1
|
Chen J, Jiang L, Yu XH, Hu M, Zhang YK, Liu X, He P, Ouyang X. Endocan: A Key Player of Cardiovascular Disease. Front Cardiovasc Med 2022; 8:798699. [PMID: 35071362 PMCID: PMC8766991 DOI: 10.3389/fcvm.2021.798699] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 01/21/2023] Open
Abstract
Endothelial dysfunction is considered to be an early change in atherosclerosis. Endocan, also known as endothelial cell specific molecule-1, is a soluble proteoglycan mainly secreted by endothelial cells. Inflammatory factors such as IL-1β and TNF-α can up regulate the expression of endocan and then affect the expression of cell adhesion molecules, such as ICAM-1 and VCAM-1, which play an important role in promoting leukocyte migration and inflammatory response. Elevated plasma levels of endocan may reflect endothelial activation and dysfunction, and is considered to be a potential immuno-inflammatory marker that may be related to cardiovascular disease. In the case of hypertension, diabetes, angina pectoris and acute myocardial infarction, the increase or decrease of serum endocan levels is of great significance. Here, we reviewed the current research on endocan, and emphasis its possible clinical value as a prognostic marker of cardiovascular disease. Endocan may be a useful biomarker for the prognosis of cardiovascular disease, but more research is needed on its mechanism of action.
Collapse
Affiliation(s)
- Jinzhi Chen
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Basic Medical School, Hengyang Medical College, The Neuroscience Institute, University of South China, Hengyang, China
| | - Liping Jiang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Basic Medical School, Hengyang Medical College, The Neuroscience Institute, University of South China, Hengyang, China.,Clinical Drug Research Center, Hunan Taihe Hospital, Changsha, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Mi Hu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Basic Medical School, Hengyang Medical College, The Neuroscience Institute, University of South China, Hengyang, China
| | - Yang-Kai Zhang
- Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Hengyang, China
| | - Xin Liu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Basic Medical School, Hengyang Medical College, The Neuroscience Institute, University of South China, Hengyang, China
| | - Pingping He
- School of Nursing, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinping Ouyang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Basic Medical School, Hengyang Medical College, The Neuroscience Institute, University of South China, Hengyang, China
| |
Collapse
|
2
|
Wilson SE, Sampaio LP, Shiju TM, Hilgert GSL, de Oliveira RC. Corneal Opacity: Cell Biological Determinants of the Transition From Transparency to Transient Haze to Scarring Fibrosis, and Resolution, After Injury. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 35044454 PMCID: PMC8787546 DOI: 10.1167/iovs.63.1.22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose To highlight the cellular, matrix, and hydration changes associated with opacity that occurs in the corneal stroma after injury. Methods Review of the literature. Results The regulated transition of keratocytes to corneal fibroblasts and myofibroblasts, and of bone marrow-derived fibrocytes to myofibroblasts, is in large part modulated by transforming growth factor beta (TGFβ) entry into the stroma after injury to the epithelial basement membrane (EBM) and/or Descemet's membrane. The composition, stoichiometry, and organization of the stromal extracellular matrix components and water is altered by corneal fibroblast and myofibroblast production of large amounts of collagen type I and other extracellular matrix components-resulting in varying levels of stromal opacity, depending on the intensity of the healing response. Regeneration of EBM and/or Descemet's membrane, and stromal cell production of non-EBM collagen type IV, reestablishes control of TGFβ entry and activity, and triggers TGFβ-dependent myofibroblast apoptosis. Eventually, corneal fibroblasts also disappear, and repopulating keratocytes reorganize the disordered extracellular matrix to reestablish transparency. Conclusions Injuries to the cornea produce varying amounts of corneal opacity depending on the magnitude of cellular and molecular responses to injury. The EBM and Descemet's membrane are key regulators of stromal cellularity through their modulation of TGFβ. After injury to the cornea, depending on the severity of the insult, and possibly genetic factors, trace opacity to severe scarring fibrosis develops. Stromal cellularity, and the functions of different cell types, are the major determinants of the level of the stromal opacity.
Collapse
Affiliation(s)
- Steven E. Wilson
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Lycia Pedral Sampaio
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Ophthalmology, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
3
|
Lee A, Karamichos D, Onochie OE, Hutcheon AEK, Rich CB, Zieske JD, Trinkaus-Randall V. Hypoxia modulates the development of a corneal stromal matrix model. Exp Eye Res 2018; 170:127-137. [PMID: 29496505 DOI: 10.1016/j.exer.2018.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/18/2018] [Accepted: 02/23/2018] [Indexed: 12/22/2022]
Abstract
Deposition of matrix proteins during development and repair is critical to the transparency of the cornea. While many cells respond to a hypoxic state that can occur in a tumor, the cornea is exposed to hypoxia during development prior to eyelid opening and during the diurnal sleep cycle where oxygen levels can drop from 21% to 8%. In this study, we used 2 three-dimensional (3-D) models to examine how stromal cells respond to periods of acute hypoxic states. The first model, a stromal construct model, is a 3-D stroma-like construct that consists of human corneal fibroblasts (HCFs) stimulated by a stable form of ascorbate for 1, 2, and 4 weeks to self-assemble their own extracellular matrix. The second model, a corneal organ culture model, is a corneal wound-healing model, which consists of wounded adult rat corneas that were removed and placed in culture to heal. Both models were exposed to either normoxic or hypoxic conditions for varying time periods, and the expression and/or localization of matrix proteins was assessed. No significant changes were detected in Type V collagen, which is associated with Type I collagen fibrils; however, significant changes were detected in the expression of both the small leucine-rich repeating proteoglycans and the larger heparan sulfate proteoglycan, perlecan. Also, hypoxia decreased both the number of Cuprolinic blue-positive glycosaminoglycan chains along collagen fibrils and Sulfatase 1, which modulates the effect of heparan sulfate by removing the 6-O-sulfate groups. In the stromal construct model, alterations were seen in fibronectin, similar to those that occur in development and after injury. These changes in fibronectin after injury were accompanied by changes in proteoglycans. Together these findings indicate that acute hypoxic changes alter the physiology of the cornea, and these models will allow us to manipulate the conditions in the extracellular environment in order to study corneal development and trauma.
