1
|
Hegde M, Naliyadhara N, Unnikrishnan J, Alqahtani MS, Abbas M, Girisa S, Sethi G, Kunnumakkara AB. Nanoparticles in the diagnosis and treatment of cancer metastases: Current and future perspectives. Cancer Lett 2023; 556:216066. [PMID: 36649823 DOI: 10.1016/j.canlet.2023.216066] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Metastasis accounts for greater than 90% of cancer-related deaths. Despite recent advancements in conventional chemotherapy, immunotherapy, targeted therapy, and their rational combinations, metastatic cancers remain essentially untreatable. The distinct obstacles to treat metastases include their small size, high multiplicity, redundancy, therapeutic resistance, and dissemination to multiple organs. Recent advancements in nanotechnology provide the numerous applications in the diagnosis and prophylaxis of metastatic diseases, including the small particle size to penetrate cell membrane and blood vessels and their capacity to transport complex molecular 'cargo' particles to various metastatic regions such as bones, brain, liver, lungs, and lymph nodes. Indeed, nanoparticles (NPs) have demonstrated a significant ability to target specific cells within these organs. In this regard, the purpose of this review is to summarize the present state of nanotechnology in terms of its application in the diagnosis and treatment of metastatic cancer. We intensively reviewed applications of NPs in fluorescent imaging, PET scanning, MRI, and photoacoustic imaging to detect metastasis in various cancer models. The use of targeted NPs for cancer ablation in conjunction with chemotherapy, photothermal treatment, immuno therapy, and combination therapy is thoroughly discussed. The current review also highlights the research opportunities and challenges of leveraging engineering technologies with cancer cell biology and pharmacology to fabricate nanoscience-based tools for treating metastases.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia; Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, 35712, Egypt
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Acid-Sphingomyelinase Triggered Fluorescently Labeled Sphingomyelin Containing Liposomes in Tumor Diagnosis after Radiation-Induced Stress. Int J Mol Sci 2021; 22:ijms22083864. [PMID: 33917976 PMCID: PMC8068344 DOI: 10.3390/ijms22083864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
In liposomal delivery, a big question is how to release the loaded material into the correct place. Here, we will test the targeting and release abilities of our sphingomyelin-consisting liposome. A change in release parameters can be observed when sphingomyelin-containing liposome is treated with sphingomyelinase enzyme. Sphingomyelinase is known to be endogenously released from the different cells in stress situations. We assume the effective enzyme treatment will weaken the liposome making it also leakier. To test the release abilities of the SM-liposome, we developed several fluorescence-based experiments. In in vitro studies, we used molecular quenching to study the sphingomyelinase enzyme-based release from the liposomes. We could show that the enzyme treatment releases loaded fluorescent markers from sphingomyelin-containing liposomes. Moreover, the release correlated with used enzymatic activities. We studied whether the stress-related enzyme expression is increased if the cells are treated with radiation as a stress inducer. It appeared that the radiation caused increased enzymatic activity. We studied our liposomes’ biodistribution in the animal tumor model when the tumor was under radiation stress. Increased targeting of the fluorescent marker loaded to our liposomes could be found on the site of cancer. The liposomal targeting in vivo could be improved by radiation. Based on our studies, we propose sphingomyelin-containing liposomes can be used as a controlled release system sensitive to cell stress.
Collapse
|
3
|
Peñate Medina T, Gerle M, Humbert J, Chu H, Köpnick AL, Barkmann R, Garamus VM, Sanz B, Purcz N, Will O, Appold L, Damm T, Suojanen J, Arnold P, Lucius R, Willumeit-Römer R, Açil Y, Wiltfang J, Goya GF, Glüer CC, Peñate Medina O. Lipid-Iron Nanoparticle with a Cell Stress Release Mechanism Combined with a Local Alternating Magnetic Field Enables Site-Activated Drug Release. Cancers (Basel) 2020; 12:cancers12123767. [PMID: 33327621 PMCID: PMC7765112 DOI: 10.3390/cancers12123767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Most available cancer chemotherapies are based on systemically administered small organic molecules, and only a tiny fraction of the drug reaches the disease site. The approach causes significant side effects and limits the outcome of the therapy. Targeted drug delivery provides an alternative to improve the situation. However, due to the poor release characteristics of the delivery systems, limitations remain. This report presents a new approach to address the challenges using two fundamentally different mechanisms to trigger the release from the liposomal carrier. We use an endogenous disease marker, an enzyme, combined with an externally applied magnetic field, to open the delivery system at the correct time only in the disease site. This site-activated release system is a novel two-switch nanomachine that can be regulated by a cell stress-induced enzyme at the cellular level and be remotely controlled using an applied magnetic field. We tested the concept using sphingomyelin-containing liposomes encapsulated with indocyanine green, fluorescent marker, or the anticancer drug cisplatin. We engineered the liposomes by adding paramagnetic beads to act as a receiver of outside magnetic energy. The developed multifunctional liposomes were characterized in vitro in leakage studies and cell internalization studies. The release system was further studied in vivo in imaging and therapy trials using a squamous cell carcinoma tumor in the mouse as a disease model. In vitro studies showed an increased release of loaded material when stress-related enzyme and magnetic field was applied to the carrier liposomes. The theranostic liposomes were found in tumors, and the improved therapeutic effect was shown in the survival studies.
Collapse
Affiliation(s)
- Tuula Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, 24105 Kiel, Germany;
| | - Mirko Gerle
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
| | - Jana Humbert
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Hanwen Chu
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| | - Anna-Lena Köpnick
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, 24105 Kiel, Germany;
| | - Reinhard Barkmann
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Vasil M. Garamus
- Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max Planck Straße 1, 21502 Geesthacht, Germany; (V.M.G.); (R.W.-R.)
| | - Beatriz Sanz
- Institute of Nanoscience of Aragon (INA) and Condensed Matter Physics Dept., University of Zaragoza, C.P. 50.018 Zaragoza, Spain; (B.S.); (G.F.G.)
| | - Nicolai Purcz
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
| | - Olga Will
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Lia Appold
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, 24105 Kiel, Germany;
| | - Timo Damm
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Juho Suojanen
- Cleft Palate and Craniofacial Center, Department of Plastic Surgery, Helsinki University Hospital, 00029 HUS Helsinki, Finland;
- Päijät-Häme Joint Authority for Health and Wellbeing, Department of Oral and Maxillo-Facial Surgery, 15850 Lahti, Finland
| | - Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University Kiel, 24105 Kiel, Germany or (P.A.); (R.L.)
| | - Ralph Lucius
- Anatomical Institute, Christian-Albrechts-University Kiel, 24105 Kiel, Germany or (P.A.); (R.L.)
| | - Regina Willumeit-Römer
- Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max Planck Straße 1, 21502 Geesthacht, Germany; (V.M.G.); (R.W.-R.)
| | - Yahya Açil
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
| | - Joerg Wiltfang
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
| | - Gerardo F. Goya
- Institute of Nanoscience of Aragon (INA) and Condensed Matter Physics Dept., University of Zaragoza, C.P. 50.018 Zaragoza, Spain; (B.S.); (G.F.G.)
| | - Claus C. Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Oula Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, 24105 Kiel, Germany;
- Correspondence: ; Tel.: +491605559588
| |
Collapse
|
4
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Abstract
Ceramides are sphingolipids containing a sphingosine or a related base, to which a fatty acid is linked through an amide bond. When incorporated into a lipid bilayer, ceramides exhibit a number of properties not shared by almost any other membrane lipid: Ceramides ( a) are extremely hydrophobic and thus cannot exist in suspension in aqueous media; ( b) increase the molecular order (rigidity) of phospholipids in membranes; ( c) give rise to lateral phase separation and domain formation in phospholipid bilayers; ( d) possess a marked intrinsic negative curvature that facilitates formation of inverted hexagonal phases; ( e) make bilayers and cell membranes permeable to small and large (i.e., protein-size) solutes; and ( f) promote transmembrane (flip-flop) lipid motion. Unfortunately, there is hardly any link between the physical studies reviewed here and the mass of biological and clinical studies on the effects of ceramides in health and disease.
