1
|
Murakami AM, Nagatomo K, Miyoshi I, Itagaki S, Niwa Y, Murakami M. A novel binding site between the voltage-dependent calcium channel Ca V1.2 subunit and Ca Vβ2 subunit discovered using a new analysis method for protein-protein interactions. Sci Rep 2023; 13:13986. [PMID: 37634019 PMCID: PMC10460381 DOI: 10.1038/s41598-023-41168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023] Open
Abstract
We developed a new method to analyze protein-protein interactions using a dual-inducible prokaryotic expression system. To evaluate protein-protein binding, a chimeric fusion toxin gene was constructed using a DNase-treated short DNA fragment (epitope library) and CcdB, which encodes a DNA topoisomerase II toxin. Protein-protein interactions would affect toxin activity, resulting in colony formation. Using this novel system, we found a new binding site in the voltage-dependent calcium channel α1 subunit (CaV1.2) for the voltage-dependent calcium channel β2 subunit. Prokaryotic expression screening of the β2 subunit using an epitope library of CaV1.2 resulted in two overlapping clones of the C-terminal sequence of CaV1.2. In vitro overlay and immunoprecipitation analyses revealed preferential binding of the C-terminal sequences of CaV1.2 and β2.
Collapse
Affiliation(s)
- Agnieszka M Murakami
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, 036-8562, Japan
| | - Katsuhiro Nagatomo
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, 036-8562, Japan
| | - Ichro Miyoshi
- Department of Laboratory Animal Medicine, Tohoku University School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Shirou Itagaki
- Collaboration Center for Community and Industry, Sapporo Medical University, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yasutaka Niwa
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, 036-8562, Japan
| | - Manabu Murakami
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, 036-8562, Japan.
| |
Collapse
|
2
|
Cunningham KL, Littleton JT. Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca 2+ channels. Front Mol Neurosci 2023; 15:1116729. [PMID: 36710932 PMCID: PMC9880069 DOI: 10.3389/fnmol.2022.1116729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) mediate Ca2+ influx to trigger neurotransmitter release at specialized presynaptic sites termed active zones (AZs). The abundance of VGCCs at AZs regulates neurotransmitter release probability (Pr ), a key presynaptic determinant of synaptic strength. Given this functional significance, defining the processes that cooperate to establish AZ VGCC abundance is critical for understanding how these mechanisms set synaptic strength and how they might be regulated to control presynaptic plasticity. VGCC abundance at AZs involves multiple steps, including channel biosynthesis (transcription, translation, and trafficking through the endomembrane system), forward axonal trafficking and delivery to synaptic terminals, incorporation and retention at presynaptic sites, and protein recycling. Here we discuss mechanisms that control VGCC abundance at synapses, highlighting findings from invertebrate and vertebrate models.
Collapse
Affiliation(s)
- Karen L. Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | |
Collapse
|
3
|
Tran-Van-Minh A, De Waard M, Weiss N. Ca vβ surface charged residues contribute to the regulation of neuronal calcium channels. Mol Brain 2022; 15:3. [PMID: 34980202 PMCID: PMC8722133 DOI: 10.1186/s13041-021-00887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 11/11/2022] Open
Abstract
Voltage-gated calcium channels are essential regulators of brain function where they support depolarization-induced calcium entry into neurons. They consist of a pore-forming subunit (Cavα1) that requires co-assembly with ancillary subunits to ensure proper functioning of the channel. Among these ancillary subunits, the Cavβ plays an essential role in regulating surface expression and gating of the channels. This regulation requires the direct binding of Cavβ onto Cavα1 and is mediated by the alpha interacting domain (AID) within the Cavα1 subunit and the α binding pocket (ABP) within the Cavβ subunit. However, additional interactions between Cavα1 and Cavβ have been proposed. In this study, we analyzed the importance of Cavβ3 surface charged residues in the regulation of Cav2.1 channels. Using alanine-scanning mutagenesis combined with electrophysiological recordings we identified several amino acids within the Cavβ3 subunit that contribute to the gating of the channel. These findings add to the notion that additional contacts besides the main AID/ABP interaction may occur to fine-tune the expression and properties of the channel.
Collapse
Affiliation(s)
| | - Michel De Waard
- Inserm, L'Institut du Thorax, Université de Nantes, CHU Nantes, CNRS, Nantes, France. .,LabEx Ion Channels, Science and Therapeutics, Valbonne, France.
| | - Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic. .,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic. .,Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
4
|
Jia Y, Wang X, Chen Y, Qiu W, Ge W, Ma C. Proteomic and Transcriptomic Analyses Reveal Pathological Changes in the Entorhinal Cortex Region that Correlate Well with Dysregulation of Ion Transport in Patients with Alzheimer's Disease. Mol Neurobiol 2021; 58:4007-4027. [PMID: 33904022 DOI: 10.1007/s12035-021-02356-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/10/2021] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The earliest neuropathology of AD appears in entorhinal cortex (EC) regions. Therapeutic strategies and preventive measures to protect against entorhinal degeneration would be of substantial value in the early stages of AD. In this study, transcriptome based on the Illumina RNA-seq and proteome based on TMT-labelling were performed for RNA and protein profiling on AD EC samples and non-AD control EC samples. Immunohistochemistry was used to validate proteins expressions. After integrated analysis, 57 genes were detected both in transcriptome and proteome data, including 51 in similar altering trends (7 upregulated, 44 downregulated) and 6 in inverse trends when compared AD vs. control. The top 6 genes (GABRG2, CACNG3, CACNB4, GABRB2, GRIK2, and SLC17A6) within the 51 genes were selected and related to "ion transport". Correlation analysis demonstrated negative relationship of protein expression level with the neuropathologic changes. In conclusion, the integrate transcriptome and proteome analysis provided evidence for dysregulation of ion transport across brain regions in AD, which might be a critical signaling pathway that initiates pathology. This study might provide new insight into the earliest changes occurring in the EC of AD and novel targets for AD prevention and treatment.
Collapse
Affiliation(s)
- Yangjie Jia
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Xia Wang
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Yanyu Chen
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China.
| |
Collapse
|
5
|
Young SM, Veeraraghavan P. Presynaptic voltage-gated calcium channels in the auditory brainstem. Mol Cell Neurosci 2021; 112:103609. [PMID: 33662542 DOI: 10.1016/j.mcn.2021.103609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022] Open
Abstract
Sound information encoding within the initial synapses in the auditory brainstem requires reliable and precise synaptic transmission in response to rapid and large fluctuations in action potential (AP) firing rates. The magnitude and location of Ca2+ entry through voltage-gated Ca2+ channels (CaV) in the presynaptic terminal are key determinants in triggering AP-mediated release. In the mammalian central nervous system (CNS), the CaV2.1 subtype is the critical subtype for CNS function, since it is the most efficient CaV2 subtype in triggering AP-mediated synaptic vesicle (SV) release. Auditory brainstem synapses utilize CaV2.1 to sustain fast and repetitive SV release to encode sound information. Therefore, understanding the presynaptic mechanisms that control CaV2.1 localization, organization and biophysical properties are integral to understanding auditory processing. Here, we review our current knowledge about the control of presynaptic CaV2 abundance and organization in the auditory brainstem and impact on the regulation of auditory processing.
Collapse
Affiliation(s)
- Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Otolaryngology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | |
Collapse
|
6
|
Lozano Jiménez YY, Sánchez Mora RM. Canales de calcio como blanco de interés farmacológico. NOVA 2020. [DOI: 10.22490/24629448.3926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Los canales de calcio son proteínas de membrana que constituyen la vía más importante para el ingreso del ion calcio (Ca2+) a la célula. Al abrirse, permiten el ingreso selectivo del ion, iniciando una variedad de procesos como contracción muscular, secreción endocrina y liberación de neurotransmisores, entre otros. Estas proteínas se agrupan en tres categorías de acuerdo con sus propiedades estructurales y funcionales: (i) Canales de Ca2+ operados por interacción receptor-ligando (ROCC), (ii) Canales activados por parámetros físicos (Transient Receptor Potencial, TRP) y (iii) Canales de Calcio dependientes de voltaje (VDCCs), siendo estos últimos los más estudiados debido a su presencia en células excitables. Dada la importancia de Ca2+ en la fisiología celular, los canales de Ca2+ constituyen un punto de acción farmacológica importante para múltiples tratamientos y, por tanto, son objeto de estudio para el desarrollo de nuevos fármacos. El objetivo de esta revisión es explicar la importancia de los canales de Ca2+ desde una proyección farmacológica, a partir de la exploración documental de artículos publicados hasta la fecha teniendo en cuenta temas relacionados con la estructura de los canales Ca2+, sus propiedades biofísicas, localización celular, funcionamiento y su interacción farmacológica.
Collapse
|
7
|
Ménard C, Charnet P, Rousset M, Vignes M, Cens T. Cav2.1 C-terminal fragments produced in Xenopus laevis oocytes do not modify the channel expression and functional properties. Eur J Neurosci 2020; 51:1900-1913. [PMID: 31981388 DOI: 10.1111/ejn.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 12/01/2022]
Abstract
The sequence and genomic organization of the CACNA1A gene that encodes the Cav2.1 subunit of both P and Q-type Ca2+ channels are well conserved in mammals. In human, rat and mouse CACNA1A, the use of an alternative acceptor site at the exon 46-47 boundary results in the expression of a long Cav2.1 splice variant. In transfected cells, the long isoform of human Cav2.1 produces a C-terminal fragment, but it is not known whether this fragment affects Cav2.1 expression or functional properties. Here, we cloned the long isoform of rat Cav2.1 (Cav2.1(e47)) and identified a novel variant with a shorter C-terminus (Cav2.1(e47s)) that differs from those previously described in the rat and mouse. When expressed in Xenopus laevis oocytes, Cav2.1(e47) and Cav2.1(e47s) displayed similar functional properties as the short isoform (Cav2.1). We show that Cav2.1 isoforms produced short (CT1) and long (CT1(e47)) C-terminal fragments that interacted in vivo with the auxiliary Cavβ4a subunit. Overexpression of the C-terminal fragments did not affect Cav2.1 expression and functional properties. Furthermore, the functional properties of a Cav2.1 mutant without the C-terminal Cavβ4 binding domain (Cav2.1ΔCT2) were similar to those of Cav2.1 and were not influenced by the co-expression of the missing fragments (CT2 or CT2(e47)). Our results exclude a functional role of the C-terminal fragments in Cav2.1 biophysical properties in an expression system widely used to study this channel.