Collapse
Affiliation(s)
- Albert Lee
- Department of Biochemistry, Boston University School of Medicine, 80 E. Concord St., Boston, MA, 02118, USA.
| | - Dimitrios Karamichos
- Department of Ophthalmology, Schepens Eye Research Institute/Mass. Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Obianamma E Onochie
- Department of Biochemistry, Boston University School of Medicine, 80 E. Concord St., Boston, MA, 02118, USA.
| | - Audrey E K Hutcheon
- Department of Ophthalmology, Schepens Eye Research Institute/Mass. Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Celeste B Rich
- Department of Biochemistry, Boston University School of Medicine, 80 E. Concord St., Boston, MA, 02118, USA.
| | - James D Zieske
- Department of Ophthalmology, Schepens Eye Research Institute/Mass. Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, Boston University School of Medicine, 80 E. Concord St., Boston, MA, 02118, USA.
| |
Collapse
|
4
|
Türker E, Garreis F, Khajavi N, Reinach PS, Joshi P, Brockmann T, Lucius A, Ljubojevic N, Turan E, Cooper D, Schick F, Reinholz R, Pleyer U, Köhrle J, Mergler S. Vascular Endothelial Growth Factor (VEGF) Induced Downstream Responses to Transient Receptor Potential Vanilloid 1 (TRPV1) and 3-Iodothyronamine (3-T 1AM) in Human Corneal Keratocytes. Front Endocrinol (Lausanne) 2018; 9:670. [PMID: 30524369 PMCID: PMC6262029 DOI: 10.3389/fendo.2018.00670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022] Open
Abstract
This study was undertaken to determine if crosstalk among the transient receptor potential (TRP) melastatin 8 (TRPM8), TRP vanilloid 1 (TRPV1), and vascular endothelial growth factor (VEGF) receptor triad modulates VEGF-induced Ca2+ signaling in human corneal keratocytes. Using RT-PCR, qPCR and immunohistochemistry, we determined TRPV1 and TRPM8 gene and protein coexpression in a human corneal keratocyte cell line (HCK) and human corneal cross sections. Fluorescence Ca2+ imaging using both a photomultiplier and a single cell digital imaging system as well as planar patch-clamping measured relative intracellular Ca2+ levels and underlying whole-cell currents. The TRPV1 agonist capsaicin increased both intracellular Ca2+ levels and whole-cell currents, while the antagonist capsazepine (CPZ) inhibited them. VEGF-induced Ca2+ transients and rises in whole-cell currents were suppressed by CPZ, whereas a selective TRPM8 antagonist, AMTB, increased VEGF signaling. In contrast, an endogenous thyroid hormone-derived metabolite 3-Iodothyronamine (3-T1AM) suppressed increases in the VEGF-induced current. The TRPM8 agonist menthol increased the currents, while AMTB suppressed this response. The VEGF-induced increases in Ca2+ influx and their underlying ionic currents stem from crosstalk between VEGFR and TRPV1, which can be impeded by 3-T1AM-induced TRPM8 activation. Such suppression in turn blocks VEGF-induced TRPV1 activation. Therefore, crosstalk between TRPM8 and TRPV1 inhibits VEGFR-induced activation of TRPV1.
Collapse
Affiliation(s)
- Ersal Türker
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fabian Garreis
- Department of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Noushafarin Khajavi
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Walter Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Pooja Joshi
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Brockmann
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Alexander Lucius
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nina Ljubojevic
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elizabeth Turan
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Drew Cooper
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Schick
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rob Reinholz
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Uwe Pleyer
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Stefan Mergler
| |
Collapse
|
5
|
Foster JW, Gouveia RM, Connon CJ. Low-glucose enhances keratocyte-characteristic phenotype from corneal stromal cells in serum-free conditions. Sci Rep 2015; 5:10839. [PMID: 26039975 PMCID: PMC4650697 DOI: 10.1038/srep10839] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/17/2015] [Indexed: 11/24/2022] Open
Abstract
The avascular cornea is a uniquely-isolated organ, with its stroma constituting a nutrient-poor environment. Consequently, the availability of metabolites such as glucose to corneal stromal cells is considerably reduced compared with other tissues, or indeed with media commonly used to culture these cells in vitro. However, the role of glucose in the behaviour of human corneal keratocytes has been overlooked. As such, we sought to investigate the effects of low-glucose formulations on the phenotype of human corneal stromal cells. Cells cultured in low-glucose were able to survive for extended periods when compared to high-glucose, serum-free conditions. Furthermore, low-glucose enhanced their reversal to a keratocyte-characteristic phenotype. Specifically, cells within low-glucose medium assumed dendritic morphologies, with bean-shaped condensed nuclei, absence of alpha-smooth muscle actin or stress fibres, and a corresponding reduction in migratory and contractile activities when compared with high-glucose, serum-free conditions. Moreover, cells within low-glucose uniquely recovered the ability to express a robust keratocyte-characteristic marker, CD34, while still expressing elevated levels of other representative phenotypic markers such as keratocan, lumican, ALDH1A1, and ALDH3A1. These results indicate that low-glucose enhances keratocyte-characteristic phenotype above and beyond established media formulations and thus has important implications for corneal biology in health and disease.
Collapse
Affiliation(s)
| | - Ricardo M. Gouveia
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Che J. Connon
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
6
|
Lee A, Derricks K, Minns M, Ji S, Chi C, Nugent MA, Trinkaus-Randall V. Hypoxia-induced changes in Ca(2+) mobilization and protein phosphorylation implicated in impaired wound healing. Am J Physiol Cell Physiol 2014; 306:C972-85. [PMID: 24671101 DOI: 10.1152/ajpcell.00110.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The process of wound healing must be tightly regulated to achieve successful restoration of injured tissue. Previously, we demonstrated that when corneal epithelium is injured, nucleotides and neuronal factors are released to the extracellular milieu, generating a Ca(2+) wave from the origin of the wound to neighboring cells. In the present study we sought to determine how the communication between epithelial cells in the presence or absence of neuronal wound media is affected by hypoxia. A signal-sorting algorithm was developed to determine the dynamics of Ca(2+) signaling between neuronal and epithelial cells. The cross talk between activated corneal epithelial cells in response to neuronal wound media demonstrated that injury-induced Ca(2+) dynamic patterns were altered in response to decreased O2 levels. These alterations were associated with an overall decrease in ATP and changes in purinergic receptor-mediated Ca(2+) mobilization and localization of N-methyl-d-aspartate receptors. In addition, we used the cornea in an organ culture wound model to examine how hypoxia impedes reepithelialization after injury. There was a change in the recruitment of paxillin to the cell membrane and deposition of fibronectin along the basal lamina, both factors in cell migration. Our results provide evidence that complex Ca(2+)-mediated signaling occurs between sensory neurons and epithelial cells after injury and is critical to wound healing. Information revealed by these studies will contribute to an enhanced understanding of wound repair under compromised conditions and provide insight into ways to effectively stimulate proper epithelial repair.
Collapse
Affiliation(s)
- Albert Lee
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and
| | - Kelsey Derricks
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and
| | - Martin Minns
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and
| | - Sophina Ji
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Cheryl Chi
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew A Nugent
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
7
|
Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2013; 34:64-79. [PMID: 24001398 DOI: 10.1016/j.matbio.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022]
Abstract
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States.
| | - Curtis R Warren
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel A Harrington
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel D Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| |
Collapse
|
8
|
Self-assembled matrix by umbilical cord stem cells. J Funct Biomater 2011; 2:213-29. [PMID: 24956304 PMCID: PMC4030936 DOI: 10.3390/jfb2030213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 01/08/2023] Open
Abstract
Corneal integrity is critical for vision. Corneal wounds frequently heal with scarring that impairs vision. Recently, human umbilical cord mesenchymal stem cells (cord stem cells) have been investigated for tissue engineering and therapy due to their availability and differentiation potential. In this study, we used cord stem cells in a 3-dimensional (3D) stroma-like model to observe extracellular matrix organization, with human corneal fibroblasts acting as a control. For 4 weeks, the cells were stimulated with a stable Vitamin C (VitC) derivative ±TGF-β1. After 4 weeks, the mean thickness of the constructs was ∼30 μm; however, cord stem cell constructs had 50% less cells per unit volume, indicating the formation of a dense matrix. We found minimal change in decorin and lumican mRNA, and a significant increase in perlecan mRNA in the presence of TGF-β1. Keratocan on the other hand decreased with TGF-β1 in both cell lineages. With both cell types, the constructs possessed aligned collagen fibrils and associated glycosaminoglycans. Fibril diameters did not change with TGF-β1 stimulation or cell lineage; however, highly sulfated glycosaminoglycans associated with the collagen fibrils significantly increased with TGF-β1. Overall, we have shown that cord stem cells can secrete their own extracellular matrix and promote the deposition and sulfation of various proteoglycans. Furthermore, these cells are at least comparable to commonly used corneal fibroblasts and present an alternative for the 3D in vitro tissue engineered model.
