1
|
Wolf ME, Hinchen DJ, McGeehan JE, Eltis LD. Characterization of a cytochrome P450 that catalyzes the O-demethylation of lignin-derived benzoates. J Biol Chem 2024; 300:107809. [PMID: 39307304 DOI: 10.1016/j.jbc.2024.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Cytochromes P450 (P450s) are a superfamily of heme-containing enzymes possessing a broad range of monooxygenase activities. One such activity is O-demethylation, an essential and rate-determining step in emerging strategies to valorize lignin that employ carbon-carbon bond cleavage. We recently identified PbdA, a P450 from Rhodococcus jostii RHA1, and PbdB, its cognate reductase, which catalyze the O-demethylation of para-methoxylated benzoates (p-MBAs) to initiate growth of RHA1 on these compounds. PbdA had the highest affinity (Kd = 3.8 ± 0.6 μM) and apparent specificity (kcat/KM = 20,000 ± 3000 M-1 s-1) for p-MBA. The enzyme also O-demethylated two related lignin-derived aromatic compounds with remarkable efficiency: veratrate and isovanillate. PbdA also catalyzed the hydroxylation and dehydrogenation of p-ethylbenzoate even though RHA1 did not grow on this compound. Atomic-resolution structures of PbdA in complex with p-MBA, p-ethylbenzoate, and veratrate revealed a cluster of three residues that form hydrogen bonds with the substrates' carboxylate: Ser87, Ser237, and Arg84. Substitution of these residues resulted in lower affinity and O-demethylation activity on p-MBA as well as increased affinity for the acetyl analog, p-methoxyacetophenone. The S87A and S237A variants of PbdA also catalyzed the O-demethylation of an aldehyde analog of p-MBA, p-methoxy-benzaldehyde, while the R84M variant did not, despite binding this compound with high affinity. These results suggest that Ser87, Ser237, and Arg84 are not only important determinants of specificity but also help to orientate that substrate correctly in the active site. This study facilitates the design of biocatalysts for lignin valorization.
Collapse
Affiliation(s)
- Megan E Wolf
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Daniel J Hinchen
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Roccor R, Wolf ME, Liu J, Eltis LD. The catabolism of ethylene glycol by Rhodococcus jostii RHA1 and its dependence on mycofactocin. Appl Environ Microbiol 2024; 90:e0041624. [PMID: 38837369 PMCID: PMC11267921 DOI: 10.1128/aem.00416-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Ethylene glycol (EG) is a widely used industrial chemical with manifold applications and also generated in the degradation of plastics such as polyethylene terephthalate. Rhodococcus jostii RHA1 (RHA1), a potential biocatalytic chassis, grows on EG. Transcriptomic analyses revealed four clusters of genes potentially involved in EG catabolism: the mad locus, predicted to encode mycofactocin-dependent alcohol degradation, including the catabolism of EG to glycolate; two GCL clusters, predicted to encode glycolate and glyoxylate catabolism; and the mft genes, predicted to specify mycofactocin biosynthesis. Bioinformatic analyses further revealed that the mad and mft genes are widely distributed in mycolic acid-producing bacteria such as RHA1. Neither ΔmadA nor ΔmftC RHA1 mutant strains grew on EG but grew on acetate. In resting cell assays, the ΔmadA mutant depleted glycolaldehyde but not EG from culture media. These results indicate that madA encodes a mycofactocin-dependent alcohol dehydrogenase that initiates EG catabolism. In contrast to some mycobacterial strains, the mad genes did not appear to enable RHA1 to grow on methanol as sole substrate. Finally, a strain of RHA1 adapted to grow ~3× faster on EG contained an overexpressed gene, aldA2, predicted to encode an aldehyde dehydrogenase. When incubated with EG, this strain accumulated lower concentrations of glycolaldehyde than RHA1. Moreover, ecotopically expressed aldA2 increased RHA1's tolerance for EG further suggesting that glycolaldehyde accumulation limits growth of RHA1 on EG. Overall, this study provides insights into the bacterial catabolism of small alcohols and aldehydes and facilitates the engineering of Rhodococcus for the upgrading of plastic waste streams.IMPORTANCEEthylene glycol (EG), a two-carbon (C2) alcohol, is produced in high volumes for use in a wide variety of applications. There is burgeoning interest in understanding and engineering the bacterial catabolism of EG, in part to establish circular economic routes for its use. This study identifies an EG catabolic pathway in Rhodococcus, a genus of bacteria well suited for biocatalysis. This pathway is responsible for the catabolism of methanol, a C1 feedstock, in related bacteria. Finally, we describe strategies to increase the rate of degradation of EG by increasing the transformation of glycolaldehyde, a toxic metabolic intermediate. This work advances the development of biocatalytic strategies to transform C2 feedstocks.
Collapse
Affiliation(s)
- Raphael Roccor
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan E. Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Zhang M, Gao S, Pan K, Liu H, Li Q, Bai X, Zhu Q, Chen Z, Yan X, Hong Q. Functional analysis, diversity, and distribution of the ean cluster responsible for 17 β-estradiol degradation in sphingomonads. Appl Environ Microbiol 2024; 90:e0197423. [PMID: 38619269 PMCID: PMC11107178 DOI: 10.1128/aem.01974-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
17β-estradiol (E2) is a natural endocrine disruptor that is frequently detected in surface and groundwater sources, thereby threatening ecosystems and human health. The newly isolated E2-degrading strain Sphingomonas colocasiae C3-2 can degrade E2 through both the 4,5-seco pathway and the 9,10-seco pathway; the former is the primary pathway supporting the growth of this strain and the latter is a branching pathway. The novel gene cluster ean was found to be responsible for E2 degradation through the 4,5-seco pathway, where E2 is converted to estrone (E1) by EanA, which belongs to the short-chain dehydrogenases/reductases (SDR) superfamily. A three-component oxygenase system (including the P450 monooxygenase EanB1, the small iron-sulfur protein ferredoxin EanB2, and the ferredoxin reductase EanB3) was responsible for hydroxylating E1 to 4-hydroxyestrone (4-OH-E1). The enzymatic assay showed that the proportion of the three components is critical for its function. The dioxygenase EanC catalyzes ring A cleavage of 4-OH-E1, and the oxidoreductase EanD is responsible for the decarboxylation of the ring A-cleavage product of 4-OH-E1. EanR, a TetR family transcriptional regulator, acts as a transcriptional repressor of the ean cluster. The ean cluster was also found in other reported E2-degrading sphingomonads. In addition, the novel two-component monooxygenase EanE1E2 can open ring B of 4-OH-E1 via the 9,10-seco pathway, but its encoding genes are not located within the ean cluster. These results refine research on genes involved in E2 degradation and enrich the understanding of the cleavages of ring A and ring B of E2.IMPORTANCESteroid estrogens have been detected in diverse environments, ranging from oceans and rivers to soils and groundwater, posing serious risks to both human health and ecological safety. The United States National Toxicology Program and the World Health Organization have both classified estrogens as Group 1 carcinogens. Several model organisms (proteobacteria) have established the 4,5-seco pathway for estrogen degradation. In this study, the newly isolated Sphingomonas colocasiae C3-2 could degrade E2 through both the 4,5-seco pathway and the 9,10-seco pathway. The novel gene cluster ean (including eanA, eanB1, eanC, and eanD) responsible for E2 degradation by the 4,5-seco pathway was identified; the novel two-component monooxygenase EanE1E2 can open ring B of 4-OH-E1 through the 9,10-seco pathway. The TetR family transcriptional regulator EanR acts as a transcriptional repressor of the ean cluster. The cluster ean was also found to be present in other reported E2-degrading sphingomonads, indicating the ubiquity of the E2 metabolism in the environment.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Siyuan Gao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Xuekun Bai
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, China
| | - Xin Yan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
4
|
Wolf ME, Lalande AT, Newman BL, Bleem AC, Palumbo CT, Beckham GT, Eltis LD. The catabolism of lignin-derived p-methoxylated aromatic compounds by Rhodococcus jostii RHA1. Appl Environ Microbiol 2024; 90:e0215523. [PMID: 38380926 PMCID: PMC10952524 DOI: 10.1128/aem.02155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Emergent strategies to valorize lignin, an abundant but underutilized aromatic biopolymer, include tandem processes that integrate chemical depolymerization and biological catalysis. To date, aromatic monomers from C-O bond cleavage of lignin have been converted to bioproducts, but the presence of recalcitrant C-C bonds in lignin limits the product yield. A promising chemocatalytic strategy that overcomes this limitation involves phenol methyl protection and autoxidation. Incorporating this into a tandem process requires microbial cell factories able to transform the p-methoxylated products in the resulting methylated lignin stream. In this study, we assessed the ability of Rhodococcus jostii RHA1 to catabolize the major aromatic products in a methylated lignin stream and elucidated the pathways responsible for this catabolism. RHA1 grew on a methylated pine lignin stream, catabolizing the major aromatic monomers: p-methoxybenzoate (p-MBA), veratrate, and veratraldehyde. Bioinformatic analyses suggested that a cytochrome P450, PbdA, and its cognate reductase, PbdB, are involved in p-MBA catabolism. Gene deletion studies established that both pbdA and pbdB are essential for growth on p-MBA and several derivatives. Furthermore, a deletion mutant of a candidate p-hydroxybenzoate (p-HBA) hydroxylase, ΔpobA, did not grow on p-HBA. Veratraldehyde and veratrate catabolism required both vanillin dehydrogenase (Vdh) and vanillate O-demethylase (VanAB), revealing previously unknown roles of these enzymes. Finally, a ΔpcaL strain grew on neither p-MBA nor veratrate, indicating they are catabolized through the β-ketoadipate pathway. This study expands our understanding of the bacterial catabolism of aromatic compounds and facilitates the development of biocatalysts for lignin valorization.IMPORTANCELignin, an abundant aromatic polymer found in plant biomass, is a promising renewable replacement for fossil fuels as a feedstock for the chemical industry. Strategies for upgrading lignin include processes that couple the catalytic fractionation of biomass and biocatalytic transformation of the resulting aromatic compounds with a microbial cell factory. Engineering microbial cell factories for this biocatalysis requires characterization of bacterial pathways involved in catabolizing lignin-derived aromatic compounds. This study identifies new pathways for lignin-derived aromatic degradation in Rhodococcus, a genus of bacteria well suited for biocatalysis. Additionally, we describe previously unknown activities of characterized enzymes on lignin-derived compounds, expanding their utility. This work advances the development of strategies to replace fossil fuel-based feedstocks with sustainable alternatives.
