Yan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.,Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.,Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Chengxue Dang
- Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta W. Road, Xi'an, 710061, Shaanxi, China.
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.
| |
Collapse
|
23
|
Ho SR, Lin WC. RNF144A sustains EGFR signaling to promote EGF-dependent cell proliferation. J Biol Chem 2018; 293:16307-16323. [PMID: 30171075 DOI: 10.1074/jbc.ra118.002887] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/01/2018] [Indexed: 11/06/2022] Open
Abstract
RNF144A is a single-pass transmembrane RBR E3 ligase that interacts with and degrades cytoplasmic DNA-PKcs, which is an epidermal growth factor receptor (EGFR)-interacting partner. Interestingly, RNF144A expression is positively correlated with EGFR mRNA and protein levels in several types of cancer. However, the relationship between RNF144A and EGFR is poorly understood. This study reports an unexpected role for RNF144A in the regulation of EGF/EGFR signaling and EGF-dependent cell proliferation. EGFR ligands, but not DNA-damaging agents, induce a DNA-PKcs-independent interaction between RNF144A and EGFR. RNF144A promotes EGFR ubiquitination, maintains EGFR protein, and prolongs EGF/EGFR signaling during EGF stimulation. Moreover, depletion of RNF144A by multiple independent approaches results in a decrease in EGFR expression and EGF/EGFR signaling. RNF144A knockout cells also fail to mount an immediate response to EGF for activation of G1/S progression genes. Consequently, depletion of RNF144A reduces EGF-dependent cell proliferation. These defects may be at least in part due to a role for RNF144A in regulating EGFR transport in the intracellular vesicles during EGF treatment.
Collapse
Affiliation(s)
- Shiuh-Rong Ho
- From the Section of Hematology/Oncology, Department of Medicine
| | - Weei-Chin Lin
- From the Section of Hematology/Oncology, Department of Medicine, .,the Department of Molecular and Cellular Biology, and.,the Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
24
|
The effect of near-infrared fluorescence conjugation on the anti-cancer potential of cetuximab. Lab Anim Res 2018; 34:30-36. [PMID: 29628974 PMCID: PMC5876161 DOI: 10.5625/lar.2018.34.1.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
This study investigated the anti-cancer potential of a near-infrared fluorescence (NIRF) molecule conjugated with Cetuximab (Cetuximab-NIRF) in six-week-old female BALB/c athymic (nu+/nu+) nude mice. A431 cells were cultured and injected into the animals to induce solid tumors. Paclitaxel (30 mg/kg body weight (BW)), Cetuximab (1 mg/kg BW), and Cetuximab-NIRF (0.25, 0.5 and 1.0 mg/kg BW) were intraperitoneally injected twice a week into the A431 cell xenografts of the nude mice. Changes in BW, tumor volume and weight, fat and lean mass, and diameter of the peri-tumoral blood vessel were determined after two weeks. Tumor volumes and weights were significantly decreased in the Cetuximab-NIRF (1 mg/kg BW) group compared with the control group (P<0.001). Lean mass and total body water content were also conspicuously reduced in the Cetuximab-NIRF (1 mg/kg BW) group compared with the vehicle control group. Peri-tumoral blood vessel diameters were very thin in the Cetuximab-NIRF groups compared with those of the paclitaxel group. These results indicate that the conjugation of Cetuximab with NIRF does not affect the anti-cancer potential of Cetuximab and NIRF can be used for molecular imaging in cancer treatments.
Collapse
|
25
|
Labianca R, La Verde N, Garassino M. Development and Clinical Indications of Cetuximab. Int J Biol Markers 2018; 22:40-46. [DOI: 10.1177/17246008070221s405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cetuximab is a chimeric immunoglobulin G1 monoclonal antibody that targets the extracellular domain of the epidermal growth factor receptor (EGFR) with high specificity and affinity. It competitively inhibits endogenous ligand binding and thereby inhibits subsequent EGFR activation. The EGFR signaling pathways regulate cell differentiation, proliferation, migration, angiogenesis and apoptosis, all of which become deregulated in cancer cells. EGFR is an important target for cancer therapy and many studies have demonstrated that cetuximab is active in several types of cancer, particularly colorectal and head and neck cancer. Cetuximab enhances the effects of many standard cytotoxic agents, including irinotecan, and in combination with chemotherapy it can elicit antitumor responses in tumors that previously failed to respond to that chemotherapy. Cetuximab also enhances radiation-induced apoptosis. On the basis of a pivotal European randomized study (the BOND study) and of 2 clinical studies conducted in the USA, cetuximab has been approved in combination with irinotecan for patients affected by EGFR-expressing metastatic colon cancer after failure with irinotecan. There have only been a few small phase II trials on first-line treatment in metastatic colorectal cancer, but the results suggest promising activity of cetuximab together with irinotecan or oxaliplatin. There is some evidence that additive efficacy can be achieved using EGFR inhibitors in combination with vascular endothelial growth factor receptor inhibitors such as bevacizumab. A correlation between response and the main toxicity (acne-like skin reaction) has been observed but is unclear. EGFR status as a specific marker for EGFR inhibitors is controversial. At the moment, EGFR expression does not appear to be a predictive factor for response to EGFR inhibitors.
