1
|
Chronic activation of Mas-related gene receptors (Mrg) reduces the potency of morphine-induced analgesia via PKC pathway in naive rats. Brain Res 2019; 1722:146363. [PMID: 31394092 DOI: 10.1016/j.brainres.2019.146363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/09/2019] [Accepted: 08/03/2019] [Indexed: 01/27/2023]
Abstract
Mas oncogene-related gene receptors (Mrg) are uniquely distributed in small and medium cells of trigeminal and dorsal root ganglia (DRG). The physiological and pharmacological properties of Mrg are unknown. We have shown that intermittent activation of MrgC prevents and reverses morphine tolerance. Now we observed that intrathecal (i.t.) administration of the MrgC agonist bovine adrenal medulla 8-22 (BAM8-22, 3 nmol) for 3 and 6 days reduced the potency of morphine analgesia by 1.5 and 3.5 folds, respectively. Daily administration of BAM8-22 for 6 days also significantly decreased the tail flick latency. The administration of another MrgC agonist (Tyr6)-γ2-MSH-6-12 (MSH, 3 nmol) reduced morphine potency and the reduction was abolished following the co-administration of the protein kinase C (PKC) inhibitor chelerythrine chloride (CLT, 3 nmol). The chronic treatment with BAM8-22 or MSH increased the expression of PKC-gamma (PKCγ) in the cell membrane of spinal dorsal horn neurons and PKC-epsilon (PKCε) in the cell membrane and cytosol of DRG neurons. Moreover, the BAM8-22 treatment induced an increase in the expression of calcitonin gene-related peptide (CGRP) and neuronal nitric oxide synthase (nNOS) in small and medium cells in DRG. All of these responses were not seen when BAM8-22 or MSH was co-administered with the PKC inhibitor CLT (3 nmol) or GF-109203X (10 nmol). The present study suggested that the chronic activation of MrgC upregulated expressions of pronociceptive mediators via PKC signaling pathway leading to the suppression of antinociceptive property of morphine. These effects are opposite to those occurred when MrgC is activated acutely or moderately.
Collapse
|
2
|
Chao PK, Chang HF, Chang WT, Yeh TK, Ou LC, Chuang JY, Tsu-An Hsu J, Tao PL, Loh HH, Shih C, Ueng SH, Yeh SH. BPR1M97, a dual mu opioid receptor/nociceptin-orphanin FQ peptide receptor agonist, produces potent antinociceptive effects with safer properties than morphine. Neuropharmacology 2019; 166:107678. [PMID: 31278929 DOI: 10.1016/j.neuropharm.2019.107678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 05/21/2019] [Accepted: 06/18/2019] [Indexed: 01/14/2023]
Abstract
There is unmet need to design an analgesic with fewer side effects for severe pain management. Although traditional opioids are the most effective painkillers, they are accompanied by severe adverse responses, such as respiratory depression, constipation symptoms, tolerance, withdrawal, and addiction. We indicated BPR1M97 as a dual mu opioid receptor (MOP)/nociceptin-orphanin FQ peptide (NOP) receptor full agonist and investigated the pharmacology of BPR1M97 in multiple animal models. In vitro studies on BPR1M97 were assessed using cyclic-adenosine monophosphate production, β-arrestin, internalization, and membrane potential assays. In vivo studies were characterized using the tail-flick, tail-clip, lung functional, heart functional, acetone drop, von Frey hair, charcoal meal, glass bead, locomotor activity, conditioned place preference (CPP) and naloxone precipitation tests. BPR1M97 elicited full agonist properties for all cell-based assays tested in MOP-expressing cells. However, it acted as a G protein-biased agonist for NOP. BPR1M97 initiated faster antinociceptive effects at 10 min after subcutaneous injection and elicited better analgesia in cancer-induced pain than morphine. Unlike morphine, BPR1M97 caused less respiratory, cardiovascular, and gastrointestinal dysfunction. In addition, BPR1M97 decreased global activity and induced less withdrawal jumping precipitated by naloxone. Thus, BPR1M97 could serve as a novel small molecule dual receptor agonist for antinociception with fewer side effects than morphine. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
Affiliation(s)
- Po-Kuan Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Hsiao-Fu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Wan-Ting Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Li-Chin Ou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Jian-Ying Chuang
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - John Tsu-An Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Pao-Luh Tao
- Center for Neuropsychiatric Research, National Heath Research Institutes, Zhunan, Miaoli County, 35053, Taiwan
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455-0217, USA
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan; School of Pharmacy, National Cheng Kung University, Tainan, Taiwan, ROC.
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan; The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
3
|
Cao DN, Shi JJ, Wu N, Li J. Modulation of miR-139-5p on chronic morphine-induced, naloxone-precipitated cAMP overshoot in vitro. Metab Brain Dis 2018; 33:1501-1508. [PMID: 29916183 DOI: 10.1007/s11011-018-0257-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
Abstract
Chronic exposure to morphine can produce tolerance, dependence and addiction, but the underlying neurobiological basis is still incompletely understood. c-Jun, as an important component of the activator protein-1 transcription factor, is supposed to take part in regulating gene expression in AC/cAMP/PKA signaling. MicroRNA (miRNA) has emerged as a critical regulator of neuronal functions. Although a number of miRNAs have been reported to regulate the μ-opioid receptor expression, there has been no report about miRNAs to regulate chronic morphine-induced, naloxone-precipitated cAMP overshoot. Our results showed that chronic morphine pretreatment induced naloxone-precipitated cAMP overshoot in concentration- and time-dependent manners in HEK 293/μ cells. Chronic morphine pretreatment alone elevated both c-Jun protein and miR-139-5p expression levels, while dramatically artificial elevation of miR-139-5p inhibited c-Jun at the translational level. Furthermore, dramatically artificial upregulation of intracellular miR-139-5p limited chronic morphine-induced, naloxone-precipitated cAMP overshoot. These findings suggested that miR-139-5p was involved in regulating chronic morphine-induced, naloxone-precipitated cAMP overshoot in a negative feedback manner through its target c-Jun, which extends our understanding of neurobiological mechanisms underlying morphine dependence and addiction.
Collapse
Affiliation(s)
- Dan-Ni Cao
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Jing-Jing Shi
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
4
|
1-(2,4-Dibromophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one: A Novel Opioid Receptor Agonist with Less Accompanying Gastrointestinal Dysfunction than Morphine. Anesthesiology 2017; 126:952-966. [PMID: 28212204 DOI: 10.1097/aln.0000000000001568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The authors investigated the pharmacology and signaling pathways of the opioid receptors modulated by compound 1, 1-(2,4-dibromophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one. METHODS In vitro studies of compound 1 were assessed by using a radioligand-binding assay (n = 3), a cyclic adenosine monophosphate assay (n = 3), a β-arrestin assay (n = 3), an internalization assay (n = 3), and an immunohistochemistry (n = 8). In vivo studies of compound 1 were characterized using a tail-flick test (n = 5 to 6), tail-clip test (n = 7), von Frey hair test (n = 5), and charcoal meal test (n = 5). RESULTS Compound 1 elicited robust effects in μ-opioid (mean ± SD; binding affinity: 15 ± 2 nM; cyclic adenosine monophosphate assay: 24 ± 6 nM), δ-opioid (82 ± 7 nM; 1.9 ± 0.1 μM), and κ-opioid (76 ± 9 nM; 1.4 ± 0.5 μM) receptor-expressing cells. Compound 1 acts as a full agonist of β-arrestin-2 recruitment in μ-opioid (1.1 ± 0.3 μM) and δ-opioid (9.7 ± 1.9 μM) receptor-expressing cells. Compound 1 caused less gastrointestinal dysfunction (charcoal meal test: morphine: 82 ± 5%; compound 1: 42 ± 5%) as well as better antinociception in mechanical pain hypersensitivity (tail-clip test: morphine: 10 ± 3 s; compound 1: 19 ± 1 s) and in cancer-induced pain (von Frey hair test: morphine: 0.1 ± 0.1 g; compound 1: 0.3 ± 0.1 g) than morphine at equi-antinociceptive doses. CONCLUSIONS Compound 1 produced antinociception with less gastrointestinal dysfunction than morphine.
Collapse
|
5
|
Cooke AE, Oldfield S, Krasel C, Mundell SJ, Henderson G, Kelly E. Morphine-induced internalization of the L83I mutant of the rat μ-opioid receptor. Br J Pharmacol 2014; 172:593-605. [PMID: 24697554 DOI: 10.1111/bph.12709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/17/2014] [Accepted: 03/26/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Naturally occurring single-nucleotide polymorphisms (SNPs) within GPCRs can result in alterations in various pharmacological parameters. Understanding the regulation and function of endocytic trafficking of the μ-opioid receptor (MOP receptor) is of great importance given its implication in the development of opioid tolerance. This study has compared the agonist-dependent trafficking and signalling of L83I, the rat orthologue of a naturally occurring variant of the MOP receptor. EXPERIMENTAL APPROACH Cell surface elisa, confocal microscopy and immunoprecipitation assays were used to characterize the trafficking properties of the MOP-L83I variant in comparison with the wild-type receptor in HEK 293 cells. Functional assays were used to compare the ability of the L83I variant to signal to several downstream pathways. KEY RESULTS Morphine-induced internalization of the L83I MOP receptor was markedly increased in comparison with the wild-type receptor. The altered trafficking of this variant was found to be specific to morphine and was both G-protein receptor kinase- and dynamin-dependent. The enhanced internalization of L83I variant in response to morphine was not due to increased phosphorylation of serine 375, arrestin association or an increased ability to signal. CONCLUSIONS AND IMPLICATIONS These results suggest that morphine promotes a specific conformation of the L83I variant that makes it more liable to internalize in response to morphine, unlike the wild-type receptor that undergoes significantly less morphine-stimulated internalization, providing an example of a ligand-selective biased receptor. The presence of this SNP within an individual may consequently affect the development of tolerance and analgesic responses. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- A E Cooke
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
6
|
Bian JM, Wu N, Su RB, Li J. Opioid receptor trafficking and signaling: what happens after opioid receptor activation? Cell Mol Neurobiol 2012; 32:167-84. [PMID: 21947865 DOI: 10.1007/s10571-011-9755-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/04/2011] [Indexed: 01/14/2023]
Abstract
Prolonged opioid treatment leads to a comprehensive cellular adaptation mediated by opioid receptors, a basis to understand the development of opioid tolerance and dependence. However, the molecular mechanisms underlying opioid-induced cellular adaptation remain obscure. Recent advances in opioid receptor trafficking and signaling in cells have extensively increased our insight into the network of intracellular signal integration. This review focuses on those important intracellular biochemical processes that play critical roles in the development of opioid tolerance and dependence after opioid receptor activation, and tries to explain what happens after opioid receptor activation, and how the cellular adaptation develops from cell membrane to nucleus. Decades of research have delineated a network on opioid receptor trafficking and signaling, but the challenge remains to explain opioid tolerance and dependence from a single cellular signal network.