Collapse
Affiliation(s)
- Megan E. Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Anne T. Lalande
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Brianne L. Newman
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Alissa C. Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Chad T. Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Abstract
Upgrading lignin, an underutilized component of biomass, is essential for sustainable biorefining. Biocatalysis has considerable potential for upgrading lignin, but our lack of knowledge of relevant enzymes and pathways has limited its application. Herein, we describe a microbial pathway that catabolizes acetovanillone, a major component of several industrial lignin streams. This pathway is unusual in that it involves phosphorylation and carboxylation before conversion to the intermediate, vanillate, which is degraded via the β-ketoadipate pathway. Importantly, the hydroxyphenylethanone catabolic pathway enables bacterial growth on softwood lignin pretreated by oxidative catalytic fractionation. Overall, these insights greatly facilitate the engineering of bacteria to biocatalytically upgrade lignin. Bacterial catabolic pathways have considerable potential as industrial biocatalysts for the valorization of lignin, a major component of plant-derived biomass. Here, we describe a pathway responsible for the catabolism of acetovanillone, a major component of several industrial lignin streams. Rhodococcus rhodochrous GD02 was previously isolated for growth on acetovanillone. A high-quality genome sequence of GD02 was generated. Transcriptomic analyses revealed a cluster of eight genes up-regulated during growth on acetovanillone and 4-hydroxyacetophenone, as well as a two-gene cluster up-regulated during growth on acetophenone. Bioinformatic analyses predicted that the hydroxyphenylethanone (Hpe) pathway proceeds via phosphorylation and carboxylation, before β-elimination yields vanillate from acetovanillone or 4-hydroxybenzoate from 4-hydroxyacetophenone. Consistent with this prediction, the kinase, HpeHI, phosphorylated acetovanillone and 4-hydroxyacetophenone. Furthermore, HpeCBA, a biotin-dependent enzyme, catalyzed the ATP-dependent carboxylation of 4-phospho-acetovanillone but not acetovanillone. The carboxylase’s specificity for 4-phospho-acetophenone (kcat/KM = 34 ± 2 mM−1 s−1) was approximately an order of magnitude higher than for 4-phospho-acetovanillone. HpeD catalyzed the efficient dephosphorylation of the carboxylated products. GD02 grew on a preparation of pine lignin produced by oxidative catalytic fractionation, depleting all of the acetovanillone, vanillin, and vanillate. Genomic and metagenomic searches indicated that the Hpe pathway occurs in a relatively small number of bacteria. This study facilitates the design of bacterial strains for biocatalytic applications by identifying a pathway for the degradation of acetovanillone.
Collapse
|
6
|
The unusual convergence of steroid catabolic pathways in Mycobacterium abscessus. Proc Natl Acad Sci U S A 2022; 119:e2207505119. [PMID: 36161908 DOI: 10.1073/pnas.2207505119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium abscessus, an opportunistic pathogen responsible for pulmonary infections, contains genes predicted to encode two steroid catabolic pathways: a cholesterol catabolic pathway similar to that of Mycobacterium tuberculosis and a 4-androstenedione (4-AD) catabolic pathway. Consistent with this prediction, M. abscessus grew on both steroids. In contrast to M. tuberculosis, Rhodococcus jostii RHA1, and other Actinobacteria, the cholesterol and 4-AD catabolic gene clusters of the M. abscessus complex lack genes encoding HsaD, the meta-cleavage product (MCP) hydrolase. However, M. abscessus ATCC 19977 harbors two hsaD homologs elsewhere in its genome. Only one of the encoded enzymes detectably transformed steroid metabolites. Among tested substrates, HsaDMab and HsaDMtb of M. tuberculosis had highest substrate specificities for MCPs with partially degraded side chains thioesterified with coenzyme A (kcat/KM = 1.9 × 104 and 5.7 × 103 mM-1s-1, respectively). Consistent with a dual role in cholesterol and 4-AD catabolism, HsaDMab also transformed nonthioesterified substrates efficiently, and a ΔhsaD mutant of M. abscessus grew on neither steroid. Interestingly, both steroids prevented growth of the mutant on acetate. The ΔhsaD mutant of M. abscessus excreted cholesterol metabolites with a fully degraded side chain, while the corresponding RHA1 mutant excreted metabolites with partially degraded side chains. Finally, the ΔhsaD mutant was not viable in macrophages. Overall, our data establish that the cholesterol and 4-AD catabolic pathways of M. abscessus are unique in that they converge upstream of where this occurs in characterized steroid-catabolizing bacteria. The data further indicate that cholesterol is a substrate for intracellular bacteria and that cholesterol-dependent toxicity is not strictly dependent on coenzyme A sequestration.
Collapse
|
7
|
Navas LE, Zahn M, Bajwa H, Grigg JC, Wolf ME, Chan ACK, Murphy MEP, McGeehan JE, Eltis LD. Characterization of a phylogenetically distinct extradiol dioxygenase involved in the bacterial catabolism of lignin-derived aromatic compounds. J Biol Chem 2022; 298:101871. [PMID: 35346686 PMCID: PMC9062432 DOI: 10.1016/j.jbc.2022.101871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 10/28/2022] Open
Abstract
The actinobacterium Rhodococcus jostii RHA1 grows on a remarkable variety of aromatic compounds and has been studied for applications ranging from the degradation of polychlorinated biphenyls to the valorization of lignin, an underutilized component of biomass. In RHA1, the catabolism of two classes of lignin-derived compounds, alkylphenols and alkylguaiacols, involves a phylogenetically distinct extradiol dioxygenase, AphC, previously misannotated as BphC, an enzyme involved in biphenyl catabolism. To better understand the role of AphC in RHA1 catabolism, we first showed that purified AphC had highest apparent specificity for 4-propylcatechol (kcat/KM ∼106 M-1 s-1), and its apparent specificity for 4-alkylated substrates followed the trend for alkylguaiacols: propyl > ethyl > methyl > phenyl > unsubstituted. We also show AphC only poorly cleaved 3-phenylcatechol, the preferred substrate of BphC. Moreover, AphC and BphC cleaved 3-phenylcatechol and 4-phenylcatechol with different regiospecificities, likely due to the substrates' binding mode. A crystallographic structure of the AphC·4-ethylcatechol binary complex to 1.59 Å resolution revealed that the catechol is bound to the active site iron in a bidentate manner and that the substrate's alkyl side chain is accommodated by a hydrophobic pocket. Finally, we show RHA1 grows on a mixture of 4-ethylguaiacol and guaiacol, simultaneously catabolizing these substrates through meta-cleavage and ortho-cleavage pathways, respectively, suggesting that the specificity of AphC helps to prevent the routing of catechol through the Aph pathway. Overall, this study contributes to our understanding of the bacterial catabolism of aromatic compounds derived from lignin, and the determinants of specificity in extradiol dioxygenases.
Collapse
Affiliation(s)
- Laura E Navas
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Michael Zahn
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Harbir Bajwa
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Megan E Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
8
|
Zhang X, Huang Z, Wang D, Zhang Y, Eser BE, Gu Z, Dai R, Gao R, Guo Z. A new thermophilic extradiol dioxygenase promises biodegradation of catecholic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126860. [PMID: 34399224 DOI: 10.1016/j.jhazmat.2021.126860] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Extradiol dioxygenases (EDOs) catalyze the meta cleavage of catechol into 2-hydroxymuconaldehyde, a critical step in the degradation of aromatic compounds in the environment. In the present work, a novel thermophilic extradiol dioxygenase from Thermomonospora curvata DSM43183 was cloned, expressed, and characterized by phylogenetic and biochemical analyses. This enzyme exhibited excellent thermo-tolerance, displaying optimal activity at 50 °C, remaining >40% activity at 70 °C. Structural modeling and molecular docking demonstrated that both active center and pocket-construction loops locate at the C-terminal domain. Site-specific mutants D285A, H205V, F301V based on a rational design were obtained to widen the entrance of substrates; resulting in significantly improved catalytic performance for all the 3 mutants. Compared to the wild-type, the mutant D285A showed remarkably improved activities with respect to the 3,4-dihydroxyphenylacetic acid, catechol, and 3-chlorocatechol, by 17.7, 6.9, and 3.7-fold, respectively. The results thus verified the effectiveness of modeling guided design; and confirmed that the C-terminal loop structure indeed plays a decisive role in determining catalytic ring-opening efficiency and substrate specificity of the enzyme. This study provided a novel thermostable dioxygenase with a broad substrate promiscuity for detoxifying environmental pollutants and provided a new thinking for further enzyme engineering of EDOs.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China; Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Zihao Huang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China
| | - Dan Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China
| | - Yan Zhang
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Zhenyu Gu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China
| | - Rongrong Dai
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China.