Collapse
Affiliation(s)
- R. Labianca
- Oncology Department, Ospedali Riuniti, Bergamo
| | - N. La Verde
- Oncology Department, Ospedale Fatebenefratelli e Oftalmico, Milan - Italy
| | - M.C. Garassino
- Oncology Department, Ospedale Fatebenefratelli e Oftalmico, Milan - Italy
| |
Collapse
|
26
|
Oberthür R, Seemann H, Gehrig J, Rave-Fränk M, Bremmer F, Halpape R, Conradi LC, Scharf JG, Burfeind P, Kaulfuß S. Simultaneous inhibition of IGF1R and EGFR enhances the efficacy of standard treatment for colorectal cancer by the impairment of DNA repair and the induction of cell death. Cancer Lett 2017; 407:93-105. [PMID: 28823963 DOI: 10.1016/j.canlet.2017.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 12/17/2022]
Abstract
Overexpression and activation of receptor tyrosine kinases (RTKs), such as the insulin-like growth factor 1 receptor (IGF1R) and the epidermal growth factor receptor (EGFR), are frequent phenomena in colorectal cancer (CRC). Here, we evaluated the effect and the cellular mechanisms of the simultaneous inhibition of these two RTKs both in vitro and in vivo in addition to a 5-fluoruracil (5-FU)-based radiochemotherapy (RCT), which is a standard treatment scheme for CRC. Using the small molecule inhibitors AEW541 and erlotinib, specific against IGF1R and EGFR, respectively, different CRC cell lines exhibited a reduced survival fraction after RCT, with the highest effect after the simultaneous inhibition of IGF1R/EGFR. In vivo, xenograft mice simultaneously treated with low dose AEW541/erlotinib plus RCT revealed a significant reduction in tumour volume and weight compared with the tumours of mice treated with either AEW541 or erlotinib alone. In vitro, the combined inhibition of IGF1R/EGFR resulted in a stronger reduction of downstream signalling, an increase in DNA double strand breaks (DSBs), apoptosis and mitotic catastrophe after RCT depending on the cell line. Moreover, the existence of IGF1R/EGFR heterodimers in CRC cells and human rectal cancer samples was proven. The heterodimerisation of these RTKs was dependent on the presence of both ligands, IGF-1 and EGF, and functional receptors. In conclusion, these results demonstrate that the strategy of targeting both IGF1R and EGFR, in addition to basic RCT, could be of intriguing importance in CRC therapy.
Collapse
Affiliation(s)
- Rabea Oberthür
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Henning Seemann
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Julia Gehrig
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Margret Rave-Fränk
- Department of Radiotherapy and Radio Oncology, University Medical Centre Göttingen, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Centre Göttingen, Germany
| | - Rovena Halpape
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Paediatric Surgery, University Medical Centre Göttingen, Germany
| | - Jens-Gerd Scharf
- 2nd Department of Internal Medicine, HELIOS Hospital Erfurt, Germany
| | - Peter Burfeind
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Centre Göttingen, Germany.
| |
Collapse
|
27
|
Pang LY, Saunders L, Argyle DJ. Epidermal growth factor receptor activity is elevated in glioma cancer stem cells and is required to maintain chemotherapy and radiation resistance. Oncotarget 2017; 8:72494-72512. [PMID: 29069805 PMCID: PMC5641148 DOI: 10.18632/oncotarget.19868] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/06/2017] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma remains among the most aggressive of all human and canine malignancies, displaying high mortality rates and limited treatment options. We propose that given the similarities between canine and human gliomas, such as incidence of occurrence, histopathology, molecular characteristics, and response to therapy, that canine gliomas are a natural model of the human disease. A range of human and canine tumours have been shown to harbor specific subpopulations of cells with stem cell-like properties that initiate and maintain neoplasticity while resisting conventional therapies. Here, we show that both canine and human glioma cell lines contain a small population of cancer stem cells (CSCs), and by molecular profiling highlight the important role of the epidermal growth factor receptor (EGFR) pathway in canine CSCs. EGFR signaling is crucial in the regulation of cancer cell proliferation, migration and survival. To date EGFR-targeted interventions alone have been largely ineffective. Our findings confirm that specifically inhibiting EGFR signaling alone has no significant effect on the viability of CSCs. However inhibition of EGFR did enhance the chemo- and radio-sensitivity of both canine and human glioma CSCs, enabling this resistant, tumourigenic population of cells to be effectively targeted by conventional therapies.
Collapse
Affiliation(s)
- Lisa Y Pang
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - Lauren Saunders
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| |
Collapse
|
28
|
Li H, You L, Xie J, Pan H, Han W. The roles of subcellularly located EGFR in autophagy. Cell Signal 2017; 35:223-230. [PMID: 28428083 DOI: 10.1016/j.cellsig.2017.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a well-studied receptor-tyrosine kinase that serves vital roles in regulation of organ development and cancer progression. EGFR not only exists on the plasma membrane, but also widely expressed in the nucleus, endosomes, and mitochondria. Most recently, several lines of evidences indicated that autophagy is regulated by EGFR in kinase-active and -independent manners. In this review, we summarized recent advances in our understanding of the functions of different subcellularly located EGFR on autophagy. Specifically, plasma membrane- and cytoplasm-located EGFR (pcEGFR) acts as a tyrosine kinase to regulate autophagy via the PI3K/AKT1/mTOR, RAS/MAPK1/3, and STAT3 signaling pathways. The kinase-independent function of pcEGFR inhibits autophagy by maintaining SLC5A1-regulated intracellular glucose level. Endosome-located EGFR phosphorylates and inhibits Beclin1 to suppress autophagy, while kinase-independent endosome-located EGFR releases Beclin1 from the Rubicon-Beclin1 complex to increase autophagy. Additionally, the nuclear EGFR activates PRKDC/PNPase/MYC signaling to inhibit autophagy. Although the role of mitochondria-located EGFR in autophagy is largely unexplored, the production of ATP and reactive oxygen species mediated by mitochondrial dynamics is most likely to influence autophagy.