Collapse
Affiliation(s)
- Claudine Ménard
- Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France.,IBMM, Université de Montpellier, Montpellier, France
| | - Pierre Charnet
- Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France.,IBMM, Université de Montpellier, Montpellier, France
| | - Matthieu Rousset
- Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France.,IBMM, Université de Montpellier, Montpellier, France
| | - Michel Vignes
- Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France.,IBMM, Université de Montpellier, Montpellier, France
| | - Thierry Cens
- Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France.,IBMM, Université de Montpellier, Montpellier, France
| |
Collapse
|
8
|
Arteaga-Tlecuitl R, Sanchez-Sandoval AL, Ramirez-Cordero BE, Rosendo-Pineda MJ, Vaca L, Gomora JC. Increase of Ca V3 channel activity induced by HVA β1b-subunit is not mediated by a physical interaction. BMC Res Notes 2018; 11:810. [PMID: 30428904 PMCID: PMC6236959 DOI: 10.1186/s13104-018-3917-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/09/2018] [Indexed: 01/13/2023] Open
Abstract
Objective Low voltage-activated (LVA) calcium channels are crucial for regulating oscillatory behavior in several types of neurons and other excitable cells. LVA channels dysfunction has been implicated in epilepsy, neuropathic pain, cancer, among other diseases. Unlike for High Voltage-Activated (HVA) channels, voltage-dependence and kinetics of currents carried by recombinant LVA, i.e., CaV3 channels, are quite similar to those observed in native currents. Therefore, whether these channels are regulated by HVA auxiliary subunits, remain controversial. Here, we used the α1-subunits of CaV3.1, CaV3.2, and CaV3.3 channels, together with HVA auxiliary β-subunits to perform electrophysiological, confocal microscopy and immunoprecipitation experiments, in order to further explore this possibility. Results Functional expression of CaV3 channels is up-regulated by all four β-subunits, although most consistent effects were observed with the β1b-subunit. The biophysical properties of CaV3 channels were not modified by any β-subunit. Furthermore, although β1b-subunits increased colocalization of GFP-tagged CaV3 channels and the plasma membrane of HEK-293 cells, western blots analysis revealed the absence of physical interaction between CaV3.3 and β1b-subunits as no co-immunoprecipitation was observed. These results provide solid evidence that the up-regulation of LVA channels in the presence of HVA-β1b subunit is not mediated by a high affinity interaction between both proteins. Electronic supplementary material The online version of this article (10.1186/s13104-018-3917-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rogelio Arteaga-Tlecuitl
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Belen Ernestina Ramirez-Cordero
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Margarita Jacaranda Rosendo-Pineda
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
9
|
Translocatable voltage-gated Ca 2+ channel β subunits in α1-β complexes reveal competitive replacement yet no spontaneous dissociation. Proc Natl Acad Sci U S A 2018; 115:E9934-E9943. [PMID: 30257950 DOI: 10.1073/pnas.1809762115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
β subunits of high voltage-gated Ca2+ (CaV) channels promote cell-surface expression of pore-forming α1 subunits and regulate channel gating through binding to the α-interaction domain (AID) in the first intracellular loop. We addressed the stability of CaV α1B-β interactions by rapamycin-translocatable CaV β subunits that allow drug-induced sequestration and uncoupling of the β subunit from CaV2.2 channel complexes in intact cells. Without CaV α1B/α2δ1, all modified β subunits, except membrane-tethered β2a and β2e, are in the cytosol and rapidly translocate upon rapamycin addition to anchors on target organelles: plasma membrane, mitochondria, or endoplasmic reticulum. In cells coexpressing CaV α1B/α2δ1 subunits, the translocatable β subunits colocalize at the plasma membrane with α1B and stay there after rapamycin application, indicating that interactions between α1B and bound β subunits are very stable. However, the interaction becomes dynamic when other competing β isoforms are coexpressed. Addition of rapamycin, then, switches channel gating and regulation by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] lipid. Thus, expression of free β isoforms around the channel reveals a dynamic aspect to the α1B-β interaction. On the other hand, translocatable β subunits with AID-binding site mutations are easily dissociated from CaV α1B on the addition of rapamycin, decreasing current amplitude and PI(4,5)P2 sensitivity. Furthermore, the mutations slow CaV2.2 current inactivation and shift the voltage dependence of activation to more positive potentials. Mutated translocatable β subunits work similarly in CaV2.3 channels. In sum, the strong interaction of CaV α1B-β subunits can be overcome by other free β isoforms, permitting dynamic changes in channel properties in intact cells.
Collapse
|
10
|
Aikawa T, Watanabe T, Miyazaki T, Mikuni T, Wakamori M, Sakurai M, Aizawa H, Ishizu N, Watanabe M, Kano M, Mizusawa H, Watase K. Alternative splicing in the C-terminal tail of Cav2.1 is essential for preventing a neurological disease in mice. Hum Mol Genet 2018; 26:3094-3104. [PMID: 28510727 DOI: 10.1093/hmg/ddx193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) that occurs at the final coding exon (exon 47) of the Cav2.1 voltage-gated calcium channel (VGCC) gene produces two major isoforms in the brain, MPI and MPc. These isoforms differ in their splice acceptor sites; human MPI is translated into a polyglutamine tract associated with spinocerebellar ataxia type 6 (SCA6), whereas MPc splices to an immediate stop codon, resulting in a shorter cytoplasmic tail. To gain insight into the functional role of the AS in vivo and whether modulating the splice patterns at this locus can be a potential therapeutic strategy for SCA6, here we created knockin mice that exclusively express MPc by inserting the splice-site mutation. The resultant Cacna1aCtmKO/CtmKO mice developed non-progressive neurological phenotypes, featuring early-onset ataxia and absence seizure without significant alterations in the basic properties of the channel. Interactions of Cav2.1 with Cavβ4 and Rimbp2 were significantly reduced while those with GABAB2 were enhanced in the cerebellum of Cacna1aCtmKO/CtmKO mice. Treatment with the GABAB antagonist CGP35348 partially rescued the motor impairments seen in Cacna1aCtmKO/CtmKO mice. These results suggest that the carboxyl-terminal domain of Cav2.1 is not essential for maintaining the basic properties of the channel in the cerebellar Purkinje neurons but is involved in multiple interactions of Cav2.1 with other proteins, and plays an essential role in preventing a complex neurological disease.
Collapse
Affiliation(s)
- Tomonori Aikawa
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Taisuke Miyazaki
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Takayasu Mikuni
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,Max Planck Florida Institute for Neuroscience, Max Planck Way Jupiter, FL 33458, USA
| | - Minoru Wakamori
- Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Miyano Sakurai
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hidenori Aizawa
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Nobutaka Ishizu
- Department of Neurology, Tokyo National Hospital, Tokyo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hidehiro Mizusawa
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan.,Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Kei Watase
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan
| |
Collapse
|
11
|
Allen SE, Toro CP, Andrade A, López-Soto EJ, Denome S, Lipscombe D. Cell-Specific RNA Binding Protein Rbfox2 Regulates Ca V2.2 mRNA Exon Composition and Ca V2.2 Current Size. eNeuro 2017; 4:ENEURO.0332-16.2017. [PMID: 29067356 PMCID: PMC5633781 DOI: 10.1523/eneuro.0332-16.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/25/2023] Open
Abstract
The majority of multiexon mammalian genes contain alternatively spliced exons that have unique expression patterns in different cell populations and that have important cell functions. The expression profiles of alternative exons are controlled by cell-specific splicing factors that can promote exon inclusion or exon skipping but with few exceptions we do not know which specific splicing factors control the expression of alternatively spliced exons of known biological function. Many ion channel genes undergo extensive alternative splicing including Cacna1b that encodes the voltage-gated CaV2.2 α1 subunit. Alternatively spliced exon 18a in Cacna1b RNA encodes 21 amino acids in the II-III loop of CaV2.2, and its expression differs across the nervous system and over development. Genome-wide, protein-RNA binding analyses coupled to high-throughput RNA sequencing show that RNA binding Fox (Rbfox) proteins associate with CaV2.2 (Cacna1b) pre-mRNAs. Here, we link Rbfox2 to suppression of e18a. We show increased e18a inclusion in CaV2.2 mRNAs: (1) after siRNA knockdown of Rbfox2 in a neuronal cell line and (2) in RNA from sympathetic neurons of adult compared to early postnatal mice. By immunoprecipitation of Rbfox2-RNA complexes followed by qPCR, we demonstrate reduced Rbfox2 binding upstream of e18a in RNA from sympathetic neurons of adult compared to early postnatal mice. CaV2.2 currents in cell lines and in sympathetic neurons expressing only e18a-CaV2.2 are larger compared to currents from those expressing only Δ18a-CaV2.2. We conclude that Rbfox2 represses e18a inclusion during pre-mRNA splicing of CaV2.2, limiting the size of CaV2.2 currents early in development in certain neuronal populations.
Collapse
MESH Headings
- Action Potentials/genetics
- Animals
- Animals, Newborn
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Cells, Cultured
- Exons/genetics
- Female
- Gene Expression Regulation, Developmental/genetics
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Molecular
- Neurons/physiology
- RNA Splicing Factors/genetics
- RNA Splicing Factors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Superior Cervical Ganglion/cytology
Collapse
Affiliation(s)
- Summer E. Allen
- Department of Neuroscience, and the Brown Institute for Brain Science, Brown University, Providence, RI 02912
| | - Cecilia P. Toro
- Department of Biology, Linfield College, McMinnville, OR 97128
| | - Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824
| | - Eduardo J. López-Soto
- Department of Neuroscience, and the Brown Institute for Brain Science, Brown University, Providence, RI 02912
| | - Sylvia Denome
- Department of Neuroscience, and the Brown Institute for Brain Science, Brown University, Providence, RI 02912
| | - Diane Lipscombe
- Department of Neuroscience, and the Brown Institute for Brain Science, Brown University, Providence, RI 02912
| |
Collapse
|
12
|
Lübbert M, Goral RO, Satterfield R, Putzke T, van den Maagdenberg AM, Kamasawa N, Young SM. A novel region in the Ca V2.1 α 1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone. eLife 2017; 6. [PMID: 28786379 PMCID: PMC5548488 DOI: 10.7554/elife.28412] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/06/2017] [Indexed: 01/23/2023] Open
Abstract
In central nervous system (CNS) synapses, action potential-evoked neurotransmitter release is principally mediated by CaV2.1 calcium channels (CaV2.1) and is highly dependent on the physical distance between CaV2.1 and synaptic vesicles (coupling). Although various active zone proteins are proposed to control coupling and abundance of CaV2.1 through direct interactions with the CaV2.1 α1 subunit C-terminus at the active zone, the role of these interaction partners is controversial. To define the intrinsic motifs that regulate coupling, we expressed mutant CaV2.1 α1 subunits on a CaV2.1 null background at the calyx of Held presynaptic terminal. Our results identified a region that directly controlled fast synaptic vesicle release and vesicle docking at the active zone independent of CaV2.1 abundance. In addition, proposed individual direct interactions with active zone proteins are insufficient for CaV2.1 abundance and coupling. Therefore, our work advances our molecular understanding of CaV2.1 regulation of neurotransmitter release in mammalian CNS synapses.