Collapse
|
9
|
Human antibodies to herpes simplex virus type 1 glycoprotein C are neutralizing and target the heparan sulfate-binding domain. Virology 2010; 400:197-206. [PMID: 20176392 DOI: 10.1016/j.virol.2010.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/24/2009] [Accepted: 01/27/2010] [Indexed: 11/22/2022]
Abstract
Human antibodies specific for glycoprotein C (gC1) of herpes simplex virus type 1 (HSV-1) neutralized the virus infectivity and efficiently inhibited attachment of HSV-1 to human HaCaT keratinocytes and to murine mutant L cells expressing either heparan sulfate or chondroitin sulfate at the cell surface. Similar activities were observed with anti-gC1 monoclonal antibody B1C1. In addition to HaCaT and L cells, B1C1 antibody neutralized HSV-1 infectivity in simian GMK AH1 cells mildly pre-treated with heparinase III. Human anti-gC1 antibodies efficiently competed with the binding of gC1 to B1C1 antibody whose epitope overlaps a part of the attachment domain of gC1. Human anti-gC1 and B1C1 antibodies extended survival time of mice experimentally infected with HSV-1. We conclude that in HaCaT cells and in cell systems showing restricted expression of glycosaminoglycans, human and some monoclonal anti-gC1 antibodies can target the cell-binding domain of this protein and neutralize viral infectivity.
Collapse
|
10
|
Peramo A, Marcelo CL. Bioengineering the Skin–Implant Interface: The Use of Regenerative Therapies in Implanted Devices. Ann Biomed Eng 2010; 38:2013-31. [DOI: 10.1007/s10439-010-9937-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 01/17/2010] [Indexed: 11/25/2022]
|
11
|
Ren R, Hutcheon AEK, Guo XQ, Saeidi N, Melotti SA, Ruberti JW, Zieske JD, Trinkaus-Randall V. Human primary corneal fibroblasts synthesize and deposit proteoglycans in long-term 3-D cultures. Dev Dyn 2008; 237:2705-15. [PMID: 18624285 DOI: 10.1002/dvdy.21606] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our goal was to develop a 3-D multi-cellular construct using primary human corneal fibroblasts cultured on a disorganized collagen substrate in a scaffold-free environment and to use it to determine the regulation of proteoglycans over an extended period of time (11 weeks). Electron micrographs revealed multi-layered constructs with cells present in between alternating parallel and perpendicular arrays of fibrils. Type I collagen increased 2-4-fold. Stromal proteoglycans including lumican, syndecan4, decorin, biglycan, mimecan, and perlecan were expressed. The presence of glycosaminoglycan chains was demonstrated for a subset of the core proteins (lumican, biglycan, and decorin) using lyase digestion. Cuprolinic blue-stained cultures showed that sulfated proteoglycans were present throughout the construct and most prominent in its mid-region. The size of the Cuprolinic-positive filaments resembled those previously reported in a human corneal stroma. Under the current culture conditions, the cells mimic a development or nonfibrotic repair phenotype.
Collapse
Affiliation(s)
- R Ren
- Departments of Biochemistry and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Buczek-Thomas JA, Hsia E, Rich CB, Foster JA, Nugent MA. Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 2008; 105:108-20. [PMID: 18459114 PMCID: PMC2596351 DOI: 10.1002/jcb.21803] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone acetyltransferases (HATs) are a class of enzymes that participate in modulating chromatin structure and gene expression. Altered HAT activity has been implicated in a number of diseases, yet little is known about the regulation of HATs. In this study, we report that glycosaminoglycans (GAGs) are potent inhibitors of p300 and pCAF HAT activities in vitro, with heparin and heparan sulfate proteoglycans (HSPGs) being the most potent inhibitors. The mechanism of inhibition by heparin was investigated. The ability of heparin to inhibit HAT activity was in part dependent upon its size and structure, as small heparin-derived oligosaccharides (>8 sugars) and N-desulfated or O-desulfated heparin showed reduced inhibitory activity. Heparin was shown to bind to pCAF; and enzyme assays indicated that heparin shows the characteristics of a competitive-like inhibitor causing an approximately 50-fold increase in the apparent Km of pCAF for histone H4. HSPGs isolated from corneal and pulmonary fibroblasts inhibited HAT activity with similar effectiveness as heparin. As evidence that endogenous GAGs might be involved in modulating histone acetylation, the direct addition of heparin to pulmonary fibroblasts resulted in an approximately 50% reduction of histone H3 acetylation after 6 h of treatment. In addition, Chinese hamster ovary cells deficient in GAG synthesis showed increased levels of acetylated histone H3 compared to wild-type parent cells. GAGs represent a new class of HAT inhibitors that might participate in modulating cell function by regulating histone acetylation.
Collapse
Affiliation(s)
- Jo Ann Buczek-Thomas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
| | - Edward Hsia
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
| | - Celeste B. Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
| | - Judith A. Foster
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
| | - Matthew A. Nugent
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, 02118
- Department of Biomedical Engineering, Boston University, Boston, MA 02118
| |
Collapse
|
13
|
Stum M, Girard E, Bangratz M, Bernard V, Herbin M, Vignaud A, Ferry A, Davoine CS, Echaniz-Laguna A, René F, Marcel C, Molgó J, Fontaine B, Krejci E, Nicole S. Evidence of a dosage effect and a physiological endplate acetylcholinesterase deficiency in the first mouse models mimicking Schwartz-Jampel syndrome neuromyotonia. Hum Mol Genet 2008; 17:3166-79. [PMID: 18647752 DOI: 10.1093/hmg/ddn213] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Schwartz-Jampel syndrome (SJS) is a recessive neuromyotonia with chondrodysplasia. It results from hypomorphic mutations of the gene encoding perlecan, leading to a decrease in the levels of this heparan sulphate proteoglycan in basement membranes (BMs). It has been suggested that SJS neuromyotonia may result from endplate acetylcholinesterase (AChE) deficiency, but this hypothesis has never been investigated in vivo due to the lack of an animal model for neuromyotonia. We used homologous recombination to generate a knock-in mouse strain with one missense substitution, corresponding to a human familial SJS mutation (p.C1532Y), in the perlecan gene. We derived two lines, one with the p.C1532Y substitution alone and one with p.C1532Y and the selectable marker Neo, to down-regulate perlecan gene activity and to test for a dosage effect of perlecan in mammals. These two lines mimicked SJS neuromyotonia with spontaneous activity on electromyogramm (EMG). An inverse correlation between disease severity and perlecan secretion in the BMs was observed at the macroscopic and microscopic levels, consistent with a dosage effect. Endplate AChE levels were low in both lines, due to synaptic perlecan deficiency rather than major myofibre or neuromuscular junction disorganization. Studies of muscle contractile properties showed muscle fatigability at low frequencies of nerve stimulation and suggested that partial endplate AChE deficiency might contribute to SJS muscle stiffness by potentiating muscle force. However, physiological endplate AChE deficiency was not associated with spontaneous activity at rest on EMG in the diaphragm, suggesting that additional changes are required to generate such activity characteristic of SJS.
