1
|
Likitnukul S, Thammacharoen S, Sriwatananukulkit O, Duangtha C, Hemstapat R, Sunrat C, Mangmool S, Pinthong D. Short-Term Growth Hormone Administration Mediates Hepatic Fatty Acid Uptake and De Novo Lipogenesis Gene Expression in Obese Rats. Biomedicines 2023; 11:biomedicines11041050. [PMID: 37189668 DOI: 10.3390/biomedicines11041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Obesity has been linked to metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). Obesity causes a decrease in growth hormone (GH) levels and an increase in insulin levels. Long-term GH treatment increased lipolytic activity as opposed to decreasing insulin sensitivity. Nonetheless, it is possible that short-term GH administration had no impact on insulin sensitivity. In this study, the effect of short-term GH administration on liver lipid metabolism and the effector molecules of GH and insulin receptors were investigated in diet-induced obesity (DIO) rats. Recombinant human GH (1 mg/kg) was then administered for 3 days. Livers were collected to determine the hepatic mRNA expression and protein levels involved in lipid metabolism. The expression of GH and insulin receptor effector proteins was investigated. In DIO rats, short-term GH administration significantly reduced hepatic fatty acid synthase (FASN) and cluster of differentiation 36 (CD36) mRNA expression while increasing carnitine palmitoyltransferase 1A (CPT1A) mRNA expression. Short-term GH administration reduced hepatic FAS protein levels and downregulated gene transcription of hepatic fatty acid uptake and lipogenesis, while increasing fatty acid oxidation in DIO rats. DIO rats had lower hepatic JAK2 protein levels but higher IRS-1 levels than control rats due to hyperinsulinemia. Our findings suggest that short-term GH supplementation improves liver lipid metabolism and may slow the progression of NAFLD, where GH acts as the transcriptional regulator of related genes.
Collapse
|
2
|
Nuwaylati D, Eldakhakhny B, Bima A, Sakr H, Elsamanoudy A. Low-Carbohydrate High-Fat Diet: A SWOC Analysis. Metabolites 2022; 12:1126. [PMID: 36422267 PMCID: PMC9695571 DOI: 10.3390/metabo12111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Insulin resistance (IR) plays a role in the pathogenesis of many diseases, such as type 2 diabetes mellitus, cardiovascular disease, non-alcoholic fatty liver disease, obesity, and neurodegenerative diseases, including Alzheimer's disease. The ketogenic diet (KD) is a low-carbohydrate/high-fat diet that arose in the 1920s as an effective treatment for seizure control. Since then, the KD has been studied as a therapeutic approach for various IR-related disorders with successful results. To date, the use of the KD is still debatable regarding its safety. Some studies have acknowledged its usefulness, while others do not recommend its long-term implementation. In this review, we applied a SWOC (Strengths, Weaknesses, Opportunities, and Challenges) analysis that revealed the positive, constructive strengths of the KD, its potential complications, different conditions that can make used for it, and the challenges faced by both physicians and subjects throughout a KD. This SWOC analysis showed that the KD works on the pathophysiological mechanism of IR-related disorders such as chronic inflammation, oxidative stress and mitochondrial stress. Furthermore, the implementation of the KD as a potential adjuvant therapy for many diseases, including cancer, neurodegenerative disorders, polycystic ovary syndrome, and pain management was proven. On the other hand, the short and long-term possible undesirable KD-related effects, including nutritional deficiencies, growth retardation and nephrolithiasis, should be considered and strictly monitored. Conclusively, this review provides a context for decision-makers, physicians, researchers, and the general population to focus on this dietary intervention in preventing and treating diseases. Moreover, it draws the attention of scientists and physicians towards the opportunities and challenges associated with the KD that requires attention before KD initiation.