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark.
| |
Collapse
|
9
|
Bolz SN, Adasme MF, Schroeder M. Toward an Understanding of Pan-Assay Interference Compounds and Promiscuity: A Structural Perspective on Binding Modes. J Chem Inf Model 2021; 61:2248-2262. [PMID: 33899463 DOI: 10.1021/acs.jcim.0c01227] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pan-assay interference compounds (PAINS) are promiscuous compound classes that produce false positive hits in high-throughput screenings. Yet, the mechanisms of PAINS activity are poorly understood. Although PAINS are often associated with protein reactivity, several recent studies have shown that they also mediate noncovalent interactions. Aiming at a deep understanding of PAINS promiscuity, we performed an analysis of the Protein Data Bank to characterize the binding modes of PAINS. We explored the binding mode conservation of 34 PAINS classes present in 871 ligands and among 517 protein targets. The two major findings of this work are the following: First, different PAINS classes exhibit different levels of binding mode conservation. Our novel classification of PAINS based on binding mode similarity enables a rational assessment of PAINS from a structural perspective. Second, PAINS classes with variable binding modes can bind with high affinity. The evaluation of noncovalent binding modes of PAINS-like compounds sheds light on the mechanisms of promiscuous binding. Our findings could facilitate the decisions on how to deal with PAINS and help scientists to understand why PAINS produce hits in their screenings.
Collapse
Affiliation(s)
- Sarah Naomi Bolz
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany
| | - Melissa F Adasme
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
10
|
Structure Elucidation and Biochemical Characterization of Environmentally Relevant Novel Extradiol Dioxygenases Discovered by a Functional Metagenomics Approach. mSystems 2019; 4:4/6/e00316-19. [PMID: 31771973 PMCID: PMC6880040 DOI: 10.1128/msystems.00316-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The release of synthetic chemical pollutants in the environment is posing serious health risks. Enzymes, including oxygenases, play a crucial role in xenobiotic degradation. In the present study, we employed a functional metagenomics approach to overcome the limitation of cultivability of microbes under standard laboratory conditions in order to isolate novel dioxygenases capable of degrading recalcitrant pollutants. Fosmid clones possessing dioxygenase activity were further sequenced, and their genes were identified using bioinformatics tools. Two positive fosmid clones, SD3 and RW1, suggested the presence of 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC-SD3) and catechol 2,3-dioxygenase (C23O-RW1), respectively. Recombinant versions of these enzymes were purified to examine their pollutant-degrading abilities. The crystal structure of BphC-SD3 was determined at 2.6-Å resolution, revealing a two-domain architecture, i.e., N-terminal and C-terminal domains, with the sequential arrangement of βαβββ in each domain, characteristic of Fe-dependent class II type I extradiol dioxygenases. The structure also reveals the presence of conserved amino acids lining the catalytic pocket and Fe3+ metal ion in the large funnel-shaped active site in the C-terminal domain. Further studies suggest that Fe3+ bound in the BphC-SD3 active site probably imparts aerobic stability. We further demonstrate the potential application of BphC-SD3 in biosensing of catecholic compounds. The halotolerant and oxygen-resistant properties of these enzymes reported in this study make them potential candidates for bioremediation and biosensing applications.IMPORTANCE The disposal and degradation of xenobiotic compounds have been serious issues due to their recalcitrant properties. Microbial oxygenases are the fundamental enzymes involved in biodegradation that oxidize the substrate by transferring oxygen from molecular oxygen. Among oxygenases, catechol dioxygenases are more versatile in biodegradation and are well studied among the bacterial world. The use of catechol dioxygenases in the field is currently not practical due to their aerobically unstable nature. The significance of our research lies in the discovery of aerobically stable and halotolerant catechol dioxygenases that are efficient in degrading the targeted environmental pollutants and, hence, could be used as cost-effective alternatives for the treatment of hypersaline industrial effluents. Moreover, the structural determination of novel catechol dioxygenases would greatly enhance our knowledge of the function of these enzymes and facilitate directed evolution to further enhance or engineer desired properties.
Collapse
|
11
|
Kuatsjah E, Chan ACK, Hurst TE, Snieckus V, Murphy MEP, Eltis LD. Metal- and Serine-Dependent Meta-Cleavage Product Hydrolases Utilize Similar Nucleophile-Activation Strategies. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | - Timothy E. Hurst
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Victor Snieckus
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
12
|
Nerdinger S, Kuatsjah E, Hurst TE, Schlapp-Hackl I, Kahlenberg V, Wurst K, Eltis LD, Snieckus V. Bacterial Catabolism of Biphenyls: Synthesis and Evaluation of Analogues. Chembiochem 2018; 19:1771-1778. [PMID: 29905982 DOI: 10.1002/cbic.201800231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 12/31/2022]
Abstract
A series of alkylated 2,3-dihydroxybiphenyls has been prepared on the gram scale by using an effective Directed ortho Metalation-Suzuki-Miyaura cross-coupling strategy. These compounds have been used to investigate the substrate specificity of the meta-cleavage dioxygenase BphC, a key enzyme in the microbial catabolism of biphenyl. Isolation and characterization of the meta-cleavage products will allow further study of related processes, including the catabolism of lignin-derived biphenyls.
Collapse
Affiliation(s)
- Sven Nerdinger
- Global Commercial Operations, Sandoz GmbH, Biochemiestrasse 10, 6250, Kundl, Austria
| | - Eugene Kuatsjah
- Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy E Hurst
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, ON, K7L 3N6, Canada
| | - Inge Schlapp-Hackl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innrain 80-82, 6020, Innsbruck, Austria
| | - Volker Kahlenberg
- Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria
| | - Klaus Wurst
- Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Lindsay D Eltis
- Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Victor Snieckus
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
13
|
Xu B, Xiong C, Deng M, Li J, Tang X, Wu Q, Zhou J, Yang Y, Ding J, Han N, Huang Z. Genetic diversity of catechol 1,2-dioxygenase in the fecal microbial metagenome. J Basic Microbiol 2017; 57:883-895. [PMID: 28745827 DOI: 10.1002/jobm.201700106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/25/2017] [Accepted: 06/06/2017] [Indexed: 11/07/2022]
Abstract
Catechol 1,2-dioxygenase is the key enzyme that catalyzes the cleavage of the aromatic ring of catechol. We explored the genetic diversity of catechol 1,2-dioxygenase in the fecal microbial metagenome by PCR with degenerate primers. A total of 35 gene fragments of C12O were retrieved from microbial DNA in the feces of pygmy loris. Based on phylogenetic analysis, most sequences were closely related to C12O sequences from Acinetobacter. A full-length C12O gene was directly cloned, heterologously expressed in Escherichia coli, and biochemically characterized. Purified catPL12 had optimum pH and temperature pH 8.0 and 25 °C and retained 31 and 50% of its maximum activity when assayed at 0 and 35 °C, respectively. The enzyme was stable at 25 and 37 °C, retaining 100% activity after pre-incubation for 1 h. The kinetic parameters of catPL12 were determined. The enzyme had apparent Km of 67 µM, Vmax of 7.3 U/mg, and kcat of 4.2 s-1 for catechol, and the cleavage activities for 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol were much less than for catechol, and no activity with hydroquinone or protocatechuate was detected. This study is the first to report the molecular and biochemical characterizations of a cold-adapted catechol 1,2-dioxygenase from a fecal microbial metagenome.