Collapse
|
14
|
Ermakova II, Mokrushin AL, Chertkova TA, Sakuta GA, Romaniouk AV, Morozov VI. Isolation and characterization of proteoglycans synthesized by rat myoblasts L6J1 in culture. BIOCHEMISTRY (MOSCOW) 2007; 72:452-8. [PMID: 17511611 DOI: 10.1134/s000629790704013x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteoglycans synthesized by rat myoblasts L6J1 in culture were isolated using sorbent Q-Sepharose from culture medium, extracellular matrix (ECM), and cells. Elution of the sorbed material in a NaCl gradient separated proteoglycans from the bulk of proteins eluted at low concentration of the salt. Four fractions (fractions I-IV) were obtained for each component of the cell culture, including two proteoglycan fractions for the ECM and culture medium and one fraction for the myoblasts. Proteoglycans of the culture medium were virtually completely represented by proteoglycans of fetal calf serum. With enzymes chondroitinase ABC and heparinase III chondroitin/dermatan sulfate proteoglycans were shown to prevail in all components of the myoblast culture. The core proteins of proteoglycans were characterized by electrophoresis.
Collapse
Affiliation(s)
- I I Ermakova
- Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, 194064 St. Petersburg, Russia.
| | | | | | | | | | | |
Collapse
|
15
|
Inoue M, Kawakami M, Tatsumi K, Manabe T, Makinodan M, Matsuyoshi H, Kirita T, Wanaka A. Expression and regulation of the LIM homeodomain gene L3/Lhx8 suggests a role in upper lip development of the chick embryo. ACTA ACUST UNITED AC 2006; 211:247-53. [PMID: 16456677 DOI: 10.1007/s00429-006-0078-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2006] [Indexed: 10/25/2022]
Abstract
LIM-homeodomain (Lhx) genes constitute a gene family that plays critical roles in the control of pattern formation and cell type specification. We have identified a chicken L3/Lhx8 gene, which was widely expressed in the craniofacial region. Whole-mount in situ hybridization showed that L3/Lhx8 mRNA was expressed from stage 15--31 HH in overlapping domains of the maxillary process. Frozen sections revealed these signals in the mesenchyme underneath the epithelium. To determine whether the expression of L3/Lhx8 in the maxillary primordia required signals from the overlying oral epithelium, maxillary processes of stage 23 HH chick embryos were transplanted into the limb bud, in which the mesenchyme was grown in the presence or absence of oral epithelium. The maxillary mesenchyme with epithelium showed significant levels of L3/Lhx8 gene expression. In contrast, no expression of L3/Lhx8 was detected in the epithelium-free mesenchyme. To further explore signaling molecule(s) responsible for Lhx induction, a bead, soaked in either Fgf-8b or TGF-beta3, was implanted into an epithelium-free mesenchymal graft. Both TGF-beta3 and Fgf-8b beads induced expressions of L3/Lhx8 in epithelium-free mesenchymal grafts. Our data suggest that the L3/Lhx8 gene contributes to epithelial mesenchymal interaction in facial morphogenesis and that Fgf-8b and TGF-beta3 were, at least in part, responsible for the Lhx expression in the maxillary process.
Collapse
Affiliation(s)
- Masahide Inoue
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 634-8522, Kashihara Nara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Trinkaus-Randall V, Walsh MT, Steeves S, Monis G, Connors LH, Skinner M. Cellular response of cardiac fibroblasts to amyloidogenic light chains. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:197-208. [PMID: 15632012 PMCID: PMC1602293 DOI: 10.1016/s0002-9440(10)62244-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Amyloidoses are a group of disorders characterized by abnormal folding of proteins that impair organ function. We investigated the cellular response of primary cardiac fibroblasts to amyloidogenic light chains and determined the corresponding change in proteoglycan expression and localization. The cellular response to 11 urinary immunoglobulin light chains of kappa1, lambda6, and lambda 3 subtypes was evaluated. The localization of the light chains was monitored by conjugating them to Oregon Green 488 and performing live cell confocal microscopy. Sulfation of the proteoglycans was determined after elution over Q1-columns with a single-step salt gradient (1.5 mol/L NaCl) via dimethylmethylene blue. Light chains were detected inside cells within 4 hours and demonstrated perinuclear localization. Over 80% of the cells showed intracellular localization of the amyloid light chains. The light chains induced sulfation of the secreted glycosaminoglycans, but the cell fraction possessed only minimal sulfation. Furthermore, the light chains caused a translocation of heparan sulfate proteoglycan to the nucleus. The conformation and thermal stability of light chains was altered when they were incubated in the presence of heparan sulfate and destabilization of the amyloid light chains was detected. These studies indicate that internalization of the light chains mediates the expression and localization of heparan sulfate proteoglycans.
Collapse
Affiliation(s)
- Vickery Trinkaus-Randall
- Department of Biochemistry, Boston University School of Medicine, L904, 80 E. Concord Street, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Klenkler B, Sheardown H. Growth factors in the anterior segment: role in tissue maintenance, wound healing and ocular pathology. Exp Eye Res 2004; 79:677-88. [PMID: 15500826 DOI: 10.1016/j.exer.2004.07.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 07/16/2004] [Indexed: 01/20/2023]
Abstract
A number of growth factors and their associated receptors, including epidermal growth factor, transforming growth factor-beta, keratinocyte growth factor, hepatocyte growth factor, fibroblast growth factor and platelet-derived growth factor have been detected in the anterior segment of the eye. On binding to cellular receptors, these factors activate signalling cascades, which regulate functions including mitosis, differentiation, motility and apoptosis. Production of growth factors by corneal cells and their presence in the tear fluid and aqueous humour is essential for maintenance and renewal of normal tissue in the anterior eye and the prevention of undesirable immune or angiogenic reactions. Growth factors also play a vital role in corneal wound healing, mediating the proliferation of epithelial and stromal tissue and affecting the remodelling of the extracellular matrix (ECM). These functions depend on a complex interplay between growth factors of different types, the ECM, and regulatory mechanisms of the affected cells. Imbalances may lead to deficient wound healing and various ocular pathologies, including edema, neovascularization and glaucoma. Growth factors may be targeted in therapeutic ophthalmic applications, through exogenous application or selective inhibition, and may be used to elicit specific cellular responses to ophthalmic materials. A thorough understanding of the mechanism and function of growth factors and their actions in the complex environment of the anterior eye is required for these purposes. Growth factors, their function and mechanisms of action as well as the interplay between different growth factors based on recent in vitro and in vivo studies are presented.