Collapse
Affiliation(s)
- Dena Nuwaylati
- Clinical Biochemistry Department, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Basmah Eldakhakhny
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Abdulhadi Bima
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Hussein Sakr
- Physiology Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ayman Elsamanoudy
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Yoshida GM, Yáñez JM. Increased accuracy of genomic predictions for growth under chronic thermal stress in rainbow trout by prioritizing variants from GWAS using imputed sequence data. Evol Appl 2022; 15:537-552. [PMID: 35505881 PMCID: PMC9046923 DOI: 10.1111/eva.13240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Through imputation of genotypes, genome-wide association study (GWAS) and genomic prediction (GP) using whole-genome sequencing (WGS) data are cost-efficient and feasible in aquaculture breeding schemes. The objective was to dissect the genetic architecture of growth traits under chronic heat stress in rainbow trout (Oncorhynchus mykiss) and to assess the accuracy of GP based on imputed WGS and different preselected single nucleotide polymorphism (SNP) arrays. A total of 192 and 764 fish challenged to a heat stress experiment for 62 days were genotyped using a customized 1 K and 26 K SNP panels, respectively, and then, genotype imputation was performed from a low-density chip to WGS using 102 parents (36 males and 66 females) as the reference population. Imputed WGS data were used to perform GWAS and test GP accuracy under different preselected SNP scenarios. Heritability was estimated for body weight (BW), body length (BL) and average daily gain (ADG). Estimates using imputed WGS data ranged from 0.33 ± 0.05 to 0.55 ± 0.05 for growth traits under chronic heat stress. GWAS revealed that the top five cumulatively SNPs explained a maximum of 0.94%, 0.86% and 0.51% of genetic variance for BW, BL and ADG, respectively. Some important functional candidate genes associated with growth-related traits were found among the most important SNPs, including signal transducer and activator of transcription 5B and 3 (STAT5B and STAT3, respectively) and cytokine-inducible SH2-containing protein (CISH). WGS data resulted in a slight increase in prediction accuracy compared with pedigree-based method, whereas preselected SNPs based on the top GWAS hits improved prediction accuracies, with values ranging from 1.2 to 13.3%. Our results support the evidence of the polygenic nature of growth traits when measured under heat stress. The accuracies of GP can be improved using preselected variants from GWAS, and the use of WGS marginally increases prediction accuracy.
Collapse
Affiliation(s)
| | - José M. Yáñez
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile
- Núcleo Milenio INVASALConcepciónChile
| |
Collapse
|
4
|
Chandhini S, Trumboo B, Jose S, Varghese T, Rajesh M, Kumar VJR. Insulin-like growth factor signalling and its significance as a biomarker in fish and shellfish research. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1011-1031. [PMID: 33987811 DOI: 10.1007/s10695-021-00961-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The insulin-like growth factor signalling system comprises insulin-like growth factors, insulin-like growth factor receptors and insulin-like growth factor-binding proteins. Along with the growth hormones, insulin-like growth factor signalling is very pivotal in the growth and development of all vertebrates. In fishes, insulin-like growth factors play an important role in osmoregulation, besides the neuroendocrine regulation of growth. Insulin-like growth factor concentration in plasma can assess the growth in fishes and shellfishes and therefore widely applied in nutritional research as an indicator to evaluate the performance of selected nutrients. The present review summarizes the role of insulin-like growth factor signalling in fishes and shellfishes, its significance in aquaculture and in evaluating growth, reproduction and development, and discusses the utility of this system as biomarkers for early indication of growth in aquaculture.
Collapse
Affiliation(s)
- S Chandhini
- Centre of Excellence in Sustainable Aquaculture and Aquatic Animal Health Management (CAAHM), Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Bushra Trumboo
- Centre of Excellence in Sustainable Aquaculture and Aquatic Animal Health Management (CAAHM), Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Seena Jose
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, 682016, Kerala, India
| | - Tincy Varghese
- Fish Physiology and Biochemistry Division, ICAR-Central Institute of Fisheries Education, Off-Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - M Rajesh
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, 263136, Uttarakhand, India
| | - V J Rejish Kumar
- Centre of Excellence in Sustainable Aquaculture and Aquatic Animal Health Management (CAAHM), Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India.