Collapse
Affiliation(s)
- Matthias Lübbert
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - R Oliver Goral
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, United States
| | - Rachel Satterfield
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Travis Putzke
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | | | - Naomi Kamasawa
- Max Planck Florida Electron Microscopy Core, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Samuel M Young
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, United States.,Department of Otolaryngology, University of Iowa, Iowa City, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, United States.,Aging Mind Brain Initiative, University of Iowa, Iowa City, United States
| |
Collapse
|
13
|
Mutation Spectrum in the CACNA1A Gene in 49 Patients with Episodic Ataxia. Sci Rep 2017; 7:2514. [PMID: 28566750 PMCID: PMC5451382 DOI: 10.1038/s41598-017-02554-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/13/2017] [Indexed: 11/08/2022] Open
Abstract
Episodic ataxia is an autosomal dominant ion channel disorder characterized by episodes of imbalance and incoordination. The disease is genetically heterogeneous and is classified as episodic ataxia type 2 (EA2) when it is caused by a mutation in the CACNA1A gene, encoding the α1A subunit of the P/Q-type voltage-gated calcium channel Cav2.1. The vast majority of EA2 disease-causing variants are loss-of-function (LoF) point changes leading to decreased channel currents. CACNA1A exonic deletions have also been reported in EA2 using quantitative approaches. We performed a mutational screening of the CACNA1A gene, including the promoter and 3'UTR regions, in 49 unrelated patients diagnosed with episodic ataxia. When pathogenic variants were not found by sequencing, we performed a copy number variant (CNV) analysis to screen for duplications or deletions. Overall, sequencing screening allowed identification of six different point variants (three nonsense and three missense changes) and two coding indels, one of them found in two unrelated patients. Additionally, CNV analysis identified a deletion in a patient spanning exon 35 as a result of a recombination event between flanking intronic Alu sequences. This study allowed identification of potentially pathogenic alterations in our sample, five of them novel, which cover 20% of the patients (10/49). Our data suggest that most of these variants are disease-causing, although functional studies are required.
Collapse
|
14
|
Hirano M, Takada Y, Wong CF, Yamaguchi K, Kotani H, Kurokawa T, Mori MX, Snutch TP, Ronjat M, De Waard M, Mori Y. C-terminal splice variants of P/Q-type Ca 2+ channel Ca V2.1 α 1 subunits are differentially regulated by Rab3-interacting molecule proteins. J Biol Chem 2017; 292:9365-9381. [PMID: 28377503 DOI: 10.1074/jbc.m117.778829] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/26/2017] [Indexed: 11/06/2022] Open
Abstract
Voltage-dependent Ca2+ channels (VDCCs) mediate neurotransmitter release controlled by presynaptic proteins such as the scaffolding proteins Rab3-interacting molecules (RIMs). RIMs confer sustained activity and anchoring of synaptic vesicles to the VDCCs. Multiple sites on the VDCC α1 and β subunits have been reported to mediate the RIMs-VDCC interaction, but their significance is unclear. Because alternative splicing of exons 44 and 47 in the P/Q-type VDCC α1 subunit CaV2.1 gene generates major variants of the CaV2.1 C-terminal region, known for associating with presynaptic proteins, we focused here on the protein regions encoded by these two exons. Co-immunoprecipitation experiments indicated that the C-terminal domain (CTD) encoded by CaV2.1 exons 40-47 interacts with the α-RIMs, RIM1α and RIM2α, and this interaction was abolished by alternative splicing that deletes the protein regions encoded by exons 44 and 47. Electrophysiological characterization of VDCC currents revealed that the suppressive effect of RIM2α on voltage-dependent inactivation (VDI) was stronger than that of RIM1α for the CaV2.1 variant containing the region encoded by exons 44 and 47. Importantly, in the CaV2.1 variant in which exons 44 and 47 were deleted, strong RIM2α-mediated VDI suppression was attenuated to a level comparable with that of RIM1α-mediated VDI suppression, which was unaffected by the exclusion of exons 44 and 47. Studies of deletion mutants of the exon 47 region identified 17 amino acid residues on the C-terminal side of a polyglutamine stretch as being essential for the potentiated VDI suppression characteristic of RIM2α. These results suggest that the interactions of the CaV2.1 CTD with RIMs enable CaV2.1 proteins to distinguish α-RIM isoforms in VDI suppression of P/Q-type VDCC currents.
Collapse
Affiliation(s)
- Mitsuru Hirano
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and
| | - Yoshinori Takada
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and
| | - Chee Fah Wong
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and.,the Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
| | - Kazuma Yamaguchi
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and
| | - Hiroshi Kotani
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and
| | - Tatsuki Kurokawa
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and
| | - Masayuki X Mori
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and
| | - Terrance P Snutch
- the Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, and
| | - Michel Ronjat
- the LabEx Ion Channels, Science and Therapeutics, INSERM UMR1087/CNRS UMR6291, Institut du Thorax, Université de Nantes, Nantes F-44000, France
| | - Michel De Waard
- the LabEx Ion Channels, Science and Therapeutics, INSERM UMR1087/CNRS UMR6291, Institut du Thorax, Université de Nantes, Nantes F-44000, France
| | - Yasuo Mori
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and .,the Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
15
|
Hu Z, Wang JW, Yu D, Soon JL, de Kleijn DPV, Foo R, Liao P, Colecraft HM, Soong TW. Aberrant Splicing Promotes Proteasomal Degradation of L-type Ca V1.2 Calcium Channels by Competitive Binding for Ca Vβ Subunits in Cardiac Hypertrophy. Sci Rep 2016; 6:35247. [PMID: 27731386 PMCID: PMC5059693 DOI: 10.1038/srep35247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022] Open
Abstract
Decreased expression and activity of CaV1.2 calcium channels has been reported in pressure overload-induced cardiac hypertrophy and heart failure. However, the underlying mechanisms remain unknown. Here we identified in rodents a splice variant of CaV1.2 channel, named CaV1.2e21+22, that contained the pair of mutually exclusive exons 21 and 22. This variant was highly expressed in neonatal hearts. The abundance of this variant was gradually increased by 12.5-folds within 14 days of transverse aortic banding that induced cardiac hypertrophy in adult mouse hearts and was also elevated in left ventricles from patients with dilated cardiomyopathy. Although this variant did not conduct Ca2+ ions, it reduced the cell-surface expression of wild-type CaV1.2 channels and consequently decreased the whole-cell Ca2+ influx via the CaV1.2 channels. In addition, the CaV1.2e21+22 variant interacted with CaVβ subunits significantly more than wild-type CaV1.2 channels, and competition of CaVβ subunits by CaV1.2e21+22 consequently enhanced ubiquitination and subsequent proteasomal degradation of the wild-type CaV1.2 channels. Our findings show that the resurgence of a specific neonatal splice variant of CaV1.2 channels in adult heart under stress may contribute to heart failure.
Collapse
Affiliation(s)
- Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, 117599, Singapore
| | - Dejie Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Jia Lin Soon
- National Heart Centre Singapore, 5 hospital drive, 169609, Singapore
| | - Dominique P V de Kleijn
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, 117599, Singapore.,Dept of Cardiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Roger Foo
- Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, 117599, Singapore
| | - Ping Liao
- Calcium Signaling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng 308433, Singapore
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, 117456, Singapore.,Neurobiology/Ageing Programme, National University of Singapore, 117456, Singapore
| |
Collapse
|
16
|
Voltage-gated calcium channels: Determinants of channel function and modulation by inorganic cations. Prog Neurobiol 2015; 129:1-36. [PMID: 25817891 DOI: 10.1016/j.pneurobio.2014.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 12/15/2014] [Accepted: 12/27/2014] [Indexed: 11/20/2022]
Abstract
Voltage-gated calcium channels (VGCCs) represent a key link between electrical signals and non-electrical processes, such as contraction, secretion and transcription. Evolved to achieve high rates of Ca(2+)-selective flux, they possess an elaborate mechanism for selection of Ca(2+) over foreign ions. It has been convincingly linked to competitive binding in the pore, but the fundamental question of how this is reconcilable with high rates of Ca(2+) transfer remains unanswered. By virtue of their similarity to Ca(2+), polyvalent cations can interfere with the function of VGCCs and have proven instrumental in probing the mechanisms underlying selective permeation. Recent emergence of crystallographic data on a set of Ca(2+)-selective model channels provides a structural framework for permeation in VGCCs, and warrants a reconsideration of their diverse modulation by polyvalent cations, which can be roughly separated into three general mechanisms: (I) long-range interactions with charged regions on the surface, affecting the local potential sensed by the channel or influencing voltage-sensor movement by repulsive forces (electrostatic effects), (II) short-range interactions with sites in the ion-conducting pathway, leading to physical obstruction of the channel (pore block), and in some cases (III) short-range interactions with extracellular binding sites, leading to non-electrostatic modifications of channel gating (allosteric effects). These effects, together with the underlying molecular modifications, provide valuable insights into the function of VGCCs, and have important physiological and pathophysiological implications. Allosteric suppression of some of the pore-forming Cavα1-subunits (Cav2.3, Cav3.2) by Zn(2+) and Cu(2+) may play a major role for the regulation of excitability by endogenous transition metal ions. The fact that these ions can often traverse VGCCs can contribute to the detrimental intracellular accumulation of metal ions following excessive release of endogenous Cu(2+) and Zn(2+) or exposure to non-physiological toxic metal ions.