Collapse
Affiliation(s)
- Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Caiyun Xiong
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Meng Deng
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Junjun Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Yunjuan Yang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| |
Collapse
|
14
|
Kuatsjah E, Chen HM, Withers SG, Eltis LD. Characterization of an extradiol dioxygenase involved in the catabolism of lignin-derived biphenyl. FEBS Lett 2017; 591:1001-1009. [DOI: 10.1002/1873-3468.12611] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Eugene Kuatsjah
- Genome Science and Technology Program; The University of British Columbia; Vancouver BC Canada
| | - Hong-Ming Chen
- Department of Chemistry; The University of British Columbia; Vancouver BC Canada
| | - Stephen G. Withers
- Genome Science and Technology Program; The University of British Columbia; Vancouver BC Canada
- Department of Chemistry; The University of British Columbia; Vancouver BC Canada
- Department of Biochemistry; Life Sciences Institute; The University of British Columbia; Vancouver BC Canada
| | - Lindsay D. Eltis
- Genome Science and Technology Program; The University of British Columbia; Vancouver BC Canada
- Department of Biochemistry; Life Sciences Institute; The University of British Columbia; Vancouver BC Canada
- Department of Microbiology and Immunology; Life Sciences Institute; The University of British Columbia; Vancouver BC Canada
| |
Collapse
|
15
|
Liu Y, Tu N, Xie W, Li Y. Theoretical investigation on proton transfer mechanism of extradiol dioxygenase. RSC Adv 2017. [DOI: 10.1039/c7ra08080h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation mechanism of alkyl(hydro)peroxo species is performed via two parallel pathways.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- Faculty of Environmental & Biological Engineering
| | - Ningyu Tu
- Faculty of Environmental & Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming 525000
- P. R. China
| | - Wenyu Xie
- Faculty of Environmental & Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming 525000
- P. R. China
| | - Youming Li
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
16
|
Hernández-Ortega A, Quesne MG, Bui S, Heyes DJ, Steiner RA, Scrutton NS, de Visser SP. Catalytic Mechanism of Cofactor-Free Dioxygenases and How They Circumvent Spin-Forbidden Oxygenation of Their Substrates. J Am Chem Soc 2015; 137:7474-87. [DOI: 10.1021/jacs.5b03836] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Aitor Hernández-Ortega
- Manchester
Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Matthew G. Quesne
- Manchester
Institute of Biotechnology and School of Chemical Engineering and
Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Soi Bui
- Randall
Division of Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Derren J. Heyes
- Manchester
Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Roberto A. Steiner
- Randall
Division of Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology and School of Chemical Engineering and
Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
17
|
Barry KP, Ngu A, Cohn EF, Cote JM, Burroughs AM, Gerbino JP, Taylor EA. Exploring allosteric activation of LigAB from Sphingobium sp. strain SYK-6 through kinetics, mutagenesis and computational studies. Arch Biochem Biophys 2015; 567:35-45. [PMID: 25562402 DOI: 10.1016/j.abb.2014.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022]
Abstract
The protocatechuate 4,5-dioxygenase (LigAB) from Sphingobium sp. strain SYK-6 is the defining member of the Type II extradiol dioxygenase superfamily (a.k.a. PCA Dioxygenase Superfamily or PCADSF) and plays a key aromatic ring-opening role in the metabolism of several lignin derived aromatic compounds. In our search for alternate substrates and inhibitors of LigAB, we discovered allosteric rate enhancement in the presence of non-substrate protocatechuate-like aldehydes such as vanillin. LigAB has the broadest substrate utilization profile of all protocatechuate (PCA) 4,5-dioxygenase described in the literature, however, the rate enhancement is only observed with PCA, with vanillin increasing kcat for LigAB by 36%. Computational docking has identified a potential site of allosteric binding near the entrance to the active site. Examination of a multiple sequence alignment reveals that many of the residues contributing to this newly identified allosteric pocket are highly conserved within the LigB family of the PCADSF. Point mutants of Phe103α and Ala18β, two residues located in the putative allosteric pocket, display altered rate enhancement as compared to LigAB-WT, providing support for the computationally identified allosteric binding site. Further investigation of this binding site may provide insight into the mechanism of this never before observed allosteric activation in extradiol dioxygenases.
Collapse
Affiliation(s)
| | - Abraham Ngu
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Erin Frances Cohn
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Joy Marie Cote
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Erika Anne Taylor
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
18
|
Penfield JS, Worrall LJ, Strynadka NC, Eltis LD. Substrate specificities and conformational flexibility of 3-ketosteroid 9α-hydroxylases. J Biol Chem 2014; 289:25523-36. [PMID: 25049233 DOI: 10.1074/jbc.m114.575886] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KshA is the oxygenase component of 3-ketosteroid 9α-hydroxylase, a Rieske oxygenase involved in the bacterial degradation of steroids. Consistent with its role in bile acid catabolism, KshA1 from Rhodococcus rhodochrous DSM43269 had the highest apparent specificity (kcat/Km) for steroids with an isopropyl side chain at C17, such as 3-oxo-23,24-bisnorcholesta-1,4-diene-22-oate (1,4-BNC). By contrast, the KshA5 homolog had the highest apparent specificity for substrates with no C17 side chain (kcat/Km >10(5) s(-1) M(-1) for 4-estrendione, 5α-androstandione, and testosterone). Unexpectedly, substrates such as 4-androstene-3,17-dione (ADD) and 4-BNC displayed strong substrate inhibition (Ki S ∼100 μM). By comparison, the cholesterol-degrading KshAMtb from Mycobacterium tuberculosis had the highest specificity for CoA-thioesterified substrates. These specificities are consistent with differences in the catabolism of cholesterol and bile acids, respectively, in actinobacteria. X-ray crystallographic structures of the KshAMtb·ADD, KshA1·1,4-BNC-CoA, KshA5·ADD, and KshA5·1,4-BNC-CoA complexes revealed that the enzymes have very similar steroid-binding pockets with the substrate's C17 oriented toward the active site opening. Comparisons suggest Tyr-245 and Phe-297 are determinants of KshA1 specificity. All enzymes have a flexible 16-residue "mouth loop," which in some structures completely occluded the substrate-binding pocket from the bulk solvent. Remarkably, the catalytic iron and α-helices harboring its ligands were displaced up to 4.4 Å in the KshA5·substrate complexes as compared with substrate-free KshA, suggesting that Rieske oxygenases may have a dynamic nature similar to cytochrome P450.
Collapse
Affiliation(s)
| | - Liam J Worrall
- From the Departments of Biochemistry and Molecular Biology and
| | | | - Lindsay D Eltis
- From the Departments of Biochemistry and Molecular Biology and Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
19
|
Sugimoto K, Senda M, Kasai D, Fukuda M, Masai E, Senda T. Molecular mechanism of strict substrate specificity of an extradiol dioxygenase, DesB, derived from Sphingobium sp. SYK-6. PLoS One 2014; 9:e92249. [PMID: 24657997 PMCID: PMC3962378 DOI: 10.1371/journal.pone.0092249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/20/2014] [Indexed: 11/18/2022] Open
Abstract
DesB, which is derived from Sphingobium sp. SYK-6, is a type II extradiol dioxygenase that catalyzes a ring opening reaction of gallate. While typical extradiol dioxygenases show broad substrate specificity, DesB has strict substrate specificity for gallate. The substrate specificity of DesB seems to be required for the efficient growth of S. sp. SYK-6 using lignin-derived aromatic compounds. Since direct coordination of hydroxyl groups of the substrate to the non-heme iron in the active site is a critical step for the catalytic reaction of the extradiol dioxygenases, the mechanism of the substrate recognition and coordination of DesB was analyzed by biochemical and crystallographic methods. Our study demonstrated that the direct coordination between the non-heme iron and hydroxyl groups of the substrate requires a large shift of the Fe (II) ion in the active site. Mutational analysis revealed that His124 and His192 in the active site are essential to the catalytic reaction of DesB. His124, which interacts with OH (4) of the bound gallate, seems to contribute to proper positioning of the substrate in the active site. His192, which is located close to OH (3) of the gallate, is likely to serve as the catalytic base. Glu377' interacts with OH (5) of the gallate and seems to play a critical role in the substrate specificity. Our biochemical and structural study showed the substrate recognition and catalytic mechanisms of DesB.
Collapse
Affiliation(s)
- Keisuke Sugimoto
- Department of Materials Chemistry, Asahikawa National College of Technology, Asahikawa, Hokkaido, Japan
| | - Miki Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Masao Fukuda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Guzik U, Hupert-Kocurek K, Marchlewicz A, Wojcieszyńska D. Enhancement of biodegradation potential of catechol 1,2-dioxygenase through its immobilization in calcium alginate gel. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Defining a kinetic mechanism for l-DOPA 2,3 dioxygenase, a single-domain type I extradiol dioxygenase from Streptomyces lincolnensis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:607-14. [DOI: 10.1016/j.bbapap.2013.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/11/2013] [Accepted: 12/09/2013] [Indexed: 11/22/2022]
|
22
|
Barry KP, Taylor EA. Characterizing the promiscuity of LigAB, a lignin catabolite degrading extradiol dioxygenase from Sphingomonas paucimobilis SYK-6. Biochemistry 2013; 52:6724-36. [PMID: 23977959 DOI: 10.1021/bi400665t] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LigAB from Sphingomonas paucimobilis SYK-6 is the only structurally characterized dioxygenase of the largely uncharacterized superfamily of Type II extradiol dioxygenases (EDO). This enzyme catalyzes the oxidative ring-opening of protocatechuate (3,4-dihydroxybenzoic acid or PCA) in a pathway allowing the degradation of lignin derived aromatic compounds (LDACs). LigAB has also been shown to utilize two other LDACs from the same metabolic pathway as substrates, gallate, and 3-O-methyl gallate; however, kcat/KM had not been reported for any of these compounds. In order to assess the catalytic efficiency and get insights into the observed promiscuity of this enzyme, steady-state kinetic analyses were performed for LigAB with these and a library of related compounds. The dioxygenation of PCA by LigAB was highly efficient, with a kcat of 51 s(-1) and a kcat/KM of 4.26 × 10(6) M(-1)s(-1). LigAB demonstrated the ability to use a variety of catecholic molecules as substrates beyond the previously identified gallate and 3-O-methyl gallate, including 3,4-dihydroxybenzamide, homoprotocatechuate, catechol, and 3,4-dihydroxybenzonitrile. Interestingly, 3,4-dihydroxybenzamide (DHBAm) behaves in a manner similar to that of the preferred benzoic acid substrates, with a kcat/Km value only ∼4-fold lower than that for gallate and ∼10-fold higher than that for 3-O-methyl gallate. All of these most active substrates demonstrate mechanistic inactivation of LigAB. Additionally, DHBAm exhibits potent product inhibition that leads to an inactive enzyme, being more highly deactivating at lower substrate concentration, a phenomena that, to our knowledge, has not been reported for another dioxygenase substrate/product pair. These results provide valuable catalytic insight into the reactions catalyzed by LigAB and make it the first Type II EDO that is fully characterized both structurally and kinetically.