| |
Collapse
|
5
|
Liu F, Wang Y, Zhao Q, Zhang M, Ban B. Association Between Uric Acid and Insulin-Like Growth Factor-1 in Type 2 Diabetes Mellitus. Int J Gen Med 2021; 14:4017-4023. [PMID: 34349551 PMCID: PMC8326926 DOI: 10.2147/ijgm.s323579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022] Open
Abstract
Objective This research examined the relationship between uric acid (UA) and insulin-like growth factor-1 (IGF-1) in patients with type 2 diabetes mellitus (T2DM). Methods This study was a cross-sectional study that included 1230 Chinese patients with T2DM. We collected general information and laboratory indicators and calculated the standard deviation score of IGF-1 (IGF-1 SDS). Results The univariate analysis results demonstrated a significant positive relationship between UA levels and IGF-1 SDS (P<0.001). A nonlinear relationship was discovered between UA and IGF-1 SDS after adjusting for confounding factors. Multivariate piecewise linear regression showed that the levels of IGF-1 SDS increased when UA was <4.17 mg/dl (β 0.12,95% CI -0.04, 0.28; P=0.121) and decreased when UA was >4.17 mg/dl (β -0.38,95% CI -0.64, -0.12; P=0.004). Conclusion This study showed a nonlinear relationship between UA and IGF-1 in Chinese adults with T2DM. When the UA levels reached the inflection point, IGF-1 levels negatively correlated with the increase in UA. Further studies are needed to explore this relationship and mechanisms in the future.
Collapse
Affiliation(s)
- Fang Liu
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Yaru Wang
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Qiang Zhao
- Department of Clinical Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Mei Zhang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, People's Republic of China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, Shandong, 272029, People's Republic of China
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, People's Republic of China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, Shandong, 272029, People's Republic of China
| |
Collapse
|
6
|
Janssen JAMJL. Hyperinsulinemia and Its Pivotal Role in Aging, Obesity, Type 2 Diabetes, Cardiovascular Disease and Cancer. Int J Mol Sci 2021; 22:ijms22157797. [PMID: 34360563 PMCID: PMC8345990 DOI: 10.3390/ijms22157797] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
For many years, the dogma has been that insulin resistance precedes the development of hyperinsulinemia. However, recent data suggest a reverse order and place hyperinsulinemia mechanistically upstream of insulin resistance. Genetic background, consumption of the “modern” Western diet and over-nutrition may increase insulin secretion, decrease insulin pulses and/or reduce hepatic insulin clearance, thereby causing hyperinsulinemia. Hyperinsulinemia disturbs the balance of the insulin–GH–IGF axis and shifts the insulin : GH ratio towards insulin and away from GH. This insulin–GH shift promotes energy storage and lipid synthesis and hinders lipid breakdown, resulting in obesity due to higher fat accumulation and lower energy expenditure. Hyperinsulinemia is an important etiological factor in the development of metabolic syndrome, type 2 diabetes, cardiovascular disease, cancer and premature mortality. It has been further hypothesized that nutritionally driven insulin exposure controls the rate of mammalian aging. Interventions that normalize/reduce plasma insulin concentrations might play a key role in the prevention and treatment of age-related decline, obesity, type 2 diabetes, cardiovascular disease and cancer. Caloric restriction, increasing hepatic insulin clearance and maximizing insulin sensitivity are at present the three main strategies available for managing hyperinsulinemia. This may slow down age-related physiological decline and prevent age-related diseases. Drugs that reduce insulin (hyper) secretion, normalize pulsatile insulin secretion and/or increase hepatic insulin clearance may also have the potential to prevent or delay the progression of hyperinsulinemia-mediated diseases. Future research should focus on new strategies to minimize hyperinsulinemia at an early stage, aiming at successfully preventing and treating hyperinsulinemia-mediated diseases.
Collapse
Affiliation(s)
- Joseph A M J L Janssen
- Department of internal Medicine, Division of Endocrinology, Erasmus Medical Center, 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
7
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Huang Z, Huang L, Waters MJ, Chen C. Insulin and Growth Hormone Balance: Implications for Obesity. Trends Endocrinol Metab 2020; 31:642-654. [PMID: 32416957 DOI: 10.1016/j.tem.2020.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Disruption of endocrine hormonal balance (i.e., increased levels of insulin, and reduced levels of growth hormone, GH) often occurs in pre-obesity and obesity. Using distinct intracellular signaling pathways to control cell and body metabolism, GH and insulin also regulate each other's secretion to maintain overall metabolic homeostasis. Therefore, a comprehensive understanding of insulin and GH balance is essential for understanding endocrine hormonal contributions to energy storage and utilization. In this review we summarize the actions of, and interactions between, insulin and GH at the cellular level, and highlight the association between the insulin/GH ratio and energy metabolism, as well as fat accumulation. Use of the [insulin]:[GH] ratio as a biomarker for predicting the development of obesity is proposed.