Collapse
Affiliation(s)
- Bettina Klenkler
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ont., Canada L8S 4L7
| | | |
Collapse
|
18
|
Fannon M, Forsten-Williams K, Dowd CJ, Freedman DA, Folkman J, Nugent MA. Binding inhibition of angiogenic factors by heparan sulfate proteoglycans in aqueous humor: potential mechanism for maintenance of an avascular environment. FASEB J 2003; 17:902-4. [PMID: 12626427 DOI: 10.1096/fj.02-0935fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aqueous humor is a clear fluid, primarily a blood filtrate, which circulates through the anterior chamber of the eye and bathes the cornea. We explored the possibility that components in the aqueous humor play a direct part in maintaining the avascular environment of the cornea. We report here that heparan sulfate proteoglycan (HSPG) was found in bovine aqueous humor and that it directly inhibits binding of basic fibroblast growth factor and vascular endothelial growth factor to cell-surface heparan sulfate. We demonstrate that this holds true for all heparin binding proteins tested but not for epidermal growth factor, which does not bind heparin. Furthermore, we show, with mathematical modeling, that the concentration of HSPG in aqueous humor (approximately 4 microg/ml), when combined with the clearance of aqueous humor from the eye due to circulation, is sufficient to block the binding of heparin binding growth factors to corneal endothelium. This mechanism suggests a physiological process to control bioavailability of angiogenic growth factors in the cornea.
Collapse
Affiliation(s)
- Michael Fannon
- Department of Surgery, The Children's Hospital, 300 Longwood Ave., Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Llorente-Cortés V, Otero-Viñas M, Badimon L. Differential role of heparan sulfate proteoglycans on aggregated LDL uptake in human vascular smooth muscle cells and mouse embryonic fibroblasts. Arterioscler Thromb Vasc Biol 2002; 22:1905-11. [PMID: 12426223 DOI: 10.1161/01.atv.0000035391.46201.9a] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Low density lipoprotein (LDL) receptor-related protein (LRP) binds and internalizes aggregated LDL (agLDL) in human vascular smooth muscle cells (VSMCs). To analyze the contribution of proteoglycans (PGs) to agLDL uptake in human VSMCs, in wild-type mouse embryonic fibroblasts (MEF line), and in LRP-deficient mouse embryonic fibroblasts (PEA13 line). METHODS AND RESULTS PGs in the medium and cellular and extracellular matrix have been isolated by metabolic radiolabeling with [35S]Na2SO4 and characterized by selective digestion with heparinase I and III (4 U/mL each) and chondroitinase ABC (2 U/mL). To examine the contribution of PGs and LRPs to agLDL internalization, nonexpressing and LRP-expressing cells, treated or not with polysaccharidase, were incubated with agLDL (25, 50, and 100 micro g/mL) for 18 hours. In human VSMCs, agLDL was unable to induce cholesteryl ester (CE) accumulation in antisense LRP-oligodeoxynucleotide-treated cells, and heparan sulfate (HS)-PG depletion leads to a reduction of the CE accumulation. In mouse fibroblasts, PEA13 compared with MEF showed lower, but still considerable, CE accumulation, and HS-PG depletion almost completely inhibited CE accumulation. CONCLUSIONS In MEF, HS-PGs can function alone as receptors that bind and internalize agLDL in the absence of LRP, but in human VSMCs, although HS-PGs facilitate agLDL binding to the cells, LRP is essential for agLDL internalization.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cholesterol Esters/metabolism
- Coronary Vessels/cytology
- Embryo, Mammalian/cytology
- Extracellular Matrix/chemistry
- Extracellular Matrix/ultrastructure
- Fibroblasts/chemistry
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Heparan Sulfate Proteoglycans/chemistry
- Heparan Sulfate Proteoglycans/physiology
- Humans
- LDL-Receptor Related Proteins/physiology
- Lipoproteins, LDL/chemistry
- Lipoproteins, LDL/metabolism
- Mice
- Microscopy, Electron
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Proteoglycans/chemistry
- Subcellular Fractions/chemistry
- Subcellular Fractions/ultrastructure
Collapse
|
20
|
Trybala E, Roth A, Johansson M, Liljeqvist JA, Rekabdar E, Larm O, Bergström T. Glycosaminoglycan-binding ability is a feature of wild-type strains of herpes simplex virus type 1. Virology 2002; 302:413-9. [PMID: 12441085 DOI: 10.1006/viro.2002.1639] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adaptation of some viruses to replication in cultured cells selects variants that due to alterations in the viral attachment proteins convert to using heparan sulfate (HS) as initial receptor. We report that the nucleotide sequence of herpes simplex virus type 1 (HSV-1) glycoprotein C (gC), a principal attachment component of the virus, remained unchanged during adaptation of wild-type strains to cultured cells. Likewise, amino acid residues critical for binding of gC to HS were conserved in viral strains that replicated in vivo in different human tissues. Moreover wild-type HSV-1 strains derived directly from clinical specimens were, similar to their cell culture propagated progeny viruses and common laboratory strains, sensitive to heparin and demonstrated impairment in their ability to infect HS/chondroitin sulfate deficient cells. These results demonstrate that the HS-binding ability is a feature of wild-type strains of HSV-1.
Collapse
Affiliation(s)
- Edward Trybala
- Department of Clinical Virology, Göteborg University, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Abstract
Glycosaminoglycans constitute a considerable fraction of the glycoconjugates found on cellular membranes and in the extracellular matrix of virtually all mammalian tissues. Their ability to bind and alter protein-protein interactions or enzymatic activity has identified them as important determinants of cellular responsiveness in development, homeostasis, and disease. Although heparan sulfate tends to be emphasized as the most biologically active glycosaminoglycan, dermatan sulfate is a particularly attractive subject for further study because it is expressed in many mammalian tissues and it is the predominant glycan present in skin. Dermatan and dermatan sulfate proteoglycans have also been implicated in cardiovascular disease, tumorigenesis, infection, wound repair, and fibrosis. Growing evidence suggests that this glycosaminoglycan, like the better studied heparin and heparan sulfate, is an important cofactor in a variety of cell behaviors.