Collapse
Affiliation(s)
- Hongsen Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
29
|
Silencing of fused toes homolog enhances cisplatin sensitivity in cervical cancer cells by inhibiting epidermal growth factor receptor-mediated repair of DNA damage. Cancer Chemother Pharmacol 2016; 78:753-62. [DOI: 10.1007/s00280-016-3110-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
|
30
|
Rapid Diminution in the Level and Activity of DNA-Dependent Protein Kinase in Cancer Cells by a Reactive Nitro-Benzoxadiazole Compound. Int J Mol Sci 2016; 17:ijms17050703. [PMID: 27187356 PMCID: PMC4881526 DOI: 10.3390/ijms17050703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/12/2016] [Accepted: 04/21/2016] [Indexed: 11/17/2022] Open
Abstract
The expression and activity of DNA-dependent protein kinase (DNA-PK) is related to DNA repair status in the response of cells to exogenous and endogenous factors. Recent studies indicate that Epidermal Growth Factor Receptor (EGFR) is involved in modulating DNA-PK. It has been shown that a compound 4-nitro-7-[(1-oxidopyridin-2-yl)sulfanyl]-2,1,3-benzoxadiazole (NSC), bearing a nitro-benzoxadiazole (NBD) scaffold, enhances tyrosine phosphorylation of EGFR and triggers downstream signaling pathways. Here, we studied the behavior of DNA-PK and other DNA repair proteins in prostate cancer cells exposed to compound NSC. We showed that both the expression and activity of DNA-PKcs (catalytic subunit of DNA-PK) rapidly decreased upon exposure of cells to the compound. The decline in DNA-PKcs was associated with enhanced protein ubiquitination, indicating the activation of cellular proteasome. However, pretreatment of cells with thioglycerol abolished the action of compound NSC and restored the level of DNA-PKcs. Moreover, the decreased level of DNA-PKcs was associated with the production of intracellular hydrogen peroxide by stable dimeric forms of Cu/Zn SOD1 induced by NSC. Our findings indicate that reactive oxygen species and electrophilic intermediates, generated and accumulated during the redox transformation of NBD compounds, are primarily responsible for the rapid modulation of DNA-PKcs functions in cancer cells.
Collapse
|
31
|
Treda C, Popeda M, Ksiazkiewicz M, Grzela DP, Walczak MP, Banaszczyk M, Peciak J, Stoczynska-Fidelus E, Rieske P. EGFR Activation Leads to Cell Death Independent of PI3K/AKT/mTOR in an AD293 Cell Line. PLoS One 2016; 11:e0155230. [PMID: 27153109 PMCID: PMC4859505 DOI: 10.1371/journal.pone.0155230] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) and its mutations contribute in various ways to tumorigenesis and biology of human cancers. They are associated with tumor proliferation, progression, drug resistance and the process of apoptosis. There are also reports that overexpression and activation of wild-type EGFR may lead to cell apoptosis. To study this phenomenon, we overexpressed in an AD293 cell line two most frequently observed forms of the EGFR receptor: wild-type and the constitutively active mutant–EGFR variant III (EGFRvIII). Then, we compared the effect of EGF stimulation on cell viability and downstream EGFR signaling. AD293 cells overexpressing wild-type EGFR, despite a significant proliferation increase in serum supplemented medium, underwent apoptosis after EGF stimulation in serum free conditions. EGFRvIII expressing cells, however, were unaffected by either serum starvation or EGF treatment. The effect of EGF was completely neutralized by tyrosine kinase inhibitors (TKIs), indicating the specificity of this observation. Moreover, apoptosis was not prevented by inhibiting EGFR downstream proteins (PI3K, AKT and mTOR). Here we showed another EGFR function, dependent on environmental factors, which could be employed in therapy and drug design. We also proposed a new tool for EGFR inhibitor analysis.
Collapse
Affiliation(s)
- Cezary Treda
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- * E-mail:
| | - Marta Popeda
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
| | | | - Dawid P. Grzela
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
| | - Maciej P. Walczak
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
| | - Mateusz Banaszczyk
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Joanna Peciak
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Stoczynska-Fidelus
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Piotr Rieske
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
32
|
Hossain MB, Shifat R, Johnson DG, Bedford MT, Gabrusiewicz KR, Cortes-Santiago N, Luo X, Lu Z, Ezhilarasan R, Sulman EP, Jiang H, Li SSC, Lang FF, Tyler J, Hung MC, Fueyo J, Gomez-Manzano C. TIE2-mediated tyrosine phosphorylation of H4 regulates DNA damage response by recruiting ABL1. SCIENCE ADVANCES 2016; 2:e1501290. [PMID: 27757426 PMCID: PMC5065225 DOI: 10.1126/sciadv.1501290] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/25/2016] [Indexed: 05/22/2023]
Abstract
DNA repair pathways enable cancer cells to survive DNA damage induced after genotoxic therapies. Tyrosine kinase receptors (TKRs) have been reported as regulators of the DNA repair machinery. TIE2 is a TKR overexpressed in human gliomas at levels that correlate with the degree of increasing malignancy. Following ionizing radiation, TIE2 translocates to the nucleus, conferring cells with an enhanced nonhomologous end-joining mechanism of DNA repair that results in a radioresistant phenotype. Nuclear TIE2 binds to key components of DNA repair and phosphorylates H4 at tyrosine 51, which, in turn, is recognized by the proto-oncogene ABL1, indicating a role for nuclear TIE2 as a sensor for genotoxic stress by action as a histone modifier. H4Y51 constitutes the first tyrosine phosphorylation of core histones recognized by ABL1, defining this histone modification as a direct signal to couple genotoxic stress with the DNA repair machinery.