Collapse
Affiliation(s)
- Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Michael J Waters
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia.
| |
Collapse
|
9
|
Salvoza NC, Giraudi PJ, Tiribelli C, Rosso N. Sex differences in non-alcoholic fatty liver disease: hints for future management of the disease. EXPLORATION OF MEDICINE 2020. [DOI: 10.37349/emed.2020.00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) remains a major cause of chronic liver disease worldwide. Despite extensive studies, the heterogeneity of the risk factors as well as different disease mechanisms complicate the goals toward effective diagnosis and management. Recently, it has been shown that sex differences play a role in the prevalence and progression of NAFLD. In vitro, in vivo, and clinical studies revealed that the lower prevalence of NAFLD in premenopausal as compared to postmenopausal women and men is mainly due to the protective effects of estrogen and body fat distribution. It has been also described that males and females present differential pathogenic features in terms of biochemical profiles and histological characteristics. However, the exact molecular mechanisms for the gender differences that exist in the pathogenesis of NAFLD are still elusive. Lipogenesis, oxidative stress, and inflammation play a key role in the progression of NAFLD. For NAFLD, only a few studies characterized these mechanisms at the molecular level. Therefore, we aim to review the reported differential molecular mechanisms that trigger such different pathogenesis in both sexes. Differences in lipid metabolism, glucose homeostasis, oxidative stress, inflammation, and fibrosis were discussed based on the evidence reported in recent publications. In conclusion, with this review, we hope to provide a new perspective for the development of future practice guidelines as well as a new avenue for the management of the disease.
Collapse
Affiliation(s)
- Noel C. Salvoza
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy; Philippine Council for Health Research and Development, DOST Compound, Bicutan Taguig City 1631, Philippines
| | - Pablo J. Giraudi
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| | - Natalia Rosso
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| |
Collapse
|
10
|
Rege SD, Royes L, Tsai B, Zhang G, Yang X, Gomez-Pinilla F. Brain Trauma Disrupts Hepatic Lipid Metabolism: Blame It on Fructose? Mol Nutr Food Res 2019; 63:e1801054. [PMID: 31087499 DOI: 10.1002/mnfr.201801054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Indexed: 02/06/2023]
Abstract
SCOPE The action of brain disorders on peripheral metabolism is poorly understood. The impact of traumatic brain injury (TBI) on peripheral organ function and how TBI effects can be influenced by the metabolic perturbation elicited by fructose ingestion are studied. METHODS AND RESULTS It is found that TBI affects glucose metabolism and signaling proteins for insulin and growth hormone in the liver; these effects are exacerbated by fructose ingestion. Fructose, principally metabolized in the liver, potentiates the action of TBI on hepatic lipid droplet accumulation. Studies in isolated cultured hepatocytes identify GH and fructose as factors for the synthesis of lipids. The liver has a major role in the synthesis of lipids used for brain function and repair. TBI results in differentially expressed genes in the hypothalamus, primarily associated with lipid metabolism, providing cues to understand central control of peripheral alterations. Fructose-fed TBI animals have elevated levels of markers of inflammation, lipid peroxidation, and cell energy metabolism, suggesting the pro-inflammatory impact of TBI and fructose in the liver. CONCLUSION Results reveal the impact of TBI on systemic metabolism and the aggravating action of fructose. The hypothalamic-pituitary-growth axis seems to play a major role in the regulation of the peripheral TBI pathology.