Collapse
|
17
|
Ronjat M, Kiyonaka S, Barbado M, De Waard M, Mori Y. Nuclear life of the voltage-gated Cacnb4 subunit and its role in gene transcription regulation. Channels (Austin) 2013; 7:119-25. [PMID: 23511121 DOI: 10.4161/chan.23895] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pore-forming subunit of voltage-gated calcium channels is associated to auxiliary subunits among which the cytoplasmic β subunit. The different isoforms of this subunit control both the plasma membrane targeting and the biophysical properties of the channel moiety. In a recent study, we demonstrated that the Cacnb4 (β 4) isoform is at the center of a new signaling pathway that connects neuronal excitability and gene transcription. This mechanism relies on nuclear targeting of β 4 triggered by neuronal electrical stimulation. This re-localization of β 4 is promoted by its interaction with Ppp2r5d a regulatory subunit of PP2A in complex with PP2A itself. The formation, as well as the nuclear translocation, of the β 4/ Ppp2r5d/ PP2A complex is totally impaired by the premature R482X stops mutation of β 4 that has been previously associated with juvenile epilepsy. Taking as a case study the tyrosine hydroxylase gene that is strongly upregulated in brain of lethargic mice, deficient for β 4 expression, we deciphered the molecular steps presiding to this signaling pathway. Here we show that expression of wild-type β 4 in HEK293 cells results in the regulation of several genes, while expression of the mutated β 4 (β 1-481) produces a different set of gene regulation. Several genes regulated by β 4 in HEK293 cells were also regulated upon neuronal differentiation of NG108-15 cells that induces nuclear translocation of β 4 suggesting a link between β 4 nuclear targeting and gene regulation.
Collapse
Affiliation(s)
- Michel Ronjat
- Unité Inserm U836, Grenoble Institute of Neuroscience, La Tronche, France.
| | | | | | | | | |
Collapse
|
18
|
Ohmori I, Ouchida M, Kobayashi K, Jitsumori Y, Mori A, Michiue H, Nishiki T, Ohtsuka Y, Matsui H. CACNA1A variants may modify the epileptic phenotype of Dravet syndrome. Neurobiol Dis 2013; 50:209-17. [DOI: 10.1016/j.nbd.2012.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 10/04/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022] Open
|
19
|
Single-channel monitoring of reversible L-type Ca(2+) channel Ca(V)α(1)-Ca(V)β subunit interaction. Biophys J 2012; 101:2661-70. [PMID: 22261054 DOI: 10.1016/j.bpj.2011.09.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/06/2011] [Indexed: 11/24/2022] Open
Abstract
Voltage-dependent Ca(2+) channels are heteromultimers of Ca(V)α(1) (pore), Ca(V)β- and Ca(V)α(2)δ-subunits. The stoichiometry of this complex, and whether it is dynamically regulated in intact cells, remains controversial. Fortunately, Ca(V)β-isoforms affect gating differentially, and we chose two extremes (Ca(V)β(1a) and Ca(V)β(2b)) regarding single-channel open probability to address this question. HEK293α(1C) cells expressing the Ca(V)1.2 subunit were transiently transfected with Ca(V)α(2)δ1 alone or with Ca(V)β(1a), Ca(V)β(2b), or (2:1 or 1:1 plasmid ratio) combinations. Both Ca(V)β-subunits increased whole-cell current and shifted the voltage dependence of activation and inactivation to hyperpolarization. Time-dependent inactivation was accelerated by Ca(V)β(1a)-subunits but not by Ca(V)β(2b)-subunits. Mixtures induced intermediate phenotypes. Single channels sometimes switched between periods of low and high open probability. To validate such slow gating behavior, data were segmented in clusters of statistically similar open probability. With Ca(V)β(1a)-subunits alone, channels mostly stayed in clusters (or regimes of alike clusters) of low open probability. Increasing Ca(V)β(2b)-subunits (co-)expressed (1:2, 1:1 ratio or alone) progressively enhanced the frequency and total duration of high open probability clusters and regimes. Our analysis was validated by the inactivation behavior of segmented ensemble averages. Hence, a phenotype consistent with mutually exclusive and dynamically competing binding of different Ca(V)β-subunits is demonstrated in intact cells.
Collapse
|
20
|
Khazen G, Hill SL, Schürmann F, Markram H. Combinatorial expression rules of ion channel genes in juvenile rat (Rattus norvegicus) neocortical neurons. PLoS One 2012; 7:e34786. [PMID: 22509357 PMCID: PMC3324541 DOI: 10.1371/journal.pone.0034786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/09/2012] [Indexed: 11/19/2022] Open
Abstract
The electrical diversity of neurons arises from the expression of different combinations of ion channels. The gene expression rules governing these combinations are not known. We examined the expression of twenty-six ion channel genes in a broad range of single neocortical neuron cell types. Using expression data from a subset of twenty-six ion channel genes in ten different neocortical neuronal types, classified according to their electrophysiological properties, morphologies and anatomical positions, we first developed an incremental Support Vector Machine (iSVM) model that prioritizes the predictive value of single and combinations of genes for the rest of the expression pattern. With this approach we could predict the expression patterns for the ten neuronal types with an average 10-fold cross validation accuracy of 87% and for a further fourteen neuronal types not used in building the model, with an average accuracy of 75%. The expression of the genes for HCN4, Kv2.2, Kv3.2 and Caβ3 were found to be particularly strong predictors of ion channel gene combinations, while expression of the Kv1.4 and Kv3.3 genes has no predictive value. Using a logic gate analysis, we then extracted a spectrum of observed combinatorial gene expression rules of twenty ion channels in different neocortical neurons. We also show that when applied to a completely random and independent data, the model could not extract any rules and that it is only possible to extract them if the data has consistent expression patterns. This novel strategy can be used for predictive reverse engineering combinatorial expression rules from single-cell data and could help identify candidate transcription regulatory processes.
Collapse
Affiliation(s)
- Georges Khazen
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sean L. Hill
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Schürmann
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Henry Markram
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Gandini MA, Felix R. Functional interactions between voltage-gated Ca(2+) channels and Rab3-interacting molecules (RIMs): new insights into stimulus-secretion coupling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:551-8. [PMID: 22198390 DOI: 10.1016/j.bbamem.2011.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 12/27/2022]
Abstract
Stimulus-secretion coupling is a complex set of intracellular reactions initiated by an external stimulus that result in the release of hormones and neurotransmitters. Under physiological conditions this signaling process takes a few milliseconds, and to minimize delays cells have developed a formidable integrated network, in which the relevant molecules are tightly packed on the nanometer scale. Active zones, the sites of release, are composed of several different proteins including voltage-gated Ca(2+) (Ca(V)) channels. It is well acknowledged that hormone and neurotransmitter release is initiated by the activation of these channels located close to docked vesicles, though the mechanisms that enrich channels at release sites are largely unknown. Interestingly, Rab3 binding proteins (RIMs), a diverse multidomain family of proteins that operate as effectors of the small G protein Rab3 involved in secretory vesicle trafficking, have recently identified as binding partners of Ca(V) channels, placing both proteins in the center of an interaction network in the molecular anatomy of the active zones that influence different aspects of secretion. Here, we review recent evidences providing support for the notion that RIMs directly bind to the pore-forming and auxiliary β subunits of Ca(V) channels and with RIM-binding protein, another interactor of the channels. Through these interactions, RIMs regulate the biophysical properties of the channels and their anchoring relative to active zones, significantly influencing hormone and neurotransmitter release.
Collapse
Affiliation(s)
- María A Gandini
- Department of Cell Biology, National Polytechnic Institute, Mexico City, Mexico
| | | |
Collapse
|
22
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
23
|
Bae J, Suh EJ, Lee C. Interaction of T-type calcium channel Ca(V)3.3 with the β-subunit. Mol Cells 2010; 30:185-91. [PMID: 20803093 DOI: 10.1007/s10059-010-0106-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/12/2010] [Accepted: 05/27/2010] [Indexed: 11/24/2022] Open
Abstract
The β-subunit of high-voltage-activated (HVA) calcium channels is essential for the regulation of expression and gating. On the other hand, various reports have suggested that β subunits play no role in the regulation of low-voltage-activated T-type channels. In addition there has been no clear demonstration of a physical interaction between the α-subunit of T-type channel with β-subunit. In this study, we systematically investigated the interaction between Ca(V)α and Ca(V)β. The four Ca(V)β isoforms were expressed in a bacterial system and purified into homogeneity, whereas the ten types of Ca(V)α alpha interaction domain (AID) peptides were chemically synthesized. All possible combinations of Ca(V)α and Ca(V)β were then tested for by in vitro immunoassays. We describe here the identification of a new interaction between Ca(V)3.3 and Ca(V)β proteins. This interaction is of low affinity compared to that between the AID of the HVA α-subunit and the alpha-binding pocket (ABP) site of the β-subunit. The AID peptide of HVA channel exerted no effect on the Ca(V)3.3-Ca(V)β interaction, thus demonstrating that another site not in the ABP of Ca(V)β protein played a role in binding with Ca(V)3.3. This is the first demonstration of an α-β subunit interaction in a T-type calcium channel.
Collapse
Affiliation(s)
- Jinhee Bae
- Life Sciences Division, Korea Institute of Science and Technology, Seoul, 136-791, Korea
| | | | | |
Collapse
|
24
|
Mitra-Ganguli T, Vitko I, Perez-Reyes E, Rittenhouse AR. Orientation of palmitoylated CaVbeta2a relative to CaV2.2 is critical for slow pathway modulation of N-type Ca2+ current by tachykinin receptor activation. ACTA ACUST UNITED AC 2010; 134:385-96. [PMID: 19858358 PMCID: PMC2768804 DOI: 10.1085/jgp.200910204] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The G(q)-coupled tachykinin receptor (neurokinin-1 receptor [NK-1R]) modulates N-type Ca(2+) channel (Ca(V)2.2 or N channel) activity at two distinct sites by a pathway involving a lipid metabolite, most likely arachidonic acid (AA). In another study published in this issue (Heneghan et al. 2009. J. Gen Physiol. doi:10.1085/jgp.200910203), we found that the form of modulation observed depends on which Ca(V)beta is coexpressed with Ca(V)2.2. When palmitoylated Ca(V)beta2a is coexpressed, activation of NK-1Rs by substance P (SP) enhances N current. In contrast, when Ca(V)beta3 is coexpressed, SP inhibits N current. However, exogenously applied palmitic acid minimizes this inhibition. These findings suggested that the palmitoyl groups of Ca(V)beta2a may occupy an inhibitory site on Ca(V)2.2 or prevent AA from interacting with that site, thereby minimizing inhibition. If so, changing the orientation of Ca(V)beta2a relative to Ca(V)2.2 may displace the palmitoyl groups and prevent them from antagonizing AA's actions, thereby allowing inhibition even in the presence of Ca(V)beta2a. In this study, we tested this hypothesis by deleting one (Bdel1) or two (Bdel2) amino acids proximal to the alpha interacting domain (AID) of Ca(V)2.2's I-II linker. Ca(V)betas bind tightly to the AID, whereas the rigid region proximal to the AID is thought to couple Ca(V)beta's movements to Ca(V)2.2 gating. Although Bdel1/beta2a currents exhibited more variable enhancement by SP, Bdel2/beta2a current enhancement was lost at all voltages. Instead, inhibition was observed that matched the profile of N-current inhibition from Ca(V)2.2 coexpressed with Ca(V)beta3. Moreover, adding back exogenous palmitic acid minimized inhibition of Bdel2/beta2a currents, suggesting that when palmitoylated Ca(V)beta2a is sufficiently displaced, endogenously released AA can bind to the inhibitory site. These findings support our previous hypothesis that Ca(V)beta2a's palmitoyl groups directly interact with an inhibitory site on Ca(V)2.2 to block N-current inhibition by SP.
