1
|
Sinha MH, Mehtab T, Entesari M, Nguyen HH, Yun A, Hwang I. Production of active human iduronate-2-sulfatase (IDS) enzyme in Nicotiana benthamiana. Sci Rep 2024; 14:23066. [PMID: 39367006 PMCID: PMC11452390 DOI: 10.1038/s41598-024-73778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
Many strategies have been developed to produce high levels of biologically active recombinant proteins in plants for biopharmaceutical purposes. However, the production of an active form of human iduronate-2-sulfatase (hIDS) for the treatment of Hunter syndrome by enzyme replacement therapy (ERT) is challenging due to the requirement for cotranslational modification by a formylglycine-producing enzyme encoded by sulfatase modifying factor 1 (hSUMF1) at the Cys84 residue, which converts it to C(alpha)-formylglycine. In this study, we have shown that hIDS can be highly expressed in N. benthamiana by using different constructs. Among them, BiP-GB1-L-dCBD1-2L-8xHis-L-6xHis-3L-EK-hIDS-HDEL (GB1-CBD1-hIDS) showed a high expression level when transiently co-expressed with the turnip crinkle virus gene silencing suppressor P38 and GB1-fused human calreticulin (GB1-CRT1) as a folding enhancer. The hSUMF1 was co-expressed with hIDS for cotranslational modification. The full-length recombinant proteins were purified using Ni2+-NTA affinity resin followed by enterokinase treatment to obtain tag-free hIDS. The N-terminal fragment was removed using microcrystalline cellulose (MCC) beads. The purified active form of hIDS can successfully cleave the sulfate group from an artificial substrate, 4-nitrocatechol sulfate, at a similar level to commercial hIDS expressed in animal cells. These results suggest that plants could be a promising platform for the production of recombinant hIDS.
Collapse
Affiliation(s)
- Md Hasif Sinha
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Tahrin Mehtab
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Mehrnaz Entesari
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Hong Hanh Nguyen
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Areum Yun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea.
| |
Collapse
|
2
|
Ghosh D. Structures and Functions of Human Placental Aromatase and Steroid Sulfatase, Two Key Enzymes in Estrogen Biosynthesis. Steroids 2023; 196:109249. [PMID: 37207843 DOI: 10.1016/j.steroids.2023.109249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Cytochrome P450 aromatase (AROM) and steroid sulfatase (STS) are the two key enzymes for the biosynthesis of estrogens in human, and maintenance of the critical balance between androgens and estrogens. Human AROM, an integral membrane protein of the endoplasmic reticulum, is a member of the cytochrome P450 superfamily. It is the only enzyme to catalyze the conversion of androgens with non-aromatic A-rings to estrogens characterized by the aromatic A-ring. Human STS, also an integral membrane protein of the endoplasmic reticulum, is a Ca2+-dependent enzyme that catalyzes the hydrolysis of sulfate esters of estrone and dehydroepiandrosterone to the unconjugated steroids, the precursors of the most potent forms of estrogens and androgens, namely, 17β-estradiol, 16α,17β-estriol, testosterone and dihydrotestosterone. Expression of these steroidogenic enzymes locally within organs and tissues of the endocrine, reproductive, and central nervous systems is the key for maintaining high levels of the reproductive steroids. The enzymes have been drug targets for the prevention and treatment of diseases associated with steroid hormone excesses, especially in breast, endometrial and prostate malignancies. Both enzymes have been the subjects of vigorous research for the past six decades. In this article, we review the important findings on their structure-function relationships, specifically, the work that began with unravelling of the closely guarded secrets, namely, the 3-D structures, active sites, mechanisms of action, origins of substrate specificity and the basis of membrane integration. Remarkably, these studies were conducted on the enzymes purified in their pristine forms from human placenta, the discarded and their most abundant source. The purification, assay, crystallization, and structure determination methodologies are described. Also reviewed are their functional quaternary organizations, post-translational modifications and the advancements made in the structure-guided inhibitor design efforts. Outstanding questions that still remain open are summarized in closing.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210.
| |
Collapse
|
3
|
Ghosh D. Structure of human placental steroid sulfatase at 2.0 angstrom resolution: Catalysis, quaternary association, and a secondary ligand site. J Steroid Biochem Mol Biol 2023; 227:106228. [PMID: 36427797 DOI: 10.1016/j.jsbmb.2022.106228] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Human placental estrone (E1)/dehydroepiandrosterone (DHEA) sulfatase (human placental steroid sulfatase; hSTS) is an integral membrane protein of the endoplasmic reticulum. This Ca2+-dependent enzyme catalyzes the hydrolysis of sulfate esters of E1 and DHEA to yield the respective unconjugated steroids, which then act as precursors for the biosynthesis of 17β-estradiol (E2) and dihydrotestosterone (DHT), respectively, the most potent forms of estrogens and androgens. hSTS is a key enzyme for the local production of E2 and DHT in the breast and the prostate. The enzyme is known to be responsible for maintaining high levels of estrogens in the breast tumor cells. The crystal structure of hSTS purified from human placenta has previously been reported at 2.6 Å resolution. Here we present the structure of hSTS determined at the superior 2.0 Å resolution bringing new clarity to the atomic architecture of the active site. The molecular basis of catalysis and steroid-protein interaction are revisited in light of the new data. We also reexamine the enzyme's quaternary association and its implication on the membrane integration. A secondary ligand binding pocket at the intermolecular interface and adjacent to the active site access channel, buried into the gill of the mushroom-shaped molecule, has been identified. Its role as well as that of a phosphate ion bound to an exposed histidine side chain are examined from the structure-function perspective. Higher resolution data also aids in the tracing of an important loop missing in the previous structure.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
4
|
Igreja C, Sommer RJ. The Role of Sulfation in Nematode Development and Phenotypic Plasticity. Front Mol Biosci 2022; 9:838148. [PMID: 35223994 PMCID: PMC8869759 DOI: 10.3389/fmolb.2022.838148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
Sulfation is poorly understood in most invertebrates and a potential role of sulfation in the regulation of developmental and physiological processes of these organisms remains unclear. Also, animal model system approaches did not identify many sulfation-associated mechanisms, whereas phosphorylation and ubiquitination are regularly found in unbiased genetic and pharmacological studies. However, recent work in the two nematodes Caenorhabditis elegans and Pristionchus pacificus found a role of sulfatases and sulfotransferases in the regulation of development and phenotypic plasticity. Here, we summarize the current knowledge about the role of sulfation in nematodes and highlight future research opportunities made possible by the advanced experimental toolkit available in these organisms.
Collapse
Affiliation(s)
- Catia Igreja
- *Correspondence: Catia Igreja, ; Ralf J. Sommer,
| | | |
Collapse
|
5
|
Xu X, Deng X, Lin J, Yang J. Characterization and substrate-accelerated thermal inactivation kinetics of a new serine-type arylsulfatase. Enzyme Microb Technol 2021; 154:109961. [PMID: 34952364 DOI: 10.1016/j.enzmictec.2021.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/03/2022]
Abstract
Arylsulfatase is useful in industrial agar processing by removing sulfate groups. A full-length arylsulfatase gene, designated ArySMA1, was obtained from marine bacteria Serratia sp. SM1. The ArySMA1 gene encoded a novel serine-type arylsulfatase and the enzymatic properties were characterized. The enzyme presented notable capacity of removing sulfate groups from natural algae substrates. Kinetic study suggested that the microscopic thermal inactivation rate of ArySMA1 in free form was smaller than that of the enzyme-substrate complex. The presence of substrate could unexpectedly accelerate ArySMA1 to deactivate at high temperature. Such phenomenon was opposite to many findings that substrate could stabilize enzymes against heat. Molecular dynamics simulation and ANS fluorescent assay indicated the substrate led the hydrophobic regions of the active site more flexible and the sulfate group of the substrate could retard the processivity of ArySMA1 catalysis. This study provides guidance for agar desulfation and down-stream processing industry.