Collapse
Affiliation(s)
- Alicia Alonso
- Instituto Biofisika [University of the Basque Country and Spanish National Research Council (CSIC)], 48940 Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain;,
| | - Félix M. Goñi
- Instituto Biofisika [University of the Basque Country and Spanish National Research Council (CSIC)], 48940 Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain;,
| |
Collapse
|
6
|
Sung K, Ferrari LF, Yang W, Chung C, Zhao X, Gu Y, Lin S, Zhang K, Cui B, Pearn ML, Maloney MT, Mobley WC, Levine JD, Wu C. Swedish Nerve Growth Factor Mutation (NGF R100W) Defines a Role for TrkA and p75 NTR in Nociception. J Neurosci 2018; 38:3394-3413. [PMID: 29483280 PMCID: PMC5895035 DOI: 10.1523/jneurosci.1686-17.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Nerve growth factor (NGF) exerts multiple functions on target neurons throughout development. The recent discovery of a point mutation leading to a change from arginine to tryptophan at residue 100 in the mature NGFβ sequence (NGFR100W) in patients with hereditary sensory and autonomic neuropathy type V (HSAN V) made it possible to distinguish the signaling mechanisms that lead to two functionally different outcomes of NGF: trophic versus nociceptive. We performed extensive biochemical, cellular, and live-imaging experiments to examine the binding and signaling properties of NGFR100W Our results show that, similar to the wild-type NGF (wtNGF), the naturally occurring NGFR100W mutant was capable of binding to and activating the TrkA receptor and its downstream signaling pathways to support neuronal survival and differentiation. However, NGFR100W failed to bind and stimulate the 75 kDa neurotrophic factor receptor (p75NTR)-mediated signaling cascades (i.e., the RhoA-Cofilin pathway). Intraplantar injection of NGFR100W into adult rats induced neither TrkA-mediated thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia based on agonism for TrkA signaling. Together, our studies provide evidence that NGFR100W retains trophic support capability through TrkA and one aspect of its nociceptive signaling, but fails to engage p75NTR signaling pathways. Our findings suggest that wtNGF acts via TrkA to regulate the delayed priming of nociceptive responses. The integration of both TrkA and p75NTR signaling thus appears to regulate neuroplastic effects of NGF in peripheral nociception.SIGNIFICANCE STATEMENT In the present study, we characterized the naturally occurring nerve growth factor NGFR100W mutant that is associated with hereditary sensory and autonomic neuropathy type V. We have demonstrated for the first time that NGFR100W retains trophic support capability through TrkA, but fails to engage p75NTR signaling pathways. Furthermore, after intraplantar injection into adult rats, NGFR100W induced neither thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia. We have also provided evidence that the integration of both TrkA- and p75NTR-mediated signaling appears to regulate neuroplastic effects of NGF in peripheral nociception. Our study with NGFR100W suggests that it is possible to uncouple trophic effect from nociceptive function, both induced by wild-type NGF.
Collapse
Affiliation(s)
| | - Luiz F Ferrari
- Department of Oral Surgery, University of California San Francisco, San Francisco, California 94143
| | - Wanlin Yang
- Department of Neurosciences
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200025
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, South Korea
| | | | - Yingli Gu
- Department of Neurosciences
- Department of Neurology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China 150001
| | - Suzhen Lin
- Department of Neurosciences
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200025
| | - Kai Zhang
- Department of Chemistry
- Department of Biochemistry, Neuroscience Program, Center for Biophysics and Quantitative Biology, Chemistry-Biology Interface Training Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | | | - Matthew L Pearn
- Department of Anesthesiology, University of California San Diego, School of Medicine, La Jolla, California 92093
- V.A. San Diego Healthcare System, San Diego, California 92161
| | - Michael T Maloney
- Department of Neurosciences, Stanford University, Stanford, California 94305
| | | | - Jon D Levine
- Department of Oral Surgery, University of California San Francisco, San Francisco, California 94143
| | - Chengbiao Wu
- Department of Neurosciences,
- V.A. San Diego Healthcare System, San Diego, California 92161
| |
Collapse
|
7
|
Doroudgar M, Lafleur M. Ceramide-C16 Is a Versatile Modulator of Phosphatidylethanolamine Polymorphism. Biophys J 2017; 112:2357-2366. [PMID: 28591608 DOI: 10.1016/j.bpj.2017.04.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022] Open
Abstract
Ceramide-C16 (CerC16) is a sphingolipid associated with several diseases like diabetes, obesity, Parkinson disease, and certain types of cancers. As a consequence, research efforts are devoted to identify the impact of CerC16 on the behavior of membranes, and to understand how it is involved in these diseases. In this work, we investigated the impacts of CerC16 (up to 20 mol %) on the lipid polymorphism of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), using differential scanning calorimetry, and sequential 2H and 31P solid-state nuclear magnetic resonance spectroscopy. A partial phase diagram is proposed. The results indicate that the presence of CerC16 leads to an upshift of the temperature of the gel-to-liquid crystalline (Lβ - Lα) phase transition, leading to a large Lβ/Lα phase coexistence region where gel-phase domains contain ∼35 mol % CerC16. It also leads to a downshift of the temperature of the lamellar-to-inverted hexagonal (L - HII) phase transition of POPE. The opposite influence on the two-phase transitions of POPE brings a three-phase coexistence line when the two transitions overlap. The resulting HII phase can be ceramide enriched, coexisting with a Lα phase, or ceramide depleted, coexisting with a Lβ phase, depending on the CerC16 proportions. The uncommon capability of CerC16 to modulate the membrane fluidity, its curvature propensity, and the membrane interface properties highlights its potential as a versatile messenger in cell membrane events.
Collapse
Affiliation(s)
- Mahmoudreza Doroudgar
- Department of Chemistry, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Patra SK, Sengupta D, Deb M, Kar S, Kausar C. Interaction of phospholipase C with liposome: A conformation transition of the enzyme is critical and specific to liposome composition for burst hydrolysis and fusion in concert. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:647-654. [PMID: 27788468 DOI: 10.1016/j.saa.2016.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 10/11/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
Phospholipase C (PLC)1 is known to help the pathogen B. cereus entry to the host cell and human PLC is over expressed in multiple cancers. Knowledge of dynamic activity of the enzyme PLC while in action on membrane lipids is essential and helpful to drug design and delivery. In view of this, interactions of PLC with liposome of various lipid compositions have been visualized by testing enzyme activity and microenvironments around the intrinsic fluorophores of the enzyme. Overall change of the protein's conformation has been monitored by fluorescence spectroscopy and circular dichroism (CD). Liposome aggregation and fusion were predicted by increase in turbidity and vesicle size. PLC in solution has high fluorescence and exhibit appreciable shift in its emission maxima, upon gradual change in excitation wavelength towards the red edge of the absorption band. REES fluorescence studies indicated that certain Trp fluorophores of inactive PLC are in motionally restricted compact/rigid environments in solution conformation. PLC fluorescence decreased in association with liposome and Trps loosed rigidity where liposome aggregation and fusion occurred. We argue that the structural flexibility is the cause of decrease of fluorescence, mostly to gain optimum conformation for maximum activity of the enzyme PLC. Further studies deciphered that the enzyme PLC undergoes change of conformation when mixed to LUVs prepared with specific lipids. CD data at the far-UV and near-UV regions of PLC in solution are in excellent agreement with the previous reports. CD analyses of PLC with LUVs, showed significant reduction of α-helices, increase of β-sheets; and confirmed dramatic change of orientations of Trps. In case of liposome composed of lipid raft like composition, the enzyme binds very fast, hydrolyze PC with higher rate, exhibit highest structural flexibility and promote vesicle fusion. These data strongly suggest marked differences in conformation transition induced PLC activation and liposome fusion on the lipid composition.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India.