Collapse
Affiliation(s)
- Tora Mitra-Ganguli
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
25
|
Murata K, Nishimura S, Kuniyasu A, Nakayama H. Three-dimensional structure of the alpha1-beta complex in the skeletal muscle dihydropyridine receptor by single-particle electron microscopy. JOURNAL OF ELECTRON MICROSCOPY 2009; 59:215-226. [PMID: 19995890 DOI: 10.1093/jmicro/dfp059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dihydropyridine receptor (DHPR) is a protein complex that consists of five distinct subunits of alpha(1), alpha(2), beta, gamma and delta and functions as a voltage-dependent L-type Ca(2+) channel. Here we purified the alpha(1)-beta complex (approximately 250 kDa) from the rabbit skeletal muscle DHPR and reconstructed its three-dimensional (3D) structure to 38 A resolution by single particle analysis of negative staining electron microscopy. The alpha(1)-beta structure exhibited two unique regions: a pseudo-4-fold petaloid region and an elongated region. X-ray crystallographic models of a homologous voltage-dependent K(+) channel and the beta subunit fit well into the individual regions of the alpha(1)-beta structure, revealing that the two regions correspond to the transmembrane alpha(1) and the cytoplasmic beta subunits, respectively. In addition, 3D reconstruction and immuno-electron microscopic analysis performed on the independently purified DHPR demonstrated that the alpha(1)-beta complex was located in the large globular portion of the DHPR, and the N-terminal region of the beta subunit was extended to the leg-shaped protrusion of the DHPR, which includes the alpha(2)delta subunits. Our results propose a model in which the beta subunit may regulate ion channel function by acting as a hinge between alpha(1) and alpha(2)delta subunits of the DHPR.
Collapse
Affiliation(s)
- Kazuyoshi Murata
- Japan Biological Information Research Center, AIST Tokyo Waterfront, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | | | | | | |
Collapse
|
26
|
Brittain JM, Piekarz AD, Wang Y, Kondo T, Cummins TR, Khanna R. An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J Biol Chem 2009; 284:31375-90. [PMID: 19755421 PMCID: PMC2781534 DOI: 10.1074/jbc.m109.009951] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/11/2009] [Indexed: 11/06/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) specify axon/dendrite fate and axonal growth of neurons through protein-protein interactions. Their functions in presynaptic biology remain unknown. Here, we identify the presynaptic N-type Ca(2+) channel (CaV2.2) as a CRMP-2-interacting protein. CRMP-2 binds directly to CaV2.2 in two regions: the channel domain I-II intracellular loop and the distal C terminus. Both proteins co-localize within presynaptic sites in hippocampal neurons. Overexpression in hippocampal neurons of a CRMP-2 protein fused to enhanced green fluorescent protein caused a significant increase in Ca(2+) channel current density, whereas lentivirus-mediated CRMP-2 knockdown abolished this effect. Interestingly, the increase in Ca(2+) current density was not due to a change in channel gating. Rather, cell surface biotinylation studies showed an increased number of CaV2.2 at the cell surface in CRMP-2-overexpressing neurons. These neurons also exhibited a significant increase in vesicular release in response to a depolarizing stimulus. Depolarization of CRMP-2-enhanced green fluorescent protein-overexpressing neurons elicited a significant increase in release of glutamate compared with control neurons. Toxin block of Ca(2+) entry via CaV2.2 abolished this stimulated release. Thus, the CRMP-2-Ca(2+) channel interaction represents a novel mechanism for modulation of Ca(2+) influx into nerve terminals and, hence, of synaptic strength.
Collapse
Affiliation(s)
- Joel M. Brittain
- From the Paul and Carole Stark Neurosciences Research Institute and
| | - Andrew D. Piekarz
- From the Paul and Carole Stark Neurosciences Research Institute and
- Departments of Pharmacology and Toxicologyand
| | - Yuying Wang
- From the Paul and Carole Stark Neurosciences Research Institute and
| | - Takako Kondo
- Otolaryngology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Theodore R. Cummins
- From the Paul and Carole Stark Neurosciences Research Institute and
- Departments of Pharmacology and Toxicologyand
| | - Rajesh Khanna
- From the Paul and Carole Stark Neurosciences Research Institute and
- Departments of Pharmacology and Toxicologyand
| |
Collapse
|
27
|
van Gemert NG, Carvalho DMM, Karst H, van der Laan S, Zhang M, Meijer OC, Hell JW, Joëls M. Dissociation between rat hippocampal CA1 and dentate gyrus cells in their response to corticosterone: effects on calcium channel protein and current. Endocrinology 2009; 150:4615-24. [PMID: 19589863 PMCID: PMC2754681 DOI: 10.1210/en.2009-0525] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stress and corticosterone affect, via glucocorticoid receptors, cellular physiology in the rodent brain. A well-documented example concerns corticosteroid effects on high-voltage activated (L type) calcium currents in the hippocampal CA1 area. We tested whether corticosterone also affects calcium currents in another hippocampal area that highly expresses glucocorticoid receptors, i.e. the dentate gyrus (DG). Remarkably, corticosterone (100 nm, given for 20 min, 1-4.5 hr before recording) did not change high-voltage activated calcium currents in the DG, whereas currents in the CA1 area of the same rats were increased. Follow-up studies revealed that no apparent dissociation between the two areas was observed with respect to transcriptional regulation of calcium channel subunits; thus, in both areas corticosterone increased mRNA levels of the calcium channel-beta4 but not the (alpha) Ca(v)1.2 subunit. At the protein level, however, beta4 and Ca(v)1.2 levels were significantly up-regulated by corticosterone in the CA1 but not the DG area. These data suggest that stress-induced elevations in the level of corticosterone result in a regionally differentiated physiological response that is not simply determined by the glucocorticoid receptor distribution and that the observed regional differentiation may be caused by a gene involved in the translational machinery or in mechanisms regulating mRNA or protein stability.
Collapse
Affiliation(s)
- Neeltje G van Gemert
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Leyris JP, Gondeau C, Charnet A, Delattre C, Rousset M, Cens T, Charnet P. RGK GTPase-dependent CaV2.1 Ca2+ channel inhibition is independent of CaVbeta-subunit-induced current potentiation. FASEB J 2009; 23:2627-38. [PMID: 19332647 DOI: 10.1096/fj.08-122135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RGK (Rad-Gem-Rem) GTPases have been described as potent negative regulators of the Ca(2+) influx via high-threshold voltage-activated Ca(2+) channels. Recent work, mostly performed on Ca(V)1.2 Ca(2+) channels, has highlighted the crucial role played by the channel auxiliary Ca(V)beta subunits and identified several GTPase and beta-subunit protein domains involved in this regulation. We now extend these conclusions by producing the first complete characterization of the effects of Gem, Rem, and Rem2 on the neuronal Ca(V)2.1 Ca(2+) channels expressed with Ca(V)beta(1) or Ca(V)beta(2) subunits. Current inhibition is limited to a decrease in amplitude with no modification in the voltage dependence or kinetics of the current. We demonstrate that this inhibition can occur for Ca(V)beta constructs with impaired capacity to induce current potentiation, but that it is lost for Ca(V)beta constructs deleted for their beta-interaction domain. The RGK C-terminal last approximately 80 amino acids are sufficient to allow potent current inhibition and in vivo beta-subunit/Gem interaction. Interestingly, although Gem and Gem carboxy-terminus induce a completely different pattern of beta-subunit cellular localization, they both potently inhibit Ca(V)2.1 channels. These data therefore set the status of neuronal Ca(V)2.1 Ca(2+) channel inhibition by RGK GTPases, emphasizing the role of short amino acid sequences of both proteins in beta-subunit binding and channel inhibition and revealing a new mechanism for channel inhibition.
Collapse
Affiliation(s)
- J-P Leyris
- CRBM, CNRS UMR 5237, Université de Montpellier 1, 34293 Montpellier cedex, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Ohmori I, Ouchida M, Miki T, Mimaki N, Kiyonaka S, Nishiki T, Tomizawa K, Mori Y, Matsui H. A CACNB4 mutation shows that altered Cav2.1 function may be a genetic modifier of severe myoclonic epilepsy in infancy. Neurobiol Dis 2008; 32:349-54. [DOI: 10.1016/j.nbd.2008.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/23/2008] [Accepted: 07/25/2008] [Indexed: 11/30/2022] Open
|
30
|
Orientation of the calcium channel beta relative to the alpha(1)2.2 subunit is critical for its regulation of channel activity. PLoS One 2008; 3:e3560. [PMID: 18958281 PMCID: PMC2570331 DOI: 10.1371/journal.pone.0003560] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/09/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Ca(v)beta subunits of high voltage-activated Ca(2+) channels control the trafficking and biophysical properties of the alpha(1) subunit. The Ca(v)beta-alpha(1) interaction site has been mapped by crystallographic studies. Nevertheless, how this interaction leads to channel regulation has not been determined. One hypothesis is that betas regulate channel gating by modulating movements of IS6. A key requirement for this direct-coupling model is that the linker connecting IS6 to the alpha-interaction domain (AID) be a rigid structure. METHODOLOGY/PRINCIPAL FINDINGS The present study tests this hypothesis by altering the flexibility and orientation of this region in alpha(1)2.2, then testing for Ca(v)beta regulation using whole cell patch clamp electrophysiology. Flexibility was induced by replacement of the middle six amino acids of the IS6-AID linker with glycine (PG6). This mutation abolished beta2a and beta3 subunits ability to shift the voltage dependence of activation and inactivation, and the ability of beta2a to produce non-inactivating currents. Orientation of Ca(v)beta with respect to alpha(1)2.2 was altered by deletion of 1, 2, or 3 amino acids from the IS6-AID linker (Bdel1, Bdel2, Bdel3, respectively). Again, the ability of Ca(v)beta subunits to regulate these biophysical properties were totally abolished in the Bdel1 and Bdel3 mutants. Functional regulation by Ca(v)beta subunits was rescued in the Bdel2 mutant, indicating that this part of the linker forms beta-sheet. The orientation of beta with respect to alpha was confirmed by the bimolecular fluorescence complementation assay. CONCLUSIONS/SIGNIFICANCE These results show that the orientation of the Ca(v)beta subunit relative to the alpha(1)2.2 subunit is critical, and suggests additional points of contact between these subunits are required for Ca(v)beta to regulate channel activity.