Collapse
Affiliation(s)
- Shraddha D Rege
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Luiz Royes
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Centro De Educacao Fisica e Desportos, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, 97105, Brazil
| | - Brandon Tsai
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Guanglin Zhang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xia Yang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
11
|
Jiang Q, Bai J, He M, Yuen KWY, Wong AOL. Mechanisms Underlying the Synergistic Action of Insulin and Growth Hormone on IGF-I and -II Expression in Grass Carp Hepatocytes. Front Endocrinol (Lausanne) 2018; 9:336. [PMID: 29977227 PMCID: PMC6021495 DOI: 10.3389/fendo.2018.00336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/05/2018] [Indexed: 12/16/2022] Open
Abstract
In mammals, insulin is known to modify growth hormone (GH)-induced IGF-I expression at the hepatic level, which also contributes to the functional crosstalk between energy homeostasis and somatotropic axis. However, the studies on the comparative aspects of this phenomenon are limited and the mechanisms involved have not been fully characterized. Using a serum-free culture of grass carp hepatoctyes, the functional interaction between GH and insulin on hepatic expression of IGF-I and -II was examined in a fish model. In carp hepatocytes, GH could up-regulate IGF-I and -II mRNA expression via the JAK2/STAT5, MEK/ERK and PI3K/Akt pathways. These stimulatory effects were mimicked by insulin via activation of the PI3K/Akt but not MEK/ERK and P38 MAPK cascades. Although insulin did not activate JAK2 and STAT5 at hepatocyte level, insulin-induced IGF-I and -II mRNA expression were highly dependent on the normal functioning of JAK2/STAT5 pathway. In parallel experiments, insulin co-treatment was found to markedly enhance IGF-I and -II responses induced by GH and these potentiating effects were mediated by insulin receptor (InsR) but not IGF-I receptor. Interestingly, co-treatment with GH also enhanced insulin-induced InsR phosphorylation with a current elevation in protein:protein interaction between GH receptor and phosphorylated InsR and these stimulatory effects were noted with further enhancement in STAT5, ERK1/2 and Akt phosphorylation at hepatocyte level. Consistent with these findings, the potentiating effects of GH and insulin co-treatment on IGF-I and -II mRNA expression were found to be suppressed/abolished by inhibiting JAK2/STAT5, MEK/ERK and PI3K/Akt but not P38 MAPK pathways. These results, as a whole, suggest that insulin and GH can act in a synergistic manner in the carp liver to up-regulate IGF-I and -II expression through protein:protein interaction at the receptor level followed by potentiation in post-receptor signaling.
Collapse
Affiliation(s)
- Quan Jiang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Jin Bai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mulan He
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Karen W. Y. Yuen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Anderson O. L. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- *Correspondence: Anderson O. L. Wong
| |
Collapse
|
12
|
Franklin JL, Bennett WL, Messina JL. Insulin attenuates TNFα-induced hemopexin mRNA: An anti-inflammatory action of insulin in rat H4IIE hepatoma cells. Biochem Biophys Rep 2017; 9:211-216. [PMID: 28956007 PMCID: PMC5614554 DOI: 10.1016/j.bbrep.2016.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/15/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
Proinflammatory cytokines, including TNF-α and IL-6, can contribute to insulin resistance. Conversely, insulin has some actions that can be considered anti-inflammatory. Hemopexin is a Class 2 acute phase reactant and control of its transcription is predominantly regulated by IL-6, with TNF-α and IL-1β also inducing hemopexin gene expression. Thus, we asked whether insulin could inhibit the ability of TNF-α to stimulate hemopexin mRNA expression. In cultured rat hepatoma (H4IIE) cells, TNF-α significantly increased hemopexin mRNA accumulation. The TNF-α-induced increase of hemopexin mRNA was dramatically attenuated by insulin, even though TNF-α reduced peak insulin activation of ERK. Thus, even though TNF-α can contribute to insulin resistance, the residual insulin response was still able to counteract TNF-α actions. The TNF-α-induced increase of hemopexin mRNA was dramatically attenuated by insulin. This occurred even though TNF-α significantly decreased insulin activation of ERK. This suggests an additional mechanism for the anti-inflammatory action of insulin. Cytokine-induced insulin resistance does not abolish insulin’s anti-inflammatory effect.