Collapse
Affiliation(s)
- Xinqi Xu
- College of Biological Science and Engineering, Fuzhou University, 350116, China
| | - Xiangzhen Deng
- College of Biological Science and Engineering, Fuzhou University, 350116, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, 350116, China
| | - Jie Yang
- College of Biological Science and Engineering, Fuzhou University, 350116, China.
| |
Collapse
|
6
|
A novel thermostable prokaryotic fucoidan active sulfatase PsFucS1 with an unusual quaternary hexameric structure. Sci Rep 2021; 11:19523. [PMID: 34593864 PMCID: PMC8484680 DOI: 10.1038/s41598-021-98588-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Fucoidans are sulfated, fucose-rich marine polysaccharides primarily found in cell walls of brown seaweeds (macroalgae). Fucoidans are known to possess beneficial bioactivities depending on their structure and sulfation degree. Here, we report the first functional characterization and the first crystal structure of a prokaryotic sulfatase, PsFucS1, belonging to sulfatase subfamily S1_13, able to release sulfate from fucoidan oligosaccharides. PsFucS1 was identified in the genome of a Pseudoalteromonas sp. isolated from sea cucumber gut. PsFucS1 (57 kDa) is Ca2+ dependent and has an unusually high optimal temperature (68 °C) and thermostability. Further, the PsFucS1 displays a unique quaternary hexameric structure comprising a tight trimeric dimer complex. The structural data imply that this hexamer formation results from an uncommon interaction of each PsFucS1 monomer that is oriented perpendicular to the common dimer interface (~ 1500 Å2) that can be found in analogous sulfatases. The uncommon interaction involves interfacing (1246 Å2) through a bundle of α-helices in the N-terminal domain to form a trimeric ring structure. The high thermostability may be related to this unusual quaternary hexameric structure formation that is suggested to represent a novel protein thermostabilization mechanism.
Collapse
|
7
|
Lysosomal sulfatases: a growing family. Biochem J 2020; 477:3963-3983. [PMID: 33120425 DOI: 10.1042/bcj20200586] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Sulfatases constitute a family of enzymes that specifically act in the hydrolytic degradation of sulfated metabolites by removing sulfate monoesters from various substrates, particularly glycolipids and glycosaminoglycans. A common essential feature of all known eukaryotic sulfatases is the posttranslational modification of a critical cysteine residue in their active site by oxidation to formylglycine (FGly), which is mediated by the FGly-generating enzyme in the endoplasmic reticulum and is indispensable for catalytic activity. The majority of the so far described sulfatases localize intracellularly to lysosomes, where they act in different catabolic pathways. Mutations in genes coding for lysosomal sulfatases lead to an accumulation of the sulfated substrates in lysosomes, resulting in impaired cellular function and multisystemic disorders presenting as lysosomal storage diseases, which also cover the mucopolysaccharidoses and metachromatic leukodystrophy. Bioinformatics analysis of the eukaryotic genomes revealed, besides the well described and long known disease-associated sulfatases, additional genes coding for putative enzymes with sulfatases activity, including arylsulfatase G as well as the arylsulfatases H, I, J and K, respectively. In this article, we review current knowledge about lysosomal sulfatases with a special focus on the just recently characterized family members arylsulfatase G and arylsulfatase K.
Collapse
|
8
|
Kolchina NV, Rychkov GN, Kulminskaya AA, Ibatullin FM, Petukhov MG, Bobrov KS. Structural Organization of the Active Center of Unmodified Recombinant Sulfatase from the Mycelial Fungi Fusarium proliferatum LE1. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Marcó S, Haurigot V, Bosch F. In Vivo Gene Therapy for Mucopolysaccharidosis Type III (Sanfilippo Syndrome): A New Treatment Horizon. Hum Gene Ther 2020; 30:1211-1221. [PMID: 31482754 DOI: 10.1089/hum.2019.217] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For most lysosomal storage diseases (LSDs), there is no cure. Gene therapy is an attractive tool for treatment of LSDs caused by deficiencies in secretable lysosomal enzymes, in which neither full restoration of normal enzymatic activity nor transduction of all cells of the affected organ is necessary. However, some LSDs, such as mucopolysaccharidosis type III (MPSIII) diseases or Sanfilippo syndrome, represent a difficult challenge because patients suffer severe neurodegeneration with mild somatic alterations. The disease's main target is the central nervous system (CNS) and enzymes do not efficiently cross the blood-brain barrier (BBB) even if present at very high concentration in circulation. No specific treatment has been approved for MPSIII. In this study, we discuss the adeno-associated virus (AAV) vector-mediated gene transfer strategies currently being developed for MPSIII disease. These strategies rely on local delivery of AAV vectors to the CNS either through direct intraparenchymal injection at several sites or through delivery to the cerebrospinal fluid (CSF), which bathes the whole CNS, or exploit the properties of certain AAV serotypes capable of crossing the BBB upon systemic administration. Although studies in small and large animal models of MPSIII diseases have provided evidence supporting the efficacy and safety of all these strategies, there are considerable differences between the different routes of administration in terms of procedure-associated risks, vector dose requirements, sensitivity to the effect of circulating neutralizing antibodies that block AAV transduction, and potential toxicity. Ongoing clinical studies should shed light on which gene transfer strategy leads to highest clinical benefits while minimizing risks. The development of all these strategies opens a new horizon for treatment of not only MPSIII and other LSDs but also of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Sara Marcó
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
10
|
Identification of Novel ARSB Genes Necessary for p-Benzoquinone Biosynthesis in the Larval Oral Secretion Participating in External Immune Defense in the Red Palm Weevil. Int J Mol Sci 2020; 21:ijms21051610. [PMID: 32111099 PMCID: PMC7084252 DOI: 10.3390/ijms21051610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 11/16/2022] Open
Abstract
External secretions, composed of a variety of chemical components, are among the most important traits that endow insects with the ability to defend themselves against predators, parasites, or other adversities, especially pathogens. Thus, these exudates play a crucial role in external immunity. Red palm weevil larvae are prolific in this regard, producing large quantities of p-benzoquinone, which is present in their oral secretion. Benzoquinone with antimicrobial activity has been proven to be an active ingredient and key factor for external immunity in a previous study. To obtain a better understanding of the genetic and molecular basis of external immune secretions, we identify genes necessary for p-benzoquinone synthesis. Three novel ARSB genes, namely, RfARSB-0311, RfARSB-11581, and RfARSB-14322, are screened, isolated, and molecularly characterized on the basis of transcriptome data. To determine whether these genes are highly and specifically expressed in the secretory gland, we perform tissue/organ-specific expression profile analysis. The functions of these genes are further determined by examining the antimicrobial activity of the secretions and quantification of p-benzoquinone after RNAi. All the results reveal that the ARSB gene family can regulate the secretory volume of p-benzoquinone by participating in the biosynthesis of quinones, thus altering the host’s external immune inhibitory efficiency.
Collapse
|
11
|
Ahn SJ, Betzin F, Gikonyo MW, Yang ZL, Köllner TG, Beran F. Identification and evolution of glucosinolate sulfatases in a specialist flea beetle. Sci Rep 2019; 9:15725. [PMID: 31673017 PMCID: PMC6823443 DOI: 10.1038/s41598-019-51749-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/07/2019] [Indexed: 11/24/2022] Open
Abstract
Glucosinolates, a characteristic group of specialized metabolites found in Brassicales plants, are converted to toxic isothiocyanates upon herbivory. Several insect herbivores, including the cabbage stem flea beetle (Psylliodes chrysocephala), prevent glucosinolate activation by forming desulfo-glucosinolates. Here we investigated the molecular basis of glucosinolate desulfation in P. chrysocephala, an important pest of oilseed rape. Enzyme activity assays with crude beetle protein extracts revealed that glucosinolate sulfatase (GSS) activity is associated with the gut membrane and has narrow substrate specificity towards the benzenic glucosinolate sinalbin. In agreement with GSS activity localization in vivo, we identified six genes encoding arylsulfatase-like enzymes with a predicted C-terminal transmembrane domain, of which five showed GSS activity upon heterologous expression in insect cells. PcGSS1 and PcGSS2 used sinalbin and indol-3-ylmethyl glucosinolate as substrates, respectively, whereas PcGSS3, PcGSS4, and PcGSS5 showed weak activity in enzyme assays. RNAi-mediated knock-down of PcGSS1 and PcGSS2 expression in adult beetles confirmed their function in vivo. In a phylogenetic analysis of coleopteran and lepidopteran arylsulfatases, the P. chrysocephala GSSs formed a cluster within a coleopteran-specific sulfatase clade distant from the previously identified GSSs of the diamondback moth, Plutella xylostella, suggesting an independent evolution of GSS activity in ermine moths and flea beetles.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, 39762, United States
| | - Franziska Betzin
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Matilda W Gikonyo
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Zhi-Ling Yang
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Franziska Beran
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.