Collapse
Affiliation(s)
- Kevin P Barry
- Department of Chemistry, Wesleyan University , 52 Lawn Avenue, Middletown, Connecticut 06459, United States
| | | |
Collapse
|
23
|
Wojcieszyńska D, Hupert-Kocurek K, Guzik U. Factors affecting activity of catechol 2,3-dioxygenase from 2-chlorophenol-degradingStenotrophomonas maltophiliastrain KB2. BIOCATAL BIOTRANSFOR 2013. [DOI: 10.3109/10242422.2013.796456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Guzik U, Hupert-Kocurek K, Sitnik M, Wojcieszyńska D. High activity catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 as a useful tool in cis,cis-muconic acid production. Antonie van Leeuwenhoek 2013; 103:1297-307. [PMID: 23536173 PMCID: PMC3656225 DOI: 10.1007/s10482-013-9910-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/22/2013] [Indexed: 10/31/2022]
Abstract
This is the first report of a catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 with high activity against catechol and its methyl derivatives. This enzyme was maximally active at pH 8.0 and 40 °C and the half-life of the enzyme at this temperature was 3 h. Kinetic studies showed that the value of K m and V max was 12.8 μM and 1,218.8 U/mg of protein, respectively. During our studies on kinetic properties of the catechol 1,2-dioxygenase we observed substrate inhibition at >80 μM. The nucleotide sequence of the gene encoding the S. maltophilia strain KB2 catechol 1,2-dioxygenase has high identity with other catA genes from members of the genus Pseudomonas. The deduced 314-residue sequence of the enzyme corresponds to a protein of molecular mass 34.5 kDa. This enzyme was inhibited by competitive inhibitors (phenol derivatives) only by ca. 30 %. High tolerance against condition changes is desirable in industrial processes. Our data suggest that this enzyme could be of use as a tool in production of cis,cis-muconic acid and its derivatives.
Collapse
Affiliation(s)
- Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| | | | | | | |
Collapse
|
25
|
Wojcieszyńska D, Hupert-Kocurek K, Jankowska A, Guzik U. Properties of catechol 2,3-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.04.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Sundaravel K, Suresh E, Saminathan K, Palaniandavar M. Iron(III) complexes of N2O and N3O donor ligands as functional models for catechol dioxygenase enzymes: ether oxygen coordination tunes the regioselectivity and reactivity. Dalton Trans 2011; 40:8092-107. [DOI: 10.1039/c0dt01598a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Karuppasamy Sundaravel
- Centre for Bioinorganic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | | | | | | |
Collapse
|
27
|
Kumar P, Gómez-Gil L, Mohammadi M, Sylvestre M, Eltis LD, Bolin JT. Anaerobic crystallization and initial X-ray diffraction data of biphenyl 2,3-dioxygenase from Burkholderia xenovorans LB400: addition of agarose improved the quality of the crystals. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 67:59-62. [PMID: 21206025 DOI: 10.1107/s1744309110043393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/25/2010] [Indexed: 11/10/2022]
Abstract
Biphenyl 2,3-dioxygenase (BPDO; EC 1.14.12.18) catalyzes the initial step in the degradation of biphenyl and some polychlorinated biphenyls (PCBs). BPDOLB400, the terminal dioxygenase component from Burkholderia xenovorans LB400, a proteobacterial species that degrades a broad range of PCBs, has been crystallized under anaerobic conditions by sitting-drop vapour diffusion. Initial crystals obtained using various polyethylene glycols as precipitating agents diffracted to very low resolution (∼8 Å) and the recorded reflections were diffuse and poorly shaped. The quality of the crystals was significantly improved by the addition of 0.2% agarose to the crystallization cocktail. In the presence of agarose, wild-type BPDOLB400 crystals that diffracted to 2.4 Å resolution grew in space group P1. Crystals of the BPDOP4 and BPDORR41 variants of BPDOLB400 grew in space group P2(1).
Collapse
Affiliation(s)
- Pravindra Kumar
- Department of Biological Sciences and Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Cho HJ, Kim K, Sohn SY, Cho HY, Kim KJ, Kim MH, Kim D, Kim E, Kang BS. Substrate binding mechanism of a type I extradiol dioxygenase. J Biol Chem 2010; 285:34643-52. [PMID: 20810655 DOI: 10.1074/jbc.m110.130310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A meta-cleavage pathway for the aerobic degradation of aromatic hydrocarbons is catalyzed by extradiol dioxygenases via a two-step mechanism: catechol substrate binding and dioxygen incorporation. The binding of substrate triggers the release of water, thereby opening a coordination site for molecular oxygen. The crystal structures of AkbC, a type I extradiol dioxygenase, and the enzyme substrate (3-methylcatechol) complex revealed the substrate binding process of extradiol dioxygenase. AkbC is composed of an N-domain and an active C-domain, which contains iron coordinated by a 2-His-1-carboxylate facial triad motif. The C-domain includes a β-hairpin structure and a C-terminal tail. In substrate-bound AkbC, 3-methylcatechol interacts with the iron via a single hydroxyl group, which represents an intermediate stage in the substrate binding process. Structure-based mutagenesis revealed that the C-terminal tail and β-hairpin form part of the substrate binding pocket that is responsible for substrate specificity by blocking substrate entry. Once a substrate enters the active site, these structural elements also play a role in the correct positioning of the substrate. Based on the results presented here, a putative substrate binding mechanism is proposed.
Collapse
Affiliation(s)
- Hyo Je Cho
- From the School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dresen C, Lin LYC, D'Angelo I, Tocheva EI, Strynadka N, Eltis LD. A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism. J Biol Chem 2010; 285:22264-75. [PMID: 20448045 PMCID: PMC2903365 DOI: 10.1074/jbc.m109.099028] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 04/06/2010] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) and Rhodococcus jostii RHA1 have similar cholesterol catabolic pathways. This pathway contributes to the pathogenicity of Mtb. The hsaAB cholesterol catabolic genes have been predicted to encode the oxygenase and reductase, respectively, of a flavin-dependent mono-oxygenase that hydroxylates 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3-HSA) to a catechol. An hsaA deletion mutant of RHA1 did not grow on cholesterol but transformed the latter to 3-HSA and related metabolites in which each of the two keto groups was reduced: 3,9-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-17-one (3,9-DHSA) and 3,17-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9-one (3,17-DHSA). Purified 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione 4-hydroxylase (HsaAB) from Mtb had higher specificity for 3-HSA than for 3,17-DHSA (apparent k(cat)/K(m) = 1000 +/- 100 M(-1) s(-1) versus 700 +/- 100 M(-1) s(-1)). However, 3,9-DHSA was a poorer substrate than 3-hydroxybiphenyl (apparent k(cat)/K(m) = 80 +/- 40 M(-1) s(-1)). In the presence of 3-HSA the K(m)(app) for O(2) was 100 +/- 10 microM. The crystal structure of HsaA to 2.5-A resolution revealed that the enzyme has the same fold, flavin-binding site, and catalytic residues as p-hydroxyphenyl acetate hydroxylase. However, HsaA has a much larger phenol-binding site, consistent with the enzyme's substrate specificity. In addition, a second crystal form of HsaA revealed that a C-terminal flap (Val(367)-Val(394)) could adopt two conformations differing by a rigid body rotation of 25 degrees around Arg(366). This rotation appears to gate the likely flavin entrance to the active site. In docking studies with 3-HSA and flavin, the closed conformation provided a rationale for the enzyme's substrate specificity. Overall, the structural and functional data establish the physiological role of HsaAB and provide a basis to further investigate an important class of monooxygenases as well as the bacterial catabolism of steroids.
Collapse
Affiliation(s)
- Carola Dresen
- From the Departments of Microbiology and Immunology and
| | - Leo Y.-C. Lin
- Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 1Z3, Canada and
| | - Igor D'Angelo
- Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 1Z3, Canada and
| | - Elitza I. Tocheva
- From the Departments of Microbiology and Immunology and
- the California Institute of Technology, Pasadena, California 91125
| | - Natalie Strynadka
- Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 1Z3, Canada and
| | - Lindsay D. Eltis
- From the Departments of Microbiology and Immunology and
- Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 1Z3, Canada and
| |
Collapse
|
30
|
Determination of the active site of Sphingobium chlorophenolicum 2,6-dichlorohydroquinone dioxygenase (PcpA). J Biol Inorg Chem 2009; 15:291-301. [DOI: 10.1007/s00775-009-0602-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
|
31
|
Straganz GD, Slavica A, Hofer H, Mandl U, Steiner W, Nidetzky B. Integrated approach for production of recombinant acetylacetone dioxygenase fromAcinetobacter johnsonii. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500183543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Metamorphic enzyme assembly in polyketide diversification. Nature 2009; 459:731-5. [PMID: 19494914 DOI: 10.1038/nature07870] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 02/06/2009] [Indexed: 11/08/2022]
Abstract
Natural product chemical diversity is fuelled by the emergence and ongoing evolution of biosynthetic pathways in secondary metabolism. However, co-evolution of enzymes for metabolic diversification is not well understood, especially at the biochemical level. Here, two parallel assemblies with an extraordinarily high sequence identity from Lyngbya majuscula form a beta-branched cyclopropane in the curacin A pathway (Cur), and a vinyl chloride group in the jamaicamide pathway (Jam). The components include a halogenase, a 3-hydroxy-3-methylglutaryl enzyme cassette for polyketide beta-branching, and an enoyl reductase domain. The halogenase from CurA, and the dehydratases (ECH(1)s), decarboxylases (ECH(2)s) and enoyl reductase domains from both Cur and Jam, were assessed biochemically to determine the mechanisms of cyclopropane and vinyl chloride formation. Unexpectedly, the polyketide beta-branching pathway was modified by introduction of a gamma-chlorination step on (S)-3-hydroxy-3-methylglutaryl mediated by Cur halogenase, a non-haem Fe(ii), alpha-ketoglutarate-dependent enzyme. In a divergent scheme, Cur ECH(2) was found to catalyse formation of the alpha,beta enoyl thioester, whereas Jam ECH(2) formed a vinyl chloride moiety by selectively generating the corresponding beta,gamma enoyl thioester of the 3-methyl-4-chloroglutaconyl decarboxylation product. Finally, the enoyl reductase domain of CurF specifically catalysed an unprecedented cyclopropanation on the chlorinated product of Cur ECH(2) instead of the canonical alpha,beta C = C saturation reaction. Thus, the combination of chlorination and polyketide beta-branching, coupled with mechanistic diversification of ECH(2) and enoyl reductase, leads to the formation of cyclopropane and vinyl chloride moieties. These results reveal a parallel interplay of evolutionary events in multienzyme systems leading to functional group diversity in secondary metabolites.