Collapse
Affiliation(s)
- Jia-Ming Bian
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | | | | | | |
Collapse
|
7
|
Abstract
Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years and remain the most widely used analgesics in the clinic. Mu (μ), kappa (κ), and delta (δ) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled and activate inhibitory G proteins. These receptors form homo- and heterodimeric complexes and signal to kinase cascades and scaffold a variety of proteins.The authors discuss classic mechanisms and developments in understanding opioid tolerance and opioid receptor signaling and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. The authors put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, the authors conclude there is a continued need for more translational work on opioid receptors in vivo.
Collapse
|
8
|
Lau EK, Trester-Zedlitz M, Trinidad JC, Kotowski SJ, Krutchinsky AN, Burlingame AL, von Zastrow M. Quantitative encoding of the effect of a partial agonist on individual opioid receptors by multisite phosphorylation and threshold detection. Sci Signal 2011; 4:ra52. [PMID: 21868358 DOI: 10.1126/scisignal.2001748] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In comparison to endogenous ligands of seven-transmembrane receptors, which typically act as full agonists, many drugs act as partial agonists. Partial agonism is best described as a "macroscopic" property that is manifest at the level of physiological systems or cell populations; however, whether partial agonists also encode discrete regulatory information at the "microscopic" level of individual receptors is not known. Here, we addressed this question by focusing on morphine, a partial agonist drug for μ-type opioid peptide receptors (MORs), and by combining quantitative mass spectrometry with cell biological analysis to investigate the reduced efficacy of morphine, compared to that of a peptide full agonist, in promoting receptor endocytosis. We showed that these chemically distinct ligands produced a complex and qualitatively similar mixture of phosphorylated opioid receptor forms in intact cells. Quantitatively, however, the different agonists promoted disproportionate multisite phosphorylation of a specific serine and threonine motif, and we found that modification at more than one residue was essential for the efficient recruitment of the adaptor protein β-arrestin that mediated subsequent endocytosis of MORs. Thus, quantitative encoding of agonist-selective endocytosis at the level of individual opioid receptors was based on the conserved biochemical principles of multisite phosphorylation and threshold detection.
Collapse
Affiliation(s)
- Elaine K Lau
- Department of Psychiatry, University of California, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Xia M, Guo V, Huang R, Shahane SA, Austin CP, Nirenberg M, Sharma SK. Inhibition of morphine-induced cAMP overshoot: a cell-based assay model in a high-throughput format. Cell Mol Neurobiol 2011; 31:901-7. [PMID: 21598037 DOI: 10.1007/s10571-011-9689-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/05/2011] [Indexed: 11/24/2022]
Abstract
Opiates are not only potent analgesics but also drugs of abuse mainly because they produce euphoria. Chronic use of opiates results in the development of tolerance and dependence. Dr Marshall Nirenberg's group at the National Institutes of Health (NIH) was the first to use a cellular model system of Neuroblastoma × Glioma hybrid cells (NG108-15) to study morphine addiction. They showed that opiates affect adenylyl cyclase (AC) by two opposing mechanisms mediated by the opiate receptor. Although the cellular mechanisms that cause addiction are not yet completely understood, the most observed correlative biochemical adaptation is the upregulation of AC. This model also provides the opportunity to look for compounds which could dissociate the acute effect of opiates from the delayed response, upregulation of AC, and thus lead to the discovery of non-addictive drugs. To identify small molecule compounds that can inhibit morphine-induced cAMP overshoot, we have validated and optimized a cell-based assay in a high throughput format that measures cellular cAMP production after morphine withdrawal. The assay performed well in the 1536-well plate format. The LOPAC library of 1,280 compounds was screened in this assay on a quantitative high-throughput screening (qHTS) platform. A group of compounds that can inhibit morphine-induced cAMP overshoot were identified. The most potent compounds are eight naloxone-related compounds, including levallorphan tartrate, naloxonazine dihydrochloride, naloxone hydrochloride, naltrexone hydrochloride, and naltriben methanesulfonate. The qHTS approach we used in this study will be useful in identifying novel inhibitors of morphine induced addiction from a larger scale screening.
Collapse
Affiliation(s)
- Menghang Xia
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Huang P, Liu-Chen LY. Detection of the endogenous mu opioid receptor (mopr) in brain. Front Biosci (Elite Ed) 2009; 1:220-7. [PMID: 19482639 DOI: 10.2741/e21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In general, it has been difficult to obtain antibodies which are useful for immunoblotting of endogenous seven-transmembrane receptors (7TMRs) despite the claims made by many companies on commercially available antibodies. In this review, we will use the mu opioid receptor (MOPR) in brain as an example to underscore the importance of using knock-out (K/O) mice and multiple independent approaches (ligand affinity-labeling, receptor phosphorylation and immunoblotting) in identifying 7TMRs following sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE). The rigor and convergence of pharmacological and biochemical data provide confidence on the unequivocal identification of MOPR. The distinct relative molecular masses (Mr's) and band patterns are largely due to variations in the extent of N-glycosylation in different cell lines, brain regions and species.
Collapse
Affiliation(s)
- Peng Huang
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
11
|
Zhang Y, Xiong W, Lin X, Ma X, Yu LC. Receptor trafficking induced by mu-opioid-receptor phosphorylation. Neurosci Biobehav Rev 2009; 33:1192-7. [PMID: 19747597 DOI: 10.1016/j.neubiorev.2009.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
Opiates, including morphine, are widely used drugs for antinociception in clinics. Prolonged treatments of opioids induce both tolerance and dependence, which are the major side effects of opioid therapy. One of the mechanisms for the development of tolerance and dependence is implicated to be opioid-receptor trafficking. Here we review the current understandings of opioid-receptor phosphorylation, endocytosis and desensitization after repeated agonist treatments. Also, the role of G-protein coupled receptor kinases in opioid-receptor phosphorylation is discussed. How to associate these observations to physiological and behavioral changes in animal models and clinics is still under investigation.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Neurobiology, College of Life Sciences, Peking University, Beijing 100871, China.
| | | | | | | | | |
Collapse
|
12
|
Chu J, Zheng H, Loh HH, Law PY. Morphine-induced mu-opioid receptor rapid desensitization is independent of receptor phosphorylation and beta-arrestins. Cell Signal 2008; 20:1616-24. [PMID: 18558479 DOI: 10.1016/j.cellsig.2008.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
Abstract
Receptor desensitization involving receptor phosphorylation and subsequent betaArrestin (betaArr) recruitment has been implicated in the tolerance development mediated by mu-opioid receptor (OPRM1). However, the roles of receptor phosphorylation and betaArr on morphine-induced OPRM1 desensitization remain to be demonstrated. Using OPRM1-induced intracellular Ca(2+) ([Ca(2+)](i))release to monitor receptor activation, as predicted, [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO), induced OPRM1 desensitization in a receptor phosphorylation- and betaArr-dependent manner. The DAMGO-induced OPRM1 desensitization was attenuated significantly when phosphorylation deficient OPRM1 mutants or Mouse Embryonic Fibroblast (MEF) cells from betaArr1 and 2 knockout mice were used in the studies. Specifically, DAMGO-induced desensitization was blunted in HEK293 cells expressing the OPRM1S375A mutant and was eliminated in MEF cells isolated from betaArr2 knockout mice expressing the wild type OPRM1. However, although morphine also could induce a rapid desensitization on [Ca(2+)](i) release to a greater extent than that of DAMGO and could induce the phosphorylation of Ser(375) residue, morphine-induced desensitization was not influenced by mutating the phosphorylation sites or in MEF cells lacking betaArr1 and 2. Hence, morphine could induce OPRM1 desensitization via pathway independent of betaArr, thus suggesting the in vivo tolerance development to morphine can occur in the absence of betaArr.