| |
Collapse
|
12
|
Wang S, Guan J, Zhang Q, Chen X, Li F. Identification and Signature Sequences of Bacterial Δ 4,5Hexuronate-2- O-Sulfatases. Front Microbiol 2019; 10:704. [PMID: 31024490 PMCID: PMC6460246 DOI: 10.3389/fmicb.2019.00704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/20/2019] [Indexed: 11/13/2022] Open
Abstract
Glycosaminoglycan (GAG) sulfatases, which catalyze the hydrolysis of sulfate esters from GAGs, belong to a large and conserved sulfatase family. Bacterial GAG sulfatases are essential in the process of sulfur cycling and are useful for the structural analysis of GAGs. Only a few GAG-specific sulfatases have been studied in detail and reported to date. Herein, the GAG-degrading Photobacterium sp. FC615 was isolated from marine sediment, and a novel Δ4,5hexuronate-2-O-sulfatase (PB2SF) was identified from this bacterium. PB2SF specifically removed 2-O-sulfate from the unsaturated hexuronate residue located at the non-reducing end of GAG oligosaccharides produced by GAG lyases. A structural model of PB2SF was constructed through a homology-modeling method. Six conserved amino acids around the active site were chosen for further analysis using site-directed mutagenesis. N113A, K141A, K141H, H143A, H143K, H205A, and H205K mutants exhibited only feeble activity, while the H310A, H310K, and D52A mutants were totally inactive, indicating that these conserved residues, particularly Asp52 and His310, were essential in the catalytic mechanism. Furthermore, bioinformatic analysis revealed that GAG sulfatases with specific degradative properties clustered together in the neighbor-joining phylogenetic tree. Based on this finding, 60 Δ4,5hexuronate-2-O-sulfatases were predicted in the NCBI protein database, and one with relatively low identity to PB2SF was characterized to confirm our prediction. Moreover, the signature sequences of bacterial Δ4,5hexuronate-2-O-sulfatases were identified. With the reported signature motifs, the sulfatase sequence of the Δ4,5hexuronate-2-O-sulfatase family could be simply identified before cloning. Taken together, the results of this study should aid in the identification and further application of novel GAG sulfatases.
Collapse
Affiliation(s)
- Shumin Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Jingwen Guan
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Qingdong Zhang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Xiangxue Chen
- Dongying Tiandong Pharmaceutical, Co., Ltd., Dongying, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Abstract
Covering: up to the end of 2017 The human body is composed of an equal number of human and microbial cells. While the microbial community inhabiting the human gastrointestinal tract plays an essential role in host health, these organisms have also been connected to various diseases. Yet, the gut microbial functions that modulate host biology are not well established. In this review, we describe metabolic functions of the human gut microbiota that involve metalloenzymes. These activities enable gut microbial colonization, mediate interactions with the host, and impact human health and disease. We highlight cases in which enzyme characterization has advanced our understanding of the gut microbiota and examples that illustrate the diverse ways in which metalloenzymes facilitate both essential and unique functions of this community. Finally, we analyze Human Microbiome Project sequencing datasets to assess the distribution of a prominent family of metalloenzymes in human-associated microbial communities, guiding future enzyme characterization efforts.
Collapse
|
14
|
van Loo B, Berry R, Boonyuen U, Mohamed MF, Golicnik M, Hengge AC, Hollfelder F. Transition-State Interactions in a Promiscuous Enzyme: Sulfate and Phosphate Monoester Hydrolysis by Pseudomonas aeruginosa Arylsulfatase. Biochemistry 2019; 58:1363-1378. [PMID: 30810299 PMCID: PMC11098524 DOI: 10.1021/acs.biochem.8b00996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa arylsulfatase (PAS) hydrolyzes sulfate and, promiscuously, phosphate monoesters. Enzyme-catalyzed sulfate transfer is crucial to a wide variety of biological processes, but detailed studies of the mechanistic contributions to its catalysis are lacking. We present linear free energy relationships (LFERs) and kinetic isotope effects (KIEs) of PAS and analyses of active site mutants that suggest a key role for leaving group (LG) stabilization. In LFERs PASWT has a much less negative Brønsted coefficient (βleaving groupobs-Enz = -0.33) than the uncatalyzed reaction (βleaving groupobs = -1.81). This situation is diminished when cationic active site groups are exchanged for alanine. The considerable degree of bond breaking during the transition state (TS) is evidenced by an 18Obridge KIE of 1.0088. LFER and KIE data for several active site mutants point to leaving group stabilization by active site K375, in cooperation with H211. 15N KIEs and the increased sensitivity to leaving group ability of the sulfatase activity in neat D2O (Δβleaving groupH-D = +0.06) suggest that the mechanism for S-Obridge bond fission shifts, with decreasing leaving group ability, from charge compensation via Lewis acid interactions toward direct proton donation. 18Ononbridge KIEs indicate that the TS for PAS-catalyzed sulfate monoester hydrolysis has a significantly more associative character compared to the uncatalyzed reaction, while PAS-catalyzed phosphate monoester hydrolysis does not show this shift. This difference in enzyme-catalyzed TSs appears to be the major factor favoring specificity toward sulfate over phosphate esters by this promiscuous hydrolase, since other features are either too similar (uncatalyzed TS) or inherently favor phosphate (charge).
Collapse
Affiliation(s)
- Bert van Loo
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ryan Berry
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Usa Boonyuen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mark F. Mohamed
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Marko Golicnik
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alvan C. Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
van Vliet DM, Palakawong Na Ayudthaya S, Diop S, Villanueva L, Stams AJM, Sánchez-Andrea I. Anaerobic Degradation of Sulfated Polysaccharides by Two Novel Kiritimatiellales Strains Isolated From Black Sea Sediment. Front Microbiol 2019; 10:253. [PMID: 30833937 PMCID: PMC6388578 DOI: 10.3389/fmicb.2019.00253] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/30/2019] [Indexed: 12/04/2022] Open
Abstract
The marine environment contains a large diversity of sulfated polysaccharides and other glycopolymers. Saccharolytic microorganisms degrade these compounds through hydrolysis, which includes the hydrolysis of sulfate groups from sugars by sulfatases. Various marine bacteria of the Planctomycetes-Verrucomicrobia-Chlamydia (PVC) superphylum have exceptionally high numbers of sulfatase genes associated with the degradation of sulfated polysaccharides. However, thus far no sulfatase-rich marine anaerobes are known. In this study, we aimed to isolate marine anaerobes using sulfated polysaccharides as substrate. Anoxic enrichment cultures were set up with a mineral brackish marine medium, inoculated with anoxic Black Sea sediment sampled at 2,100 m water depth water and incubated at 15°C (in situ T = 8°C) for several weeks. Community analysis by 16S rRNA gene amplicon sequencing revealed the enrichment of Kiritimatiellaeota clade R76-B128 bacteria in the enrichments with the sulfated polysaccharides fucoidan and iota-carrageenan as substrate. We isolated two strains, F1 and F21, which represent a novel family within the order of the Kiritimatiellales. They were capable of growth on various mono-, di-, and polysaccharides, including fucoidan. The desulfation of iota-carrageenan by strain F21 was confirmed quantitatively by an increase in free sulfate concentration. Strains F1 and F21 represent the first marine sulfatase-rich anaerobes, encoding more sulfatases (521 and 480, 8.0 and 8.4% of all coding sequences, respectively) than any other microorganism currently known. Specific encoded sulfatase subfamilies could be involved in desulfating fucoidan (S1_15, S1_17 and S1_25) and iota-carrageenan (S1_19). Strains F1 and F21 had a sulfatase gene classification profile more similar to aerobic than anaerobic sulfatase-rich PVC bacteria, including Kiritimatiella glycovorans, the only other cultured representative within the Kiritimatiellaeota. Both strains encoded a single anaerobic sulfatase-maturating enzyme which could be responsible for post-translational modification of formylglycine-dependent sulfatases. Strains F1 and F21 are potential anaerobic platforms for future studies on sulfatases and their maturation enzymes.