| | - Dipta Sengupta
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India
| | - Moonmoon Deb
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India
| | - Swayamsiddha Kar
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India
| | - Chahat Kausar
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India
| |
Collapse
|
9
|
Barui S, Saha S, Yakati V, Chaudhuri A. Systemic Codelivery of a Homoserine Derived Ceramide Analogue and Curcumin to Tumor Vasculature Inhibits Mouse Tumor Growth. Mol Pharm 2016; 13:404-19. [DOI: 10.1021/acs.molpharmaceut.5b00644] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sugata Barui
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India
| | - Soumen Saha
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India
- Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, India
| | - Venu Yakati
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India
- Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, India
| | - Arabinda Chaudhuri
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India
- Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, India
| |
Collapse
|
10
|
Lete MG, Sot J, Gil D, Valle M, Medina M, Goñi FM, Alonso A. Histones cause aggregation and fusion of lipid vesicles containing phosphatidylinositol-4-phosphate. Biophys J 2015; 108:863-871. [PMID: 25692591 DOI: 10.1016/j.bpj.2014.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
In a previous article, we demonstrated that histones (H1 or histone octamers) interact with negatively charged bilayers and induce extensive aggregation of vesicles containing phosphatidylinositol-4-phosphate (PIP) and, to a lesser extent, vesicles containing phosphatidylinositol (PI). Here, we found that vesicles containing PIP, but not those containing PI, can undergo fusion induced by histones. Fusion was demonstrated through the observation of intervesicular mixing of total lipids and inner monolayer lipids, and by ultrastructural and confocal microscopy studies. Moreover, in both PI- and PIP-containing vesicles, histones caused permeabilization and release of vesicular aqueous contents, but the leakage mechanism was different (all-or-none for PI and graded release for PIP vesicles). These results indicate that histones could play a role in the remodeling of the nuclear envelope that takes place during the mitotic cycle.
Collapse
Affiliation(s)
- Marta G Lete
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Jesus Sot
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - David Gil
- Structural Biology Unit, Center for Cooperative Research in Biosciences, CIC bioGUNE, Derio, Spain
| | - Mikel Valle
- Structural Biology Unit, Center for Cooperative Research in Biosciences, CIC bioGUNE, Derio, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Unidad Asociada BIFI-IQFR, Universidad de Zaragoza, Zaragoza, Spain
| | - Felix M Goñi
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Alicia Alonso
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain.
| |
Collapse
|
11
|
Castro BM, Prieto M, Silva LC. Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res 2014; 54:53-67. [PMID: 24513486 DOI: 10.1016/j.plipres.2014.01.004] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
Ceramides are involved in a variety of cellular processes and in disease. Their biological functions are thought to depend on ceramides' unique biophysical properties, which promote strong alterations of cell membrane properties and consequent triggering of signaling events. Over the last decades, efforts were made to understand the impact of ceramide on membrane biophysical features. Several studies, performed in a multitude of membrane models, address ceramides' specific interactions, the effect of their acyl chain structure and the influence of membrane lipid composition and properties on ceramide biophysical outcome. In this review, a rationale for the multiple and complex changes promoted by ceramide is provided, highlighting, on a comprehensive and critical manner, the interactions between ceramides and specific lipids and/or lipid phases. Focus is also given to the interplay between ceramide and cholesterol, particularly in lipid raft-mimicking mixtures, an issue of intense debate due to the urgent need to understand the biophysical impact of ceramide formation in models resembling the cell membrane. The implications of ceramide-induced biophysical changes on lipid-protein interactions and cell signaling are also discussed, together with the emerging evidence for the existence of ceramide-gel like domains in cellular membranes.
Collapse
Affiliation(s)
- Bruno M Castro
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Liana C Silva
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
12
|
Jiménez-Rojo N, García-Arribas AB, Sot J, Alonso A, Goñi FM. Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: A glimpse into sphingolipid complexity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:456-64. [DOI: 10.1016/j.bbamem.2013.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 12/15/2022]
|
13
|
Ansar M, Serrano D, Papademetriou I, Bhowmick TK, Muro S. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting. ACS NANO 2013; 7:10597-10611. [PMID: 24237309 PMCID: PMC3901850 DOI: 10.1021/nn404719c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.
Collapse
Affiliation(s)
- Maria Ansar
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD
| | - Daniel Serrano
- Department of Cell Biology & Molecular Genetics and Biological Sciences Graduate Program, University of Maryland, College Park, MD
| | - Iason Papademetriou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Tridib Kumar Bhowmick
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| |
Collapse
|
14
|
Peter Slotte J. Molecular properties of various structurally defined sphingomyelins -- correlation of structure with function. Prog Lipid Res 2013; 52:206-19. [PMID: 23295259 DOI: 10.1016/j.plipres.2012.12.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 01/10/2023]
Abstract
Sphingomyelins are important phospholipids in plasma membranes of most cells. Because of their dominantly saturated nature, they affect the lateral structure of membranes, and contribute to the regulation of cholesterol distribution within membranes, and in cells. However, the abundance of molecular species present in cells also implies that sphingomyelins have other, more specific functions. Many of these functions are currently unknown, but are under extensive study. Mostly model membrane studies have shown that sphingomyelins (and other sphingolipids), in contrast to glycerophospholipids, have important hydrogen bonding properties which in several important ways confer specific functional properties to this abundant class of membrane phospholipids. The often very asymmetric nature of sphingomyelins, arising from mismatch in length between the long chain base and N-acyl chains, also impose specific properties (e.g., interdigitation) to sphingomyelins not seen with glycerophospholipids. In this review, the latest sphingomyelin literature will be scrutinized, and an effort will be made to correlate the molecular structure of sphingomyelin with functional properties. In particular, the effects of head group properties, interfacial hydrogen bonding, long chain base hydroxylation, N-acyl chain hydroxylation, and N-acyl chain methyl-branching will be discussed.
Collapse
Affiliation(s)
- J Peter Slotte
- Biochemistry, Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland.
| |
Collapse
|
15
|
Goñi FM, Montes LR, Alonso A. Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity. Prog Lipid Res 2012; 51:238-66. [DOI: 10.1016/j.plipres.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/30/2022]
|
16
|
|
17
|
Larijani B, Poccia DL. Effects of Phosphoinositides and Their Derivatives on Membrane Morphology and Function. Curr Top Microbiol Immunol 2012; 362:99-110. [DOI: 10.1007/978-94-007-5025-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Zhu G, Mock JN, Aljuffali I, Cummings BS, Arnold RD. Secretory phospholipase A₂ responsive liposomes. J Pharm Sci 2011; 100:3146-3159. [PMID: 21455978 DOI: 10.1002/jps.22530] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/07/2011] [Accepted: 02/08/2011] [Indexed: 11/06/2022]
Abstract
Secretory phospholipase A(2) (sPLA(2)) expression is increased in several cancers and has been shown to trigger release from some lipid carriers. This study used electrospray ionization mass spectrometry (ESI-MS) and release of 6-carboxyfluorescein (6-CF) to determine the effects of sPLA(2) on various liposome formulations. Different combinations of zwitterionic [1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, 1,2-distearoyl-sn-glycero-3-phosphatidylcholine, and 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE)] and anionic [1,2-distearoyl-sn-glycero-3-phosphatidic acid, 1,2-distearoyl-sn-glycero-3-phosphatidylglycerol (DSPG), 1,2-distearoyl-sn-glycero-3-phosphatidylserine, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol) 2000 (DSPE-PEG)] phospholipids were examined. DSPG and DSPE were most susceptible to sPLA(2)-mediated degradation compared with other phospholipids. Increased 6-CF release was observed after inclusion of 10 mol % DSPE and anionic lipids into different liposome formulations. Group IIa sPLA(2)-mediated 6-CF release was less than Group III and relatively insensitive to cholesterol (Chol), whereas Chol reduced sPLA(2)-mediated release. Inclusion of DSPE-PEG increased sPLA(2)-mediated 6-CF release, whereas serum reduced lipid degradation and 6-CF release significantly. These data demonstrate that ESI-MS and 6-CF release were useful in determining the selectivity of sPLA(2) and release from liposomes, that differences in the activity of different sPLA(2) isoforms exist, and that DSPE-PEG enhanced sPLA(2)-mediated release of liposomal constituents. These findings will aid in the selection of lipids and optimization of the kinetics of drug release for the treatment of cancers and diseases of inflammation in which sPLA(2) expression is increased.