Collapse
Affiliation(s)
- Mohammad B. Hossain
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rehnuma Shifat
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David G. Johnson
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Konrad R. Gabrusiewicz
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nahir Cortes-Santiago
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuemei Luo
- Biomolecular Resource Facility, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zhimin Lu
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erik P. Sulman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Jiang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shawn S. C. Li
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jessica Tyler
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
33
|
Dal Pra A, Locke JA, Borst G, Supiot S, Bristow RG. Mechanistic Insights into Molecular Targeting and Combined Modality Therapy for Aggressive, Localized Prostate Cancer. Front Oncol 2016; 6:24. [PMID: 26909338 PMCID: PMC4754414 DOI: 10.3389/fonc.2016.00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/22/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is one of the mainstay treatments for prostate cancer (PCa). The potentially curative approaches can provide satisfactory results for many patients with non-metastatic PCa; however, a considerable number of individuals may present disease recurrence and die from the disease. Exploiting the rich molecular biology of PCa will provide insights into how the most resistant tumor cells can be eradicated to improve treatment outcomes. Important for this biology-driven individualized treatment is a robust selection procedure. The development of predictive biomarkers for RT efficacy is therefore of utmost importance for a clinically exploitable strategy to achieve tumor-specific radiosensitization. This review highlights the current status and possible opportunities in the modulation of four key processes to enhance radiation response in PCa by targeting the: (1) androgen signaling pathway; (2) hypoxic tumor cells and regions; (3) DNA damage response (DDR) pathway; and (4) abnormal extra-/intracell signaling pathways. In addition, we discuss how and which patients should be selected for biomarker-based clinical trials exploiting and validating these targeted treatment strategies with precision RT to improve cure rates in non-indolent, localized PCa.
Collapse
Affiliation(s)
- Alan Dal Pra
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jennifer A Locke
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gerben Borst
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Stephane Supiot
- Integrated Center of Oncology (ICO) René Gauducheau , Nantes , France
| | - Robert G Bristow
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Huang S, Peter Rodemann H, Harari PM. Molecular Targeting of Growth Factor Receptor Signaling in Radiation Oncology. Recent Results Cancer Res 2016; 198:45-87. [PMID: 27318681 DOI: 10.1007/978-3-662-49651-0_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ionizing radiation has been shown to activate and interact with multiple growth factor receptor pathways that can influence tumor response to therapy. Among these receptor interactions, the epidermal growth factor receptor (EGFR) has been the most extensively studied with mature clinical applications during the last decade. The combination of radiation and EGFR-targeting agents using either monoclonal antibody (mAb) or small-molecule tyrosine kinase inhibitor (TKI) offers a promising approach to improve tumor control compared to radiation alone. Several underlying mechanisms have been identified that contribute to improved anti-tumor capacity after combined treatment. These include effects on cell cycle distribution, apoptosis, tumor cell repopulation, DNA damage/repair, and impact on tumor vasculature. However, as with virtually all cancer drugs, patients who initially respond to EGFR-targeted agents may eventually develop resistance and manifest cancer progression. Several potential mechanisms of resistance have been identified including mutations in EGFR and downstream signaling molecules, and activation of alternative member-bound tyrosine kinase receptors that bypass the inhibition of EGFR signaling. Several strategies to overcome the resistance are currently being explored in preclinical and clinical models, including agents that target the EGFR T790 M resistance mutation or target multiple EGFR family members, as well as agents that target other receptor tyrosine kinase and downstream signaling sites. In this chapter, we focus primarily on the interaction of radiation with anti-EGFR therapies to summarize this promising approach and highlight newly developing opportunities.
Collapse
Affiliation(s)
- Shyhmin Huang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue K4/336 CSC, Madison, WI, 53792, USA
- Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, WIMR 3136, 1111 Highland Ave Madison, Madison, WI, 53705, USA
| | - H Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Röntgenweg, 72076, Tübingen, Germany
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue K4/336 CSC, Madison, WI, 53792, USA.
| |
Collapse
|
35
|
Renaud S, Schaeffer M, Voegeli AC, Legrain M, Guérin E, Meyer N, Mennecier B, Quoix E, Falcoz PE, Guénot D, Massard G, Noël G, Beau-Faller M. Impact of EGFR mutations and KRAS amino acid substitution on the response to radiotherapy for brain metastasis of non-small-cell lung cancer. Future Oncol 2015; 12:59-70. [PMID: 26616848 DOI: 10.2217/fon.15.273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Our study aimed to evaluate response rate (RR) to brain metastasis radiotherapy (RT), depending on the genomic status of non-small-cell lung cancer. MATERIAL & METHODS We retrospectively reviewed 1971 non-small-cell lung cancer files of patients with EGFR and KRAS testing and focused on 157 patients who had undergone RT for brain metastasis. RESULTS A total of 16 patients (10.2%) harbored EGFR mutations (mEGFR) and 45 patients (28.7%) KRAS (mKRAS). In univariate analysis, RR was significantly higher for mEGFR compared with wild-type EGFR/KRAS (odds ratio [OR]: 4.96; p = 0.05) or mKRAS (OR: 1.81; p = 0.03). In multivariate analysis, KRAS G12V or G12C status was associated with both poor RR (OR: 0.1; p < 0.0001) and overall survival (OR: 3.41; p < 0.0001). CONCLUSION mEGFR are associated with higher RR to brain RT than wild-type EGFR/RAS or mKRAS.