Collapse
Affiliation(s)
- Ji Chu
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, MN 55455-0217, USA.
| | | | | | | |
Collapse
|
13
|
Marie N, Aguila B, Hasbi A, Davis A, Jauzac P, Allouche S. Different kinases desensitize the human delta-opioid receptor (hDOP-R) in the neuroblastoma cell line SK-N-BE upon peptidic and alkaloid agonists. Cell Signal 2008; 20:1209-20. [PMID: 18395423 DOI: 10.1016/j.cellsig.2008.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/13/2008] [Accepted: 02/15/2008] [Indexed: 11/25/2022]
Abstract
In a previous work, we described a differential desensitization of the human delta-opioid receptor (hDOP-R) by etorphine (a non-selective and alkaloid agonist) and delta-selective and peptidic agonists (DPDPE ([D-Pen(2,5)]enkephalin) and deltorphin I (Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH(2))) in the neuroblastoma cell line SK-N-BE (Allouche et al., Eur. J. Pharmacol., 371, 235, 1999). In the present study, we explored the putative role of different kinases in this differential regulation. First, selective chemical inhibitors of PKA, PKC and tyrosine kinases were used and we showed a significant reduction of etorphine-induced opioid receptor desensitization by the bisindolylmaleimide I (PKC inhibitor) while genistein (tyrosine kinase inhibitor) was potent to impair desensitization induced by the different agonists. When the PKA was inhibited by H89 pretreatment, no modification of opioid receptor desensitization was observed whatever the agonist used. Second, we further studied the role of G protein-coupled receptor kinases (GRKs) and by using western-blot experiments we observed that only the GRK2 isoform was expressed in the SK-N-BE cells. Next, the neuroblastoma cells were transfected with the wild type GRK2 or its dominant negative mutant GRK2-K220R and the inhibition on cAMP level was determined in naïve and agonist-pretreated cells. We showed that over-expression of GRK2-K220R totally abolished etorphine-induced receptor desensitization while no effect was observed with peptidic agonists and over-expression of GRK2 selectively impaired cAMP inhibition promoted by etorphine suggesting that this kinase was involved in the regulation of hDOP-R activated only by etorphine. Third, correlation between functional experiments and phosphorylation of the hDOP-R after agonist activation was assessed by western-blot using the specific anti-phospho-DOP-R Ser(363) antibody. While all agonists were potent to increase phosphorylation of opioid receptor, we showed no impairment of receptor phosphorylation level after PKC inhibitor pretreatment. Upon agonist activation, no enhancement of receptor phosphorylation was observed when the GRK2 was over-expressed while the GRK2-K220R partially reduced the hDOP-R Ser(363) phosphorylation only after peptidic agonists pretreatment. In conclusion, hDOP-R desensitization upon etorphine exposure relies on the GRK2, PKC and tyrosine kinases while DPDPE and deltorphin I mediate desensitization at least via tyrosine kinases. Although the Ser(363) was described as the primary phosphorylation site of the mouse DOP-R, we observed no correlation between desensitization and phosphorylation of this amino acid.
Collapse
Affiliation(s)
- Nicolas Marie
- Université de Caen, Laboratoire de biologie moléculaire et cellulaire de la signalisation, UPRES-EA 3919, IFR 146 ICORE, avenue côte de Nacre, 14032 Caen, France
| | | | | | | | | | | |
Collapse
|
14
|
Role of receptor internalization in opioid tolerance and dependence. Pharmacol Ther 2007; 117:199-206. [PMID: 18076994 DOI: 10.1016/j.pharmthera.2007.10.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 10/25/2007] [Indexed: 12/01/2022]
Abstract
Agonist-induced mu-opioid receptor (MOPr) internalization has long been suggested to contribute directly to functional receptor desensitization and opioid tolerance. In contrast, recent evidence suggests that opioid receptor internalization could in fact reduce opioid tolerance in vivo, but the mechanisms that are responsible for the internalization-mediated protection against opioid tolerance are controversely discussed. One prevailing hypothesis is, that receptor internalization leads to decreased receptor signaling and therefore to reduced associated compensatory changes in downstream signaling systems that are involved in the development of opioid tolerance. However, numerous studies have demonstrated that desensitized and internalized mu-opioid receptors are rapidly recycled to the cell surface in a reactivated state, thus counteracting receptor desensitization and opioid tolerance. Further studies revealed agonist-selective differences in the ability to induce opioid receptor internalization. Recently it has been demonstrated that the endocytotic efficacies of opioids are negatively correlated to the induced opioid tolerance. Thus, clearer understanding of the role of opioid receptor trafficking in the regulation of opioid tolerance and dependence will help in the treatment of patients suffering from chronic pain or drug dependence.
Collapse
|
15
|
Qiu Y, Loh HH, Law PY. Phosphorylation of the delta-opioid receptor regulates its beta-arrestins selectivity and subsequent receptor internalization and adenylyl cyclase desensitization. J Biol Chem 2007; 282:22315-23. [PMID: 17565992 DOI: 10.1074/jbc.m611258200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the current study, we investigated the role of receptor phosphorylation and beta-arrestins in delta-opioid receptor (DOR) signaling and trafficking by using a DOR mutant in which all Ser/Thr residues in the C terminus were mutated to Ala (DTS). We demonstrated that the DOR agonist D-[Pen(2),Pen(5)]enkephalin could induce receptor internalization and adenylyl cyclase (AC) desensitization of DTS, but with comparatively slower kinetics than those observed with wild type DOR. Blockade of the internalization of DTS by the dominant-negative mutant dynamin, dynamin K44E, did not affect AC desensitization. However, depletion of beta-arrestins almost totally blocked both internalization and AC desensitization of DTS. A BRET assay suggested that DOR phosphorylation promotes receptor selectivity for beta-arrestin 2 over beta-arrestin 1. Furthermore, in mouse embryonic fibroblast (MEF) cells lacking either beta-arrestin 1 (beta arr1(-/-)) or beta-arrestin 2 (beta arr2(-/-)), agonist-induced DTS desensitization and internalization were similar to that observed in wild type MEFs. In contrast, although DOR internalization decreased in both beta arr1(-/-) MEFs and beta arr2(-/-) MEFs, DPDPE-induced DOR desensitization was significantly reduced in beta arr2(-/-) MEFs, but not in beta arr1(-/-) MEFs. Additionally, the BRET assay suggested that depletion of phosphorylation did not influence the stability of the receptor-beta-arrestin complex. Consistent with this observation, DTS did not recycle after internalization, which is like wild type DOR. Taken together, these results indicate that receptor phosphorylation confers DOR selectivity for beta-arrestin 2 without affecting the stability of the receptor-beta-arrestin complex and the fate of the internalized receptor.
Collapse
Affiliation(s)
- Yu Qiu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
16
|
Velázquez KT, Mohammad H, Sweitzer SM. Protein kinase C in pain: involvement of multiple isoforms. Pharmacol Res 2007; 55:578-89. [PMID: 17548207 PMCID: PMC2140050 DOI: 10.1016/j.phrs.2007.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Revised: 02/02/2007] [Accepted: 04/16/2007] [Indexed: 01/23/2023]
Abstract
Pain is the primary reason that people seek medical care. At present, chronic unremitting pain is the third greatest health problem after heart disease and cancer. Chronic pain is an economic burden in lost wages, lost productivity, medical expenses, legal fees and compensation. Chronic pain is defined as a pain of greater than 2 months duration. It can be of inflammatory or neuropathic origin that can arise following nerve injury or in the absence of any apparent injury. Chronic pain is characterized by an altered pain perception that includes allodynia (a response to a normally non-noxious stimuli) and hyperalgesia (an exaggerated response to a normally noxious stimuli). This type of pain is often insensitive to the traditional analgesics or surgical intervention. The study of the cellular and molecular mechanisms that contribute to chronic pain are of the up-most importance for the development of a new generation of analgesic agents. Protein kinase C isozymes are under investigation as potential therapeutics for the treatment of chronic pain conditions. The anatomical localization of protein kinase C isozymes in both peripheral and central nervous system sites that process pain have made them the topic of basic science research for close to two decades. This review will outline the research to date on the involvement of protein kinase C in pain and analgesia. In addition, this review will try to synthesize these works to begin to develop a comprehensive mechanistic understanding of how protein kinase C may function as a master regulator of the peripheral and central sensitization that underlies many chronic pain conditions.
Collapse
Affiliation(s)
- Kandy T Velázquez
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | | | | |
Collapse
|
17
|
Marie N, Aguila B, Allouche S. Tracking the opioid receptors on the way of desensitization. Cell Signal 2006; 18:1815-33. [PMID: 16750901 DOI: 10.1016/j.cellsig.2006.03.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/21/2006] [Indexed: 11/24/2022]
Abstract
Opioid receptors belong to the super family of G-protein coupled receptors (GPCRs) and are the targets of numerous opioid analgesic drugs. Prolonged use of these drugs results in a reduction of their effectiveness in pain relief also called tolerance, a phenomenon well known by physicians. Opioid receptor desensitization is thought to play a major role in tolerance and a lot of work has been dedicated to elucidate the molecular basis of desensitization. As described for most of GPCRs, opioid receptor desensitization involves their phosphorylation by kinases and their uncoupling from G-proteins realized by arrestins. More recently, opioid receptor trafficking was shown to contribute to desensitization. In this review, our knowledge on the molecular mechanisms of desensitization and recent progress on the role of opioid receptor internalization, recycling or degradation in desensitization will be reported. A better understanding of these regulatory mechanisms would be helpful to develop new analgesic drugs or new strategies for pain treatment by limiting opioid receptor desensitization and tolerance.
Collapse
Affiliation(s)
- Nicolas Marie
- Neuropsychopharmacologie des addictions, CNRS 7157, INSERM U705, Université Paris V, France
| | | | | |
Collapse
|
18
|
Bailey CP, Smith FL, Kelly E, Dewey WL, Henderson G. How important is protein kinase C in μ-opioid receptor desensitization and morphine tolerance? Trends Pharmacol Sci 2006; 27:558-65. [PMID: 17000011 DOI: 10.1016/j.tips.2006.09.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 08/21/2006] [Accepted: 09/12/2006] [Indexed: 11/30/2022]
Abstract
The repeated administration of opiate drugs such as morphine results in the development of tolerance to their analgesic, rewarding (euphoric) and respiratory-depressant effects; thus, to obtain the same level of response with subsequent administrations, a greater dose must be used. Tolerance can limit the clinical efficacy of opiate drugs and enhance the social problems that are inherent in recreational opioid abuse. Surprisingly, the mechanism (or mechanisms) underlying the development of morphine tolerance remains controversial. Here, we propose that protein kinase C could have a crucial role in the desensitization of mu-opioid receptors by morphine and that this cellular process could contribute to the development and maintenance of morphine tolerance in vivo.