Collapse
Affiliation(s)
- Daan M. van Vliet
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Susakul Palakawong Na Ayudthaya
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Sally Diop
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Den Burg, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | |
Collapse
|
16
|
Krüger T, Dierks T, Sewald N. Formylglycine-generating enzymes for site-specific bioconjugation. Biol Chem 2018; 400:289-297. [DOI: 10.1515/hsz-2018-0358] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023]
Abstract
Abstract
Site-specific bioconjugation strategies offer many possibilities for directed protein modifications. Among the various enzyme-based conjugation protocols, formylglycine-generating enzymes allow to posttranslationally introduce the amino acid Cα-formylglycine (FGly) into recombinant proteins, starting from cysteine or serine residues within distinct consensus motifs. The aldehyde-bearing FGly-residue displays orthogonal reactivity to all other natural amino acids and can, therefore, be used for site-specific labeling reactions on protein scaffolds. In this review, the state of research on catalytic mechanisms and consensus motifs of different formylglycine-generating enzymes, as well as labeling strategies and applications of FGly-based bioconjugations are presented.
Collapse
Affiliation(s)
- Tobias Krüger
- Organic and Bioorganic Chemistry, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , D-33615 Bielefeld , Germany
| | - Thomas Dierks
- Biochemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , D-33615 Bielefeld , Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , D-33615 Bielefeld , Germany
| |
Collapse
|
17
|
Evolutionary repurposing of a sulfatase: A new Michaelis complex leads to efficient transition state charge offset. Proc Natl Acad Sci U S A 2018; 115:E7293-E7302. [PMID: 30012610 DOI: 10.1073/pnas.1607817115] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The recruitment and evolutionary optimization of promiscuous enzymes is key to the rapid adaptation of organisms to changing environments. Our understanding of the precise mechanisms underlying enzyme repurposing is, however, limited: What are the active-site features that enable the molecular recognition of multiple substrates with contrasting catalytic requirements? To gain insights into the molecular determinants of adaptation in promiscuous enzymes, we performed the laboratory evolution of an arylsulfatase to improve its initially weak phenylphosphonate hydrolase activity. The evolutionary trajectory led to a 100,000-fold enhancement of phenylphosphonate hydrolysis, while the native sulfate and promiscuous phosphate mono- and diester hydrolyses were only marginally affected (≤50-fold). Structural, kinetic, and in silico characterizations of the evolutionary intermediates revealed that two key mutations, T50A and M72V, locally reshaped the active site, improving access to the catalytic machinery for the phosphonate. Measured transition state (TS) charge changes along the trajectory suggest the creation of a new Michaelis complex (E•S, enzyme-substrate), with enhanced leaving group stabilization in the TS for the promiscuous phosphonate (βleavinggroup from -1.08 to -0.42). Rather than altering the catalytic machinery, evolutionary repurposing was achieved by fine-tuning the molecular recognition of the phosphonate in the Michaelis complex, and by extension, also in the TS. This molecular scenario constitutes a mechanistic alternative to adaptation solely based on enzyme flexibility and conformational selection. Instead, rapid functional transitions between distinct chemical reactions rely on the high reactivity of permissive active-site architectures that allow multiple substrate binding modes.
Collapse
|
18
|
Stressler T, Reichenberger K, Glück C, Leptihn S, Pfannstiel J, Swietalski P, Kuhn A, Seitl I, Fischer L. A natural variant of arylsulfatase from Kluyveromyces lactis shows no formylglycine modification and has no enzyme activity. Appl Microbiol Biotechnol 2018; 102:2709-2721. [PMID: 29450617 DOI: 10.1007/s00253-018-8828-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
Abstract
Kluyveromyces lactis is a common fungal microorganism used for the production of enzyme preparations such as β-galactosidases (native) or chymosin (recombinant). It is generally important that enzyme preparations have no unwanted side activities. In the case of β-galactosidase preparations produced from K. lactis, an unwanted side activity could be the presence of arylsulfatase (EC 3.1.6.1). Due to the action of arylsulfatase, an unpleasant "cowshed-like" off-flavor would occur in the final product. The best choice to avoid this is to use a yeast strain without this activity. Interestingly, we found that certain natural K. lactis strains express arylsulfatases, which only differ in one amino acid at position 139. The result of this difference is that K. lactis DSM 70799 (expressing R139 variant) shows no arylsulfatase activity, unlike K. lactis GG799 (expressing S139 variant). After recombinant production of both variants in Escherichia coli, the R139 variant remains inactive, whereas the S139 variant showed full activity. Mass spectrometric analyses showed that the important posttranslational modification of C56 to formylglycine was not found in the R139 variant. By contrast, the C56 residue of the S139 variant was modified. We further investigated the packing and secondary structure of the arylsulfatase variants using optical spectroscopy, including fluorescence and circular dichroism. We found out that the inactive R139 variant exhibits a different structure regarding folding and packing compared to the active S139 variant. The importance of the amino acid residue 139 was documented further by the construction of 18 more variants, whereof only ten showed activity but always reduced compared to the native S139 variant.
Collapse
Affiliation(s)
- Timo Stressler
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| | - Katrin Reichenberger
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Claudia Glück
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Sebastian Leptihn
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Paul Swietalski
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Ines Seitl
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| |
Collapse
|
19
|
Yoon HY, Kim HJ, Jang S, Hong JI. Detection of bacterial sulfatase activity through liquid- and solid-phase colony-based assays. AMB Express 2017; 7:150. [PMID: 28697587 PMCID: PMC5503846 DOI: 10.1186/s13568-017-0449-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023] Open
Abstract
Bacterial arylsulfatases are crucial to biosynthesis in many microorganisms, as bacteria often utilize aryl sulfates as a source of sulfur. The bacterial sulfatases are associated with pathogenesis and are applied in many areas such as industry and agriculture. We developed an activity-based probe 1 for detection of bacterial sulfatase activity through liquid- and solid-phase colony-based assays. Probe 1 is hydrolyzed by sulfatase to generate fluorescent N-methyl isoindole, which is polymerized to form colored precipitates. These fluorescent and colorimetric properties of probe 1 induced upon treatment of sulfatases were successfully utilized for liquid-phase sulfatase activity assays for colonies and lysates of Klebsiella aerogenes, Mycobacterium avium and Mycobacterium smegmatis. In addition, probe 1 allowed solid-phase colony-based assays of K. aerogenes through the formation of insoluble colored precipitates, thus enabling accurate staining of target colonies under heterogeneous conditions.