Collapse
Affiliation(s)
- Guodong Zhu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| | - Jason N Mock
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| | - Ibrahim Aljuffali
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602; King Saud University, Riyadh, Saudi Arabia
| | - Brian S Cummings
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| | - Robert D Arnold
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
19
|
Ibarguren M, López DJ, Montes LR, Sot J, Vasil AI, Vasil ML, Goñi FM, Alonso A. Imaging the early stages of phospholipase C/sphingomyelinase activity on vesicles containing coexisting ordered-disordered and gel-fluid domains. J Lipid Res 2011; 52:635-45. [PMID: 21252263 DOI: 10.1194/jlr.m012591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding and early stages of activity of a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa on giant unilamellar vesicles (GUV) have been monitored using fluorescence confocal microscopy. Both the lipids and the enzyme were labeled with specific fluorescent markers. GUV consisted of a mixture of phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, and cholesterol in equimolar ratios, to which 5-10 mol% of the enzyme end-product ceramide and/or diacylglycerol were occasionally added. Morphological examination of the GUV in the presence of enzyme reveals that, although the enzyme diffuses rapidly throughout the observation chamber, detectable enzyme binding appears to be a slow, random process, with new bound-enzyme-containing vesicles appearing for several minutes. Enzyme binding to the vesicles appears to be a cooperative process. After the initial cluster of bound enzyme is detected, further binding and catalytic activity follow rapidly. After the activity has started, the enzyme is not released by repeated washing, suggesting a "scooting" mechanism for the hydrolytic activity. The enzyme preferentially binds the more disordered domains, and, in most cases, the catalytic activity causes the disordering of the other domains. Simultaneously, peanut- or figure-eight-shaped vesicles containing two separate lipid domains become spherical. At a further stage of lipid hydrolysis, lipid aggregates are formed and vesicles disintegrate.
Collapse
Affiliation(s)
- Maitane Ibarguren
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
López DJ, Collado MI, Ibarguren M, Vasil AI, Vasil ML, Goñi FM, Alonso A. Multiple phospholipid substrates of phospholipase C/sphingomyelinase HR2 from Pseudomonas aeruginosa. Chem Phys Lipids 2011; 164:78-82. [DOI: 10.1016/j.chemphyslip.2010.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 01/08/2023]
|
21
|
Urbina P, Flores-Díaz M, Alape-Girón A, Alonso A, Goñi FM. Effects of bilayer composition and physical properties on the phospholipase C and sphingomyelinase activities of Clostridium perfringens α-toxin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:279-86. [PMID: 20727345 DOI: 10.1016/j.bbamem.2010.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/30/2010] [Accepted: 08/11/2010] [Indexed: 01/15/2023]
Abstract
α-Toxin, a major determinant of Clostridium perfringens toxicity, exhibits both phospholipase C and sphingomyelinase activities. Our studies with large unilamellar vesicles containing a variety of lipid mixtures reveal that both lipase activities are enhanced by cholesterol and by lipids with an intrinsic negative curvature, e.g. phosphatidylethanolamine. Conversely lysophospholipids, that possess a positive intrinsic curvature, inhibit the α-toxin lipase activities. Phospholipids with a net negative charge do not exert any major effect on the lipase activities, and the same lack of effect is seen with the lysosomal lipid bis (monoacylglycero) phosphate. Ganglioside GT1b has a clear inhibitory effect, while the monosialic ganglioside GM3 is virtually ineffectual even when incorporated at 6mol % in the vesicles. The length of the lag periods appears to be inversely related to the maximum (post-lag) enzyme activities. Moreover, and particularly in the presence of cholesterol, lag times increase with pH. Both lipase activities are sensitive to vesicle size, but in opposite ways: while phospholipase C is higher with larger vesicles, sphingomyelinase activity is lower. The combination of our results with previous structural studies suggests that α-toxin lipase activities have distinct, but partially overlapping and interacting active sites.
Collapse
Affiliation(s)
- Patricia Urbina
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
22
|
Sohn JS, Tseng YH, Li S, Voigt A, Lowengrub JS. Dynamics of multicomponent vesicles in a viscous fluid. JOURNAL OF COMPUTATIONAL PHYSICS 2010; 229:119-144. [PMID: 20808718 PMCID: PMC2929801 DOI: 10.1016/j.jcp.2009.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We develop and investigate numerically a thermodynamically consistent model of two-dimensional multicomponent vesicles in an incompressible viscous fluid. The model is derived using an energy variation approach that accounts for different lipid surface phases, the excess energy (line energy) associated with surface phase domain boundaries, bending energy, spontaneous curvature, local inextensibility and fluid flow via the Stokes equations. The equations are high-order (fourth order) nonlinear and nonlocal due to incompressibil-ity of the fluid and the local inextensibility of the vesicle membrane. To solve the equations numerically, we develop a nonstiff, pseudo-spectral boundary integral method that relies on an analysis of the equations at small scales. The algorithm is closely related to that developed very recently by Veerapaneni et al. [81] for homogeneous vesicles although we use a different and more efficient time stepping algorithm and a reformulation of the inextensibility equation. We present simulations of multicomponent vesicles in an initially quiescent fluid and investigate the effect of varying the average surface concentration of an initially unstable mixture of lipid phases. The phases then redistribute and alter the morphology of the vesicle and its dynamics. When an applied shear is introduced, an initially elliptical vesicle tank-treads and attains a steady shape and surface phase distribution. A sufficiently elongated vesicle tumbles and the presence of different surface phases with different bending stiffnesses and spontaneous curvatures yields a complex evolution of the vesicle morphology as the vesicle bends in regions where the bending stiffness and spontaneous curvature are small.
Collapse
Affiliation(s)
- Jin Sun Sohn
- Department of Mathematics, University of California, Irvine, USA
| | | | | | | | | |
Collapse
|
23
|
Transbilayer (flip-flop
) lipid motion and lipid scrambling in membranes. FEBS Lett 2009; 584:1779-86. [DOI: 10.1016/j.febslet.2009.12.049] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/18/2009] [Indexed: 12/24/2022]
|
24
|
García-Pacios M, Collado MI, Busto JV, Sot J, Alonso A, Arrondo JLR, Goñi FM. Sphingosine-1-phosphate as an amphipathic metabolite: its properties in aqueous and membrane environments. Biophys J 2009; 97:1398-407. [PMID: 19720028 DOI: 10.1016/j.bpj.2009.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/01/2009] [Accepted: 07/01/2009] [Indexed: 12/22/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is currently considered to be an important signaling molecule in cell metabolism. We studied a number of relevant biophysical properties of S1P, using mainly Langmuir balance, differential scanning calorimetry, (31)P-NMR, and infrared (IR) spectroscopy. We found that, at variance with other, structurally related sphingolipids that are very hydrophobic, S1P may occur in either an aqueous dispersion or a bilayer environment. S1P behaves in aqueous media as a soluble amphiphile, with a critical micelle concentration of approximately 12 muM. Micelles give rise to larger aggregates (in the micrometer size range) at and above a 1 mM concentration. The aggregates display a thermotropic transition at approximately 60 degrees C, presumably due to the formation of smaller structures at the higher temperatures. S1P can also be studied in mixtures with phospholipids. Studies with dielaidoylphosphatidylethanolamine (DEPE) or deuterated dipalmitoylphosphatidylcholine (DPPC) show that S1P modifies the gel-fluid transition of the glycerophospholipids, shifting it to lower temperatures and decreasing the transition enthalpy. Low (<10 mol %) concentrations of S1P also have a clear effect on the lamellar-to-inverted hexagonal transition of DEPE, i.e., they increase the transition temperature and stabilize the lamellar versus the inverted hexagonal phase. IR spectroscopy of natural S1P mixed with deuterated DPPC allows the independent observation of transitions in each molecule, and demonstrates the existence of molecular interactions between S1P and the phospholipid at the polar headgroup level that lead to increased hydration of the carbonyl group. The combination of calorimetric, IR, and NMR data allowed the construction of a temperature-composition diagram ("partial phase diagram") to facilitate a comparative study of the properties of S1P and other related lipids (ceramide and sphingosine) in membranes. In conclusion, two important differences between S1P and ceramide are that S1P stabilizes the lipid bilayer structure, and physiologically relevant concentrations of S1P can exist dispersed in the cytosol.