Collapse
Affiliation(s)
- Chris P Bailey
- Department of Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
19
|
Aguila B, Roussel M, Jauzac P, Allouche S. High-purity selection and maintenance of gene expression in human neuroblastoma cells stably over-expressing GFP fusion protein. Application for opioid receptors desensitization studies. Brain Res 2006; 1114:11-8. [PMID: 16938287 DOI: 10.1016/j.brainres.2006.07.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 07/10/2006] [Accepted: 07/18/2006] [Indexed: 11/28/2022]
Abstract
Chronic use of opiates such as morphine is associated with drug tolerance, which is correlated with the desensitization of opioid receptors. This latter process involves phosphorylation of opioid receptors by G protein-coupled receptors kinases (GRKs) and subsequent uncoupling by beta-arrestins. To explore these molecular mechanisms, neuronal cell lines, endogenously expressing the opioid receptors, provide an ideal cellular model. Unfortunately, there are two major drawbacks: (1) these cells are refractory to cDNA introduction, resulting in low transfection efficiency; (2) continuous culturing of transfected cells invariably leads to phenotypic drift of the cultures even after an antibiotic selection. So, these cells were dropped in favor of heterologous expression systems, which are easier to transfect but whose relevance as adequate cellular model for studying opioid receptor regulation should be questioned, as recently demonstrated by [Haberstock-Debic, H., Kim, K.A.,Yu, Y.J., von Zastrow, M., 2005. Morphine promotes rapid, arrestin-dependent endocytosis of mu-opioid receptors in striatal neurons. J. Neurosci. 25, 7847-7857]. In this work, we describe a method, based on fluorescence-activated cell sorting (FACS), to select and maintain a high proportion of transfected SK-N-BE cells (a neuronal cell line endogenously expressing human Delta-Opioid Receptor (hDOR)), expressing the beta-arrestin1 fused to green fluorescent protein (GFP). While in functional experiments, we were not able to observe a major effect in non-sorted SK-N-BE cells expressing beta-arrestin1-GFP, the enrichment by 18-fold with FACS resulted in a robust increase of beta-arrestin1-GFP expression associated with strong hDOR desensitization. Moreover, this method also allows to counteract the phenotypic drift and to maintain a high-purity selection of SK-N-BE cells expressing beta-arrestin1-GFP. Thus, this approach provides a valuable tool for exploring opioid receptors desensitization in neuronal cells.
Collapse
Affiliation(s)
- Benjamin Aguila
- Laboratoire de Biologie cellulaire et moléculaire de la signalisation, UPRES-EA 3919, Université de Caen, France
| | | | | | | |
Collapse
|
20
|
Johnson EE, Christie MJ, Connor M. The Role of Opioid Receptor Phosphorylation and Trafficking in Adaptations to Persistent Opioid Treatment. Neurosignals 2006; 14:290-302. [PMID: 16772732 DOI: 10.1159/000093044] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Indexed: 11/19/2022] Open
Abstract
Mu-opioid receptor activation underpins clinical analgesia and is the central event in the abuse of narcotics. Continued opioid use produces tolerance to the acute effects of the drug and adaptations that lead to physical and psychological dependence. Continued mu-receptor signaling provides the engine for these adaptations, with most evidence suggesting that chronic agonist treatment produces only limited alterations in primary mu-opioid receptor signaling. Here we examine agonist regulation of mu-opioid receptor function, and whether this is altered by chronic treatment. Receptor phosphorylation is thought to be the key initial event in agonist regulation of the mu-opioid receptor, providing a signal for acute receptor desensitization and also subsequent receptor resensitization. Morphine appears to produce qualitatively and quantitatively different mu-receptor phosphorylation than other agonists, but the consequences of this remain obscure, at least in neurons. There is no evidence that agonist-induced mu-opioid receptor phosphorylation changes in chronically morphine-treated animals, although receptor regulation appears to be altered. Thus, as receptor phosphorylation and resensitization appear to maintain continued signaling through the mu-opioid receptor, these two events are crucial in facilitating adaptations to chronic opioid treatment, and the possibility that agonist-specific phosphorylation can contribute to the development of different adaptations remains open.
Collapse
Affiliation(s)
- Emma E Johnson
- Pain Management Research Institute, Kolling Institute, University of Sydney at Royal North Shore Hospital, St. Leonards, Australia
| | | | | |
Collapse
|
21
|
Johnson EA, Oldfield S, Braksator E, Gonzalez-Cuello A, Couch D, Hall KJ, Mundell SJ, Bailey CP, Kelly E, Henderson G. Agonist-Selective Mechanisms of μ-Opioid Receptor Desensitization in Human Embryonic Kidney 293 Cells. Mol Pharmacol 2006; 70:676-85. [PMID: 16682505 DOI: 10.1124/mol.106.022376] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of two opioid agonists, [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and morphine, to induce mu-opioid receptor (MOR) phosphorylation, desensitization, and internalization was examined in human embryonic kidney (HEK) 293 cells expressing rat MOR1 as well G protein-coupled inwardly rectifying potassium channel (GIRK) channel subunits. Both DAMGO and morphine activated GIRK currents, but the maximum response to DAMGO was greater than that of morphine, indicating that morphine is a partial agonist. The responses to DAMGO and morphine desensitized rapidly in the presence of either drug. Expression of a dominant negative mutant G protein-coupled receptor kinase 2 (GRK2), GRK2-K220R, markedly attenuated the DAMGO-induced desensitization of MOR1, but it had no effect on morphine-induced MOR1 desensitization. In contrast, inhibition of protein kinase C (PKC) either by the PKC inhibitory peptide PKC (19-31) or staurosporine reduced MOR1 desensitization by morphine but not that induced by DAMGO. Morphine and DAMGO enhanced MOR1 phosphorylation over basal. The PKC inhibitor bisindolylmaleimide 1 (GF109203X) inhibited MOR1 phosphorylation under basal conditions and in the presence of morphine, but it did not inhibit DAMGO-induced phosphorylation. DAMGO induced arrestin-2 translocation to the plasma membrane and considerable MOR1 internalization, whereas morphine did not induce arrestin-2 translocation and induced very little MOR1 internalization. Thus, DAMGO and morphine each induce desensitization of MOR1 signaling in HEK293 cells but by different molecular mechanisms; DAMGO-induced desensitization is GRK2-dependent, whereas morphine-induced desensitization is in part PKC-dependent. MORs desensitized by DAMGO activation are then readily internalized by an arrestin-dependent mechanism, whereas those desensitized by morphine are not. These data suggest that opioid agonists induce different conformations of the MOR that are susceptible to different desensitizing and internalization processes.
Collapse
|
22
|
Zhao H, Loh HH, Law PY. Adenylyl cyclase superactivation induced by long-term treatment with opioid agonist is dependent on receptor localized within lipid rafts and is independent of receptor internalization. Mol Pharmacol 2006; 69:1421-32. [PMID: 16415176 DOI: 10.1124/mol.105.020024] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Long-term opioid agonist treatment results in adenylyl cyclase superactivation. A recent "RAVE" theory implicates a direct correlation between the ability of agonist to induce receptor internalization and the magnitude of adenylyl cyclase superactivation. We decided to test such a theory by examining the adenylyl cyclase superactivation after long-term activation of mu-opioid receptor (MOR) in an EcR293 cell model. We examined the magnitudes of adenylyl cyclase superactivation in the presence of naloxone after long-term treatment with morphine, etorphine, and methadone, three agonists reported to have differential activities in promoting MOR internalization. It can be shown that the magnitudes of adenylyl cyclase superactivation after treating with these three agonists, although different, were dependent on MOR density. Blunting MOR internalization with the dominant-negative mutant of dynamin, K44E, did not alter the magnitude of either morphine- or etorphine-induced adenylyl cyclase superactivation. In the presence of diprenorphine, the magnitude of adenylyl cyclase superactivation after etorphine treatment was identical to that observed with morphine. It could be demonstrated further that adenylyl cyclase superactivation is dependent on the cell surface-located MOR. Sucrose gradient fractionation demonstrated the colocalization of MOR and adenylyl cyclase V/VI with caveolin-1, a marker for lipid rafts. After long-term agonist treatment, the majority of MOR remained at the lipid rafts. Methyl-beta-cyclodextrin (MbetaCD) completely blunted the adenylyl cyclase superactivation and agonist-induced receptor internalization. These MbetaCD actions were reversed by incubating the cells with cholesterol. Thus, the adenylyl cyclase superactivation is not dependent on agonist-induced receptor internalization. Rather, the location of MOR at lipid rafts is an absolute requirement for the observed adenylyl cyclase superactivation.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Pharmacology, 6-120 Jackson Hall, Medical School, University of Minnesota, 321 Church St. S.E., Minneapolis, MN 55455-0217, USA
| | | | | |
Collapse
|
23
|
Ozsoy HZ, Thakker DR, Standifer KM. Orphanin FQ/nociceptin potentiates [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin-Induced mu-opioid receptor phosphorylation. Mol Pharmacol 2005; 68:447-56. [PMID: 15890842 DOI: 10.1124/mol.105.011536] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we investigate the molecular mechanisms by which acute orphanin FQ/nociceptin (OFQ/N), acting through the nociceptin opioid peptide (NOP) receptor, desensitizes the mu-opioid receptor. We described previously the involvement of protein kinase C and G-protein-coupled receptor kinases (GRK) 2 and 3 in OFQ/N-induced mu receptor desensitization. Because phosphorylation of the mu receptor triggers the successive regulatory mechanisms responsible for desensitization, such as receptor uncoupling, internalization, and down-regulation, we investigated the ability of OFQ/N to modulate [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO)-induced mu receptor phosphorylation in BE(2)-C human neuroblastoma cells transfected with epitope-tagged mu receptors. OFQ/N treatment (100 nM, 60 min) potentiated DAMGO-induced mu receptor phosphorylation; inhibition of GRK2 or protein kinase C concomitant with OFQ/N treatment blocked the OFQ/N-mediated increase in DAMGO-induced phosphorylation. Inclusion of the NOP antagonist peptide III-BTD during OFQ/N pretreatment blocked the potentiation of DAMGO-induced phosphorylation by OFQ/N, which is consistent with the potentiation being mediated via actions of the NOP receptor. In addition, in cells expressing mu receptors in which the GRK-mediated phosphorylation site Ser(375) was mutated to alanine, OFQ/N treatment failed to potentiate DAMGO-induced mu receptor phosphorylation and failed to desensitize the mu receptor. However, DAMGO-induced mu receptor phosphorylation and OFQ/N-induced mu receptor desensitization occurred in cells expressing mu receptors lacking non-GRK phosphorylation sites. These data suggest that OFQ/N binds to NOP receptors and activates protein kinase C, which then increases the ability of GRK2 to phosphorylate the agonist-occupied mu receptor, heterologously regulating homologous mu receptor desensitization.