Collapse
|
20
|
Alméciga-Díaz CJ, Tolosa-Díaz AD, Pimentel LN, Bonilla YA, Rodríguez-López A, Espejo-Mojica AJ, Patiño JD, Sánchez OF, Gonzalez-Santos J. Anaerobic sulfatase maturase AslB from Escherichia coli activates human recombinant iduronate-2-sulfate sulfatase (IDS) and N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Gene 2017; 634:53-61. [PMID: 28882567 DOI: 10.1016/j.gene.2017.08.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/31/2017] [Indexed: 12/23/2022]
Abstract
Maturation of type I sulfatases requires the conversion of the cysteine (Cys) or serine (Ser) present in the active site to formylglycine (FGly). This activation represents a limiting step during the production of recombinant sulfatases in bacteria and eukaryotic hosts. AslB, YdeM and YidF have been proposed to participate in the activation of sulfatases in Escherichia coli. In this study, we combined in-silico and experimental approaches to study the interaction between Escherichia coli BL21(DE3) AslB and human sulfatases, more specifically iduronate-2-sulfate sulfatase (IDS) and N-acetylgalactosamine-6-sulfate sulfatase (GALNS). In-silico results show that AslB has a higher affinity for the residual motif of GALNS (-9.4kcalmol-1), Cys- and Ser-type, than for the one of IDS (-8.0kcalmol-1). However, the distance between the AslB active residue and the target motif favors the interaction with IDS (4.4Å) more than with GALNS (5.5Å). Experimental observations supported in-silico results where the co-expression of AslB with GALNS Cys- and Ser-type presented an activity increment of 2.0- and 1.5-fold compared to the control cultures, lacking overexpressed AslB. Similarly, IDS activity was increased in 4.6-fold when co-expressed with AslB. The higher sulfatase activity of AslB-IDS suggests that the distance between the AslB active residue and the motif target is a key parameter for the in-silico search of potential sulfatase activators. In conclusion, our results suggest that AslB is involve in the maturation of heterologous human sulfatases in E. coli BL21(DE3), and that it can have important implications in the production of recombinant sulfatases for therapeutic purposes and research.
Collapse
Affiliation(s)
- Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Andrés Dario Tolosa-Díaz
- Grupo de Bioquímica Molecular Computacional y Bioinformática, Departamento de Nutrición y Bioquímica, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luisa Natalia Pimentel
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Yahir Andres Bonilla
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia; Chemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Angela J Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan D Patiño
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Janneth Gonzalez-Santos
- Grupo de Bioquímica Molecular Computacional y Bioinformática, Departamento de Nutrición y Bioquímica, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
21
|
Cartmell A, Lowe EC, Baslé A, Firbank SJ, Ndeh DA, Murray H, Terrapon N, Lombard V, Henrissat B, Turnbull JE, Czjzek M, Gilbert HJ, Bolam DN. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans. Proc Natl Acad Sci U S A 2017; 114:7037-7042. [PMID: 28630303 PMCID: PMC5502631 DOI: 10.1073/pnas.1704367114] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron, a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases and sulfatases that mediate degradation. It is possible that the bacterium recruits lyases with highly plastic specificities and expresses a repertoire of enzymes that target substructures of the glycosaminoglycans with variable sulfation or that the glycans are desulfated before cleavage by the lyases. To distinguish between these mechanisms, the components of the B. thetaiotaomicron Hep/HS degrading apparatus were analyzed. The data showed that the bacterium expressed a single-surface endo-acting lyase that cleaved HS, reflecting its higher molecular weight compared with Hep. Both Hep and HS oligosaccharides imported into the periplasm were degraded by a repertoire of lyases, with each enzyme displaying specificity for substructures within these glycosaminoglycans that display a different degree of sulfation. Furthermore, the crystal structures of a key surface glycan binding protein, which is able to bind both Hep and HS, and periplasmic sulfatases reveal the major specificity determinants for these proteins. The locus described here is highly conserved within the human gut Bacteroides, indicating that the model developed is of generic relevance to this important microbial community.
Collapse
Affiliation(s)
- Alan Cartmell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Elisabeth C Lowe
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Susan J Firbank
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Didier A Ndeh
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Heath Murray
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, F-13288 Marseille, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, F-13288 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, F-13288 Marseille, France
- Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, F-13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jeremy E Turnbull
- Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Mirjam Czjzek
- Sorbonne Universités, Université Pierre-et-Marie-Curie, Université Paris 06, F-29688 Roscoff cedex, Bretagne, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, F-29688 Roscoff cedex, Bretagne, France
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - David N Bolam
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;
| |
Collapse
|
22
|
Bayer CD, van Loo B, Hollfelder F. Specificity Effects of Amino Acid Substitutions in Promiscuous Hydrolases: Context-Dependence of Catalytic Residue Contributions to Local Fitness Landscapes in Nearby Sequence Space. Chembiochem 2017; 18:1001-1015. [PMID: 28464395 PMCID: PMC5488252 DOI: 10.1002/cbic.201600657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 12/18/2022]
Abstract
Catalytic promiscuity can facilitate evolution of enzyme functions-a multifunctional catalyst may act as a springboard for efficient functional adaptation. We test the effect of single mutations on multiple activities in two groups of promiscuous AP superfamily members to probe this hypothesis. We quantify the effect of site-saturating mutagenesis of an analogous, nucleophile-flanking residue in two superfamily members: an arylsulfatase (AS) and a phosphonate monoester hydrolase (PMH). Statistical analysis suggests that no one physicochemical characteristic alone explains the mutational effects. Instead, these effects appear to be dominated by their structural context. Likewise, the effect of changing the catalytic nucleophile itself is not reaction-type-specific. Mapping of "fitness landscapes" of four activities onto the possible variation of a chosen sequence position revealed tremendous potential for respecialization of AP superfamily members through single-point mutations, highlighting catalytic promiscuity as a powerful predictor of adaptive potential.
Collapse
Affiliation(s)
- Christopher D. Bayer
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCB2 1GACambridgeUK
- Present address: c-LEcta GmbHPerlickstrasse 504103LeipzigGermany
| | - Bert van Loo
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCB2 1GACambridgeUK
- Present address: Institute for Evolution and BiodiversityUniversity of MünsterHüfferstrasse 148149MünsterGermany
| | - Florian Hollfelder
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCB2 1GACambridgeUK
| |
Collapse
|
23
|
Yuan Z, Gao F, Bai G, Xia H, Gu L, Xu S. Crystal structure of PvdO from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2017; 484:195-201. [DOI: 10.1016/j.bbrc.2016.12.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/27/2016] [Indexed: 02/04/2023]
|
24
|
Detection, production, and application of microbial arylsulfatases. Appl Microbiol Biotechnol 2016; 100:9053-9067. [PMID: 27654655 DOI: 10.1007/s00253-016-7838-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
Arylsulfatases are enzymes which catalyze the hydrolysis of arylsulfate ester bonds to release a free sulfonate. They are widespread in nature and are found in microorganisms, most animal and human tissues, and plant seeds. However, this review focuses on arylsulfatases from microbial origin and gives an overview of different assays and substrates used to determine the arylsulfatase activity. Furthermore, the production of microbial arylsulfatases using wild-type organisms as well as the recombinant production using Escherichia coli and Kluyveromyces lactis as expression hosts is discussed. Finally, various potential applications of these enzymes are reviewed.
Collapse
|
25
|
Wang S, Sugahara K, Li F. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria. Glycoconj J 2016; 33:841-851. [PMID: 27526113 DOI: 10.1007/s10719-016-9720-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022]
Abstract
Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.
Collapse
Affiliation(s)
- Shumin Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and Shenzhen Research Institute, Shandong University, Jinan, 250100, Peoples, Republic of China
| | - Kazuyuki Sugahara
- Proteoglycan Signaling and Therapeutics Research Group, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Sapporo, 001-0021, Japan.
- Department of Pathobiochemistry, Faculty of Pharmacy, Nagoya, Aichi, 468-8503, Japan.
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and Shenzhen Research Institute, Shandong University, Jinan, 250100, Peoples, Republic of China.
| |
Collapse
|
26
|
Préchoux A, Genicot S, Rogniaux H, Helbert W. Enzyme-Assisted Preparation of Furcellaran-Like κ-/β-Carrageenan. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:133-143. [PMID: 26585588 DOI: 10.1007/s10126-015-9675-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Carrageenans are sulfated galactans that are widely used in industrial applications for their thickening and gelling properties, which vary according to the amount and distribution of ester sulfate groups along the galactan backbone. To determine and direct the sulfation of κ-carrageenan moieties, we purified an endo-κ-carrageenan sulfatase (Q15XH1 accession in UniprotKB) from Pseudoalteromonas atlantica T6c extracts. Based on sequence analyses and exploration of the genomic environment of Q15XH1, we discovered and characterized a second endo-κ-carrageenan sulfatase (Q15XG7 accession in UniprotKB). Both enzymes convert κ-carrageenan into a hybrid, furcellaran-like κ-/β-carrageenan. We compared the protein sequences of these two new κ-carrageenan sulfatases and that of a previously reported ι-carrageenan sulfatase with other predicted sulfatases in the P. atlantica genome, revealing the existence of additional new carrageenan sulfatases.