Collapse
Affiliation(s)
- Janet M Trowbridge
- Division of Dermatology, Department of Medicine, University of California San Diego and VA San Diego Healthcare Center, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | | |
Collapse
|
23
|
Song QH, Klepeis VE, Nugent MA, Trinkaus-Randall V. TGF-beta1 regulates TGF-beta1 and FGF-2 mRNA expression during fibroblast wound healing. Mol Pathol 2002; 55:164-76. [PMID: 12032227 PMCID: PMC1187169 DOI: 10.1136/mp.55.3.164] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS To evaluate the expression of transforming growth factor beta1 (TGF-beta1) and fibroblast growth factor 2 (FGF-2) mRNA in stromal cells in response to injury in the presence of either TGF-beta1 or FGF-2. It has been shown previously that heparan sulfate proteoglycans and FGF-2 are present transiently during wound repair in vivo and that an increase in TGF-beta1 mRNA is detected rapidly after injury. METHODS Primary corneal fibroblasts were cultured to confluency, serum starved, and linear wound(s) were made in medium containing TGF-beta1 or FGF-2. TGF-beta1 and FGF-2 mRNA expression were evaluated using both northern blot analysis and in situ hybridisation. Both dose dependent and time course experiments were performed. Whole eye organ culture experiments were also carried out and growth factor expression was assessed. RESULTS Injury and exogenous TGF-beta1 increased TGF-beta1 mRNA values. The increase in expression of FGF-2 mRNA was not detected until wound closure. In contrast, FGF-2 inhibited the expression of TGF-beta1. TGF-beta1 increased TGF-beta1 mRNA stability but did not alter that of FGF-2. Migration assay data demonstrated that unstimulated stromal cells could be activated to migrate to specific growth factors. CONCLUSIONS TGF-beta1 specifically enhances cellular responsiveness, as shown by increased stability after injury and the acquisition of a migratory phenotype. These data suggest that there is an integral relation during wound repair between TGF-beta1 and FGF-2.
Collapse
Affiliation(s)
- Q H Song
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
24
|
Punzel M, Gupta P, Verfaillie CM. The microenvironment of AFT024 cells maintains primitive human hematopoiesis by counteracting contact mediated inhibition of proliferation. CELL COMMUNICATION & ADHESION 2002; 9:149-59. [PMID: 12521135 DOI: 10.1080/15419060214521] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have previously shown that maintenance of primitive human hematopoietic stem cells is poor when cultured in contact with marrow stromal feeders. However, when separated from stromal contact, human progenitors can be maintained because adhesion mediated proliferation inhibition does not occur. In this study we demonstrate how the murine fetal liver cell line, AFT024, supports primitive human hematopoiesis better in contact cultures compared to primary feeders. We evaluated if better progenitor maintenance in contact with AFT024 cells can be explained by decreased adhesion itself or decreased adhesion mediated inhibition of proliferation. We show that primitive human hematopoietic cells adhered equally well to AFT024 and primary feeders, such as M2-10B4. Further, contact with metabolically inactive AFT024 cells prevented cell cycle progression and decreased maintenance of primitive progenitors to the same extent as contact with M2-10B4 feeders. However, contact with viable AFT024 feeders did not inhibit proliferation, suggesting that AFT024-factors counteract contact mediated inhibition of proliferation. Cytokine production by M2-10B4 and AFT024 cells was similar. Large-size O-sulfated heparan sulfate glycosaminoglycans, known to be important for hematopoietic support, were found only in AFT024-matrix. We hypothesize that these factors may explain, in part, our observations. Finally, we show that more than 100% of primitive myeloid progenitors could be maintained for at least five weeks when cultured in contact with AFT024 feeders in the presence of Interleukin-3 and Macrophage Inflammatory Protein-1alpha. In conclusion, AFT024 cells produce factor(s), that counteract contact induced growth inhibition of primitive human hematopoietic progenitors, leading to expansion of these cells in contact with the microenvironment.
Collapse
Affiliation(s)
- Michael Punzel
- Department of Medicine, Division of Hematology and Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| | | | | |
Collapse
|
25
|
Klepeis VE, Cornell-Bell A, Trinkaus-Randall V. Growth factors but not gap junctions play a role in injury-induced Ca2+ waves in epithelial cells. J Cell Sci 2001; 114:4185-95. [PMID: 11739651 DOI: 10.1242/jcs.114.23.4185] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper characterizes the early responses of epithelial cells to injury. Ca2+ is an important early messenger that transiently increases in the cytoplasm of cells in response to external stimuli. Its elevation leads to the regulation of signaling pathways responsible for the downstream events important for wound repair, such as cell migration and proliferation. Live cell imaging in combination with confocal laser scanning microscopy of fluo-3 AM loaded cells was performed. We found that mechanical injury in a confluent region of cells creates an elevation in Ca2+ that is immediately initiated at the wound edge and travels as a wave to neighboring cells, with [Ca2+]i returning to background levels within two minutes. Addition of epidermal growth factor (EGF), but not platelet-derived growth factor-BB, resulted in increased [Ca2+]i, and EGF specifically enhanced the amplitude and duration of the injury-induced Ca2+ wave. Propagation of the Ca2+ wave was dependent on intracellular Ca2+ stores, as was demonstrated using both thapsigargin and Ca2+ chelators (EGTA and BAPTA/AM). Injury-induced Ca2+ waves were not mediated via gap junctions, as the gap-junction inhibitors 1-heptanol and 18α-glycyrrhetinic acid did not alter wave propagation, nor did the cells recover in photobleaching experiments. Additional studies also demonstrated that the wave could propagate across an acellular region. The propagation of the injury-induced Ca2+ wave occurs via diffusion of an extracellular mediator, most probably via a nucleotide such as ATP or UTP, that is released upon cell damage.
Movies available on-line
Collapse
Affiliation(s)
- V E Klepeis
- Department of Pathology, Cognetix, Inc., Ivoryton, CT 06442, USA
| | | | | |
Collapse
|
26
|
Abstract
Variations in certain mesenchymal tissue healing processes are not widely recognized. The current review summarizes key differences in healing mechanisms and healing potential after injury to soft tissues having different healing outcomes.
Collapse
Affiliation(s)
- W H Akeson
- Department of Orthopaedics, UC San Diego and VA Medical Center, CA 92161, USA
| | | | | | | |
Collapse
|
27
|
Fiore MM. Cellular specificity for the activation of fibroblast growth factor-2 by heparan sulfate proteoglycan. Biochem Biophys Res Commun 2001; 284:384-8. [PMID: 11394890 DOI: 10.1006/bbrc.2001.4978] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) promote cellular proliferation through interaction with FGF-2. To examine the role of cellular specificity of HSPG in FGF-2 function, a recombinant soluble isoform of CD44 (rsCD44v3,8-10) was expressed in various cell types; 293 T fibroblasts, the epithelial carcinoma cell lines A431 and HOTZ, the myelomonocytic cell line THP-1, and the Ig-secreting B lymphoblast IM9. The capacity of the recombinant HSPGs expressed in these cell lines to bind and present FGF-2 to the high-affinity receptor FGFR1 was addressed. This novel approach showed a minor difference in the binding and in the FGF-2 stimulating activity of rsCD44v3,8-10 HSPGs from fibroblasts and epithelial cells. However, FGF-2 binding of rsCD44v3,8-10 from IM9 and THP-1 cells was significantly lower, and stimulation of FGF-2 by rsCD44v3,8-10 from these two cell types could not be detected. We tested the possibility that the differences among cell types were related to the functional profile of endogenous HSPGs. The initial survey of a wider panel of cell types revealed high levels of HSPGs synthesis on the surface of 293 T, epithelial and IM9 cells, but low levels on the surface of other cells of hematopoietic origin. Surprisingly, native HSPGs from fibroblasts and epithelial cell lines promoted FGF-2 biological activity to vastly different extents, and cell surface HSPGs from IM9 cells induced an FGF-2 response. Altogether, the results suggested a role for cell-specific HS modification in addition to synthesis as regulatory mechanisms for the cellular specificity of proteoglycan function.