Collapse
Affiliation(s)
- J Lee Franklin
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular and Cellular Pathology, Birmingham, AL 35294, United States
| | - William L Bennett
- Yale University, Interventional Cardiology, New Haven, CT 06510, United States
| | - Joseph L Messina
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular and Cellular Pathology, Birmingham, AL 35294, United States.,Veterans Administration Medical Center, Birmingham, AL 35294, United States
| |
Collapse
|
13
|
Vyas R, Bapat S, Jain E, Karthikeyan M, Tambe S, Kulkarni BD. Building and analysis of protein-protein interactions related to diabetes mellitus using support vector machine, biomedical text mining and network analysis. Comput Biol Chem 2016; 65:37-44. [DOI: 10.1016/j.compbiolchem.2016.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 01/06/2023]
|
14
|
Franklin JL, Amsler MO, Messina JL. Prenylation differentially inhibits insulin-dependent immediate early gene mRNA expression. Biochem Biophys Res Commun 2016; 474:594-598. [PMID: 27086854 DOI: 10.1016/j.bbrc.2016.04.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
Abstract
Increased activity of prenyl transferases is observed in pathological states of insulin resistance, diabetes, and obesity. Thus, functional inhibitors of farnesyl transferase (FTase) and geranylgeranyl transferase (GGTase) may be promising therapeutic treatments. We previously identified insulin responsive genes from a rat H4IIE hepatoma cell cDNA library, including β-actin, EGR1, Pip92, c-fos, and Hsp60. In the present study, we investigated whether acute treatment with FTase and GGTase inhibitors would alter insulin responsive gene initiation and/or elongation rates. We observed differential regulation of insulin responsive gene expression, suggesting a differential sensitivity of these genes to one or both of the specific protein prenylation inhibitors.
Collapse
Affiliation(s)
- J Lee Franklin
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular and Cellular Pathology, Birmingham, AL 35294, USA
| | - Maggie O Amsler
- University of Alabama at Birmingham, Department of Biology, Birmingham, AL 35294, USA
| | - Joseph L Messina
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular and Cellular Pathology, Birmingham, AL 35294, USA; Veterans Administration Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Aneke-Nash CS, Parrinello CM, Rajpathak SN, Rohan TE, Strotmeyer ES, Kritchevsky SB, Psaty BM, Bůžková P, Kizer JR, Newman AB, Strickler HD, Kaplan RC. Changes in insulin-like growth factor-I and its binding proteins are associated with diabetes mellitus in older adults. J Am Geriatr Soc 2015; 63:902-9. [PMID: 25989565 DOI: 10.1111/jgs.13390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To determine whether changes in insulin-like growth factor (IGF) protein levels are greater in participants with type 2 diabetes mellitus or worsening glycemia than in normoglycemic individuals over a 9-year follow-up period. DESIGN Retrospective analysis of a cohort study. SETTING Participants were recruited from North Carolina, California, Maryland, and Pennsylvania. PARTICIPANTS Cardiovascular Health Study All Stars participants, a cohort study of community-dwelling adults aged 65 and older (N=897). MEASUREMENTS Plasma IGF-I, IGF binding protein (IGFBP)-1, and IGFBP-3 levels were assessed and American Diabetes Association cut-points for impaired glucose tolerance (IGT), impaired fasting glucose (IFG), and diabetes mellitus were used to classify participants at baseline (1996-97) and follow-up (2005-06). RESULTS At baseline, mean age was 76.3±3.6, and 18.5% had diabetes mellitus. Participants with IFG alone and IGT plus IFG had higher IGF-I levels and lower IGFBP-1 levels than those with normoglycemia or diabetes mellitus. The greatest percentage change in IGF levels occurred in those who had diabetes mellitus at baseline (9-year changes: -9.3% for IGF-I, 59.7% for IGFBP-1, -13.4% for IGFBP-3), the smallest in individuals who remained normoglycemic at follow-up (9-year changes: -3.7% for IGF-I, 25.6% for IGFBP-1, -6.4% for IGFBP-3), and intermediate in those who were normoglycemic but developed IFG at follow-up. CONCLUSION Degrees of glycemic impairment are associated with varying degrees of change in IGF protein levels. The changes observed in the diabetes mellitus group have been previously shown to be associated with heart failure, cancer, and noncancer mortality.