Collapse
|
25
|
Ceramide acyl chain length markedly influences miscibility with palmitoyl sphingomyelin in bilayer membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:1117-28. [DOI: 10.1007/s00249-009-0562-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/21/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
|
26
|
End-products diacylglycerol and ceramide modulate membrane fusion induced by a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:59-64. [PMID: 19891956 DOI: 10.1016/j.bbamem.2009.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 01/17/2023]
Abstract
A phospholipase C/sphingomyelinase from Pseudomonas aeruginosa has been assayed on vesicles containing phosphatidylcholine, sphingomyelin, phosphatidylethanolamine and cholesterol at equimolar ratios. The enzyme activity modifies the bilayer chemical composition giving rise to diacylglycerol (DAG) and ceramide (Cer). Assays of enzyme activity, enzyme-induced aggregation and fusion have been performed. Ultrastructural evidence of vesicle fusion at various stages of the process is presented, based on cryo-EM observations. The two enzyme lipidic end-products, DAG and Cer, have opposite effects on the bilayer physical properties; the former abolishes lateral phase separation, while the latter generates a new gel phase [Sot et al., FEBS Lett. 582, 3230-3236 (2008)]. Addition of either DAG, or Cer, or both to the liposome mixture causes an increase in enzyme binding to the bilayers and a decrease in lag time of hydrolysis. These two lipids also have different effects on the enzyme activity, DAG enhancing enzyme-induced vesicle aggregation and fusion, Cer inhibiting the hydrolytic activity. These effects are explained in terms of the different physical properties of the two lipids. DAG increases bilayers fluidity and decreases lateral separation of lipids, thus increasing enzyme activity and substrate accessibility to the enzyme. Cer has the opposite effect mainly because of its tendency to sequester sphingomyelin, an enzyme substrate, into rigid domains, presumably less accessible to the enzyme.
Collapse
|
27
|
Husted C, Dhondup L. Tibetan Medical Interpretation of Myelin Lipids and Multiple Sclerosis. Ann N Y Acad Sci 2009; 1172:278-96. [DOI: 10.1196/annals.1393.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Lowengrub JS, Rätz A, Voigt A. Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:031926. [PMID: 19391990 PMCID: PMC3037283 DOI: 10.1103/physreve.79.031926] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Indexed: 05/14/2023]
Abstract
We develop a thermodynamically consistent phase-field model to simulate the dynamics of multicomponent vesicles. The model accounts for bending stiffness, spontaneous curvature, excess (surface) energy, and a line tension between the coexisting surface phases. Our approach is similar to that recently used by Wang and Du [J. Math. Biol. 56, 347 (2008)] with a key difference. Here, we concentrate on the dynamic evolution and solve the surface mass conservation equation explicitly; this equation was not considered by Wang and Du. The resulting fourth-order strongly coupled system of nonlinear nonlocal equations are solved numerically using an adaptive finite element numerical method. Although the system is valid for three dimensions, we limit our studies here to two dimensions where the vesicle is a curve. Differences between the spontaneous curvatures and the bending rigidities of the surface phases are found numerically to lead to the formation of buds, asymmetric vesicle shapes and vesicle fission even in two dimensions. In addition, simulations of configurations far from equilibrium indicate that phase separation via spinodal decomposition and coarsening not only affect the vesicle shape but also that the vesicle shape affects the phase separation dynamics, especially the coarsening and may lead to lower energy states than might be achieved by evolving initially phase-separated configurations.
Collapse
Affiliation(s)
- John S Lowengrub
- Department of Mathematics, University of California, Irvine, California 92697-3875, USA.
| | | | | |
Collapse
|
29
|
Abstract
Membrane fusion underlies many cellular events, including secretion, exocytosis, endocytosis, organelle reconstitution, transport from endoplasmic reticulum to Golgi and nuclear envelope formation. A large number of investigations into membrane fusion indicate various roles for individual members of the phosphoinositide class of membrane lipids. We first review the phosphoinositides as membrane recognition sites and their regulatory functions in membrane fusion. We then consider how modulation of phosphoinositides and their products may affect the structure and dynamics of natural membranes facilitating fusion. These diverse roles underscore the importance of these phospholipids in the fusion of biological membranes.
Collapse
|
30
|
Abstract
Nanoparticles show their promise for improving the efficacy of drugs with a narrow therapeutic window or low bioavailability, such as anticancer drugs and nucleic acid-based drugs. The pharmacokinetics (PK) and tissue distribution of the nanoparticles largely define their therapeutic effect and toxicity. Chemical and physical properties of the nanoparticles, including size, surface charge, and surface chemistry, are important factors that determine their PK and biodistribution. The intracellular fate of the nanoparticles after cellular internalization that affects the drug bioavailability is also discussed. Strategies for overcoming barriers for intracellular delivery and drug release are presented. Finally, future directions for improving the PK of nanoparticles and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Shyh-Dar Li
- School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
31
|
BARBOSA-BARROS L, DE LA MAZA A, WALTHER P, ESTELRICH J, LÓPEZ O. Morphological effects of ceramide on DMPC/DHPC bicelles. J Microsc 2008; 230:16-26. [DOI: 10.1111/j.1365-2818.2008.01950.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Johnny S, Liana, C. S, Anthony, H. F. Ceramide-containing membranes: the interface between biophysics and biology. TRENDS GLYCOSCI GLYC 2008. [DOI: 10.4052/tigg.20.297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Tang N, Ong WY, Zhang EM, Chen P, Yeo JF. Differential effects of ceramide species on exocytosis in rat PC12 cells. Exp Brain Res 2007; 183:241-7. [PMID: 17624518 DOI: 10.1007/s00221-007-1036-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
Increases in several ceramide species have been shown by non-targeted lipid profiling (lipidomics) of the rat hippocampus after kainate lesions (Guan et al. FASEB J 20:1152-1161, 2006). This study was carried out to examine possible effects of ceramide species on exocytosis. Significant increase in membrane capacitance in voltage-clamped rat pheochromocytoma (PC12) cells, an indication of exocytosis, was detected immediately after external application of C2, C6, and C18 ceramide. In contrast, no increase in capacitance was found after addition of C16 and C20 ceramide, or DMSO vehicle. The effect of ceramide on exocytosis was dependent on the integrity of lipid rafts. Treatment of cells with the cholesterol binding agent/disruptor of lipid rafts, methyl beta cyclodextrin, prior to addition of C18 ceramide suppressed the increase in capacitance induced by this lipid species. The ability of C2, C6 and C18 ceramide to trigger exocytosis was confirmed using total internal reflection fluorescence microscopy (TIRFM) experiments. External application of these species caused an exponential decrease in the number of subplasmalemmal neuropeptide Y (NPY)-enhanced green fluorescence protein (EGFP) labeled vesicles, indicating exocytosis. Interestingly, C18 is also the ceramide species that showed the greatest increase in the rat hippocampus after kainate excitotoxicity. It is postulated that C18 ceramide might facilitate exocytosis of glutamate from damaged neurons, thus propagating neuronal injury.