Collapse
Affiliation(s)
- Hatice Z Ozsoy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4800 Calhoun Road, 521 Science and Research Building 2, Houston, TX 77204-5037, USA
| | | | | |
Collapse
|
24
|
Abstract
Opiate addiction is a central nervous system disorder of unknown mechanism. Neuronal basis of positive reinforcement, which is essential to the action of opioids, relies on activation of dopaminergic neurons resulting in an increased dopamine release in the mesolimbic brain structures. Certain aspects of opioid dependence and withdrawal syndrome are also related to the activity of noradrenergic and serotonergic systems, as well as to both excitatory and inhibitory amino acid and peptidergic systems. The latter pathways have been recently proven to be involved both in the development of dependence and in counteracting the states related to relapse. An important role in neurochemical mechanisms of opioid reward, dependence and vulnerability to addiction has been ascribed to endogenous opioid peptides, particularly those acting via the mu- and kappa-opioid receptors. Opiate abuse leads to adaptive reactions in the nervous system which occur at the cellular and molecular levels. Recent research indicates that intracellular mechanisms of signal transmission-from the receptor, through G proteins, cyclic AMP, MAP kinases to transcription factors--also play an important role in opioid tolerance and dependence. The latter link in this chain of reactions may modify synthesis of target genes and in this manner, it may be responsible for opiate-induced long-lasting neural plasticity.
Collapse
Affiliation(s)
- Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
25
|
Abstract
Tolerance and dependence result from long-term exposure to opioids, and there is growing evidence linking acute receptor desensitization to these more long-term processes. Receptor desensitization encompasses a series of events leading to the loss of receptor function and internalization. This study examines the onset and recovery from desensitization in locus ceruleus neurons recorded in brain slices taken from animals that have been chronically treated with morphine. After chronic morphine treatment, desensitization was altered as follows. First, the rate of desensitization was increased. Second, recovery from desensitization was always incomplete, even after a brief (1-2 min) exposure to agonist. This contrasts with experiments in controls in which recovery from desensitization, after a brief exposure to agonist, was complete within 25 min. Finally, morphine-6-beta-D-glucuronide, a metabolite of morphine that was ineffective at causing desensitization in controls, induced significant desensitization in slices from morphine-treated animals. When brain slices from controls were treated with inhibitors of PKC or monensin, agents known to compromise G-protein-coupled receptor resensitization, desensitization was increased, and recovery was significantly reduced. These results indicate that receptor resensitization maintains signaling during periods of intense and sustained stimulation. After chronic morphine treatment, desensitization is potentiated, and receptor resensitization is compromised.
Collapse
Affiliation(s)
- Vu C Dang
- Vollum Institute and Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97239, USA
| | | |
Collapse
|
26
|
Law PY, Loh HH, Wei LN. Insights into the receptor transcription and signaling: implications in opioid tolerance and dependence. Neuropharmacology 2004; 47 Suppl 1:300-11. [PMID: 15464146 DOI: 10.1016/j.neuropharm.2004.07.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 06/02/2004] [Accepted: 06/30/2004] [Indexed: 12/20/2022]
Abstract
Drug addiction has great social and economical implications. In order to resolve this problem, the molecular and cellular basis for drug addiction must be elucidated. For the past three decades, our research has focused on elucidating the molecular mechanisms behind morphine tolerance and dependence. Although there are many working hypotheses, it is our premise that cellular modulation of the receptor signaling, either via transcriptional or post-translational control of the receptor, is the basis for morphine tolerance and dependence. Thus, in the current review, we will summarize our recent work on the transcriptional and post-translational control of the opioid receptor, with special emphasis on the mu-opioid receptor, which is demonstrated to mediate the in vivo functions of morphine.
Collapse
Affiliation(s)
- P Y Law
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455-0217, USA
| | | | | |
Collapse
|
27
|
Connor M, Osborne PB, Christie MJ. Mu-opioid receptor desensitization: is morphine different? Br J Pharmacol 2004; 143:685-96. [PMID: 15504746 PMCID: PMC1575925 DOI: 10.1038/sj.bjp.0705938] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Opioid tolerance and dependence are important phenomena. The contribution of acute mu-opioid receptor regulatory mechanisms to the development of analgesic tolerance or physical dependence are unknown, and even the mechanisms underlying relatively rapid receptor desensitization in single cells are unresolved. To a large degree, the uncertainty surrounding the mechanisms and consequences of short-term regulation of tau-opioid receptors in single cells arises from the limitations in the experimental design in many of the studies that have investigated these events. Receptor overexpression and use of assays in which regulatory mechanisms are likely to blunt control determinations have led to measurements of opioid receptor activity that are likely to be insensitive to receptor uncoupling. Together with uncertainties concerning molecular details of tau-opioid receptor interactions with potential regulatory molecules such as G protein-coupled receptor kinases and arrestins, we are left with an incomplete picture crudely copied from the well-worked-out regulatory schema for beta(2)-adrenoceptors. As a consequence, suggestions that clinically relevant tau-opioid receptor agonists may have different propensities to produce tolerance and dependence that arise from their differential recruitment of regulatory mechanisms are premature, and have not yet been appropriately assessed, nor explained in the context of a thoroughly established regulatory scheme. In this commentary, we outline the experimental limitations that have given rise to conflicting ideas about how mu-opioid receptors are regulated, and identify the issues we feel still need to be addressed before we can understand why morphine promotes receptor trafficking differently to other opioids.
Collapse
Affiliation(s)
- Mark Connor
- Pain Management Research Institute, E25, Kolling Institute, University of Sydney at Royal North Shore Hospital, Pacific Highway, St Leonards, NSW, 2065, Australia.
| | | | | |
Collapse
|
28
|
Koch T, Widera A, Bartzsch K, Schulz S, Brandenburg LO, Wundrack N, Beyer A, Grecksch G, Höllt V. Receptor endocytosis counteracts the development of opioid tolerance. Mol Pharmacol 2004; 67:280-7. [PMID: 15475572 DOI: 10.1124/mol.104.004994] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In contrast to endogenous opioids, the highly addictive drug morphine activates the mu-opioid receptor without causing its rapid endocytosis. It has recently been reported that coapplication of low concentrations of [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) facilitates the ability of morphine to stimulate mu-opioid receptor endocytosis and prevents the development of morphine tolerance in rats. To investigate the clinical relevance of this finding for analgesic therapy, the endocytotic efficacies of a series of clinically used opioids were determined, and the effect of a combination of these drugs with morphine on the mu-opioid receptor endocytosis in receptor-expressing human embryonic kidney (HEK) 293 cells was quantified. The combination of morphine and opioid drugs with high endocytotic efficacies (e.g., DAMGO, etonitazene, sufentanil, beta-endorphin, piritramide, or methadone) did not result in a facilitation of morphine-mediated endocytosis but rather in a decrease of the receptor endocytosis mediated by the tested opioid drugs. These findings demonstrate a partial agonistic effect of morphine on the agonist-induced receptor endocytosis. Moreover, we demonstrated that the endocytotic potencies of opioid drugs are negatively correlated with their ability to cause receptor desensitization and opioid tolerance in HEK 293 cells. These results strongly support the hypothesis that mu-opioid receptor endocytosis counteracts receptor desensitization and opioid tolerance by inducing fast receptor reactivation and recycling. In addition, it is shown that agonist-induced receptor endocytosis facilitates the compensatory up-regulation of the cAMP pathway, a cellular hallmark of opioid withdrawal. Our findings suggest that opioids with high endocytotic efficacies might cause reduced opioid tolerance but can facilitate compensatory mechanisms, resulting in an enhanced opioid dependence.