Collapse
Affiliation(s)
- Chino S Aneke-Nash
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Christina M Parrinello
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Swapnil N Rajpathak
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Merck & Co., Inc., Whitehouse Station, New Jersey
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Elsa S Strotmeyer
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen B Kritchevsky
- Sticht Center on Aging, Section on Gerontology and Geriatric Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Bruce M Psaty
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Jorge R Kizer
- Departments of Medicine and Public Health, Weill Medical College, Cornell University, New York, New York
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Howard D Strickler
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
16
|
Rubin DA, Pham HN, Adams ES, Tutor AR, Hackney AC, Coburn JW, Judelson DA. Endocrine response to acute resistance exercise in obese versus lean physically active men. Eur J Appl Physiol 2015; 115:1359-66. [DOI: 10.1007/s00421-015-3105-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/11/2015] [Indexed: 11/28/2022]
|
17
|
Pancreatic digestive enzyme blockade in the small intestine prevents insulin resistance in hemorrhagic shock. Shock 2014; 41:55-61. [PMID: 24088998 DOI: 10.1097/shk.0000000000000048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hemorrhagic shock is associated with metabolic defects, including hyperglycemia and insulin resistance, but the mechanisms are unknown. We recently demonstrated that reduction of the extracellular domain of the insulin receptor by degrading proteases may lead to a reduced ability to maintain normal plasma glucose values. In shock, transfer of digestive enzymes from the lumen of the intestine into the systemic circulation after breakdown of the intestinal mucosal barrier causes inflammation and organ dysfunction. Suppression of the digestive enzymes in the lumen of the intestine with protease inhibitors is effective in reducing the level of the inflammatory reactions. To determine the degree to which blockade of digestive enzymes affects insulin resistance in shock, rats were exposed to acute hemorrhagic shock (mean arterial pressure of 30 mmHg for 2 h) at which time all shed blood volume was returned. Digestive proteases in the intestine were blocked with a serine protease inhibitor (tranexamic acid in polyethylene glycol and physiological electrolyte solution), and the density of the insulin receptor was measured with immunohistochemistry in the mesentery microcirculation. The untreated rat without enzyme blockade had significantly attenuated levels of insulin receptor density as compared with control and treated rats. Blockade of the digestive proteases after 60 min of hypotension in the lumen of the small intestine led to a lesser decrease in insulin receptor density compared with controls without protease blockade. Glucose tolerance test indicates a significant increase in plasma glucose levels 2 h after hemorrhagic shock, which are reduced to control values in the presence of protease inhibition in the lumen of the intestine. The transient reduction of the plasma glucose levels after an insulin bolus is significantly attenuated after shock but is restored when digestive enzymes in the lumen of the intestine are blocked. These results suggest that in hemorrhagic shock elevated microvascular extracellular digestive enzyme activity causes insulin receptor dysfunction, hyperglycemia, and reduced ability to regulate blood glucose values.
Collapse
|
18
|
Arellanes-Licea EDC, Báez-Ruiz A, Carranza ME, Arámburo C, Luna M, Díaz-Muñoz M. Daily patterns and adaptation of the ghrelin, growth hormone and insulin-like growth factor-1 system under daytime food synchronisation in rats. J Neuroendocrinol 2014; 26:282-95. [PMID: 24617825 DOI: 10.1111/jne.12145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 02/07/2014] [Accepted: 03/06/2014] [Indexed: 11/29/2022]
Abstract
Daytime restricted feeding promotes the re-alignment of the food entrained oscillator (FEO). Endocrine cues which secretion is regulated by the transition of fasting and feeding cycles converge in the FEO. The present study aimed to investigate the ghrelin, growth hormone (GH) and insulin-like growth factor (IGF)-1 system because their release depends on rhythmic and nutritional factors, and the output from the system influences feeding and biochemical status. In a daily sampling approach, rats that were fed ad lib. were compared with rats on a reversed (daytime) and restricted feeding schedule by 3 weeks (dRF; food access for 2 h), also assessing the effect of acute fasting and refeeding. We undertook measurements of clock protein BMAL1 and performed somatometry of peripheral organs and determined the concentration of total, acylated and unacylated ghrelin, GH and IGF-1 in both serum and in its main synthesising organs. During dRF, BMAL1 expression was synchronised to mealtime in hypophysis and liver; rats exhibited acute hyperphagia, stomach distension with a slow emptying, a phase shift in liver mass towards the dark period and decrease in mass perigonadal white adipose tissue. Total ghrelin secretion during the 24-h period increased in the dRF group as a result of elevation of the unacylated form. By contrast, GH and IGF-1 serum concentration fell, with a modification of GH daily pattern after mealtime. In the dRF group, ghrelin content in the stomach and pituitary GH content decreased, whereas hepatic IGF-1 remained equal. The daily patterns and synthesis of these hormones had a rheostatic adaptation. The endocrine adaptive response elicited suggests that it may be associated with the regulation of metabolic, behavioural and physiological processes during the paradigm of daytime restricted feeding and associated FEO activity.