Collapse
Affiliation(s)
- Ning Tang
- Department of Oral and Maxillofacial Surgery, National University of Singapore, Singapore, Singapore 119260
| | | | | | | | | |
Collapse
|
34
|
Montes LR, Ibarguren M, Goñi FM, Stonehouse M, Vasil ML, Alonso A. Leakage-free membrane fusion induced by the hydrolytic activity of PlcHR(2), a novel phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2365-72. [PMID: 17560896 DOI: 10.1016/j.bbamem.2007.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/24/2007] [Accepted: 04/26/2007] [Indexed: 11/29/2022]
Abstract
PlcHR(2) is the paradigm member of a novel phospholipase C/phosphatase superfamily, with members in a variety of bacterial species. This paper describes the phospholipase C and sphingomyelinase activities of PlcHR(2) when the substrate is in the form of large unilamellar vesicles, and the subsequent effects of lipid hydrolysis on vesicle and bilayer stability, including vesicle fusion. PlcHR(2) cleaves phosphatidylcholine and sphingomyelin at equal rates, but is inactive on phospholipids that lack choline head groups. Calcium in the millimolar range does not modify in any significant way the hydrolytic activity of PlcHR(2) on choline-containing phospholipids. The catalytic activity of the enzyme induces vesicle fusion, as demonstrated by the concomitant observation of intervesicular total lipid mixing, inner monolayer-lipid mixing, and aqueous contents mixing. No release of vesicular contents is detected under these conditions. The presence of phosphatidylserine in the vesicle composition does not modify significantly PlcHR(2)-induced liposome aggregation, as long as Ca(2+) is present, but completely abolishes fusion, even in the presence of the cation. Each of the various enzyme-induced phenomena have their characteristic latency periods, that increase in the order lipid hydrolysis<vesicle aggregation<total lipid mixing<inner lipid mixing<contents mixing. Concomitant measurements of the threshold diacylglyceride+ceramide concentrations in the bilayer show that late events, e.g. lipid mixing, require a higher concentration of PlcHR(2) products than early ones, e.g. aggregation. When the above results are examined in the context of the membrane effects of other phospholipid phosphocholine hydrolases it can be concluded that aggregation is necessary, but not sufficient for membrane fusion to occur, that diacylglycerol is far more fusogenic than ceramide, and that vesicle membrane permeabilization occurs independently from vesicle fusion.
Collapse
Affiliation(s)
- L-Ruth Montes
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
35
|
López-Montero I, Vélez M, Devaux PF. Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:553-61. [PMID: 17292325 DOI: 10.1016/j.bbamem.2007.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 12/13/2006] [Accepted: 01/02/2007] [Indexed: 11/18/2022]
Abstract
We have investigated the effect of sphingomyelin (SM) to ceramide enzymatic conversion on lipid bilayers using Giant Unilamellar Vesicles (GUVs). Sphingomyelinase was added externally to GUVs containing various proportions of SM. In situ asymmetrical SM conversion to ceramide reduced the area of one leaflet. In the absence of equilibration of all the lipids between the two leaflets, a mismatch between the two monolayers was generated. The tension generated by this mismatch was sufficient to trigger the formation of membrane defects and total vesicle collapse at relatively low percentage of SM ( approximately 5% mol). The formation of nanometric size defects was visualised by AFM in supported bilayers. Vesicle rupture was prevented in two circumstances: (a) in GUVs containing a mixture of l(d) and l(o) domains and (b) in GUVs containing 5% lyso-phosphatidylcholine. In both cases, the accumulation of enough ceramide (at initial SM concentration of 10%) allowed the formation of ceramide-rich domains. The coupling between the two asymmetrical monolayers and the condensing effect produced by the newly formed ceramide generated a tension that could underlie the mechanism through which ceramide formation induces membrane modifications observed during the late stages of apoptosis.
Collapse
Affiliation(s)
- Iván López-Montero
- Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie 75005 Paris, France
| | | | | |
Collapse
|
36
|
Goñi FM, Alonso A. Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1902-21. [PMID: 17070498 DOI: 10.1016/j.bbamem.2006.09.011] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/15/2006] [Accepted: 09/18/2006] [Indexed: 12/16/2022]
Abstract
Some of the simplest sphingolipids, namely sphingosine, ceramide, some closely related molecules (eicosasphingosine, phytosphingosine), and their phosphorylated compounds (sphingosine-1-phosphate, ceramide-1-phosphate), are potent metabolic regulators. Each of these lipids modifies in marked and specific ways the physical properties of the cell membranes, in what can be the basis for some of their physiological actions. This paper reviews the mechanisms by which these sphingolipid signals, sphingosine and ceramide in particular, are able to modify the properties of cell membranes.
Collapse
Affiliation(s)
- Félix M Goñi
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | | |
Collapse
|
37
|
El Ridi R, Tallima H. Equilibrium in lung schistosomula sphingomyelin breakdown and biosynthesis allows very small molecules, but not antibody, to access proteins at the host-parasite interface. J Parasitol 2006; 92:730-7. [PMID: 16995389 DOI: 10.1645/ge-745r1.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The mechanism by which lung-stage schistosomula expose proteins at the host-parasite interface to nutrient, but not antibody, uptake has been obscure. We have found that Schistosoma mansoni and Schistosoma haematobium larvae emerging from host lung at a pH of around 7.5, and fixed with diluted formaldehyde (HCHO), readily bind specific antibodies in indirect membrane immunofluorescence. Data on inhibitors and activators of parasite tegument-bound, magnesium-dependent, neutral sphingomyelinase (nSMase), and sphingomyelin biosynthesis inhibitors revealed that equilibrium in schistosomular sphingomyelin breakdown and biosynthesis prevents antibody binding, yet permits access of small HO-CH2-OH polymers to interact with and cross-link proteins at the host-parasite interface, allowing for their serological visualization.
Collapse
Affiliation(s)
- Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | | |
Collapse
|
38
|
Wang X, Zhao HF, Zhang GJ. Mechanism of cytosol phospholipase C and sphingomyelinase-induced lysosome destabilization. Biochimie 2006; 88:913-22. [PMID: 16580116 DOI: 10.1016/j.biochi.2006.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 02/17/2006] [Indexed: 11/28/2022]
Abstract
Lysosomal disintegration may cause apoptosis, necrosis and some diseases. However, mechanisms for these events are still unclear. In this study, we measured lysosomal beta-hexosaminidase free activity, membrane potential and intralysosomal pH. The results revealed that the cytosolic extracts of rat hepatocytes could increase the lysosomal permeability to both potassium ions and protons, and osmotically destabilize lysosomes via K(+)/H(+) exchange. The effects of cytosol on lysosomes could be completely abolished by D609, which inhibited both phospholipase C and sphingomyelinase, and partly prevented by sphingomyelinase inhibitor Ara-AMP, but not by the inhibitors of PLA(2). Moreover, purified phospholipase C could destabilize the lysosomes while phospholipase A(2) and phospholipase D did not produce such effects. The cytosolic phospholipases hydrolyzed lysosomal membrane phospholipids by 50%, which could be prevented by D609. Disintegration of the cytosol-treated lysosomes biphasically depended on the cytosolic [Ca(2+)]. The cytosol did not disintegrate lysosomes below 100 nM or above 10 muM cytosolic [Ca(2+)], but markedly destabilized lysosomes at about 340 nM [Ca(2+)]. The results suggest that cytosolic phospholipase C and sphingomyelinase may be responsible for the alterations in lysosomal stability by increasing the ion permeability.
Collapse
Affiliation(s)
- Xiang Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
39
|
Sonnino S, Prinetti A, Mauri L, Chigorno V, Tettamanti G. Dynamic and Structural Properties of Sphingolipids as Driving Forces for the Formation of Membrane Domains. Chem Rev 2006; 106:2111-25. [PMID: 16771445 DOI: 10.1021/cr0100446] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandro Sonnino
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090 Segrate (MI), Italy.
| | | | | | | | | |
Collapse
|
40
|
Chiantia S, Kahya N, Ries J, Schwille P. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys J 2006; 90:4500-8. [PMID: 16565041 PMCID: PMC1471841 DOI: 10.1529/biophysj.106.081026] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The sphingolipid ceramides are known to influence lipid lateral organization in biological membranes. In particular, ceramide-induced alterations of microdomains can be involved in several cell functions, ranging from apoptosis to immune response. We used a combined approach of atomic force microscopy, fluorescence correlation spectroscopy, and confocal fluorescence imaging to investigate the effects of ceramides in model membranes of biological relevance. Our results show that physiological quantities of ceramide in sphingomyelin/dioleoylphosphatidylcholine/cholesterol supported bilayers lead to a significant rearrangement of lipid lateral organization. Our experimental setup allowed a simultaneous characterization of both structural and dynamic modification of membrane microdomains, induced by the presence of ceramide. Formation of similar ceramide-enriched domains and, more general, alterations of lipid-lipid interactions can be of crucial importance for the biological function of cell membranes.