Collapse
Affiliation(s)
- Stéphane Renaud
- Thoracic Surgery Department, Strasbourg University Hospital, France.,Research Unit EA 3430 & Translational Medicine Federation, Strasbourg University, France
| | | | - Anne-Claire Voegeli
- Department of Biochemistry & Molecular Biology, Oncobiology laboratory, Regional Institute of Cancer, Strasbourg University Hospital, France
| | - Michèle Legrain
- Department of Biochemistry & Molecular Biology, Oncobiology laboratory, Regional Institute of Cancer, Strasbourg University Hospital, France
| | - Eric Guérin
- Department of Biochemistry & Molecular Biology, Oncobiology laboratory, Regional Institute of Cancer, Strasbourg University Hospital, France
| | - Nicolas Meyer
- Statistical Department, Strasbourg University Hospital, France
| | | | | | | | - Dominique Guénot
- Research Unit EA 3430 & Translational Medicine Federation, Strasbourg University, France
| | - Gilbert Massard
- Thoracic Surgery Department, Strasbourg University Hospital, France
| | - Georges Noël
- Department of Radiotherapy, Centre Paul Strauss, Strasbourg, France
| | - Michèle Beau-Faller
- Research Unit EA 3430 & Translational Medicine Federation, Strasbourg University, France.,Department of Biochemistry & Molecular Biology, Oncobiology laboratory, Regional Institute of Cancer, Strasbourg University Hospital, France
| |
Collapse
|
36
|
Cuneo KC, Nyati MK, Ray D, Lawrence TS. EGFR targeted therapies and radiation: Optimizing efficacy by appropriate drug scheduling and patient selection. Pharmacol Ther 2015; 154:67-77. [PMID: 26205191 PMCID: PMC4570853 DOI: 10.1016/j.pharmthera.2015.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) plays an important role in tumor progression and treatment resistance for many types of malignancies including head and neck, colorectal, and nonsmall cell lung cancer. Several EGFR targeted therapies are efficacious as single agents or in combination with chemotherapy. Given the toxicity associated with chemoradiation and poor outcomes seen in several types of cancers, combinations of EGFR targeted agents with or without chemotherapy have been tested in patients receiving radiation. To date, the only FDA approved use of an anti-EGFR therapy in combination with radiation therapy is for locally advanced head and neck cancer. Given the important role EGFR plays in lung and colorectal cancer and the benefit of EGFR inhibition combined with chemotherapy in these disease sites, it is perplexing why EGFR targeted therapies in combination with radiation or chemoradiation have not been more successful. In this review we summarize the clinical findings of EGFR targeted therapies combined with radiation and chemoradiation regimens. We then discuss the interaction between EGFR and radiation including radiation induced EGFR signaling, the effect of EGFR on DNA damage repair, and potential mechanisms of radiosensitization. Finally, we examine the potential pitfalls with scheduling EGFR targeted therapies with chemoradiation and the use of predictive biomarkers to improve patient selection.
Collapse
Affiliation(s)
- Kyle C Cuneo
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States; Ann Arbor Veterans Affairs Hospital, Department of Radiation Oncology, Ann Arbor, MI, United States
| | - Mukesh K Nyati
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States
| | - Dipankar Ray
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States
| | - Theodore S Lawrence
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States.
| |
Collapse
|
37
|
Tseng SH, Chou MY, Chu IM. Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy. Int J Nanomedicine 2015; 10:3663-85. [PMID: 26056447 PMCID: PMC4445874 DOI: 10.2147/ijn.s80134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have developed a theranostic nanoparticle, ie, cet-PEG-dexSPIONs, by conjugation of the anti-epidermal growth factor receptor (EGFR) monoclonal antibody, cetuximab, to dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs) via periodate oxidation. Approximately 31 antibody molecules were conjugated to each nanoparticle. Cet-PEG-dexSPIONs specifically bind to EGFR-expressing tumor cells and enhance image contrast on magnetic resonance imaging. Cet-PEG-dexSPION-treated A431 cells showed significant inhibition of epidermal growth factor-induced EGFR phosphorylation and enhancement of EGFR internalization and degradation. In addition, a significant increase in apoptosis was detected in EGFR-overexpressing cell lines, A431 and 32D/EGFR, after 24 hours of incubation at 37°C with cet-PEG-dexSPIONs compared with cetuximab alone. The antibody-dependent cell-mediated cytotoxicity of cetuximab was observed in cet-PEG-dexSPIONs. The results demonstrated that cet-PEG-dexSPIONs retained the therapeutic effect of cetuximab in addition to having the ability to target and image EGFR-expressing tumors. Cet-PEG-dexSPIONs represent a promising targeted magnetic probe for early detection and treatment of EGFR-expressing tumor cells.