Collapse
Affiliation(s)
- Thomas Koch
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, 39120 Magdeburg, Leipziger Strasse 44, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen C, Li J, Bot G, Szabo I, Rogers TJ, Liu-Chen LY. Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol 2004; 483:175-86. [PMID: 14729105 DOI: 10.1016/j.ejphar.2003.10.033] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cross-desensitization between micro-opioid receptor agonists and CC chemokines was shown to occur in immune cells and in the central nervous system. However, these cells do not permit examination of potential mechanisms at cellular levels due to low levels and mixed populations of receptors. In this study, we investigated possible interactions and biochemical mechanisms of cross-desensitization between the mu-opioid and chemokine CCR5 receptors coexpressed in Chinese hamster ovary (CHO) cells. Hemagglutinin (HA)-tagged micro-opioid receptor coimmunoprecipitated with FLAG (Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys)-tagged chemokine receptor CCR5 in cells expressing the two receptors, but not in a mixture of cells transfected with one of the two receptors, indicating that the two receptors form heterodimers. Treatment with the mu-opioid receptor agonist DAMGO ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin), the chemokine RANTES (Regulated on Activation, Normal T cell-Expressed and -Secreted) (CCL5), or both, did not affect the level of coimmunoprecipitation. DAMGO and RANTES (CCL5) induced chemotaxis in CHO cells coexpressing both receptors, and preincubation with either DAMGO or RANTES (CCL5) profoundly inhibited chemotaxis caused by the other. DAMGO pretreatment enhanced phosphorylation of the chemokine CCR5 receptor and reduced RANTES (CCL5)-promoted [35S]GTP gamma S binding. Conversely, RANTES (CCL5) preincubation slightly increased phosphorylation of the mu-opioid receptor and significantly reduced DAMGO-induced [35S]GTP gamma S binding. These results indicate that activation of either receptor affected G protein coupling of the other, likely due to enhanced phosphorylation of the receptor. Heterodimerization between the two receptors may contribute to the observed cross-desensitization.
Collapse
Affiliation(s)
- Chongguang Chen
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
30
|
Qiu Y, Law PY, Loh HH. Mu-opioid receptor desensitization: role of receptor phosphorylation, internalization, and representation. J Biol Chem 2003; 278:36733-9. [PMID: 12860981 DOI: 10.1074/jbc.m305857200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is generally accepted that the internalization and desensitization of mu-opioid receptor (MOR) involves receptor phosphorylation and beta-arrestin recruitment. However, a mutant MOR, which is truncated after the amino acid residue Ser363 (MOR363D), was found to undergo phosphorylation-independent internalization and desensitization. As expected, MOR363D, missing the putative agonist-induced phosphorylation sites, did not exhibit detectable agonist-induced phosphorylation. MOR363D underwent slower internalization as reflected in the attenuation of membrane translocation of beta-arrestin 2 when compared with wild type MOR, but the level of receptor being internalized was similar to that of wild type MOR after 4 h of etorphine treatment. Furthermore, MOR363D was observed to desensitize faster than that of wild type MOR upon agonist activation. Surface biotinylation assay demonstrated that the wild type receptors recycled back to membrane after agonist-induced internalization, which contributed to the receptor resensitization and thus partially reversed the receptor desensitization. On the contrary, MOR363D did not recycle after internalization. Hence, MOR desensitization is controlled by the receptor internalization and the recycling of internalized receptor to cell surface in an active state. Taken together, our data indicated that receptor phosphorylation is not absolutely required in the internalization, but receptor phosphorylation and subsequent beta-arrestin recruitment play important roles in the resensitization of internalized receptors.
Collapse
Affiliation(s)
- Yu Qiu
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
31
|
Borgland SL, Connor M, Osborne PB, Furness JB, Christie MJ. Opioid agonists have different efficacy profiles for G protein activation, rapid desensitization, and endocytosis of mu-opioid receptors. J Biol Chem 2003; 278:18776-84. [PMID: 12642578 DOI: 10.1074/jbc.m300525200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The differential ability of various mu-opioid receptor (MOP) agonists to induce rapid receptor desensitization and endocytosis of MOP could arise simply from differences in their efficacy to activate G proteins or, alternatively, be due to differential capacity for activation of other signaling processes. We used AtT20 cells stably expressing a low density of FLAG-tagged MOP to compare the efficacies of a range of agonists to 1) activate G proteins using inhibition of calcium channel currents (ICa) as a reporter before and after inactivation of a fraction of receptors by beta-chlornaltrexamine, 2) produce rapid, homologous desensitization of ICa inhibition, and 3) internalize receptors. Relative efficacies determined for G protein coupling were [Tyr-D-Ala-Gly-MePhe-Glyol]enkephalin (DAMGO) (1) > or = methadone (0.98) > morphine (0.58) > pentazocine (0.15). The same rank order of efficacies for rapid desensitization of MOP was observed, but greater concentrations of agonist were required than for G protein activation. By contrast, relative efficacies for promoting endocytosis of MOP were DAMGO (1) > methadone (0.59) >> morphine (0.07) > or = pentazocine (0.03). These results indicate that the efficacy of opioids to produce activation of G proteins and rapid desensitization is distinct from their capacity to internalize mu-opioid receptors but that, contrary to some previous reports, morphine can produce rapid, homologous desensitization of MOP.
Collapse
Affiliation(s)
- Stephanie L Borgland
- Department of Pharmacology, The University of Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
32
|
Lowe JD, Celver JP, Gurevich VV, Chavkin C. mu-Opioid receptors desensitize less rapidly than delta-opioid receptors due to less efficient activation of arrestin. J Biol Chem 2002; 277:15729-35. [PMID: 11861651 DOI: 10.1074/jbc.m200612200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor desensitization by G-protein receptor kinases (GRK) and arrestins is likely to be an important component underlying the development of tolerance to opioid drugs. Reconstitution of this process in Xenopus oocytes revealed distinct differences in the kinetics of GRK and arrestin regulation of the closely related opioid receptors mu (MOR), delta (DOR), and kappa (KOR). We demonstrated that under identical conditions, GRK and arrestin-dependent desensitization of MOR proceeds dramatically slower than that of DOR. Furthermore, GRK3 phosphorylation sites required for opioid receptor desensitization also greatly differ. The determinants for DOR and KOR desensitization reside in the carboxyl-terminal tail, whereas MOR depends on Thr-180 in the second intracellular loop. Although this later finding might indicate an inefficient phosphorylation of MOR Thr-180, increasing the amount of arrestin expressed greatly increased the rate of MOR desensitization to a rate comparable with that of DOR. Similarly, coexpression of a constitutively active arrestin 2(R169E) with MOR and DOR desensitized both receptors in an agonist-dependent, GRK-independent manner at rates that were indistinguishable. Together, these data suggest that it is the activation of arrestin, rather than its binding, that is the rate-limiting step in MOR desensitization. In addition, mutation of Thr-161 in DOR, homologous to MOR Thr-180, significantly inhibited the faster desensitization of DOR. These results suggest that DOR desensitization involves phosphorylation of both the carboxyl-terminal tail and the second intracellular loop that together leads to a more efficient activation of arrestin and thus faster desensitization.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Arrestin
- Arrestins/genetics
- Arrestins/metabolism
- Cloning, Molecular
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- G-Protein-Coupled Receptor Kinase 3
- GTP-Binding Proteins/metabolism
- Kinetics
- Mice
- Models, Molecular
- Mutagenesis, Site-Directed
- Oocytes/physiology
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Conformation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Recombinant Proteins/drug effects
- Recombinant Proteins/metabolism
- Threonine
- Xenopus laevis
Collapse
Affiliation(s)
- Janet D Lowe
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | | | |
Collapse
|
33
|
Garzón J, Rodríguez-Díaz M, López-Fando A, García-España A, Sánchez-Blázquez P. Glycosylated phosducin-like protein long regulates opioid receptor function in mouse brain. Neuropharmacology 2002; 42:813-28. [PMID: 12015208 DOI: 10.1016/s0028-3908(02)00027-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosducin (Phd), a protein that in retina regulates rhodopsin desensitization by controlling the activity of Gt beta gamma-dependent G-protein-coupled receptor kinases (GRKs), is present in very low levels in the CNS of mammals. However, this tissue contains proteins of related sequence and function. This paper reports the presence of N-glycosylated phosducin-like protein long (PhLP(L)) in all structures of mouse CNS, mainly in synaptic plasma membranes and associated with G beta subunits and 14-3-3 proteins. To analyze the role PhLP(L) in opioid receptor desensitization, its expression was reduced by the use of antisense oligodeoxynucleotides (ODNs). The antinociception induced by morphine, [D-Ala(2), N-MePhe(4),Gly-ol(5)]-enkephalin (DAMGO), beta-endorphin, [D-Ala(2)]deltorphin II, [D-Pen(2,5)]-enkephalin (DPDPE) or clonidine in the tail-flick test was reduced in PhLP(L)-knock-down mice. A single intracerebroventricular (icv)-ED(80) analgesic dose of morphine gave rise to acute tolerance that lasted for 4 days, but which was prevented or reversed by icv-injection of myristoylated (myr(+)) G(i2)alpha subunits. PhLP(L) knock-down brought about a myr(+)-G(i2)alpha subunit-insensitive acute tolerance to morphine that was still present after 8 days. It also diminished the specific binding of (125)I-Tyr(27)-beta-endorphin-(1-31) (human) to mouse periaqueductal gray matter membranes. After being exposed to chronic morphine treatment, post-dependent mice required about 10 days for complete recovery of morphine antinociception. The impairment of PhLP(L) extended this period beyond 17 days. It is concluded that PhLP(L) knock-down facilitates desensitization and uncoupling of opioid receptors.