Collapse
|
31
|
Dresviannikov AV, Page KM, Leroy J, Pratt WS, Dolphin AC. Determinants of the voltage dependence of G protein modulation within calcium channel beta subunits. Pflugers Arch 2008; 457:743-56. [PMID: 18651169 PMCID: PMC2686087 DOI: 10.1007/s00424-008-0549-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 06/17/2008] [Indexed: 11/21/2022]
Abstract
CaVβ subunits of voltage-gated calcium channels contain two conserved domains, a src-homology-3 (SH3) domain and a guanylate kinase-like (GK) domain with an intervening HOOK domain. We have shown in a previous study that, although Gβγ-mediated inhibitory modulation of CaV2.2 channels did not require the interaction of a CaVβ subunit with the CaVα1 subunit, when such interaction was prevented by a mutation in the α1 subunit, G protein modulation could not be removed by a large depolarization and showed voltage-independent properties (Leroy et al., J Neurosci 25:6984–6996, 2005). In this study, we have investigated the ability of mutant and truncated CaVβ subunits to support voltage-dependent G protein modulation in order to determine the minimal domain of the CaVβ subunit that is required for this process. We have coexpressed the CaVβ subunit constructs with CaV2.2 and α2δ-2, studied modulation by the activation of the dopamine D2 receptor, and also examined basal tonic modulation. Our main finding is that the CaVβ subunit GK domains, from either β1b or β2, are sufficient to restore voltage dependence to G protein modulation. We also found that the removal of the variable HOOK region from β2a promotes tonic voltage-dependent G protein modulation. We propose that the absence of the HOOK region enhances Gβγ binding affinity, leading to greater tonic modulation by basal levels of Gβγ. This tonic modulation requires the presence of an SH3 domain, as tonic modulation is not supported by any of the CaVβ subunit GK domains alone.
Collapse
Affiliation(s)
- Andriy V Dresviannikov
- Laboratory of Cellular and Molecular Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
32
|
Ebert AM, McAnelly CA, Srinivasan A, Mueller RL, Garrity DB, Garrity DM. The calcium channel beta2 (CACNB2) subunit repertoire in teleosts. BMC Mol Biol 2008; 9:38. [PMID: 18419826 PMCID: PMC2365960 DOI: 10.1186/1471-2199-9-38] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 04/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiomyocyte contraction is initiated by influx of extracellular calcium through voltage-gated calcium channels. These oligomeric channels utilize auxiliary beta subunits to chaperone the pore-forming alpha subunit to the plasma membrane, and to modulate channel electrophysiology 1. Several beta subunit family members are detected by RT-PCR in the embryonic heart. Null mutations in mouse beta2, but not in the other three beta family members, are embryonic lethal at E10.5 due to defects in cardiac contractility 2. However, a drawback of the mouse model is that embryonic heart rhythm is difficult to study in live embryos due to their intra-uterine development. Moreover, phenotypes may be obscured by secondary effects of hypoxia. As a first step towards developing a model for contributions of beta subunits to the onset of embryonic heart rhythm, we characterized the structure and expression of beta2 subunits in zebrafish and other teleosts. RESULTS Cloning of two zebrafish beta2 subunit genes (beta2.1 and beta2.2) indicated they are membrane-associated guanylate kinase (MAGUK)-family genes. Zebrafish beta2 genes show high conservation with mammals within the SH3 and guanylate kinase domains that comprise the "core" of MAGUK proteins, but beta2.2 is much more divergent in sequence than beta2.1. Alternative splicing occurs at the N-terminus and within the internal HOOK domain. In both beta2 genes, alternative short ATG-containing first exons are separated by some of the largest introns in the genome, suggesting that individual transcript variants could be subject to independent cis-regulatory control. In the Tetraodon nigrovidis and Fugu rubripes genomes, we identified single beta2 subunit gene loci. Comparative analysis of the teleost and human beta2 loci indicates that the short 5' exon sequences are highly conserved. A subset of 5' exons appear to be unique to teleost genomes, while others are shared with mammals. Alternative splicing is temporally and spatially regulated in embryo and adult. Moreover, a different subset of spliced beta2 transcript variants is detected in the embryonic heart compared to the adult. CONCLUSION These studies refine our understanding of beta2 subunit diversity arising from alternative splicing, and provide the groundwork for functional analysis of beta2 subunit diversity in the embryonic heart.
Collapse
Affiliation(s)
- Alicia M Ebert
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Alanine-scanning mutagenesis defines a conserved energetic hotspot in the CaValpha1 AID-CaVbeta interaction site that is critical for channel modulation. Structure 2008; 16:280-94. [PMID: 18275819 DOI: 10.1016/j.str.2007.11.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/19/2007] [Accepted: 11/24/2007] [Indexed: 11/21/2022]
Abstract
Voltage-gated calcium channels (CaVs) are large, multisubunit complexes that control cellular calcium entry. CaV pore-forming (CaValpha1) and cytoplasmic (CaVbeta) subunits associate through a high-affinity interaction between the CaValpha1 alpha interaction domain (AID) and CaVbeta alpha binding pocket (ABP). Here we analyze AID-ABP interaction thermodynamics using isothermal titration calorimetry. We find that commensurate with their strong sequence similarity, all CaV1 and CaV2 AID peptides bind CaVbeta with similar nanomolar affinities. Although the AID-ABP interface encompasses 24 side chains, alanine-scanning mutagenesis reveals that the binding energy is focused in two complementary hotspots comprising four deeply conserved residues. Electrophysiological experiments show that hotspot interaction disruption prevents trafficking and functional modulation of CaV1.2 by CaVbeta. Together, the data support the primacy of the AID-ABP interface for CaValpha1-CaVbeta association, underscore the idea that hotspots dominate protein-protein interaction affinities, and uncover a target for strategies to control cellular excitability by blocking CaValpha1-CaVbeta complex formation.
Collapse
|
34
|
Richards KS, Swensen AM, Lipscombe D, Bommert K. Novel CaV2.1 clone replicates many properties of Purkinje cell CaV2.1 current. Eur J Neurosci 2008; 26:2950-61. [PMID: 18001290 DOI: 10.1111/j.1460-9568.2007.05912.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P-type calcium current is mediated by a voltage-sensing CaV2.1 alpha subunit in combination with modulatory auxiliary subunits. In Purkinje neurones, this current has distinctively slow inactivation kinetics that may depend on alternative splicing of the alpha subunit and/or association with different CaVbeta subunits. To better understand the molecular components of P-type calcium current, we cloned a CaV2.1 cDNA from total mouse brain. The full-length CaV2.1 isoform that we isolated (GenBank AY714490) contains sequences recently shown to be present in Purkinje neurones. In agreement with previously published work, the alternatively spliced amino acid V421, implicated in slow inactivation, was not encoded in AY714490 and was absent from reverse transcription-polymerase chain reaction products generated from single Purkinje cells. Next, we studied the expression of the four known mouse auxiliary CaVbeta2 isoforms in Purkinje neurones. Confirmation of the presence of CaVbeta2a in Purkinje cells, previously shown by others to slow CaV2.1 kinetics, led us to characterize its influence on current dynamics. We studied currents generated by the clone AY714490 coexpressed in tsA201 cells with four different CaVbeta subunits. In addition to the well-documented slowing of open-state inactivation kinetics, coexpression with the CaVbeta2a subunit also protected CaV2.1 channels from closed-state inactivation and prevented the channel from inactivating during physiological trains of action potential-like stimuli. This strong resistance to inactivation parallels the property of Purkinje neurone P-type currents and is suggestive of a role for CaVbeta2a in modulating the inactivation properties of P-type calcium currents in Purkinje neurones.
Collapse
|
35
|
|
36
|
He LL, Zhang Y, Chen YH, Yamada Y, Yang J. Functional modularity of the beta-subunit of voltage-gated Ca2+ channels. Biophys J 2007; 93:834-45. [PMID: 17496037 PMCID: PMC1913152 DOI: 10.1529/biophysj.106.101691] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The beta-subunit of voltage-gated Ca(2+) channels plays a dual role in chaperoning the channels to the plasma membrane and modulating their gating. It contains five distinct modular domains/regions, including the variable N- and C-terminus, a conserved Src homology 3 (SH3) domain, a conserved guanylate kinase (GK) domain, and a connecting variable and flexible HOOK region. Recent crystallographic studies revealed a highly conserved interaction between the GK domain and alpha interaction domain (AID), the high-affinity binding site in the pore-forming alpha(1) subunit. Here we show that the AID-GK domain interaction is necessary for beta-subunit-stimulated Ca(2+) channel surface expression and that the GK domain alone can carry out this function. We also examined the role of each region of all four beta-subunit subfamilies in modulating P/Q-type Ca(2+) channel gating and demonstrate that the beta-subunit functions modularly. Our results support a model that the conserved AID-GK domain interaction anchors the beta-subunit to the alpha(1) subunit, enabling alpha(1)-beta pair-specific low-affinity interactions involving the N-terminus and the HOOK region, which confer on each of the four beta-subunit subfamilies its distinctive modulatory properties.