Collapse
Affiliation(s)
- Shih-Heng Tseng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Min-Yuan Chou
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
38
|
The prognostic significance of tumor epidermal growth factor receptor (EGFR) expression change after neoadjuvant chemoradiation in patients with rectal adenocarcinoma. Contemp Oncol (Pozn) 2015. [PMID: 26199571 PMCID: PMC4507892 DOI: 10.5114/wo.2015.50013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim of the study The aim of this retrospective study was to determine the prognostic impact of epidermal growth factor receptor (EGFR) expression changes during neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Material and methods Fifty patients with locally advanced rectal cancer were evaluated. All the patients were administered the total dose of 44 Gy. Capecitabine has been concomitantly administered in the dose 825 mg/m2 in two daily oral administrations. Surgery was indicated 4–8 weeks from the chemoradiotherapy completion. Epidermal growth factor receptor expression in the pretreatment biopsies and in the resected specimens was assessed with immunohistochemistry. Results All of 50 patients received radiotherapy without interruption up to the total planned dose. In 30 patients sphincter-saving surgery was performed, 20 patients underwent amputation of the rectum. Downstaging was described in 30 patients. Four patients have had complete pathologic remission. Twenty-six patients have had partial remission, the disease was stable in 15 patients. Progression was reported in 5 patients. The median disease-free survival was 64.9 months, median overall survival was 76.4 months. Increased EGFR expression was found in 12 patients (26.1%). A statistically significantly shorter overall survival (p < 0.0001) and disease-free survival (p < 0.0001) was found in patients with increased expression of EGFR compared with patients where no increase in the expression of EGFR during neoadjuvant chemoradiotherapy was observed. Conclusions The overexpression of EGFR during neoadjuvant chemoradiotherapy for locally advanced rectal adenokarcinoma associated with significant shorter overall survival and disease free survival.
Collapse
|
39
|
Staquicini FI, Qian MD, Salameh A, Dobroff AS, Edwards JK, Cimino DF, Moeller BJ, Kelly P, Nunez MI, Tang X, Liu DD, Lee JJ, Hong WK, Ferrara F, Bradbury ARM, Lobb RR, Edelman MJ, Sidman RL, Wistuba II, Arap W, Pasqualini R. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer. J Biol Chem 2015; 290:7345-59. [PMID: 25623065 PMCID: PMC4367244 DOI: 10.1074/jbc.m114.630525] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.
Collapse
Affiliation(s)
- Fernanda I Staquicini
- From the University of New Mexico Cancer Center and the Divisions of Molecular Medicine and
| | - Ming D Qian
- the Departments of Genitourinary Medical Oncology
| | | | - Andrey S Dobroff
- From the University of New Mexico Cancer Center and the Divisions of Molecular Medicine and
| | | | - Daniel F Cimino
- From the University of New Mexico Cancer Center and the Divisions of Molecular Medicine and
| | | | - Patrick Kelly
- the Departments of Genitourinary Medical Oncology, Radiation Oncology
| | | | | | | | | | - Waun Ki Hong
- Thoracic/Head & Neck Medical Oncology, David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Fortunato Ferrara
- From the University of New Mexico Cancer Center and the Divisions of Molecular Medicine and
| | - Andrew R M Bradbury
- the Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Roy R Lobb
- Alvos Therapeutics, Arrowhead Research Corporation, Pasadena, California 91101
| | - Martin J Edelman
- Alvos Therapeutics, Arrowhead Research Corporation, Pasadena, California 91101
| | - Richard L Sidman
- the Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | | | - Wadih Arap
- From the University of New Mexico Cancer Center and Hematology/Medical Oncology, Department of Internal Medicine University of New Mexico School of Medicine, Albuquerque, New Mexico 87131-0001,
| | - Renata Pasqualini
- From the University of New Mexico Cancer Center and the Divisions of Molecular Medicine and
| |
Collapse
|
40
|
Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response. Cell Res 2015; 25:225-36. [PMID: 25601159 DOI: 10.1038/cr.2015.8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/25/2014] [Accepted: 10/22/2014] [Indexed: 11/08/2022] Open
Abstract
Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition.
Collapse
|
41
|
Bradshaw RA, Pundavela J, Biarc J, Chalkley RJ, Burlingame AL, Hondermarck H. NGF and ProNGF: Regulation of neuronal and neoplastic responses through receptor signaling. Adv Biol Regul 2014; 58:16-27. [PMID: 25491371 DOI: 10.1016/j.jbior.2014.11.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022]
Abstract
Nerve growth factor (NGF) and its precursor (proNGF) are primarily considered as regulators of neuronal function that induce their responses via the tyrosine kinase receptor TrkA and the pan-neurotrophin receptor p75NTR. It has been generally held that NGF exerts its effects primarily through TrkA, inducing a cascade of tyrosine kinase-initiated responses, while proNGF binds more strongly to p75NTR. When this latter entity interacts with a third receptor, sortilin, apoptotic responses are induced in contrast to the survival/differentiation associated with the other two. Recent studies have outlined portions of the downstream phosphoproteome of TrkA in the neuronal PC12 cells and have clarified the contribution of individual docking sites in the TrkA endodomain. The patterns observed showed a similarity with the profile induced by the epidermal growth factor receptor, which is extensively associated with oncogenesis. Indeed, as with other neurotrophic factors, the distribution of TrkA and p75NTR is not limited to neuronal tissue, thus providing an array of targets outside the nervous systems. One such source is breast cancer cells, in which NGF and proNGF stimulate breast cancer cell survival/growth and enhance cell invasion, respectively. This latter activity is exerted via TrkA (as opposed to p75NTR) in conjunction with sortilin. Another tissue overexpressing proNGF is prostate cancer and here the ability of cancer cells to induce neuritogenesis has been implicated in cancer progression. These studies show that the non-neuronal functions of proNGF/NGF are likely integrated with their neuronal activities and point to the clinical utility of these growth factors and their receptors as biomarkers and therapeutic targets for metastasis and cancer pain.