Collapse
Affiliation(s)
- Aurélie Préchoux
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29680, Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Sabine Genicot
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29680, Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Hélène Rogniaux
- INRA, Biopolymers Interactions Assemblies, 44316, Nantes, France
| | - William Helbert
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29680, Roscoff, France.
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29680, Roscoff, France.
- Centre de Recherches sur les Macromolécules Végétales (CERMAV, UPR-CNRS 5301), Affiliated with the Université Joseph Fourier (UJF), BP53, 38041, Grenoble Cedex 9, France.
- Institut de Chimie Moléculaire de Grenoble (ICMG, FR-CNRS 2607), Grenoble Cedex 9, France.
| |
Collapse
|
27
|
Direct site-specific immobilization of protein A via aldehyde-hydrazide conjugation. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1008:132-138. [DOI: 10.1016/j.jchromb.2015.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 01/19/2023]
|
28
|
|
29
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
30
|
In Silico Analysis of the Metabolic Potential and Niche Specialization of Candidate Phylum "Latescibacteria" (WS3). PLoS One 2015; 10:e0127499. [PMID: 26039074 PMCID: PMC4454575 DOI: 10.1371/journal.pone.0127499] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
The “Latescibacteria” (formerly WS3), member of the Fibrobacteres–Chlorobi–Bacteroidetes (FCB) superphylum, represents a ubiquitous candidate phylum found in terrestrial, aquatic, and marine ecosystems. Recently, single-cell amplified genomes (SAGs) representing the “Latescibacteria” were obtained from the anoxic monimolimnion layers of Sakinaw Lake (British Columbia, Canada), and anoxic sediments of a coastal lagoon (Etoliko lagoon, Western Greece). Here, we present a detailed in-silico analysis of the four SAGs to gain some insights on their metabolic potential and apparent ecological roles. Metabolic reconstruction suggests an anaerobic fermentative mode of metabolism, as well as the capability to degrade multiple polysaccharides and glycoproteins that represent integral components of green (Charophyta and Chlorophyta) and brown (Phaeophycaea) algae cell walls (pectin, alginate, ulvan, fucan, hydroxyproline-rich glycoproteins), storage molecules (starch and trehalose), and extracellular polymeric substances (EPSs). The analyzed SAGs also encode dedicated transporters for the uptake of produced sugars and amino acids/oligopeptides, as well as an extensive machinery for the catabolism of all transported sugars, including the production of a bacterial microcompartment (BMC) to sequester propionaldehyde, a toxic intermediate produced during fucose and rhamnose metabolism. Finally, genes for the formation of gas vesicles, flagella, type IV pili, and oxidative stress response were found, features that could aid in cellular association with algal detritus. Collectively, these results indicate that the analyzed “Latescibacteria” mediate the turnover of multiple complex organic polymers of algal origin that reach deeper anoxic/microoxic habitats in lakes and lagoons. The implications of such process on our understanding of niche specialization in microbial communities mediating organic carbon turnover in stratified water bodies are discussed.
Collapse
|
31
|
Appel MJ, Bertozzi CR. Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem Biol 2015; 10:72-84. [PMID: 25514000 PMCID: PMC4492166 DOI: 10.1021/cb500897w] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Formylglycine (fGly) is a catalytically essential residue found almost exclusively in the active sites of type I sulfatases. Formed by post-translational oxidation of cysteine or serine side chains, this aldehyde-functionalized residue participates in a unique and highly efficient catalytic mechanism for sulfate ester hydrolysis. The enzymes that produce fGly, formylglycine-generating enzyme (FGE) and anaerobic sulfatase-maturating enzyme (anSME), are as unique and specialized as fGly itself. FGE especially is structurally and mechanistically distinct, and serves the sole function of activating type I sulfatase targets. This review summarizes the current state of knowledge regarding the mechanism by which fGly contributes to sulfate ester hydrolysis, the molecular details of fGly biogenesis by FGE and anSME, and finally, recent biotechnology applications of fGly beyond its natural catalytic function.
Collapse
Affiliation(s)
- Mason J. Appel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Carolyn R. Bertozzi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Ho CL. Phylogeny of Algal Sequences Encoding Carbohydrate Sulfotransferases, Formylglycine-Dependent Sulfatases, and Putative Sulfatase Modifying Factors. FRONTIERS IN PLANT SCIENCE 2015; 6:1057. [PMID: 26635861 PMCID: PMC4659905 DOI: 10.3389/fpls.2015.01057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/13/2015] [Indexed: 05/07/2023]
Abstract
Many algae are rich sources of sulfated polysaccharides with biological activities. The physicochemical/rheological properties and biological activities of sulfated polysaccharides are affected by the pattern and number of sulfate moieties. Sulfation of carbohydrates is catalyzed by carbohydrate sulfotransferases (CHSTs) while modification of sulfate moieties on sulfated polysaccharides was presumably catalyzed by sulfatases including formylglycine-dependent sulfatases (FGly-SULFs). Post-translationally modification of Cys to FGly in FGly-SULFs by sulfatase modifiying factors (SUMFs) is necessary for the activity of this enzyme. The aims of this study are to mine for sequences encoding algal CHSTs, FGly-SULFs and putative SUMFs from the fully sequenced algal genomes and to infer their phylogenetic relationships to their well characterized counterparts from other organisms. Algal sequences encoding CHSTs, FGly-SULFs, SUMFs, and SUMF-like proteins were successfully identified from green and brown algae. However, red algal FGly-SULFs and SUMFs were not identified. In addition, a group of SUMF-like sequences with different gene structure and possibly different functions were identified for green, brown and red algae. The phylogeny of these putative genes contributes to the corpus of knowledge of an unexplored area. The analyses of these putative genes contribute toward future production of existing and new sulfated carbohydrate polymers through enzymatic synthesis and metabolic engineering.
Collapse
|
33
|
Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose. Appl Environ Microbiol 2014; 80:5001-11. [PMID: 24907337 DOI: 10.1128/aem.00998-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases and transporters employed by T. saccharolyticum for growth on hemicellulose were, for the most part, hitherto uncharacterized and existed in two clusters (Tsac_1445 through Tsac_1464 for xylan/xylose and Tsac_1344 through Tsac_1349 for starch). A phosphotransferase system subunit, Tsac_0032, also appeared to be exclusive to growth on glucose. Previously identified hydrolases that showed strong conditional expression changes included XynA (Tsac_1459), XynC (Tsac_0897), and a pullulanase, Apu (Tsac_1342). An omnipresent transcript and protein making up a large percentage of the overall secretome, Tsac_0361, was tentatively identified as the primary S-layer component in T. saccharolyticum, and deletion of the Tsac_0361 gene resulted in gross morphological changes to the cells. The view of hemicellulose degradation revealed here will be enabling for metabolic engineering efforts in biofuel-producing organisms that degrade cellulose well but lack the ability to catabolize C5 sugars.