Collapse
|
33
|
Li A, Qu Y, Zhou J, Ma F. Enzymeâsubstrate interaction and characterization of a 2,3-dihydroxybiphenyl 1,2-dioxygenase fromDyella ginsengisoliLA-4. FEMS Microbiol Lett 2009; 292:231-9. [DOI: 10.1111/j.1574-6968.2009.01487.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Yam KC, D'Angelo I, Kalscheuer R, Zhu H, Wang JX, Snieckus V, Ly LH, Converse PJ, Jacobs WR, Strynadka N, Eltis LD. Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog 2009; 5:e1000344. [PMID: 19300498 PMCID: PMC2652662 DOI: 10.1371/journal.ppat.1000344] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 02/20/2009] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis, the etiological agent of TB, possesses a cholesterol catabolic pathway implicated in pathogenesis. This pathway includes an iron-dependent extradiol dioxygenase, HsaC, that cleaves catechols. Immuno-compromised mice infected with a DeltahsaC mutant of M. tuberculosis H37Rv survived 50% longer than mice infected with the wild-type strain. In guinea pigs, the mutant disseminated more slowly to the spleen, persisted less successfully in the lung, and caused little pathology. These data establish that, while cholesterol metabolism by M. tuberculosis appears to be most important during the chronic stage of infection, it begins much earlier and may contribute to the pathogen's dissemination within the host. Purified HsaC efficiently cleaved the catecholic cholesterol metabolite, DHSA (3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione; k(cat)/K(m) = 14.4+/-0.5 microM(-1) s(-1)), and was inactivated by a halogenated substrate analogue (partition coefficient<50). Remarkably, cholesterol caused loss of viability in the DeltahsaC mutant, consistent with catechol toxicity. Structures of HsaC:DHSA binary complexes at 2.1 A revealed two catechol-binding modes: bidentate binding to the active site iron, as has been reported in similar enzymes, and, unexpectedly, monodentate binding. The position of the bicyclo-alkanone moiety of DHSA was very similar in the two binding modes, suggesting that this interaction is a determinant in the initial substrate-binding event. These data provide insights into the binding of catechols by extradiol dioxygenases and facilitate inhibitor design.
Collapse
Affiliation(s)
- Katherine C. Yam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Igor D'Angelo
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rainer Kalscheuer
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Haizhong Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jian-Xin Wang
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Victor Snieckus
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Lan H. Ly
- Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Paul J. Converse
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - William R. Jacobs
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Natalie Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay D. Eltis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Rocks SS, Brennessel WW, Machonkin TE, Holland PL. Solid-state and proton NMR characterization of an iron(II) complex of a tridentate, facially coordinating N,N,O donor ligand. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Capyk JK, D'Angelo I, Strynadka NC, Eltis LD. Characterization of 3-ketosteroid 9{alpha}-hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis. J Biol Chem 2009; 284:9937-46. [PMID: 19234303 DOI: 10.1074/jbc.m900719200] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
KshAB (3-Ketosteroid 9alpha-hydroxylase) is a two-component Rieske oxygenase (RO) in the cholesterol catabolic pathway of Mycobacterium tuberculosis. Although the enzyme has been implicated in pathogenesis, it has largely been characterized by bioinformatics and molecular genetics. Purified KshB, the reductase component, was a monomeric protein containing a plant-type [2Fe-2S] cluster and FAD. KshA, the oxygenase, was a homotrimer containing a Rieske [2Fe-2S] cluster and mononuclear ferrous iron. Of two potential substrates, reconstituted KshAB had twice the specificity for 1,4-androstadiene-3,17-dione as for 4-androstene-3,17-dione. The transformation of both substrates was well coupled to the consumption of O(2). Nevertheless, the reactivity of KshAB with O(2) was low in the presence of 1,4-androstadiene-3,17-dione, with a k(cat)/K(m)(O(2)) of 2450 +/- 80 m(-1) s(-1). The crystallographic structure of KshA, determined to 2.3A(,) revealed an overall fold and a head-to-tail subunit arrangement typical of ROs. The central fold of the catalytic domain lacks all insertions found in characterized ROs, consistent with a minimal and perhaps archetypical RO catalytic domain. The structure of KshA is further distinguished by a C-terminal helix, which stabilizes subunit interactions in the functional trimer. Finally, the substrate-binding pocket extends farther into KshA than in other ROs, consistent with the large steroid substrate, and the funnel accessing the active site is differently orientated. This study provides a solid basis for further studies of a key steroid-transforming enzyme of biotechnological and medical importance.
Collapse
Affiliation(s)
- Jenna K Capyk
- Departments of Biochemistry and Molecular Biology and Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6 1Z3, Canada
| | | | | | | |
Collapse
|
37
|
Biochemical characterization of l-DOPA 2,3-dioxygenase, a single-domain type I extradiol dioxygenase from lincomycin biosynthesis. Arch Biochem Biophys 2008; 479:131-8. [DOI: 10.1016/j.abb.2008.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/27/2008] [Accepted: 08/27/2008] [Indexed: 11/23/2022]
|
38
|
Abstract
Ring-cleaving dioxygenases catalyze the oxygenolytic fission of catecholic compounds, a critical step in the aerobic degradation of aromatic compounds by bacteria. Two classes of these enzymes have been identified, based on the mode of ring cleavage: intradiol dioxygenases utilize non-heme Fe(III) to cleave the aromatic nucleus ortho to the hydroxyl substituents; and extradiol dioxygenases utilize non-heme Fe(II) or other divalent metal ions to cleave the aromatic nucleus meta to the hydroxyl substituents. Recent genomic, structural, spectroscopic, and kinetic studies have increased our understanding of the distribution, evolution, and mechanisms of these enzymes. Overall, extradiol dioxygenases appear to be more versatile than their intradiol counterparts. Thus, the former cleave a wider variety of substrates, have evolved on a larger number of structural scaffolds, and occur in a wider variety of pathways, including biosynthetic pathways and pathways that degrade non-aromatic compounds. The catalytic mechanisms of the two enzymes proceed via similar iron-alkylperoxo intermediates. The ability of extradiol enzymes to act on a variety of non-catecholic compounds is consistent with proposed differences in the breakdown of this iron-alkylperoxo intermediate in the two enzymes, involving alkenyl migration in extradiol enzymes and acyl migration in intradiol enzymes. Nevertheless, despite recent advances in our understanding of these fascinating enzymes, the major determinant of the mode of ring cleavage remains unknown.
Collapse
Affiliation(s)
- Frédéric H Vaillancourt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
39
|
Salicylate 1,2-Dioxygenase from Pseudaminobacter salicylatoxidans: Crystal Structure of a Peculiar Ring-cleaving Dioxygenase. J Mol Biol 2008; 380:856-68. [DOI: 10.1016/j.jmb.2008.05.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/13/2008] [Accepted: 05/18/2008] [Indexed: 11/24/2022]
|
40
|
Nerdinger S, Kendall C, Cai X, Marchart R, Riebel P, Johnson MR, Yin CF, Hénaff N, Eltis LD, Snieckus V. Combined directed ortho Metalation/Suzuki-Miyaura cross-coupling strategies. Regiospecific synthesis of chlorodihydroxybiphenyls and polychlorinated biphenyls. J Org Chem 2007; 72:5960-7. [PMID: 17616228 DOI: 10.1021/jo062543i] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Directed ortho Metalation (DoM)/Suzuki-Miyaura cross-coupling strategy is applied for the regiospecific construction of all isomeric monochloro and selected dichloro and trichloro 2,3-dihydroxybiphenyls (DHBs). The combined methodology highlights iterative DoM processes, hindered Suzuki-Miyaura couplings, and advantages in diversity in approaches from commercial starting materials leading to provision of chloro-DHBs as single isomers in high purity and on a gram scale. The syntheis of several PCBs are also reported.