Collapse
Affiliation(s)
| | - Jay Pundavela
- School of Biomedical Sciences & Pharmacy, Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Australia.
| | - Jordane Biarc
- Dept of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA.
| | | | - A L Burlingame
- Dept of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA.
| | - Hubert Hondermarck
- School of Biomedical Sciences & Pharmacy, Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Australia.
| |
Collapse
|
42
|
González JE, Barquinero JF, Lee M, García O, Casacó A. Radiosensitization induced by the anti-epidermal growth factor receptor monoclonal antibodies cetuximab and nimotuzumab in A431 cells. Cancer Biol Ther 2014; 13:71-6. [DOI: 10.4161/cbt.13.2.18439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
43
|
A putative pH-dependent nuclear localization signal in the juxtamembrane region of c-Met. Exp Mol Med 2014; 46:e119. [PMID: 25341359 PMCID: PMC4221695 DOI: 10.1038/emm.2014.67] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022] Open
Abstract
The C-terminal fragment of the c-Met receptor tyrosine kinase is present in the nuclei of some cells irrespective of ligand stimulation, but the responsible nuclear localization signal (NLS) has not been previously reported. Here, we report that two histidine residues separated by a 10-amino-acid spacer (H1068-H1079) located in the juxtamembrane region of c-Met function as a putative novel NLS. Deletion of these sequences significantly abolished the nuclear translocation of c-Met, as did substitution of the histidines with alanines. This substitution also decreased the association of c-Met fragment with importin β. The putative NLS of c-Met is unique in that it relies on histidines, whose positive charge changes depending on pH, rather than the lysines or arginines, commonly found in classical bipartite NLSs, suggesting the possible 'pH-dependency' of this NLS. Indeed, decreasing the cytosolic pH either with nigericin, an Na(+)/H(+) exchanger or pH 6.5 KRB buffer significantly increased the level of nuclear c-Met and the interaction of the c-Met fragment with importin β, indicating that low pH itself enhanced nuclear translocation. Consistent with this, nigericin treatment also increased the nuclear level of endogenous c-Met in HeLa cells. The putative aberrant bipartite NLS of c-Met seems to be the first example of what we call a 'pH-dependent' NLS.
Collapse
|
44
|
Chen YC, Colvin ES, Griffin KE, Maier BF, Fueger PT. Mig6 haploinsufficiency protects mice against streptozotocin-induced diabetes. Diabetologia 2014; 57:2066-75. [PMID: 24989997 PMCID: PMC4156529 DOI: 10.1007/s00125-014-3311-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS EGF and gastrin co-administration reverses type 1 diabetes in rodent models. However, the failure of this to translate into a clinical treatment suggests that EGF-mediated tissue repair is a complicated process and warrants further investigation. Thus, we aimed to determine whether EGF receptor (EGFR) feedback inhibition by mitogen-inducible gene 6 protein (MIG6) limits the effectiveness of EGF therapy and promotes type 1 diabetes development. METHODS We treated Mig6 (also known as Errfi1) haploinsufficient mice (Mig6 (+/-)) and their wild-type littermates (Mig6 (+/+)) with multiple low doses of streptozotocin (STZ), and monitored diabetes development via glucose homeostasis tests and histological analyses. We also investigated MIG6-mediated cytokine-induced desensitisation of EGFR signalling and the DNA damage repair response in 832/13 INS-1 beta cells. RESULTS Whereas STZ-treated Mig6 (+/+) mice became diabetic, STZ-treated Mig6 (+/-) mice remained glucose tolerant. In addition, STZ-treated Mig6 (+/-) mice exhibited preserved circulating insulin levels following a glucose challenge. As insulin sensitivity was similar between Mig6 (+/-) and Mig6 (+/+) mice, the preserved glucose tolerance in STZ-treated Mig6 (+/-) mice probably results from preserved beta cell function. This is supported by elevated Pdx1 and Irs2 mRNA levels in islets isolated from STZ-treated Mig6 (+/-) mice. Conversely, MIG6 overexpression in isolated islets compromises glucose-stimulated insulin secretion. Studies in 832/13 cells suggested that cytokine-induced MIG6 hinders EGFR activation and inhibits DNA damage repair. STZ-treated Mig6 (+/-) mice also have increased beta cell mass recovery. CONCLUSIONS/INTERPRETATION Reducing Mig6 expression promotes beta cell repair and abates the development of experimental diabetes, suggesting that MIG6 may be a novel therapeutic target for preserving beta cells.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - E. Scott Colvin
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Katherine E. Griffin
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bernhard F. Maier
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Patrick T. Fueger
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
45
|
Activated platelets rescue apoptotic cells via paracrine activation of EGFR and DNA-dependent protein kinase. Cell Death Dis 2014; 5:e1410. [PMID: 25210793 PMCID: PMC4540201 DOI: 10.1038/cddis.2014.373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/10/2014] [Accepted: 07/13/2014] [Indexed: 12/12/2022]
Abstract
Platelet activation is a frontline response to injury, not only essential for clot formation but also important for tissue repair. Indeed, the reparative influence of platelets has long been exploited therapeutically where application of platelet concentrates expedites wound recovery. Despite this, the mechanisms of platelet-triggered cytoprotection are poorly understood. Here, we show that activated platelets accumulate in the brain to exceptionally high levels following injury and release factors that potently protect neurons from apoptosis. Kinomic microarray and subsequent kinase inhibitor studies showed that platelet-based neuroprotection relies upon paracrine activation of the epidermal growth factor receptor (EGFR) and downstream DNA-dependent protein kinase (DNA-PK). This same anti-apoptotic cascade stimulated by activated platelets also provided chemo-resistance to several cancer cell types. Surprisingly, deep proteomic profiling of the platelet releasate failed to identify any known EGFR ligand, indicating that activated platelets release an atypical activator of the EGFR. This study is the first to formally associate platelet activation to EGFR/DNA-PK – an endogenous cytoprotective cascade.