Collapse
Affiliation(s)
- Lin-Ling He
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
37
|
Serysheva II, Chiu W, Ludtke SJ. Single-particle electron cryomicroscopy of the ion channels in the excitation-contraction coupling junction. Methods Cell Biol 2007; 79:407-35. [PMID: 17327167 DOI: 10.1016/s0091-679x(06)79016-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Irina I Serysheva
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
38
|
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disorder caused by abnormal expansions of a trinucleotide CAG repeat in exon 47 of the CACNA1A gene, which encodes the alpha1A subunit of the P/Q-type voltage-gated calcium channel. The CAG repeat expansion is translated into an elongated polyglutamine tract in the carboxyl terminus of the alpha1A subunit. The alpha1A subunit is the main pore-forming subunit of the P/Q-type calcium channel. Patients with SCA6 suffer from a severe form of progressive ataxia and cerebellar dysfunction. Design of treatments for this disorder will depend on better definition of the mechanism of disease. As a disease arising from a mutation in an ion channel gene, SCA6 may behave as an ion channelopathy, and may respond to attempts to modulate or correct ion channel function. Alternatively, as a disease in which the mutant protein contains an expanded polyglutamine tract, SCA6 may respond to the targets of drug therapies developed for Huntington's disease and other polyglutamine disorders. In this review we will compare SCA6 to other polyglutamine diseases and channelopathies, and we will highlight recent advances in our understanding of alpha1A subunits and SCA6 pathology. We also propose a mechanism for how two seemingly divergent hypotheses can be combined into a cohesive model for disease progression.
Collapse
Affiliation(s)
- Holly B Kordasiewicz
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
39
|
Chen H, Piedras-Rentería ES. Altered frequency-dependent inactivation and steady-state inactivation of polyglutamine-expanded α1A in SCA6. Am J Physiol Cell Physiol 2007; 292:C1078-86. [PMID: 17020933 DOI: 10.1152/ajpcell.00353.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease of the cerebellum and inferior olives characterized by a late-onset cerebellar ataxia and selective loss of Purkinje neurons ( 15 , 16 ). SCA6 arises from an expansion of the polyglutamine tract located in exon 47 of the α1A (P/Q-type calcium channel) gene from a nonpathogenic size of 4 to 18 glutamines (CAG4–18) to CAG19–33 in SCA6. The molecular basis of SCA6 is poorly understood. To date, the biophysical properties studied in heterologous systems support both a gain and a loss of channel function in SCA6. We studied the behavior of the human α1A isoform, previously found to elicit a gain of function in disease ( 41 ), focusing on properties in which the COOH terminus of the channel is critical for function: we analyzed the current properties in the presence of β4- and β2a-subunits (both known to interact with the α1A COOH terminus), current kinetics of activation and inactivation, calcium-dependent inactivation and facilitation, voltage-dependent inactivation, frequency dependence, and steady-state activation and inactivation properties. We found that SCA6 channels have decreased activity-dependent inactivation and a depolarizing shift (+6 mV) in steady-state inactivation properties consistent with a gain of function.
Collapse
Affiliation(s)
- Haiyan Chen
- Dept. of Physiology, Loyola Univresity Chicago, Maywood, IL 60153-5500, USA
| | | |
Collapse
|
40
|
Herzig S, Khan IFY, Gründemann D, Matthes J, Ludwig A, Michels G, Hoppe UC, Chaudhuri D, Schwartz A, Yue DT, Hullin R. Mechanism of Ca(v)1.2 channel modulation by the amino terminus of cardiac beta2-subunits. FASEB J 2007; 21:1527-38. [PMID: 17289923 DOI: 10.1096/fj.06-7377com] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
L-type calcium channels are composed of a pore, alpha1c (Ca(V)1.2), and accessory beta- and alpha2delta-subunits. The beta-subunit core structure was recently resolved at high resolution, providing important information on many functional aspects of channel modulation. In this study we reveal differential novel effects of five beta2-subunits isoforms expressed in human heart (beta(2a-e)) on the single L-type calcium channel current. These splice variants differ only by amino-terminal length and amino acid composition. Single-channel modulation by beta2-subunit isoforms was investigated in HEK293 cells expressing the recombinant L-type ion conducting pore. All beta2-subunits increased open probability, availability, and peak current with a highly consistent rank order (beta2a approximately = beta2b > beta2e approximately = beta2c > beta2d). We show graded modulation of some transition rates within and between deep-closed and inactivated states. The extent of modulation correlates strongly with the length of amino-terminal domains. Two mutant beta2-subunits that imitate the natural span related to length confirm this conclusion. The data show that the length of amino termini is a relevant physiological mechanism for channel closure and inactivation, and that natural alternative splicing exploits this principle for modulation of the gating properties of calcium channels.
Collapse
Affiliation(s)
- Stefan Herzig
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Köln, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Petegem FV, Minor D. The structural biology of voltage-gated calcium channel function and regulation. Biochem Soc Trans 2007; 34:887-93. [PMID: 17052221 PMCID: PMC3010275 DOI: 10.1042/bst0340887] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Voltage-gated calcium channels (CaVs) are large (approximately 0.5 MDa), multisubunit, macromolecular machines that control calcium entry into cells in response to membrane potential changes. These molecular switches play pivotal roles in cardiac action potentials, neurotransmitter release, muscle contraction, calcium-dependent gene transcription and synaptic transmission. CaVs possess self-regulatory mechanisms that permit them to change their behaviour in response to activity, including voltage-dependent inactivation, calcium-dependent inactivation and calcium-dependent facilitation. These processes arise from the concerted action of different channel domains with CaV beta-subunits and the soluble calcium sensor calmodulin. Until recently, nothing was known about the CaV structure at high resolution. Recent crystallographic work has revealed the first glimpses at the CaV molecular framework and set a new direction towards a detailed mechanistic understanding of CaV function.
Collapse
Affiliation(s)
| | - D.L. Minor
- To whom correspondence should be addressed ()
| |
Collapse
|
42
|
Kaja S, Todorov B, van de Ven RCG, Ferrari MD, Frants RR, van den Maagdenberg AMJM, Plomp JJ. Redundancy of Cav2.1 channel accessory subunits in transmitter release at the mouse neuromuscular junction. Brain Res 2007; 1143:92-101. [PMID: 17320843 DOI: 10.1016/j.brainres.2007.01.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Revised: 01/15/2007] [Accepted: 01/18/2007] [Indexed: 11/25/2022]
Abstract
Ca(v)2.1 (P/Q-type) channels possess a voltage-sensitive pore-forming alpha(1) subunit that can associate with the accessory subunits alpha(2)delta, beta and gamma. The primary role of Ca(v)2.1 channels is to mediate transmitter release from nerve terminals both in the central and peripheral nervous system. Whole-cell voltage-clamp studies in in vitro expression systems have indicated that accessory channel subunits can have diverse modulatory effects on membrane expression and biophysical properties of Ca(v)2.1 channels. However, there is only limited knowledge on whether similar modulation also occurs in the specific presynaptic environment in vivo and, hence, whether accessory subunits influence neurotransmitter release. Ducky, lethargic and stargazer are mutant mice that lack functional alpha(2)delta-2, beta(4) and gamma(2) accessory Ca(v) channel subunits, respectively. The neuromuscular junction (NMJ) is a peripheral synapse, where transmitter release is governed exclusively by Ca(v)2.1 channels, and which can be characterized electrophysiologically with relative experimental ease. In order to investigate a possible synaptic influence of accessory subunits in detail, we electrophysiologically measured acetylcholine (ACh) release at NMJs of these three mutants. Surprisingly, we did not find any changes compared to wild-type littermates, other than a small reduction (25%) of evoked ACh release at ducky NMJs. This effect is most likely due to the approximately 40% reduced synapse size, associated with the reduced size of ducky mice, rather than resulting directly from reduced Ca(v)2.1 channel function due to alpha(2)delta-2 absence. We conclude that alpha(2)delta-2, beta(4), and gamma(2) accessory subunits are redundant for the transmitter release-mediating function of presynaptic Ca(v)2.1 channels at the mouse NMJ.
Collapse
Affiliation(s)
- Simon Kaja
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Chameau P, Qin Y, Spijker S, Smit AB, Smit G, Joëls M. Glucocorticoids Specifically Enhance L-Type Calcium Current Amplitude and Affect Calcium Channel Subunit Expression in the Mouse Hippocampus. J Neurophysiol 2007; 97:5-14. [PMID: 17021021 DOI: 10.1152/jn.00821.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that corticosterone enhances whole cell calcium currents in CA1 pyramidal neurons, through a pathway involving binding of glucocorticoid receptor homodimers to the DNA. We examined whether glucocorticoids show selectivity for L- over N-type of calcium currents. Moreover, we addressed the putative gene targets that eventually lead to the enhanced calcium currents. Electrophysiological recordings were performed in nucleated patches that allow excellent voltage control. Calcium currents in these patches almost exclusively involve N- and L-type channels. We found that L- but not N-type calcium currents were largely enhanced after treatment with a high dose of corticosterone sufficient to activate glucocorticoid receptors. Voltage dependency and kinetic properties of the currents were unaffected by the hormone. Nonstationary noise analysis suggests that the increased current is not caused by a larger unitary conductance, but rather to a doubling of the number of functional channels. Quantitative real-time PCR revealed that transcripts of the Cav1 subunits encoding for the N- or L-type calcium channels are not upregulated in the mouse CA1 area; instead, a strong, direct, and consistent upregulation of the β4 subunit was observed. This indicates that the corticosteroid-induced increase in number of L-type calcium channels is not caused by a simple transcriptional regulation of the pore-forming subunit of the channels.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, N-Type/drug effects
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/genetics
- Dose-Response Relationship, Drug
- Glucocorticoids/metabolism
- Glucocorticoids/pharmacology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Mice, Inbred C57BL
- Patch-Clamp Techniques
- Protein Subunits/drug effects
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Pyramidal Cells/drug effects
- Pyramidal Cells/metabolism
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/metabolism
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Pascal Chameau
- Swamnerdam Institute for Life Science and Center for NeuroScience, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Although inhibition of voltage-gated calcium channels by RGK GTPases (RGKs) represents an important mode of regulation to control Ca2+ influx in excitable cells, their exact mechanism of inhibition remains controversial. This has prevented an understanding of how RGK regulation can be significant in a physiological context. Here we show that RGKs—Gem, Rem, and Rem2—decreased CaV1.2 Ca2+ current amplitude in a dose-dependent manner. Moreover, Rem2, but not Rem or Gem, produced dose-dependent alterations on gating kinetics, uncovering a new mode by which certain RGKs can precisely modulate Ca2+ currents and affect Ca2+ influx during action potentials. To explore how RGKs influence gating kinetics, we separated the roles mediated by the Ca2+ channel accessory β subunit's interaction with its high affinity binding site in the pore-forming α1C subunit (AID) from its other putative contact sites by utilizing an α1C•β3 concatemer in which the AID was mutated to prevent β subunit interaction. This mutant concatemer generated currents with all the hallmarks of β subunit modulation, demonstrating that AID-β–independent interactions are sufficient for β subunit modulation. Using this construct we found that although inhibition of current amplitude was still partially sensitive to RGKs, Rem2 no longer altered gating kinetics, implicating different determinants for this specific mode of Rem2-mediated regulation. Together, these results offer new insights into the molecular mechanism of RGK-mediated Ca2+ channel current modulation.