Collapse
Affiliation(s)
- S Nerdinger
- Sandoz GmbH, ATKU, B104/6/R703, Sandoz GmbH, Biochemiestrasse 10, A-6250 Kundl/Tirol, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gómez-Gil L, Kumar P, Barriault D, Bolin JT, Sylvestre M, Eltis LD. Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme. J Bacteriol 2007; 189:5705-15. [PMID: 17526697 PMCID: PMC1951834 DOI: 10.1128/jb.01476-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biphenyl dioxygenase (BPDO) catalyzes the aerobic transformation of biphenyl and various polychlorinated biphenyls (PCBs). In three different assays, BPDO(B356) from Pandoraea pnomenusa B-356 was a more potent PCB-degrading enzyme than BPDO(LB400) from Burkholderia xenovorans LB400 (75% amino acid sequence identity), transforming nine congeners in the following order of preference: 2,3',4-trichloro approximately 2,3,4'-trichloro > 3,3'-dichloro > 2,4,4'-trichloro > 4,4'-dichloro approximately 2,2'-dichloro > 2,6-dichloro > 2,2',3,3'-tetrachloro approximately 2,2',5,5'-tetrachloro. Except for 2,2',5,5'-tetrachlorobiphenyl, BPDO(B356) transformed each congener at a higher rate than BPDO(LB400). The assays used either whole cells or purified enzymes and either individual congeners or mixtures of congeners. Product analyses established previously unrecognized BPDO(B356) activities, including the 3,4-dihydroxylation of 2,6-dichlorobiphenyl. BPDO(LB400) had a greater apparent specificity for biphenyl than BPDO(B356) (k(cat)/K(m) = 2.4 x 10(6) +/- 0.7 x 10(6) M(-1) s(-1) versus k(cat)/K(m) = 0.21 x 10(6) +/- 0.04 x 10(6) M(-1) s(-1)). However, the latter transformed biphenyl at a higher maximal rate (k(cat) = 4.1 +/- 0.2 s(-1) versus k(cat) = 0.4 +/- 0.1 s(-1)). A variant of BPDO(LB400) containing four active site residues of BPDO(B356) transformed para-substituted congeners better than BPDO(LB400). Interestingly, a substitution remote from the active site, A267S, increased the enzyme's preference for meta-substituted congeners. Moreover, this substitution had a greater effect on the kinetics of biphenyl utilization than substitutions in the substrate-binding pocket. In all variants, the degree of coupling between congener depletion and O(2) consumption was approximately proportional to congener depletion. At 2.4-A resolution, the crystal structure of the BPDO(B356)-2,6-dichlorobiphenyl complex, the first crystal structure of a BPDO-PCB complex, provided additional insight into the reactivity of this isozyme with this congener, as well as into the differences in congener preferences of the BPDOs.
Collapse
Affiliation(s)
- Leticia Gómez-Gil
- Department of Microbiology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Bruijnincx PCA, Lutz M, Spek AL, Hagen WR, Weckhuysen BM, van Koten G, Gebbink RJMK. Modeling the 2-His-1-Carboxylate Facial Triad: Iron−Catecholato Complexes as Structural and Functional Models of the Extradiol Cleaving Dioxygenases. J Am Chem Soc 2007; 129:2275-86. [PMID: 17266307 DOI: 10.1021/ja064816x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mononuclear iron(II)- and iron(III)-catecholato complexes with three members of a new 3,3-bis(1-alkylimidazol-2-yl)propionate ligand family have been synthesized as models of the active sites of the extradiol cleaving catechol dioxygenases. These enzymes are part of the superfamily of dioxygen-activating mononuclear non-heme iron enzymes that feature the so-called 2-His-1-carboxylate facial triad. The tridentate, tripodal, and monoanionic ligands used in this study include the biologically relevant carboxylate and imidazole donor groups. The structure of the mononuclear iron(III)-tetrachlorocatecholato complex [Fe(L3)(tcc)(H2O)] was determined by single-crystal X-ray diffraction, which shows a facial N,N,O capping mode of the ligand. For the first time, a mononuclear iron complex has been synthesized, which is facially capped by a ligand offering a tridentate Nim,Nim,Ocarb donor set, identical to the endogenous ligands of the 2-His-1-carboxylate facial triad. The iron complexes are five-coordinate in noncoordinating media, and the vacant coordination site is accessible for Lewis bases, e.g., pyridine, or small molecules such as dioxygen. The iron(II)-catecholato complexes react with dioxygen in two steps. In the first reaction the iron(II)-catecholato complexes rapidly convert to the corresponding iron(III) complexes, which then, in a second slow reaction, exhibit both oxidative cleavage and auto-oxidation of the substrate. Extradiol and intradiol cleavage are observed in noncoordinating solvents. The addition of a proton donor results in an increase in extradiol cleavage. The complexes add a new example to the small group of synthetic iron complexes capable of eliciting extradiol-type cleavage and provide more insight into the factors determining the regioselectivity of the enzymes.
Collapse
Affiliation(s)
- Pieter C A Bruijnincx
- Organic Chemistry and Catalysis Group, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Balibar CJ, Walsh CT. In vitro biosynthesis of violacein from L-tryptophan by the enzymes VioA-E from Chromobacterium violaceum. Biochemistry 2006; 45:15444-57. [PMID: 17176066 DOI: 10.1021/bi061998z] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purple chromobacterial pigment violacein arises by enzymatic oxidation and coupling of two molecules of l-tryptophan to give a rearranged pyrrolidone-containing scaffold in the final pigment. We have purified five contiguously encoded proteins VioA-E after expression in Escherichia coli and demonstrate the full 14-electron oxidation pathway to yield the final chromophore. The flavoenzyme VioA and the heme protein VioB work in conjunction to oxidize and dimerize l-tryptophan to a nascent product that can default to the off pathway metabolite chromopyrrolic acid. In the presence of VioE, the intermediate instead undergoes on-pathway [1,2] indole rearrangement to prodeoxyviolacein. The last two enzymes in the pathway are flavin-dependent oxygenases, VioC and VioD, that act sequentially. VioD hydroxylates one indole ring at the 5-position to yield proviolacein, and VioC then acts on the other indole ring at the 2-position to create the oxindole and complete violacein formation.
Collapse
Affiliation(s)
- Carl J Balibar
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| | | |
Collapse
|
44
|
Parnell JJ, Park J, Denef V, Tsoi T, Hashsham S, Quensen J, Tiedje JM. Coping with polychlorinated biphenyl (PCB) toxicity: Physiological and genome-wide responses of Burkholderia xenovorans LB400 to PCB-mediated stress. Appl Environ Microbiol 2006; 72:6607-14. [PMID: 17021212 PMCID: PMC1610328 DOI: 10.1128/aem.01129-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biodegradation of polychlorinated biphenyls (PCBs) relies on the ability of aerobic microorganisms such as Burkholderia xenovorans sp. LB400 to tolerate two potential modes of toxicity presented by PCB degradation: passive toxicity, as hydrophobic PCBs potentially disrupt membrane and protein function, and degradation-dependent toxicity from intermediates of incomplete degradation. We monitored the physiological characteristics and genome-wide expression patterns of LB400 in response to the presence of Aroclor 1242 (500 ppm) under low expression of the structural biphenyl pathway (succinate and benzoate growth) and under induction by biphenyl. We found no inhibition of growth or change in fatty acid profile due to PCBs under nondegrading conditions. Moreover, we observed no differential gene expression due to PCBs themselves. However, PCBs did have a slight effect on the biosurface area of LB400 cells and caused slight membrane separation. Upon activation of the biphenyl pathway, we found growth inhibition from PCBs beginning after exponential-phase growth suggestive of the accumulation of toxic compounds. Genome-wide expression profiling revealed 47 differentially expressed genes (0.56% of all genes) under these conditions. The biphenyl and catechol pathways were induced as expected, but the quinoprotein methanol metabolic pathway and a putative chloroacetaldehyde dehydrogenase were also highly expressed. As the latter protein is essential to conversion of toxic metabolites in dichloroethane degradation, it may play a similar role in the degradation of chlorinated aliphatic compounds resulting from PCB degradation.
Collapse
Affiliation(s)
- J Jacob Parnell
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Horsman GP, Jirasek A, Vaillancourt FH, Barbosa CJ, Jarzecki AA, Xu C, Mekmouche Y, Spiro TG, Lipscomb JD, Blades MW, Turner RF, Eltis LD. Spectroscopic studies of the anaerobic enzyme-substrate complex of catechol 1,2-dioxygenase. J Am Chem Soc 2006; 127:16882-91. [PMID: 16316234 PMCID: PMC3418915 DOI: 10.1021/ja053800o] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The basis of the respective regiospecificities of intradiol and extradiol dioxygenase is poorly understood and may be linked to the protonation state of the bidentate-bound catechol in the enzyme/substrate complex. Previous ultraviolet resonance Raman (UVRR) and UV-visible (UV-vis) difference spectroscopic studies demonstrated that, in extradiol dioxygenases, the catechol is bound to the Fe(II) as a monoanion. In this study, we use the same approaches to demonstrate that, in catechol 1,2-dioxygenase (C12O), an intradiol enzyme, the catechol binds to the Fe(III) as a dianion. Specifically, features at 290 nm and 1550 cm(-1) in the UV-vis and UVRR difference spectra, respectively, are assigned to dianionic catechol based on spectra of the model compound, ferric tris(catecholate). The UVRR spectroscopic band assignments are corroborated by density functional theory (DFT) calculations. In addition, negative features at 240 nm in UV-vis difference spectra and at 1600, 1210, and 1175 cm(-1) in UVRR difference spectra match those of a tyrosinate model compound, consistent with protonation of the axial tyrosinate ligand when it is displaced from the ferric ion coordination sphere upon substrate binding. The DFT calculations ascribe the asymmetry of the bound dianionic substrate to the trans donor effect of an equatorially ligated tyrosinate ligand. In addition, the computations suggest that trans donation from the tyrosinate ligand may facilitate charge transfer from the substrate to yield the iron-bound semiquinone transition state, which is capable of reacting with dioxygen. In illustrating the importance of ligand trans effects in a biological system, the current study demonstrates the power of combining difference UVRR and optical spectroscopies to probe metal ligation in solution.