Collapse
|
46
|
Zahonero C, Sánchez-Gómez P. EGFR-dependent mechanisms in glioblastoma: towards a better therapeutic strategy. Cell Mol Life Sci 2014; 71:3465-88. [PMID: 24671641 PMCID: PMC11113227 DOI: 10.1007/s00018-014-1608-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/06/2014] [Accepted: 03/11/2014] [Indexed: 12/11/2022]
Abstract
Glioblastoma is a particularly resilient cancer, and while therapies may be able to reach the brain by crossing the blood-brain barrier, they then have to deal with a highly invasive tumor that is very resistant to DNA damage. It seems clear that in order to kill aggressive glioma cells more efficiently and with fewer side effects on normal tissue, there must be a shift from classical cytotoxic chemotherapy to more targeted therapies. Since the epidermal growth factor receptor (EGFR) is altered in almost 50% of glioblastomas, it currently represents one of the most promising therapeutic targets. In fact, it has been associated with several distinct steps in tumorigenesis, from tumor initiation to tumor growth and survival, and also with the regulation of cell migration and angiogenesis. However, inhibitors of the EGFR kinase have produced poor results with this type of cancer in clinical trials, with no clear explanation for the tumor resistance observed. Here we will review what we know about the expression and function of EGFR in cancer and in particular in gliomas. We will also evaluate which are the possible molecular and cellular escape mechanisms. As a result, we hope that this review will help improve the design of future EGFR-targeted therapies for glioblastomas.
Collapse
Affiliation(s)
- Cristina Zahonero
- Neuro-Oncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | | |
Collapse
|
47
|
Nisa L, Aebersold DM, Giger R, Zimmer Y, Medová M. Biological, diagnostic and therapeutic relevance of the MET receptor signaling in head and neck cancer. Pharmacol Ther 2014; 143:337-49. [DOI: 10.1016/j.pharmthera.2014.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/16/2022]
|
48
|
RNF144A, an E3 ubiquitin ligase for DNA-PKcs, promotes apoptosis during DNA damage. Proc Natl Acad Sci U S A 2014; 111:E2646-55. [PMID: 24979766 DOI: 10.1073/pnas.1323107111] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Several ring between ring fingers (RBR) -domain proteins, such as Parkin and Parc, have been shown to be E3 ligases involved in important biological processes. Here, we identify a poorly characterized RBR protein, Ring Finger protein 144A (RNF144A), as the first, to our knowledge, mammalian E3 ubiquitin ligase for DNA-PKcs. We show that DNA damage induces RNF144A expression in a p53-dependent manner. RNF144A is mainly localized in the cytoplasmic vesicles and plasma membrane and interacts with cytoplasmic DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). DNA-PKcs plays a critical role in the nonhomologous end-joining DNA repair pathway and provides prosurvival signaling during DNA damage. We show that RNF144A induces ubiquitination of DNA-PKcs in vitro and in vivo and promotes its degradation. Depletion of RNF144A leads to an increased level of DNA-PKcs and resistance to DNA damaging agents, which is reversed by a DNA-PK inhibitor. Taken together, our data suggest that RNF144A may be involved in p53-mediated apoptosis through down-regulation of DNA-PKcs when cells suffer from persistent or severe DNA damage insults.
Collapse
|
49
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
50
|
The Molecular Crosstalk between the MET Receptor Tyrosine Kinase and the DNA Damage Response-Biological and Clinical Aspects. Cancers (Basel) 2013; 6:1-27. [PMID: 24378750 PMCID: PMC3980615 DOI: 10.3390/cancers6010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy remains an imperative treatment modality for numerous malignancies. Enduring significant technical achievements both on the levels of treatment planning and radiation delivery have led to improvements in local control of tumor growth and reduction in healthy tissue toxicity. Nevertheless, resistance mechanisms, which presumably also involve activation of DNA damage response signaling pathways that eventually may account for loco-regional relapse and consequent tumor progression, still remain a critical problem. Accumulating data suggest that signaling via growth factor receptor tyrosine kinases, which are aberrantly expressed in many tumors, may interfere with the cytotoxic impact of ionizing radiation via the direct activation of the DNA damage response, leading eventually to so-called tumor radioresistance. The aim of this review is to overview the current known data that support a molecular crosstalk between the hepatocyte growth factor receptor tyrosine kinase MET and the DNA damage response. Apart of extending well established concepts over MET biology beyond its function as a growth factor receptor, these observations directly relate to the role of its aberrant activity in resistance to DNA damaging agents, such as ionizing radiation, which are routinely used in cancer therapy and advocate tumor sensitization towards DNA damaging agents in combination with MET targeting.
Collapse
|