Collapse
Affiliation(s)
- M M Fiore
- Institute of Molecular Medicine, MRC Human Immunology Unit, Oxford, OX3 9DU, England
| |
Collapse
|
28
|
Richardson TP, Trinkaus-Randall V, Nugent MA. Regulation of heparan sulfate proteoglycan nuclear localization by fibronectin. J Cell Sci 2001; 114:1613-23. [PMID: 11309193 DOI: 10.1242/jcs.114.9.1613] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPG) regulate multiple cellular processes and mediate the cellular uptake of numerous molecules. While heparan sulphate glycosaminoglycan chains are known to modulate receptor binding of several heparin-binding proteins, here we show that distinct extracellular matrices direct HSPG to the nucleus. We analyzed HSPG localization in primary corneal fibroblasts, cultured on fibronectin or collagen type I matrices, using confocal laser scanning microscopy and cell fractionation. Image analysis revealed that the nuclear localization of HSPG core proteins was greater when cells were cultured on fibronectin versus collagen. Matrices containing the heparin-binding domain of fibronectin, but not the integrin-activating domain, demonstrated increased nuclear staining of core proteins. Furthermore, activation of protein kinase C with phorbol 12-myristate 13-acetate inhibited nuclear targeting of HSPG in cells on fibronectin, whereas inhibition of protein kinase C with Ro-31-8220 greatly enhanced nuclear localization of HSPG in cells on both collagen and fibronectin. We propose a matrix-dependent mechanism for nuclear localization of cell surface HSPG involving protein kinase C-mediated signaling. Nuclear localization of HSPG might play important roles in regulating nuclear function.
Collapse
Affiliation(s)
- T P Richardson
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
29
|
Fuki IV, Iozzo RV, Williams KJ. Perlecan heparan sulfate proteoglycan: a novel receptor that mediates a distinct pathway for ligand catabolism. J Biol Chem 2000; 275:25742-50. [PMID: 10818109 DOI: 10.1074/jbc.m909173199] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface heparan sulfate proteoglycans (HSPGs) participate in the catabolism of many physiologically important ligands. We previously reported that syndecan HSPGs directly mediate endocytosis, independent of coated pits. We now studied perlecan, a major cell surface HSPG genetically distinct from syndecans. Cells expressing perlecan but no other proteoglycans bound, internalized, and degraded atherogenic lipoproteins enriched in lipoprotein lipase. Binding was blocked by heparitinase, and degradation by chloroquine. Antibodies against beta(1) integrins reduced initial ligand binding, consistent with their roles as cell surface attachment sites for perlecan. By several criteria, catabolism via perlecan was distinct from either coated pits or the syndecan pathway. The kinetics of internalization (t(12) = 6 h) and degradation (t(12) approximately 18 h) were remarkably slow, unlike the other pathways. Blockade of the low density lipoprotein receptor-related protein did not slow perlecan-dependent internalization. Internalization via perlecan was inhibited by genistein but unaffected by cytochalasin D, a pattern distinct from coated pits or syndecan-mediated endocytosis. Finally, we examined cooperation between perlecan and low density lipoprotein receptors and found limited synergy. Our results demonstrate that perlecan mediates internalization and lysosomal delivery that is kinetically and biochemically distinct from other known uptake pathways and is consistent with a very slow component of HSPG-dependent ligand processing found in vitro and in vivo.
Collapse
Affiliation(s)
- I V Fuki
- Dorrance H. Hamilton Research Laboratories, Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Jefferson Medical College, THomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
30
|
Denholm EM, Cauchon E, Poulin C, Silver PJ. Inhibition of human dermal fibroblast proliferation by removal of dermatan sulfate. Eur J Pharmacol 2000; 400:145-53. [PMID: 10988328 DOI: 10.1016/s0014-2999(00)00381-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the current study, a glycosaminoglycan lyase, chondroitinase B, was used to study the role of dermatan sulfate proteoglycans on human dermal fibroblast proliferation. Pretreatment with chondroitinase B significantly decreased fibroblast proliferative responses to serum (20% to 55%). In contrast, heparinase III and chondroitinase AC were less effective in inhibiting fibroblast proliferation to serum. Analysis of glycosaminoglycans on chondroitinase B-treated fibroblasts confirmed that dermatan sulfate was removed from fibroblasts by this enzyme. Chondroitinase B treatment also decreased proliferation to basic fibroblast growth factor (bFGF) by 20% and reduced receptor binding by 25%. Heparinase III inhibited bFGF binding by 73%, but decreased proliferation to bFGF by only 21%. Chondroitinase AC had no effect on bFGF proliferation or binding. These data suggest that dermatan sulfate proteoglycans play a significant role in the control of human dermal fibroblast proliferation.
Collapse
Affiliation(s)
- E M Denholm
- Department of Cellular Biology, IBEX Pharmaceuticals, Inc., 5485 Pare, H4P 1P7, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
31
|
Song QH, Singh RP, Richardson TP, Nugent MA, Trinkaus-Randall V. Transforming growth factor-beta1 expression in cultured corneal fibroblasts in response to injury. J Cell Biochem 2000; 77:186-99. [PMID: 10723086 DOI: 10.1002/(sici)1097-4644(20000501)77:2<186::aid-jcb3>3.0.co;2-m] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanisms underlying TGF-beta regulation in response to injury are not fully understood. We have developed an in vitro wound model to evaluate the expression and localization of transforming growth factor-beta1 in rabbit corneal fibroblasts in response to injury. Experiments were conducted in the presence or absence of serum so that the effect of the injury could be distinguished from exogenous wound mediators. Cultures were wounded and evaluations conducted over a number of time points. Expression of TGF-beta1 RNA was determined using Northern blot analysis and in situ hybridization, while the TGF-beta receptors were identified by affinity cross-linking. Injury increased the expression of TGF-beta1 mRNA in cells at the wound edge after 30 min; this response was amplified by the addition of serum. TGF-beta1 mRNA expression was observed in a number of cells distal from the wound. After wound closure, TGF-beta1 mRNA was negligible and resembled unwounded cultures. The half-life of TGF-beta1 mRNA was two times greater in the wounded cultures, indicating that the injury itself maintained the expression, while cell migration was present. Analogous to these findings, we found that binding of TGF-beta to its receptors was maximal at the wound edge, decreasing with time and distance from the wound. These results indicate that injury increases the level of expression of TGF-beta1 mRNA and maintains a higher level of receptor binding during events in wound repair and that these might facilitate the migratory and synthetic response of stromal fibroblasts.