Collapse
|
34
|
|
35
|
Duarte F, Amrein BA, Kamerlin SCL. Modeling catalytic promiscuity in the alkaline phosphatase superfamily. Phys Chem Chem Phys 2013; 15:11160-77. [PMID: 23728154 PMCID: PMC3693508 DOI: 10.1039/c3cp51179k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/02/2013] [Indexed: 12/19/2022]
Abstract
In recent years, it has become increasingly clear that promiscuity plays a key role in the evolution of new enzyme function. This finding has helped to elucidate fundamental aspects of molecular evolution. While there has been extensive experimental work on enzyme promiscuity, computational modeling of the chemical details of such promiscuity has traditionally fallen behind the advances in experimental studies, not least due to the nearly prohibitive computational cost involved in examining multiple substrates with multiple potential mechanisms and binding modes in atomic detail with a reasonable degree of accuracy. However, recent advances in both computational methodologies and power have allowed us to reach a stage in the field where we can start to overcome this problem, and molecular simulations can now provide accurate and efficient descriptions of complex biological systems with substantially less computational cost. This has led to significant advances in our understanding of enzyme function and evolution in a broader sense. Here, we will discuss currently available computational approaches that can allow us to probe the underlying molecular basis for enzyme specificity and selectivity, discussing the inherent strengths and weaknesses of each approach. As a case study, we will discuss recent computational work on different members of the alkaline phosphatase superfamily (AP) using a range of different approaches, showing the complementary insights they have provided. We have selected this particular superfamily, as it poses a number of significant challenges for theory, ranging from the complexity of the actual reaction mechanisms involved to the reliable modeling of the catalytic metal centers, as well as the very large system sizes. We will demonstrate that, through current advances in methodologies, computational tools can provide significant insight into the molecular basis for catalytic promiscuity, and, therefore, in turn, the mechanisms of protein functional evolution.
Collapse
Affiliation(s)
- Fernanda Duarte
- Uppsala University, Science for Life Laboratory (SciLifeLab), Cell and Molecular Biology, Uppsala, Sweden. ; ;
| | - Beat Anton Amrein
- Uppsala University, Science for Life Laboratory (SciLifeLab), Cell and Molecular Biology, Uppsala, Sweden. ; ;
| | | |
Collapse
|
36
|
Morales-Álvarez ED, Rivera-Hoyos CM, Baena-Moncada AM, Landázuri P, Poutou-Piñales RA, Sáenz-Suárez H, Barrera LA, Echeverri-Peña OY. Low-scale expression and purification of an active putative iduronate 2-sulfate sulfatase-Like enzyme from Escherichia coli K12. J Microbiol 2013; 51:213-21. [PMID: 23625223 DOI: 10.1007/s12275-013-2416-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/31/2012] [Indexed: 10/26/2022]
Abstract
The sulfatase family involves a group of enzymes with a large degree of similarity. Until now, sixteen human sulfatases have been identified, most of them found in lysosomes. Human deficiency of sulfatases generates various genetic disorders characterized by abnormal accumulation of sulfated intermediate compounds. Mucopolysaccharidosis type II is characterized by the deficiency of iduronate 2-sulfate sulfatase (IDS), causing the lysosomal accumulation of heparan and dermatan sulfates. Currently, there are several cases of genetic diseases treated with enzyme replacement therapy, which have generated a great interest in the development of systems for recombinant protein expression. In this work we expressed the human recombinant IDS-Like enzyme (hrIDS-Like) in Escherichia coli DH5α. The enzyme concentration revealed by ELISA varied from 78.13 to 94.35 ng/ml and the specific activity varied from 34.20 to 25.97 nmol/h/mg. Western blotting done after affinity chromatography purification showed a single band of approximately 40 kDa, which was recognized by an IgY polyclonal antibody that was developed against the specific peptide of the native protein. Our 100 ml-shake-flask assays allowed us to improve the enzyme activity seven fold, compared to the E. coli JM109/pUC13-hrIDS-Like system. Additionally, the results obtained in the present study were equal to those obtained with the Pichia pastoris GS1115/pPIC-9-hrIDS-Like system (3 L bioreactor scale). The system used in this work (E. coli DH5α/pGEX-3X-hrIDS-Like) emerges as a strategy for improving protein expression and purification, aimed at recombinant protein chemical characterization, future laboratory assays for enzyme replacement therapy, and as new evidence of active putative sulfatase production in E. coli.
Collapse
Affiliation(s)
- Edwin David Morales-Álvarez
- Grupo de Investigación en Enfermedades Cardiovasculares y Metabólicas (GECAVYME), Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia-Quindío, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rabuka D, Rush JS, deHart GW, Wu P, Bertozzi CR. Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat Protoc 2012; 7:1052-67. [PMID: 22576105 DOI: 10.1038/nprot.2012.045] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a method for modifying proteins site-specifically using a chemoenzymatic bioconjugation approach. Formylglycine generating enzyme (FGE) recognizes a pentapeptide consensus sequence, CxPxR, and it specifically oxidizes the cysteine in this sequence to an unusual aldehyde-bearing formylglyine. The FGE recognition sequence, or aldehyde tag, can be inserted into heterologous recombinant proteins produced in either prokaryotic or eukaryotic expression systems. The conversion of cysteine to formylglycine is accomplished by co-overexpression of FGE, either transiently or as a stable cell line, and the resulting aldehyde can be selectively reacted with α-nucleophiles to generate a site-selectively modified bioconjugate. This protocol outlines both the generation and the analysis of proteins aldehyde-tagged at their termini and the methods for chemical conjugation to the formylglycine. The process of generating aldehyde-tagged protein followed by chemical conjugation and purification takes 20 d.
Collapse
Affiliation(s)
- David Rabuka
- Redwood Bioscience Inc., Emeryville, California, USA
| | | | | | | | | |
Collapse
|
38
|
Kashman Y, Bishara A, Aknin M. Recent N-atom containing compounds from indo-pacific invertebrates. Mar Drugs 2010; 8:2810-36. [PMID: 21139846 PMCID: PMC2996178 DOI: 10.3390/md8112810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 11/03/2010] [Accepted: 11/08/2010] [Indexed: 11/16/2022] Open
Abstract
A large variety of unique N-atom containing compounds (alkaloids) without terrestrial counterparts, have been isolated from marine invertebrates, mainly sponges and ascidians. Many of these compounds display interesting biological activities. In this report we present studies on nitrogenous compounds, isolated by our group during the last few years, from Indo-Pacific sponges, one ascidian and one gorgonian. The major part of the review deals with metabolites from the Madagascar sponge Fascaplysinopsis sp., namely, four groups of secondary metabolites, the salarins, tulearins, taumycins and tausalarins.
Collapse
Affiliation(s)
- Yoel Kashman
- School of Chemistry, Tel Aviv University, Tel Aviv University, Ramat Aviv 69978, Israel.
| | | | | |
Collapse
|
39
|
Affiliation(s)
- Jason S. Rush
- Departments of Chemistry and Molecular Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720 (USA)
| | - Kimberly E. Beatty
- Departments of Chemistry and Molecular Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720 (USA)
| | - Carolyn R. Bertozzi
- Departments of Chemistry and Molecular Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720 (USA)
| |
Collapse
|
40
|
Myette JR, Soundararajan V, Shriver Z, Raman R, Sasisekharan R. Heparin/heparan sulfate 6-O-sulfatase from Flavobacterium heparinum: integrated structural and biochemical investigation of enzyme active site and substrate specificity. J Biol Chem 2009; 284:35177-88. [PMID: 19726671 DOI: 10.1074/jbc.m109.053801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.
Collapse
Affiliation(s)
- James R Myette
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
41
|
Myette JR, Soundararajan V, Behr J, Shriver Z, Raman R, Sasisekharan R. Heparin/heparan sulfate N-sulfamidase from Flavobacterium heparinum: structural and biochemical investigation of catalytic nitrogen-sulfur bond cleavage. J Biol Chem 2009; 284:35189-200. [PMID: 19726673 DOI: 10.1074/jbc.m109.053835] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfated polysaccharides such as heparin and heparan sulfate glycosaminoglycans (HSGAGs) are chemically and structurally heterogeneous biopolymers that that function as key regulators of numerous biological functions. The elucidation of HSGAG fine structure is fundamental to understanding their functional diversity, and this is facilitated by the use of select degrading enzymes of defined substrate specificity. Our previous studies have reported the cloning, characterization, recombinant expression, and structure-function analysis in Escherichia coli of the Flavobacterium heparinum 2-O-sulfatase and 6-O-sulfatase enzymes that cleave O-sulfate groups from specific locations of the HSGAG polymer. Building on these preceding studies, we report here the molecular cloning and recombinant expression in Escherichia coli of an N-sulfamidase, specific for HSGAGs. In addition, we examine the basic enzymology of this enzyme through molecular modeling studies and structure-function analysis of substrate specificity and basic biochemistry. We use the results from these studies to propose a novel mechanism for nitrogen-sulfur bond cleavage by the N-sulfamidase. Taken together, our structural and biochemical studies indicate that N-sulfamidase is a predominantly exolytic enzyme that specifically acts on N-sulfated and 6-O-desulfated glucosamines present as monosaccharides or at the nonreducing end of odd-numbered oligosaccharide substrates. In conjunction with the previously reported specificities for the F. heparinum 2-O-sulfatase, 6-O-sulfatase, and unsaturated glucuronyl hydrolase, we are able to now reconstruct in vitro the defined exolytic sequence for the heparin and heparan sulfate degradation pathway of F. heparinum and apply these enzymes in tandem toward the exo-sequencing of heparin-derived oligosaccharides.