Collapse
Affiliation(s)
- Salvatore Chiantia
- Biotechnologisches Zentrum, Dresden University of Technology, Tatzberg, Dresden, Germany
| | | | | | | |
Collapse
|
41
|
Sot J, Aranda FJ, Collado MI, Goñi FM, Alonso A. Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study. Biophys J 2005; 88:3368-80. [PMID: 15695626 PMCID: PMC1305484 DOI: 10.1529/biophysj.104.057851] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effects on dielaidoylphosphatidylethanolamine (DEPE) bilayers of ceramides containing different N-acyl chains have been studied by differential scanning calorimetry small angle x-ray diffraction and (31)P-NMR spectroscopy. N-palmitoyl (Cer16), N-hexanoyl (Cer6), and N-acetyl (Cer2) sphingosines have been used. Both the gel-fluid and the lamellar-inverted hexagonal transitions of DEPE have been examined in the presence of the various ceramides in the 0-25 mol % concentration range. Pure hydrated ceramides exhibit cooperative endothermic order-disorder transitions at 93 degrees C (Cer16), 60 degrees C (Cer6), and 54 degrees C (Cer2). In DEPE bilayers, Cer16 does not mix with the phospholipid in the gel phase, giving rise to high-melting ceramide-rich domains. Cer16 favors the lamellar-hexagonal transition of DEPE, decreasing the transition temperature. Cer2, on the other hand, is soluble in the gel phase of DEPE, decreasing the gel-fluid and increasing the lamellar-hexagonal transition temperatures, thus effectively stabilizing the lamellar fluid phase. In addition, Cer2 was peculiar in that no equilibrium could be reached for the Cer2-DEPE mixture above 60 degrees C, the lamellar-hexagonal transition shifting with time to temperatures beyond the instrumental range. The properties of Cer6 are intermediate between those of the other two, this ceramide decreasing both the gel-fluid and lamellar-hexagonal transition temperatures. Temperature-composition diagrams have been constructed for the mixtures of DEPE with each of the three ceramides. The different behavior of the long- and short-chain ceramides can be rationalized in terms of their different molecular geometries, Cer16 favoring negative curvature in the monolayers, thus inverted phases, and the opposite being true of the micelle-forming Cer2. These differences may be at the origin of the different physiological effects that are sometimes observed for the long- and short-chain ceramides.
Collapse
Affiliation(s)
- Jesús Sot
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
42
|
Andresen TL, Jensen SS, Jørgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 2005; 44:68-97. [PMID: 15748655 DOI: 10.1016/j.plipres.2004.12.001] [Citation(s) in RCA: 400] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tumor specific drug delivery has become increasingly interesting in cancer therapy, as the use of chemotherapeutics is often limited due to severe side effects. Conventional drug delivery systems have shown low efficiency and a continuous search for more advanced drug delivery principles is therefore of great importance. In the first part of this review, we present current strategies in the drug delivery field, focusing on site-specific triggered drug release from liposomes in cancerous tissue. Currently marketed drug delivery systems lack the ability to actively release the carried drug and rely on passive diffusion or slow non-specific degradation of the liposomal carrier. To obtain elevated tumor-to-normal tissue drug ratios, it is important to develop drug delivery strategies where the liposomal carriers are actively degraded specifically in the tumor tissue. Many promising strategies have emerged ranging from externally triggered light- and thermosensitive liposomes to receptor targeted, pH- and enzymatically triggered liposomes relying on an endogenous trigger mechanism in the cancerous tissue. However, even though several of these strategies were introduced three decades ago, none of them have yet led to marketed drugs and are still far from achieving this goal. The most advanced and prospective technologies are probably the prodrug strategies where non-toxic drugs are carried and activated specifically in the malignant tissue by overexpressed enzymes. In the second part of this paper, we review our own work, exploiting secretory phospholipase A2 as a site-specific trigger and prodrug activator in cancer therapy. We present novel prodrug lipids together with biophysical investigations of liposome systems, constituted by these new lipids and demonstrate their degradability by secretory phospholipase A2. We furthermore give examples of the biological performance of the enzymatically degradable liposomes as advanced drug delivery systems.
Collapse
Affiliation(s)
- Thomas L Andresen
- Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Lyngby, Denmark.
| | | | | |
Collapse
|
43
|
Contreras FX, Basañez G, Alonso A, Herrmann A, Goñi FM. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes. Biophys J 2004; 88:348-59. [PMID: 15465865 PMCID: PMC1305011 DOI: 10.1529/biophysj.104.050690] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transbilayer lipid motion in membranes may be important in certain physiological events, such as ceramide signaling. In this study, the transbilayer redistribution of lipids induced either by ceramide addition or by enzymatic ceramide generation at one side of the membrane has been monitored using pyrene-labeled phospholipid analogs. When added in organic solution to preformed liposomes, egg ceramide induced transbilayer lipid motion in a dose-dependent way. Short-chain (C6 and C2) ceramides were less active than egg ceramide, whereas dihydroceramides or dioleoylglycerol were virtually inactive in promoting flip-flop. The same results (either positive or negative) were obtained when ceramides, dihydroceramides, or diacylglycerols were generated in situ through the action of a sphingomyelinase or of a phospholipase C. The phenomenon was dependent on the bilayer lipid composition, being faster in the presence of lipids that promote inverted phase formation, e.g., phosphatidylethanolamine and cholesterol; and, conversely, slower in the presence of lysophosphatidylcholine, which inhibits inverted phase formation. Transbilayer motion was almost undetectable in bilayers composed of pure phosphatidylcholine or pure sphingomyelin. The use of pyrene-phosphatidylserine allowed detection of flip-flop movement induced by egg ceramide in human red blood cell membranes at a rate comparable to that observed in model membranes. The data suggest that when one membrane leaflet becomes enriched in ceramides, they diffuse toward the other leaflet. This is counterbalanced by lipid movement in the opposite direction, so that net mass transfer between monolayers is avoided. These observations may be relevant to the physiological mechanism of transmembrane signaling via ceramides.
Collapse
Affiliation(s)
- F.-Xabier Contreras
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; and Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie/Biophysik, D-10115 Berlin, Germany
| | - Gorka Basañez
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; and Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie/Biophysik, D-10115 Berlin, Germany
| | - Alicia Alonso
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; and Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie/Biophysik, D-10115 Berlin, Germany
| | - Andreas Herrmann
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; and Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie/Biophysik, D-10115 Berlin, Germany
| | - Félix M. Goñi
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; and Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie/Biophysik, D-10115 Berlin, Germany
| |
Collapse
|
44
|
Barlic A, Gutiérrez-Aguirre I, Caaveiro JMM, Cruz A, Ruiz-Argüello MB, Pérez-Gil J, González-Mañas JM. Lipid Phase Coexistence Favors Membrane Insertion of Equinatoxin-II, a Pore-forming Toxin from Actinia equina. J Biol Chem 2004; 279:34209-16. [PMID: 15175339 DOI: 10.1074/jbc.m313817200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Equinatoxin-II is a eukaryotic pore-forming toxin belonging to the family of actinoporins. Its interaction with model membranes is largely modulated by the presence of sphingomyelin. We have used large unilamellar vesicles and lipid monolayers to gain further information about this interaction. The coexistence of gel and liquid-crystal lipid phases in sphingomyelin/phosphatidylcholine mixtures and the coexistence of liquid-ordered and liquid-disordered lipid phases in phosphatidylcholine/cholesterol or sphingomyelin/phosphatidylcholine/cholesterol mixtures favor membrane insertion of equinatoxin-II. Phosphatidylcholine vesicles are not permeabilized by equinatoxin-II. However, the localized accumulation of phospholipase C-generated diacylglycerol creates conditions for toxin activity. By using epifluorescence microscopy of transferred monolayers, it seems that lipid packing defects arising at the interfaces between coexisting lipid phases may function as preferential binding sites for the toxin. The possible implications of such a mechanism in the assembly of a toroidal pore are discussed.