Collapse
Affiliation(s)
- Q H Song
- Departments of Ophthalmology and Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
32
|
Dunlevy JR, Beales MP, Berryhill BL, Cornuet PK, Hassell JR. Expression of the keratan sulfate proteoglycans lumican, keratocan and osteoglycin/mimecan during chick corneal development. Exp Eye Res 2000; 70:349-62. [PMID: 10712821 DOI: 10.1006/exer.1999.0789] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The corneal proteoglycans belong to the Leu-rich proteoglycan (LRP) gene family and contain chondroitin/dermatan (CS/DS) or keratan sulfate (KS) chains. These proteoglycans play a critical role in generating and maintaining a transparent matrix within the corneal stroma. Decorin which has CS/DS chains and lumican which has KS chains, were first to be identified in the cornea. Two other corneal KS proteoglycans (KSPGs), keratocan and osteoglycin/mimecan were recently identified in bovine corneas. We cloned and sequenced chick osteoglycin/mimecan and found it to contain a stretch of 60 amino acids that showed no identity to the presumed mammalian homolog. The 177 base pair DNA coding for this unique sequence shows 47% identity to an 189 base pair sequence between exons 4 and 5 of the bovine osteoglycin/mimecan gene. This indicates that this cDNA represents an alternatively spliced form of osteoglycin/mimecan containing a unique N-terminal sequence. The expression of each of the three corneal KSPGs in the developing and mature chick cornea was investigated by competitive PCR and immuno-biochemical analysis of corneal extracts. Competitive PCR was used to determine the message levels for chick lumican, keratocan and osteoglycin in embryonic day 9, 12, 15, 18 and adult corneas. Results showed that lumican mRNA fluctuated during development but remained at a relatively high level while keratocan and osteoglycin message levels declined steadily from day 9 to adult. Additionally, lumican mRNA was present at higher levels, during all stages of corneal development, than keratocan and at much higher levels than osteoglycin. Antibodies shown to be specific for each KSPG were used to characterize proteoglycans isolated from embryonic and adult chick corneas. KSPGs from embryonic corneas eluted 1-2 fractions earlier on Q-Sepharose than KSPG from adult corneas. Additionally, Western blot analysis showed that embryonic KSPGs were more keratanase-resistant, endo-beta-galactosidase sensitive than adult KSPGs. The results of this study indicate an alteration in sulfation or the fine structure of the glycosaminoglycan chains occurs during corneal maturation for the 3 KSPGs.
Collapse
Affiliation(s)
- J R Dunlevy
- Shriners Hospitals for Children-Tampa, College of Medicine, University of South Florida, 12502 North Pine Drive, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
33
|
Paka L, Goldberg IJ, Obunike JC, Choi SY, Saxena U, Goldberg ID, Pillarisetti S. Perlecan mediates the antiproliferative effect of apolipoprotein E on smooth muscle cells. An underlying mechanism for the modulation of smooth muscle cell growth? J Biol Chem 1999; 274:36403-8. [PMID: 10593935 DOI: 10.1074/jbc.274.51.36403] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein E (apoE) is known to inhibit cell proliferation; however, the mechanism of this inhibition is not clear. We recently showed that apoE stimulates endothelial production of heparan sulfate (HS) enriched in heparin-like sequences. Because heparin and HS are potent inhibitors of smooth muscle cell (SMC) proliferation, in this study we determined apoE effects on SMC HS production and cell growth. In confluent SMCs, apoE (10 microg/ml) increased (35)SO(4) incorporation into PG in media by 25-30%. The increase in the medium was exclusively due to an increase in HSPGs (2.2-fold), and apoE did not alter chondroitin and dermatan sulfate proteoglycans. In proliferating SMCs, apoE inhibited [(3)H]thymidine incorporation into DNA by 50%; however, despite decreasing cell number, apoE increased the ratio of (35)SO(4) to [(3)H]thymidine from 2 to 3.6, suggesting increased HS per cell. Purified HSPGs from apoE-stimulated cells inhibited cell proliferation in the absence of apoE. ApoE did not inhibit proliferation of endothelial cells, which are resistant to heparin inhibition. Analysis of the conditioned medium from apoE-stimulated cells revealed that the HSPG increase was in perlecan and that apoE also stimulated perlecan mRNA expression by >2-fold. The ability of apoE isoforms to inhibit cell proliferation correlated with their ability to stimulate perlecan expression. An anti-perlecan antibody completely abrogated the antiproliferative effect of apoE. Thus, these data show that perlecan is a potent inhibitor of SMC proliferation and is required to mediate the antiproliferative effect of apoE. Because other growth modulators also regulate perlecan expression, this may be a key pathway in the regulation of SMC growth.
Collapse
Affiliation(s)
- L Paka
- Department of Radiation Oncology, North Shore-Long Island Jewish Health System, Manhasset, New York 11030, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Transforming growth factor-beta (TGF-beta) isoforms are multifunctional cytokines that play a central role in wound healing and in tissue repair. TGF-beta is found in all tissues, but is particularly abundant in bone, lung, kidney and placental tissue. TGF-beta is produced by many but not all parenchymal cell types, and is also produced or released by infiltrating cells such as lymphocytes, monocytes/macrophages, and platelets. Following wounding or inflammation, all these cells are potential sources of TGF-beta. In general, the release and activation of TGF-beta stimulates the production of various extracellular matrix proteins and inhibits the degradation of these matrix proteins, although exceptions to these principles abound. These actions of TGF-beta contribute to tissue repair, which under ideal circumstances leads to the restoration of normal tissue architecture and may involve a component of tissue fibrosis. In many diseases, excessive TGF-beta contributes to a pathologic excess of tissue fibrosis that compromises normal organ function, a topic that has been the subject of numerous reviews [1-3]. In the following chapter, we will discuss the role of TGF-beta in tissue fibrosis, with particular emphasis on renal fibrosis.
Collapse
Affiliation(s)
- M H Branton
- Kidney Disease Section, Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1268, USA
| | | |
Collapse
|
35
|
Richardson TP, Trinkaus-Randall V, Nugent MA. Regulation of basic fibroblast growth factor binding and activity by cell density and heparan sulfate. J Biol Chem 1999; 274:13534-40. [PMID: 10224122 DOI: 10.1074/jbc.274.19.13534] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of cell density in modulating basic fibroblast growth factor binding and activity was investigated. A primary corneal stromal fibroblast cell culture system was used, since these cells do not constitutively express heparan sulfate proteoglycans in vivo except after injury. A 3-5-fold reduction in bFGF binding per cell was observed as cell density increased from 1000 to 35,000 cells/cm2. The cell density-dependent change in bFGF binding was not the result of altered FGFR expression as determined by equilibrium binding experiments and by immunoblot analysis. However, bFGF-cell surface receptor binding affinities were measured to be 10-20-fold higher at low cell densities than at intermediate and high cell density. bFGF-induced cell proliferation was also cell density-dependent, with maximal stimulation of proliferation 190-280% greater at intermediate densities (15,000 cells/cm2) than at other cell densities. This effect was specific to bFGF as serum, epidermal growth factor, and transforming growth factor-beta did not exhibit the same density-dependent profile. Further, heparan sulfate proteoglycans and, specifically, syndecan-4 were implicated as the modulator of bFGF binding and activity. Pretreatment of cell cultures with heparinase resulted in reduced bFGF binding to the cells and abrogated bFGF induced proliferation. These data suggest a mechanism by which cell density regulates heparan sulfate proteoglycan expression and modulates the cellular response to bFGF. Modulation of heparan sulfate proteoglycan expression might be an important aspect of the regulation of stromal cell migration and proliferation during wound healing.
Collapse
Affiliation(s)
- T P Richardson
- Departments of Biochemistry and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|