Collapse
Affiliation(s)
- J Garzón
- Neurofarmacología, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avd Doctor Arce, 37, E-28002 Madrid, Spain.
| | | | | | | | | |
Collapse
|
34
|
Shapira M, Keren O, Gafni M, Sarne Y. Divers pathways mediate delta-opioid receptor down regulation within the same cell. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 96:142-50. [PMID: 11731019 DOI: 10.1016/s0169-328x(01)00283-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Various mechanisms have been proposed for opioid receptor down regulation in different experimental preparations. The present study was aimed to test whether distinct mechanisms can mediate opioid receptor down regulation within the same cell. For this purpose we transfected HEK-293 cells with rat delta-opioid receptor (DOR). We exposed the cells to the opioid agonist etorphine in the absence or presence of various pharmacological agents and measured the binding of the opioid ligand [(3)H]diprenorphine to either isolated cell membranes or whole cells. We found that internalization of the receptors into the cell was mediated by clathrin coated pits and that the internalized receptors were degraded either in lysosomes or by proteosomes. Down regulation involved phosphorylation and at least two different kinases, a tyrosine kinase (TK) and MAPK kinase (MEK), mediated DOR down regulation in parallel routes. G-protein-coupled receptor kinase (GRK) was found to have only a minor role in DOR down regulation in HEK-293 cells. On the other hand, in N18TG2 cells that endogenously express delta-opioid receptors, GRK was the predominant kinase mediating DOR down regulation, with only a minor role for TK and MEK. We conclude that down regulation can take place via divers pathways within the same cell, and that in different cells down regulation is mediated by different mechanisms, depending on the kinase profile of the cells and the compartmentalization of the receptors within the cells.
Collapse
Affiliation(s)
- M Shapira
- The Mauerberger Chair in Neuropharmacology, Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
35
|
Chavkin C, McLaughlin JP, Celver JP. Regulation of opioid receptor function by chronic agonist exposure: constitutive activity and desensitization. Mol Pharmacol 2001; 60:20-5. [PMID: 11408596 DOI: 10.1124/mol.60.1.20] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- C Chavkin
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA.
| | | | | |
Collapse
|
36
|
Protein kinase C-mediated inhibition of mu-opioid receptor internalization and its involvement in the development of acute tolerance to peripheral mu-agonist analgesia. J Neurosci 2001. [PMID: 11312280 DOI: 10.1523/jneurosci.21-09-02967.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the role of protein kinase C (PKC) in cell mu-opioid receptor (MOR) internalization and MOR-mediated acute tolerance in vivo. When Chinese hamster ovary cells expressing MOR were exposed to [D-Ala(2),MePhe(4),Gly-ol(5)]-enkephalin (DAMGO), receptor internalization was observed at 30 min. Incubation with morphine failed to induce receptor internalization. When calphostin C, a PKC inhibitor, was added, receptor internalization was observed as early as 10 min after morphine stimulation. The MOR internalization induced by DAMGO or morphine in the presence of calphostin C was dynamin dependent, because it was abolished 2 d after pretreatment with recombinant adenovirus to express a dominant interfering dynamin mutant (K44A/dynamin adenovirus). On the other hand, in a peripheral nociception test in mice, the nociceptive flexor response after intraplantar injection (i.pl.) of bradykinin was markedly inhibited by DAMGO (i.pl.). DAMGO analgesia was not affected by 2 hr prior injection (i.pl.) of DAMGO. Marked acute tolerance was observed after pretreatment with dynamin antisense oligodeoxynucleotide or K44A/dynamin adenovirus. The DAMGO-induced acute tolerance under such pretreatments was inhibited by calphostin C. Together, these findings suggest that PKC desensitizes MOR or has a role in the development of acute tolerance through MOR by inhibiting internalization mechanisms as a resensitization process.
Collapse
|
37
|
El Kouhen R, Burd AL, Erickson-Herbrandson LJ, Chang CY, Law PY, Loh HH. Phosphorylation of Ser363, Thr370, and Ser375 residues within the carboxyl tail differentially regulates mu-opioid receptor internalization. J Biol Chem 2001; 276:12774-80. [PMID: 11278523 DOI: 10.1074/jbc.m009571200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolonged activation of opioid receptors leads to their phosphorylation, desensitization, internalization, and down-regulation. To elucidate the relationship between mu-opioid receptor (MOR) phosphorylation and the regulation of receptor activity, a series of receptor mutants was constructed in which the 12 Ser/Thr residues of the COOH-terminal portion of the receptor were substituted to Ala, either individually or in combination. All these mutant constructs were stably expressed in human embryonic kidney 293 cells and exhibited similar expression levels and ligand binding properties. Among those 12 Ser/Thr residues, Ser(363), Thr(370), and Ser(375) have been identified as phosphorylation sites. In the absence of the agonist, a basal phosphorylation of Ser(363) and Thr(370) was observed, whereas [d-Ala(2),Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO)-induced receptor phosphorylation occurs at Thr(370) and Ser(375) residues. Furthermore, the role of these phosphorylation sites in regulating the internalization of MOR was investigated. The mutation of Ser(375) to Ala reduced the rate and extent of receptor internalization, whereas mutation of Ser(363) and Thr(370) to Ala accelerated MOR internalization kinetics. The present data show that the basal phosphorylation of MOR could play a role in modulating agonist-induced receptor internalization kinetics. Furthermore, even though mu-receptors and delta-opioid receptors have the same motif encompassing agonist-induced phosphorylation sites, the different agonist-induced internalization properties controlled by these sites suggest differential cellular regulation of these two receptor subtypes.
Collapse
Affiliation(s)
- R El Kouhen
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Celver JP, Lowe J, Kovoor A, Gurevich VV, Chavkin C. Threonine 180 is required for G-protein-coupled receptor kinase 3- and beta-arrestin 2-mediated desensitization of the mu-opioid receptor in Xenopus oocytes. J Biol Chem 2001; 276:4894-900. [PMID: 11060299 DOI: 10.1074/jbc.m007437200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the sites in the mu-opioid receptor (MOR) critical for agonist-dependent desensitization, we constructed and coexpressed MORs lacking potential phosphorylation sites along with G-protein activated inwardly rectifying potassium channels composed of K(ir)3.1 and K(ir)3.4 subunits in Xenopus oocytes. Activation of MOR by the stable enkephalin analogue, [d-Ala(2),MePhe(4),Glyol(5)]enkephalin, led to homologous MOR desensitization in oocytes coexpressing both G-protein-coupled receptor kinase 3 (GRK3) and beta-arrestin 2 (arr3). Coexpression with either GRK3 or arr3 individually did not significantly enhance desensitization of responses evoked by wild type MOR activation. Mutation of serine or threonine residues to alanines in the putative third cytoplasmic loop and truncation of the C-terminal tail did not block GRK/arr3-mediated desensitization of MOR. Instead, alanine substitution of a single threonine in the second cytoplasmic loop to produce MOR(T180A) was sufficient to block homologous desensitization. The insensitivity of MOR(T180A) might have resulted either from a block of arrestin activation or arrestin binding to MOR. To distinguish between these alternatives, we expressed a dominant positive arrestin, arr2(R169E), that desensitizes G protein-coupled receptors in an agonist-dependent but phosphorylation-independent manner. arr2(R169E) produced robust desensitization of MOR and MOR(T180A) in the absence of GRK3 coexpression. These results demonstrate that the T180A mutation probably blocks GRK3- and arr3-mediated desensitization of MOR by preventing a critical agonist-dependent receptor phosphorylation and suggest a novel GRK3 site of regulation not yet described for other G-protein-coupled receptors.
Collapse
MESH Headings
- Animals
- Arrestins/genetics
- Arrestins/physiology
- Dose-Response Relationship, Drug
- Down-Regulation
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- G Protein-Coupled Inwardly-Rectifying Potassium Channels
- G-Protein-Coupled Receptor Kinase 3
- Mutagenesis, Site-Directed
- Oocytes/metabolism
- Phosphothreonine/metabolism
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Potassium Channels, Inwardly Rectifying
- Protein Serine-Threonine Kinases/physiology
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Transfection
- Xenopus
- beta-Arrestins
Collapse
Affiliation(s)
- J P Celver
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | | | | | | | | |
Collapse
|
39
|
Xiang B, Yu GH, Guo J, Chen L, Hu W, Pei G, Ma L. Heterologous activation of protein kinase C stimulates phosphorylation of delta-opioid receptor at serine 344, resulting in beta-arrestin- and clathrin-mediated receptor internalization. J Biol Chem 2001; 276:4709-16. [PMID: 11085981 DOI: 10.1074/jbc.m006187200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purpose of the current study is to investigate the effect of opioid-independent, heterologous activation of protein kinase C (PKC) on the responsiveness of opioid receptor and the underlying molecular mechanisms. Our result showed that removing the C terminus of delta opioid receptor (DOR) containing six Ser/Thr residues abolished both DPDPE- and phorbol 12-myristate 13-acetate (PMA)-induced DOR phosphorylation. The phosphorylation levels of DOR mutants T352A, T353A, and T358A/T361A/S363S were comparable to that of the wild-type DOR, whereas S344G substitution blocked PMA-induced receptor phosphorylation, indicating that PKC-mediated phosphorylation occurs at Ser-344. PKC-mediated Ser-344 phosphorylation was also induced by activation of G(q)-coupled alpha(1A)-adrenergic receptor or increase in intracellular Ca(2+) concentration. Activation of PKC by PMA, alpha(1A)-adrenergic receptor agonist, and ionomycin resulted in DOR internalization that required phosphorylation of Ser-344. Expression of dominant negative beta-arrestin and hypertonic sucrose treatment blocked PMA-induced DOR internalization, suggesting that PKC mediates DOR internalization via a beta-arrestin- and clathrin-dependent mechanism. Further study demonstrated that agonist-dependent G protein-coupled receptor kinase (GRK) phosphorylation sites in DOR are not targets of PKC. Agonist-dependent, GRK-mediated receptor phosphorylation and agonist-independent, PKC-mediated DOR phosphorylation were additive, but agonist-induced receptor phosphorylation could inhibit PKC-catalyzed heterologous DOR phosphorylation and subsequent internalization. These data demonstrate that the responsiveness of opioid receptor is regulated by both PKC and GRK through agonist-dependent and agonist-independent mechanisms and PKC-mediated receptor phosphorylation is an important molecular mechanism of heterologous regulation of opioid receptor functions.