Collapse
Affiliation(s)
- Ariana Barlic
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Contreras FX, Sot J, Ruiz-Argüello MB, Alonso A, Goñi FM. Cholesterol modulation of sphingomyelinase activity at physiological temperatures. Chem Phys Lipids 2004; 130:127-34. [PMID: 15172829 DOI: 10.1016/j.chemphyslip.2004.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 02/16/2004] [Accepted: 02/18/2004] [Indexed: 10/26/2022]
Abstract
Bacillus cereus sphingomyelinase activity was assayed on large unilamellar vesicles composed of sphingomyelin (SM)/cholesterol (Ch) mixtures at varying proportions. Natural (egg) SM was used with a gel-fluid transition temperature at ca. 40 degrees C. When the enzyme was assayed at 37 degrees C, the activity on pure SM was exceedingly low, but a small increase was observed as soon as some Ch was added, and a large enhancement of activity occurred with Ch proportions above 25 mol%. The data were interpreted in terms of sphingomyelinase activity being higher in the cholesterol-induced liquid-ordered phase than in the gel phase. The abrupt increase in activity above 25 mol% Ch would occur as a result of a change in domain connectivity, when the Ch-rich liquid-ordered domains coalesced. In equimolar SM/Ch mixtures, that were in the liquid-ordered state in a wide range of temperatures, sphingomyelinase activity was virtually constant in the 30-70 degrees C range. The results demonstrate that at the mammalian and bird physiological temperatures Ch modulates sphingomyelinase activity, and that this can occur precisely because most SM have a gel-fluid transition temperature above the physiological temperature range. In addition, Ch activation of sphingomyelinase and the strong affinity of Ch for SM allow the rapid, localised and self-contained production of the metabolic signal ceramide in specific microdomains (rafts).
Collapse
Affiliation(s)
- F-X Contreras
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
46
|
Soreghan B, Thomas SN, Yang AJ. Aberrant sphingomyelin/ceramide metabolic-induced neuronal endosomal/lysosomal dysfunction: potential pathological consequences in age-related neurodegeneration. Adv Drug Deliv Rev 2003; 55:1515-24. [PMID: 14597144 DOI: 10.1016/j.addr.2003.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alterations in the trafficking and function of the endocytic pathway have been extensively documented to be one of the earliest pathological changes in sporadic Alzheimer's disease (AD). Although the pathophysiological consequences of these endosomal/lysosomal changes are currently unknown, several recent studies have suggested that such changes in endocytic function are able to cause a redistribution of several lysosomal hydrolases into early endosomes, leading to the overproduction of neurotoxic amyloid peptide. Recently, we and others have demonstrated that abnormal endocytic pathology within post-mitotic neurons can, in part, be attributed to alterations in sphingomyelin/ceramide metabolism, resulting in the intracellular accumulation of ceramide. Once inside the cell, the ability of ceramide to physically alter membrane structure, formation, and fusion, rather than serving solely as a lipid secondary messenger, may severely compromise normal endocytic trafficking. In this review, we will discuss the potential pathological effects of abnormal sphingomyelin/ceramide metabolism on intracellular vesicular transport in relation to both amyloid accumulation in AD and various neurodegenerative diseases associated with lysosomal abnormalities.
Collapse
Affiliation(s)
- Brian Soreghan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
47
|
Contreras FX, Villar AV, Alonso A, Kolesnick RN, Goñi FM. Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes. J Biol Chem 2003; 278:37169-74. [PMID: 12855704 DOI: 10.1074/jbc.m303206200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceramide is known to induce structural rearrangements in membrane bilayers, including the formation of ceramide-rich and -poor domains and the efflux of aqueous solutes. This report describes a novel effect of ceramide, namely the induction of transbilayer lipid movements. This effect was demonstrated in both model (large unilamellar vesicles) and cell (erythrocyte ghost) membranes in which ceramide generation took place in situ through the action of an externally added sphingomyelinase. Two different novel assays were developed to detect transbilayer lipid movement. One of the assays required the preparation of vesicles containing a ganglioside only in the outer monolayer and entrapped neuraminidase. Sphingomyelinase activity induced ganglioside hydrolysis under conditions in which no neuraminidase was released from the vesicles. The second assay involved the preparation of liposomes or erythrocyte ghosts labeled with a fluorescent energy donor in their inner leaflets. Sphingomyelin hydrolysis was accompanied by fluorescence energy transfer to an impermeable acceptor in the outer aqueous medium. Ceramide-induced transbilayer lipid movement is explained in terms of another well known property of ceramide, namely the facilitation of lamellar to non-lamellar lipid-phase transitions. Thus, sphingomyelinase generates ceramide on one side of the membrane; ceramide then induces the transient formation of non-lamellar structural intermediates, which cause the loss of lipid asymmetry in the bilayer, i.e. the transbilayer movement of ceramide together with other lipids. As direct targets for ceramide tend to be intracellular, these observations may be relevant to the mechanism of transmembrane signaling by means of the sphingomyelin pathway.
Collapse
Affiliation(s)
- F-Xabier Contreras
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Universidad del País Vasco, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
48
|
Goñi FM, Villar AV, Nieva JL, Alonso A. Interaction of phospholipases C and sphingomyelinase with liposomes. Methods Enzymol 2003; 372:3-19. [PMID: 14610804 DOI: 10.1016/s0076-6879(03)72001-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Félix M Goñi
- Unidad de Biofisica and Departamento de Bioquímica, Universidad Del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|
49
|
Ding D, Greenberg ML. Lithium and valproate decrease the membrane phosphatidylinositol/phosphatidylcholine ratio. Mol Microbiol 2003; 47:373-81. [PMID: 12519189 DOI: 10.1046/j.1365-2958.2003.03284.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lithium and valproate, two structurally different anti-bipolar drugs, cause decreased intracellular inositol in the yeast Saccharomyces cerevisiae and an in-crease in expression of a structural (INO1) and a regulatory (INO2) gene for phospholipid synthesis that responds to inositol depletion (Vaden, D., Ding, D., Peterson, B., and Greenberg, M.L., 2001, J Biol Chem 276: 15466-15471). We report here that both drugs decrease the relative rate of membrane phosphatidylinositol synthesis and, to a lesser but still significant degree, the steady state relative phosphatidylinositol composition. In addition, both drugs increase the rate of phosphatidylcholine (PC) synthesis. Finally, valproate, but not lithium, increases expression of phosphatidylcholine pathway genes CHO1 and OPI3. The overall effect on membrane phospholipid composition is a reduction in the phosphatidylinositol/phosphatidylcholine ratio by both drugs. Because maintenance of the appropriate phosphatidylinositol/phosphatidylcholine ratio is required for secretory vesicle formation, a decrease in this ratio may have far-reaching implications for understanding the therapeutic mechanisms of action of these drugs.
Collapse
Affiliation(s)
- Daobin Ding
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
50
|
Abstract
This paper reviews our present knowledge of sphingomyelinases as enzymes, and as enzymes acting on a membrane constituent lipid, sphingomyelin. Six types of sphingomyelinases are considered, namely acidic, secretory, Mg(2+)-dependent neutral, Mg(2+)-independent neutral, alkaline, and bacterial enzymes with both phospholipase C and sphingomyelinase activity. Sphingomyelinase assay methods and specific inhibitors are reviewed. Kinetic and mechanistic studies are summarized, a kinetic model and a general-base catalytic mechanism are proposed. Sphingomyelinase-membrane interactions are considered from the point of view of the influence of lipids on the enzyme activity. Moreover, effects of sphingomyelinase activity on membrane architecture (increased membrane permeability, membrane aggregation and fusion) are described. Finally, a number of open questions on the above topics are enunciated.
Collapse
Affiliation(s)
- Félix M Goñi
- Unidad de Biofísica (CSIC-UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080, Bilbao, Spain.
| | | |
Collapse
|