Collapse
Affiliation(s)
- James R Myette
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
42
|
Olguin LF, Askew SE, O'Donoghue AC, Hollfelder F. Efficient catalytic promiscuity in an enzyme superfamily: an arylsulfatase shows a rate acceleration of 10(13) for phosphate monoester hydrolysis. J Am Chem Soc 2009; 130:16547-55. [PMID: 19554727 DOI: 10.1021/ja8047943] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a second catalytic activity of Pseudomonas aeruginosa arylsulfatase (PAS). Besides hydrolyzing sulfate monoesters, this enzyme catalyzes the hydrolysis of phosphate monoesters with multiple turnovers (>90), a k(cat) value of 0.023 s(-1), a K(M) value of 29 microM, and a kcat/K(M) ratio of 790 M(-1) s(-1) at pH 8.0. This corresponds to a remarkably high rate acceleration of 10(13) relative to the nonenzymatic hydrolysis [(k(cat)/K(M))/k(w)] and a transition-state binding constant (K(tx)) of 3.4 pM. Promiscuous phosphatase and original sulfatase activities only differ by a factor of 620 (measured by k(cat)), so the enzyme provides high accelerations for both reactions. The magnitudes and relative similarity of the kinetic parameters suggest that a functional switch from sulfatase to phosphatase activities is feasible, either by gene duplication or by direct evolution via an intermediate enzyme with dual specificity.
Collapse
Affiliation(s)
- Luis F Olguin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | | | | | | |
Collapse
|
43
|
Babtie A, Bandyopadhyay S, Olguin L, Hollfelder F. Efficient Catalytic Promiscuity for Chemically Distinct Reactions. Angew Chem Int Ed Engl 2009; 48:3692-4. [DOI: 10.1002/anie.200805843] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Babtie A, Bandyopadhyay S, Olguin L, Hollfelder F. Effiziente katalytische Promiskuität für chemisch unterschiedliche Reaktionen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Interaction of arylsulfatase-A (ASA) with its natural sulfoglycolipid substrates: a computational and site-directed mutagenesis study. Glycoconj J 2009; 26:1029-45. [DOI: 10.1007/s10719-008-9222-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 11/06/2008] [Accepted: 12/09/2008] [Indexed: 10/20/2022]
|
46
|
Frese MA, Dierks T. Formylglycine aldehyde Tag--protein engineering through a novel post-translational modification. Chembiochem 2009; 10:425-7. [PMID: 19130455 DOI: 10.1002/cbic.200800801] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Oxidation of a specific cysteine residue to C(alpha)-formylglycine is a novel post-translational modification that is directed by a short recognition motif commonly found in pro- and eukaryotic sulfatases. As recently shown by C. Bertozzi and co-workers, this system can be employed in protein engineering to equip proteins with genetically encoded aldehyde tags for site-specific labeling, conjugation and immobilization.
Collapse
Affiliation(s)
- Marc-André Frese
- Faculty of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
47
|
Dierks T, Schlotawa L, Frese MA, Radhakrishnan K, von Figura K, Schmidt B. Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann–Pick C1 disease — Lysosomal storage disorders caused by defects of non-lysosomal proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:710-25. [DOI: 10.1016/j.bbamcr.2008.11.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/11/2008] [Accepted: 11/24/2008] [Indexed: 12/11/2022]
|
48
|
Jonas S, van Loo B, Hyvönen M, Hollfelder F. A New Member of the Alkaline Phosphatase Superfamily with a Formylglycine Nucleophile: Structural and Kinetic Characterisation of a Phosphonate Monoester Hydrolase/Phosphodiesterase from Rhizobium leguminosarum. J Mol Biol 2008; 384:120-36. [DOI: 10.1016/j.jmb.2008.08.072] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 08/21/2008] [Accepted: 08/24/2008] [Indexed: 10/21/2022]
|
49
|
Grove TL, Lee KH, St Clair J, Krebs C, Booker SJ. In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters. Biochemistry 2008; 47:7523-38. [PMID: 18558715 DOI: 10.1021/bi8004297] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfatases catalyze the cleavage of a variety of cellular sulfate esters via a novel mechanism that requires the action of a protein-derived formylglycine cofactor. Formation of the cofactor is catalyzed by an accessory protein and involves the two-electron oxidation of a specific cysteinyl or seryl residue on the relevant sulfatase. Although some sulfatases undergo maturation via mechanisms in which oxygen serves as an electron acceptor, AtsB, the maturase from Klebsiella pneumoniae, catalyzes the oxidation of Ser72 on AtsA, its cognate sulfatase, via an oxygen-independent mechanism. Moreover, it does not make use of pyridine or flavin nucleotide cofactors as direct electron acceptors. In fact, AtsB has been shown to be a member of the radical S-adenosylmethionine superfamily of proteins, suggesting that it catalyzes this oxidation via an intermediate 5'-deoxyadenosyl 5'-radical that is generated by a reductive cleavage of S-adenosyl- l-methionine. In contrast to AtsA, very little in vitro characterization of AtsB has been conducted. Herein we show that coexpression of the K. pneumoniae atsB gene with a plasmid that encodes genes that are known to be involved in iron-sulfur cluster biosynthesis yields soluble protein that can be characterized in vitro. The as-isolated protein contained 8.7 +/- 0.4 irons and 12.2 +/- 2.6 sulfides per polypeptide, which existed almost entirely in the [4Fe-4S] (2+) configuration, as determined by Mossbauer spectroscopy, suggesting that it contained at least two of these clusters per polypeptide. Reconstitution of the as-isolated protein with additional iron and sulfide indicated the presence of 12.3 +/- 0.2 irons and 9.9 +/- 0.4 sulfides per polypeptide. Subsequent characterization of the reconstituted protein by Mossbauer spectroscopy indicated the presence of only [4Fe-4S] clusters, suggesting that reconstituted AtsB contains three per polypeptide. Consistent with this stoichiometry, an as-isolated AtsB triple variant containing Cys --> Ala substitutions at each of the cysteines in its CX 3CX 2C radical SAM motif contained 7.3 +/- 0.1 irons and 7.2 +/- 0.2 sulfides per polypeptide while the reconstituted triple variant contained 7.7 +/- 0.1 irons and 8.4 +/- 0.4 sulfides per polypeptide, indicating that it was unable to incorporate an additional cluster. UV-visible and Mossbauer spectra of both samples indicated the presence of only [4Fe-4S] clusters. AtsB was capable of catalyzing multiple turnovers and exhibited a V max/[E T] of approximately 0.36 min (-1) for an 18-amino acid peptide substrate using dithionite to supply the requisite electron and a value of approximately 0.039 min (-1) for the same substrate using the physiologically relevant flavodoxin reducing system. Simultaneous quantification of formylglycine and 5'-deoxyadenosine as a function of time indicates an approximate 1:1 stoichiometry. Use of a peptide substrate in which the target serine is changed to cysteine also gives rise to turnover, supporting approximately 4-fold the activity of that observed with the natural substrate.
Collapse
Affiliation(s)
- Tyler L Grove
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
50
|
Mariappan M, Radhakrishnan K, Dierks T, Schmidt B, von Figura K. ERp44 Mediates a Thiol-independent Retention of Formylglycine-generating Enzyme in the Endoplasmic Reticulum. J Biol Chem 2008; 283:6375-83. [DOI: 10.1074/jbc.m709171200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|