Collapse
Affiliation(s)
- B Xiang
- National Laboratory of Medical Neurobiology, Fudan University Medical Center, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
40
|
Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev 2001; 81:299-343. [PMID: 11152760 DOI: 10.1152/physrev.2001.81.1.299] [Citation(s) in RCA: 602] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although opioids are highly effective for the treatment of pain, they are also known to be intensely addictive. There has been a massive research investment in the development of opioid analgesics, resulting in a plethora of compounds with varying affinity and efficacy at all the known opioid receptor subtypes. Although compounds of extremely high potency have been produced, the problem of tolerance to and dependence on these agonists persists. This review centers on the adaptive changes in cellular and synaptic function induced by chronic morphine treatment. The initial steps of opioid action are mediated through the activation of G protein-linked receptors. As is true for all G protein-linked receptors, opioid receptors activate and regulate multiple second messenger pathways associated with effector coupling, receptor trafficking, and nuclear signaling. These events are critical for understanding the early events leading to nonassociative tolerance and dependence. Equally important are associative and network changes that affect neurons that do not have opioid receptors but that are indirectly altered by opioid-sensitive cells. Finally, opioids and other drugs of abuse have some common cellular and anatomical pathways. The characterization of common pathways affected by different drugs, particularly after repeated treatment, is important in the understanding of drug abuse.
Collapse
Affiliation(s)
- J T Williams
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon, USA.
| | | | | |
Collapse
|
41
|
Kouhen OM, Wang G, Solberg J, Erickson LJ, Law PY, Loh HH. Hierarchical phosphorylation of delta-opioid receptor regulates agonist-induced receptor desensitization and internalization. J Biol Chem 2000; 275:36659-64. [PMID: 10973976 PMCID: PMC3394401 DOI: 10.1074/jbc.m006788200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Treatment of HEK293 cells expressing the delta-opioid receptor with agonist [d-Pen(2,5)]enkephalin (DPDPE) resulted in the rapid phosphorylation of the receptor. We constructed several mutants of the potential phosphorylation sites (Ser/Thr) at the carboxyl tail of the receptor in order to delineate the receptor phosphorylation sites and the agonist-induced desensitization and internalization. The Ser and Thr were substituted to alanine, and the corresponding mutants were transiently and stably expressed in HEK293 cells. We found that only two residues, i.e. Thr(358) and Ser(363), were phosphorylated, with Ser(363) being critical for the DPDPE-induced phosphorylation of the receptor. Furthermore, using alanine and aspartic acid substitutions, we found that the phosphorylation of the receptor is hierarchical, with Ser(363) as the primary phosphorylation site. Here, we demonstrated that DPDPE-induced rapid receptor desensitization, as measured by adenylyl cyclase activity, and receptor internalization are intimately related to phosphorylation of Thr(358) and Ser(363), with Thr(358) being involved in the receptor internalization.
Collapse
Affiliation(s)
- O M Kouhen
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455-0217, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Law PY, Kouhen OM, Solberg J, Wang W, Erickson LJ, Loh HH. Deltorphin II-induced rapid desensitization of delta-opioid receptor requires both phosphorylation and internalization of the receptor. J Biol Chem 2000; 275:32057-65. [PMID: 10893226 DOI: 10.1074/jbc.m002395200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Similar to other G protein-coupled receptors, rapid phosphorylation of the delta-opioid receptor in the presence of agonist has been reported. Hence, agonist-induced desensitization of the delta-opioid receptor has been suggested to be via the receptor phosphorylation, arrestin-mediated pathway. However, due to the highly efficient coupling between the delta-opioid receptor and the adenylyl cyclase, the direct correlation between the rates of receptor phosphorylation and receptor desensitization as measured by the adenylyl cyclase activity could not be established. In the current studies, using an ecdysone-inducible expression system to control the delta-opioid receptor levels in HEK293 cells, we could demonstrate that the rate of deltorphin II-induced receptor desensitization is dependent on the receptor level. Only at receptor concentrations </=90 fmol/mg of protein were rapid desensitizations (t(12) <10 min) observed. Apparently, deltorphin II-induced receptor desensitization involves cellular events in addition to receptor phosphorylation. Mutation of Ser(363) in the carboxyl tail of the delta-opioid receptor to Ala completely abolished the deltorphin II-induced receptor phosphorylation but not the desensitization response. Although the magnitude of desensitization was attenuated, the rate of deltorphin II-induced receptor desensitization remained the same in the S363A mutant as compared with wild type. Also, the S363A mutant could internalize in the presence of deltorphin II. Only when the agonist-induced clathrin-coated pit-mediated receptor internalization was blocked by 0.4 m sucrose that the deltorphin II-induced receptor desensitization was abolished in the S363A mutant. Similarly, 0.4 m sucrose could partially block the agonist-induced rapid desensitization in HEK293 cells expressing the wild type delta-opioid receptor. Taken together, these data supported the hypothesis that rapid desensitization of the delta-opioid receptor involves both the phosphorylation and the internalization of the receptor.
Collapse
Affiliation(s)
- P Y Law
- Department of Pharmacology, the University of Minnesota Medical School, Minneapolis, Minnesota 55455-0217, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Cloning of multiple opioid receptors has presented opportunities to investigate the mechanisms of multiple opioid receptor signaling and the regulation of these signals. The subsequent identification of receptor gene structures has also provided opportunities to study the regulation of receptor gene expression and to manipulate the concentration of the gene products in vivo. Thus, in the current review, we examine recent advances in the delineation basis for the multiple opioid receptor signaling, and their regulation at multiple levels. We discuss the use of receptor knockout animals to investigate the function and the pharmacology of these multiple opioid receptors. The reasons and basis for the multiple opioid receptor are addressed.
Collapse
Affiliation(s)
- P Y Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis 55455, USA.
| | | | | |
Collapse
|
44
|
Law PY, Erickson LJ, El-Kouhen R, Dicker L, Solberg J, Wang W, Miller E, Burd AL, Loh HH. Receptor density and recycling affect the rate of agonist-induced desensitization of mu-opioid receptor. Mol Pharmacol 2000; 58:388-98. [PMID: 10908307 DOI: 10.1124/mol.58.2.388] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we reported that the time course for the rapid phosphorylation rate of mu-opioid receptor expressed in human embryonic kidney (HEK)293 cells did not correlate with the slow receptor desensitization rate induced by [D-Ala(2),N-MePhe(4), Gly-ol(5)]-enkephalin (DAMGO). However, others have suggested that receptor phosphorylation is the trigger for mu-opioid receptor desensitization. In this study, we demonstrated the relatively slow rate of receptor desensitization could be attributed partially to the recycling of internalized receptor as determined by fluorescence-activated cell-sorting analysis. However, the blockade of the endocytic and Golgi transport events in HEK293 cells with monensin and brefeldin A did not increase the initial rate of receptor desensitization. But the desensitization rate was increased by reduction of the mu-opioid receptor level with beta-furnaltrexamine (betaFNA). The reduction of the receptor level with 1 microM betaFNA significantly increased the rate of etorphine-induced receptor desensitization. By blocking the ability of receptor to internalize with 0.4 M sucrose, a significant degree of receptor being rapidly desensitized was observed in HEK293 cells pretreated with betaFNA. Hence, mu-opioid receptor is being resensitized during chronic agonist treatment. The significance of resensitization of the internalized receptor in affecting receptor desensitization was demonstrated further with human neuroblastoma SHSY5Y cells that expressed a low level of mu-opioid receptor. Although DAMGO could not induce a rapid desensitization in these cells, in the presence of monensin and brefeldin A, DAMGO desensitized the mu-opioid receptor's ability to regulate adenylyl cyclase with a t(1/2) = 9.9 +/- 2.1 min and a maximal desensitized level at 70 +/- 4.7%. Furthermore, blockade of receptor internalization with 0.4 M sucrose enhanced the DAMGO-induced receptor desensitization, and the inclusion of monensin prevented the resensitization of the mu-opioid receptor after chronic agonist treatment in SHSY5Y cells. Thus, the ability of the mu-opioid receptor to resensitize and to recycle, and the relative efficiency of the receptor to regulate adenylyl cyclase activity, contributed to the observed slow rate of mu-opioid receptor desensitization in HEK293 cells.
Collapse
Affiliation(s)
- P Y Law
- Department of Pharmacology, 6-120 Jackson Hall, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The cloning of the opioid receptors allows the investigation of receptor domains involved in the peptidic and nonpeptidic ligand interaction and activation of the opioid receptors. Receptor chimera studies and mutational analysis of the primary sequences of the opioid receptors have provided insights into the structural domains required for the ligand recognition and receptor activation. In the current review, we examine the current reports on the possible involvement of extracellular domains and transmembrane domains in the high-affinity binding of peptidic and nonpeptidic ligands to the opioid receptor. The structural requirement for the receptors' selectivity toward different ligands is discussed. The receptor domains involved in the activation and subsequent cellular regulation of the receptors' activities as determined by mutational analysis will also be discussed. Finally, the validity of the conclusions based on single amino acid mutations is examined.
Collapse
Affiliation(s)
- P Y Law
- Department of Pharmacology, University of Minnesota, Minneapolis 55455-0217, USA.
| | | | | |
Collapse
|