Collapse
Affiliation(s)
- Lillian Seu
- Department of Pharmacology, Division of Cardiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
45
|
Raike RS, Kordasiewicz HB, Thompson RM, Gomez CM. Dominant-negative suppression of Cav2.1 currents by alpha(1)2.1 truncations requires the conserved interaction domain for beta subunits. Mol Cell Neurosci 2006; 34:168-77. [PMID: 17161621 PMCID: PMC3236250 DOI: 10.1016/j.mcn.2006.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 10/11/2006] [Accepted: 10/19/2006] [Indexed: 11/20/2022] Open
Abstract
Episodic ataxia type 2 (EA2) is an autosomal dominant disorder arising from CACNA1A mutations, which commonly predict heterozygous expression of Ca(v)2.1 calcium channels with truncated alpha(1)2.1 pore subunits. We hypothesized that alpha(1)2.1 truncations in EA2 exert dominant-negative effects on the function of wild-type subunits. Wild-type and truncated alpha(1)2.1 subunits with fluorescent protein tags were transiently co-expressed in cells stably expressing Ca(v) auxiliary beta subunits, which facilitate alpha1 subunit functional expression through high-affinity interactions with the alpha interaction domain (AID). Co-expression of wild-type subunits with truncations often resulted in severely reduced whole-cell currents compared to expression of wild-type subunits alone. Cellular image analyses revealed that current suppression was not due to reduced wild-type expression levels. Instead, the current suppression depended on truncations terminating distal to the AID. Moreover, only AID-bearing alpha(1)2.1 proteins co-immunoprecipitated with Ca(v) beta subunits. These results indicate that Ca(v) beta subunits may play a prominent role in EA2 disease pathogenesis.
Collapse
Affiliation(s)
- Robert S. Raike
- Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Holly B. Kordasiewicz
- Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Randall M. Thompson
- Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Christopher M. Gomez
- Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
46
|
Yin H, Hamilton AD. Strategies for targeting protein-protein interactions with synthetic agents. Angew Chem Int Ed Engl 2006; 44:4130-63. [PMID: 15954154 DOI: 10.1002/anie.200461786] [Citation(s) in RCA: 375] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of small-molecule modulators of protein-protein interactions is a formidable goal, albeit one that possesses significant potential for the discovery of novel therapeutics. Despite the daunting challenges, a variety of examples exists for the inhibition of two large protein partners with low-molecular-weight ligands. This review discusses the strategies for targeting protein-protein interactions and the state of the art in the rational design of molecules that mimic the structures and functions of their natural targets.
Collapse
Affiliation(s)
- Hang Yin
- Yale University, New Haven, CT, USA
| | | |
Collapse
|
47
|
Jurkat-Rott K, Fauler M, Lehmann-Horn F. Ion channels and ion transporters of the transverse tubular system of skeletal muscle. J Muscle Res Cell Motil 2006; 27:275-90. [PMID: 16933023 DOI: 10.1007/s10974-006-9088-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 07/05/2006] [Indexed: 11/27/2022]
Abstract
This review focuses on the electrical properties of the transverse (T) tubular membrane of skeletal muscle, with reference to the contribution of the T-tubular system (TTS) to the surface action potential, the radial spread of excitation and its role in excitation-contraction coupling. Particularly, the most important ion channels and ion transporters that enable proper depolarization and repolarization of the T-tubular membrane are described. Since propagation of excitation along the TTS into the depth of the fibers is a delicate balance between excitatory and inhibitory currents, the composition of channels and transporters is specific to the TTS and different from the surface membrane. The TTS normally enables the radial spread of excitation and the signal transfer to the sarcoplasmic reticulum to release calcium that activates the contractile apparatus. However, due to its structure, even slight shifts of ions may alter its volume, Nernstian potentials, ion permeabilities, and consequently T-tubular membrane potential and excitability.
Collapse
|
48
|
Macleod GT, Chen L, Karunanithi S, Peloquin JB, Atwood HL, McRory JE, Zamponi GW, Charlton MP. TheDrosophila cacts2mutation reduces presynaptic Ca2+entry and defines an important element in Cav2.1 channel inactivation. Eur J Neurosci 2006; 23:3230-44. [PMID: 16820014 DOI: 10.1111/j.1460-9568.2006.04873.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Voltage-gated Ca2+ channels in nerve terminals open in response to action potentials and admit Ca2+, the trigger for neurotransmitter release. The cacophony gene encodes the primary presynaptic voltage-gated Ca2+ channel in Drosophila motor-nerve terminals. The cac(ts2) mutant allele of cacophony is associated with paralysis and reduced neurotransmission at non-permissive temperatures but the basis for the neurotransmission deficit has not been established. The cac(ts2) mutation occurs in the cytoplasmic carboxyl tail of the alpha1-subunit, not within the pore-forming trans-membrane domains, making it difficult to predict the mutation's impact. We applied a Ca2+-imaging technique at motor-nerve terminals of mutant larvae to test the hypothesis that the neurotransmission deficit is a result of impaired Ca2+ entry. Presynaptic Ca2+ signals evoked by single and multiple action potentials showed a temperature-dependent reduction. The amplitude of the reduction was sufficient to account for the neurotransmission deficit, indicating that the site of the cac(ts2) mutation plays a role in Ca2+ channel activity. As the mutation occurs in a motif conserved in mammalian high-voltage-activated Ca2+ channels, we used a heterologous expression system to probe the effect of this mutation on channel function. The mutation was introduced into rat Ca(v)2.1 channels expressed in human embryonic kidney cells. Patch-clamp analysis of mutant channels at the physiological temperature of 37 degrees C showed much faster inactivation rates than for wild-type channels, demonstrating that the integrity of this motif is critical for normal Ca(v)2.1 channel inactivation.
Collapse
Affiliation(s)
- G T Macleod
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kordasiewicz HB, Thompson RM, Clark HB, Gomez CM. C-termini of P/Q-type Ca2+ channel alpha1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity. Hum Mol Genet 2006; 15:1587-99. [PMID: 16595610 DOI: 10.1093/hmg/ddl080] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
P/Q-type voltage-gated calcium channels are regulated, in part, through the cytoplasmic C-terminus of their alpha1A subunit. Genetic absence or alteration of the C-terminus leads to abnormal channel function and neurological disease. Here, we show that the terminal 60-75 kDa of the endogenous alpha1A C-terminus is cleaved from the full-length protein and is present in cell nuclei. Antiserum to the C-terminus (CT-2) labels both wild-type mouse and human Purkinje cell nuclei, but not leaner mouse cerebellum. Human embryonic kidney cells stably expressing beta3 and alpha2delta subunits and transiently transfected with full-length human alpha1A contain a 75 kDa CT-2 reactive peptide in their nuclear fraction. Primary granule cells transfected with C-terminally Green fluorescent protein (GFP)-tagged alpha1A exhibit GFP nuclear labeling. Nuclear translocation depends partly on the presence of three nuclear localization signals within the C-terminus. The C-terminal fragment bears a polyglutamine tract which, when expanded (Q33) as in spinocerebellar ataxia type 6 (SCA6), is toxic to cells. Moreover, polyglutamine-mediated toxicity is dependent on nuclear localization. Finally, in the absence of flanking sequence, the Q33 expansion alone does not kill cells. These results suggest a novel processing of the P/Q-type calcium channel and a potential mechanism for the pathogenesis of SCA6.
Collapse
Affiliation(s)
- Holly B Kordasiewicz
- Department of Neuroscience, Unviersity of Minnesota, 420 Delaware Street SE, Minneapolis, 55455, USA
| | | | | | | |
Collapse
|
50
|
Cheng W, Altafaj X, Ronjat M, Coronado R. Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling. Proc Natl Acad Sci U S A 2005; 102:19225-30. [PMID: 16357209 PMCID: PMC1323149 DOI: 10.1073/pnas.0504334102] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the skeletal dihydropyridine receptor (DHPR) pore subunit Ca(V)1.1 (alpha1S) physically interacts with ryanodine receptor type 1 (RyR1), and a molecular signal is transmitted from alpha1S to RyR1 to trigger excitation-contraction (EC) coupling. We show that the beta-subunit of the skeletal DHPR also binds RyR1 and participates in this signaling process. A novel binding site for the DHPR beta1a-subunit was mapped to the M(3201) to W(3661) region of RyR1. In vitro binding experiments showed that the strength of the interaction is controlled by K(3495)KKRR_ _R(3502), a cluster of positively charged residues. Phenotypic expression of skeletal-type EC coupling by RyR1 with mutations in the K(3495)KKRR_ _R(3502) cluster was evaluated in dyspedic myotubes. The results indicated that charge neutralization or deletion severely depressed the magnitude of RyR1-mediated Ca(2+) transients coupled to voltage-dependent activation of the DHPR. Meantime the Ca(2+) content of the sarcoplasmic reticulum was not affected, and the amplitude and activation kinetics of the DHPR Ca(2+) currents were slightly affected. The data show that the DHPR beta-subunit, like alpha1S, interacts directly with RyR1 and is critical for the generation of high-speed Ca(2+) signals coupled to membrane depolarization. These findings indicate that EC coupling in skeletal muscle involves the interplay of at least two subunits of the DHPR, namely alpha1S and beta1a, interacting with possibly different domains of RyR1.
Collapse
Affiliation(s)
- Weijun Cheng
- Department of Physiology, University of Wisconsin School of Medicine, Madison, WI 53706, USA
| | | | | | | |
Collapse
|