Collapse
Affiliation(s)
- Geoff P. Horsman
- Departments of Biochemistry and Microbiology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Andrew Jirasek
- Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Frédéric H. Vaillancourt
- Departments of Biochemistry and Microbiology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher J. Barbosa
- Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Changliang Xu
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Yasmina Mekmouche
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Thomas G. Spiro
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael W. Blades
- Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Robin F.B. Turner
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lindsay D. Eltis
- Departments of Biochemistry and Microbiology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Corresponding author: Lindsay D. Eltis,
| |
Collapse
|
46
|
Anderton MC, Bhakta S, Besra GS, Jeavons P, Eltis LD, Sim E. Characterization of the putative operon containing arylamine N-acetyltransferase (nat) in Mycobacterium bovis BCG. Mol Microbiol 2006; 59:181-92. [PMID: 16359327 DOI: 10.1111/j.1365-2958.2005.04945.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mycobacterium bovis BCG and Mycobacterium tuberculosis possess a single arylamine N-acetyltransferase whose gene is predicted to occur within a six-gene operon. Deletion of the nat gene caused an extended lag phase in M. bovis BCG and a cell morphology associated with an altered pattern of cell wall mycolates. Analysis of cDNA from M. bovis BCG shows that during in vitro growth all the genes in the putative nat operon are expressed and the open reading frames are contiguous, supporting the existence of an operon. Two genes in the operon, Mb3599c and Mb3600c, are predicted to encode homologues of enzymes annotated as a 2,3-dihydroxybiphenyl 1,2-dioxygenase (bphC5) and a 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (bphD2), respectively, in Rhodococcus RHA1. As predicted, M. bovis BCG cell lysates metabolized the BphC substrate 2,3-dihydroxybiphenyl (2,3-DHB) to 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA), a BphD substrate, which was subsequently hydrolysed. Immunoprecipitation of the BphD homologue from these lysates led to an accumulation of HOPDA. M. bovis BCG growth on both solid and liquid media was inhibited with either 2,3-DHB or an inhibitor of BphC, 3-chlorocatechol (3-CC). In addition, incubation with 2,3-DHB affects the lipid composition of the cell wall resulting in a diminished level of mycolates and an altered cell morphology similar to the Deltanat strain. We propose the enzymes encoded by the putative operon have a similar endogenous role to that of the NAT enzyme and are part of a pathway important for cell wall synthesis.
Collapse
Affiliation(s)
- Matthew C Anderton
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | | | | | | | | | |
Collapse
|
47
|
Davis MI, Wasinger EC, Decker A, Pau MYM, Vaillancourt FH, Bolin JT, Eltis LD, Hedman B, Hodgson KO, Solomon EI. Spectroscopic and electronic structure studies of 2,3-dihydroxybiphenyl 1,2-dioxygenase: O2 reactivity of the non-heme ferrous site in extradiol dioxygenases. J Am Chem Soc 2005; 125:11214-27. [PMID: 16220940 DOI: 10.1021/ja029746i] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The extradiol dioxygenase, 2,3-dihydroxybiphenyl 1,2-dioxygenase (DHBD, EC 1.13.11.39), has been studied using magnetic circular dichroism (MCD), variable-temperature variable-field (VTVH) MCD, X-ray absorption (XAS) pre-edge, and extended X-ray absorption fine structure (EXAFS) spectroscopies, which are analogous to methods used in earlier studies on the extradiol dioxygenase catechol 2,3-dioxygenase [Mabrouk et al. J. Am. Chem Soc. 1991, 113, 4053-4061]. For DHBD, the spectroscopic data can be correlated to the results of crystallography and with the results from density functional calculations to obtain detailed geometric and electronic structure descriptions of the resting and substrate (DHB) bound forms of the enzyme. The geometry of the active site of the resting enzyme, square pyramidal with a strong Fe-glutamate bond in the equatorial plane, localizes the redox active orbital in an orientation appropriate for O(2) binding. However, the O(2) reaction is not favorable, as it would produce a ferric superoxide intermediate with a weak Fe-O bond. Substrate binding leads to a new square pyramidal structure with the strong Fe-glutamate bond in the axial direction as indicated by a decrease in the (5)E(g) and increase in the (5)T(2g) splitting. Electronic structure calculations provide insight into the relative lack of dioxygen reactivity for the resting enzyme and its activation upon substrate binding.
Collapse
Affiliation(s)
- Mindy I Davis
- Department of Chemistry and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vaillancourt FH, Fortin PD, Labbé G, Drouin NM, Karim Z, Agar NYR, Eltis LD. Molecular basis for the substrate selectivity of bicyclic and monocyclic extradiol dioxygenases. Biochem Biophys Res Commun 2005; 338:215-22. [PMID: 16165093 DOI: 10.1016/j.bbrc.2005.08.219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 08/30/2005] [Indexed: 11/15/2022]
Abstract
Extradiol dioxygenases play a key role in determining the specificities of the microbial aromatic catabolic pathways in which they occur. To identify the structural determinants of specificity in this class of enzymes, variants of 2,3-dihydroxybiphenyl (DHB) 1,2-dioxygenase (DHBD) were investigated. Structural data of the DHBD/DHB complex informed the design of seven variants at four positions: V148W, V148L, M175W, A200I, A200W, P280W, and V148L/A200I. All variants had reduced specificity for DHB. In addition, the V148W, V148L, A200I, and V148L/A200I variants had increased specificity for catechol. Indeed, the V148W variant had a higher apparent specificity for 3-Me catechol than for DHB, although the substitution reduced the kcat for all tested substrates as well as the rate constant of suicide inactivation of the enzyme. These results are consistent with available structural data which suggest that the larger residue at position 148 may partially occlude O2 binding. The results further indicate that in addition to defining substrate specificity, the binding pocket orientates the bound catechol to minimize oxidative inactivation of the enzyme during catalysis.
Collapse
|
49
|
Howard-Jones AR, Walsh CT. Enzymatic Generation of the Chromopyrrolic Acid Scaffold of Rebeccamycin by the Tandem Action of RebO and RebD. Biochemistry 2005; 44:15652-63. [PMID: 16313168 DOI: 10.1021/bi051706e] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the biosynthesis of the fused six-ring indolocarbazole scaffolds of rebeccamycin and staurosporine, two molecules of L-tryptophan are processed to a pyrrole-containing five-ring intermediate known as chromopyrrolic acid. We report here the heterologous expression of RebO and RebD from the rebeccamycin biosynthetic pathway in Escherichia coli, and tandem action of these two enzymes to construct the dicarboxypyrrole ring of chromopyrrolic acid. Chromopyrrolic acid is oxidized by six electrons compared to the starting pair of L-tryptophan molecules. RebO is an L-tryptophan oxidase flavoprotein and RebD a heme protein dimer with both catalase and chromopyrrolic acid synthase activity. Both enzymes require dioxygen as a cosubstrate. RebD on its own is incompetent with L-tryptophan but will convert the imine of indole-3-pyruvate to chromopyrrolic acid. It displays a substrate preference for two molecules of indole-3-pyruvic acid imine, necessitating a net two-electron oxidation to give chromopyrrolic acid.
Collapse
Affiliation(s)
- Annaleise R Howard-Jones
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
50
|
Fortin PD, MacPherson I, Neau DB, Bolin JT, Eltis LD. Directed evolution of a ring-cleaving dioxygenase for polychlorinated biphenyl degradation. J Biol Chem 2005; 280:42307-14. [PMID: 16227200 DOI: 10.1074/jbc.m510456200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DoxG, an extradiol dioxygenase involved in the aerobic catabolism of naphthalene, possesses a weak ability to cleave 3,4-dihydroxybiphenyls (3,4-DHB), critical polychlorinated biphenyl metabolites. A directed evolution strategy combining error-prone PCR, saturation mutagenesis, and DNA shuffling was used to improve the polychlorinated biphenyl-degrading potential of DoxG. Screening was facilitated through analysis of filtered, digital imaging of plated colonies. A simple scheme, which is readily adaptable to other activities, enabled the screening of >10(5) colonies/h. The best variant, designated DoxGSMA2, cleaved 3,4-DHB with an apparent specificity constant of 2.0 +/- 0.3 x 10(6) m(-1) s(-1), which is 770 times that of wild-type (WT) DoxG. The specificities of DoxGSMA2 for 1,2-DHN and 2,3-DHB were increased by 6.7-fold and reduced by 2-fold, respectively, compared with the WT enzyme. DoxGSMA2 contained three substituted residues with respect to the WT enzyme: L190M, S191W, and L242S. Structural data indicate that the side chains of residues 190 and 242 occur on opposite walls of the substrate binding pocket and may interact directly with the distal ring of 3,4-DHB or influence contacts between this substrate and other residues. Thus, the introduction of two bulkier residues on one side of the substrate binding pocket and a smaller residue on the other may reshape the binding pocket and alter the catalytically relevant interactions of 3,4-DHB with the enzyme and dioxygen. Kinetic analyses reveal that the substitutions are anti-cooperative.
Collapse
Affiliation(s)
- Pascal D Fortin
- Department of Microbiology and Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|