Collapse
Affiliation(s)
- E del C Arellanes-Licea
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Severe injury and infection are often followed by accelerated protein catabolism and acute insulin resistance. This results in several effects that complicate and prolong recovery, including weakness, immobility, impaired wound healing, and organ dysfunction. Recent studies have demonstrated the development of GH resistance during severe inflammation, providing a potential mechanism for the protein loss that follows injury and infection. To understand this GH resistance, we recently developed a murine model of acute injury. Mice were subjected to soft-tissue injury, alone or combined with hemorrhage, and injected iv with GH 30, 60, or 90 minutes later. Hepatic GH signaling was measured via Western analysis. GH-induced signal transducer and activator of transcription 5 phosphorylation was decreased immediately after completion of the trauma procedure, and at 30 and 60 minutes, but further decreased by 90 minutes after trauma. Combined trauma and hemorrhage resulted in severely decreased GH-induced signal transducer and activator of transcription 5 phosphorylation compared with trauma alone, and this was true at all time points studied. Western analysis revealed an apparent decrease in the molecular weight of the hepatic GH receptor (GHR) after trauma and hemorrhage, but not trauma alone. Additional studies determined that the hemorrhage-induced decrease in receptor size was not due to changes in GHR N-linked glycosylation. These results suggest that GH sensitivity is rapidly impaired after acute injury and that trauma combined with hemorrhage results in a more severe form of GH resistance resulting from alteration or inactivation of hepatic GHR.
Collapse
Affiliation(s)
- Ryan M Corrick
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | |
Collapse
|
20
|
Varewijck AJ, Janssen JAMJL, Vähätalo M, Hofland LJ, Lamberts SWJ, Yki-Järvinen H. Addition of insulin glargine or NPH insulin to metformin monotherapy in poorly controlled type 2 diabetic patients decreases IGF-I bioactivity similarly. Diabetologia 2012; 55:1186-94. [PMID: 22237688 PMCID: PMC3296010 DOI: 10.1007/s00125-011-2435-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/05/2011] [Indexed: 01/21/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to compare IGF-I bioactivity 36 weeks after the addition of insulin glargine (A21Gly,B31Arg,B32Arg human insulin) or NPH insulin to metformin therapy in type 2 diabetic patients who had poor glucose control under metformin monotherapy. METHODS In the Lantus plus Metformin (LANMET) study, 110 poorly controlled insulin-naive type 2 diabetic patients were randomised to receive metformin with either insulin glargine (G+MET) or NPH insulin (NPH+MET). In the present study, IGF-I bioactivity was measured, retrospectively, in 104 out of the 110 initially included LANMET participants before and after 36 weeks of insulin therapy. IGF-I bioactivity was measured using an IGF-I kinase receptor activation assay. RESULTS After 36 weeks of insulin therapy, insulin doses were comparable between the G+MET (68 ± 5.7 U/day) and NPH+MET (71 ± 6.2 U/day) groups (p = 0.68). Before insulin therapy, circulating IGF-I bioactivity was similar between the G+MET (134 ± 9 pmol/l) and NPH+MET (135 ± 10 pmol/l) groups (p = 0.83). After 36 weeks, IGF-I bioactivity had decreased significantly (p = 0.001) and did not differ between the G+MET (116 ± 9 pmol/l) and NPH+MET (117 ± 10 pmol/l) groups (p = 0.91). At baseline and after insulin therapy, total IGF-I concentrations were comparable in both groups (baseline: G+MET 13.3 ± 1.0 vs NPH+MET 13.3 ± 1.0 nmol/l, p = 0.97; and 36 weeks: 13.4 ± 1.0 vs 13.1 ± 0.9 nmol/l, p = 0.71). Total IGF-I concentration did not change during insulin therapy (13.3 ± 0.7 vs 13.3 ± 0.7 nmol/l, baseline vs 36 weeks, p = 0.86). CONCLUSIONS/INTERPRETATION Addition of insulin glargine or NPH insulin to metformin monotherapy in poorly controlled type 2 diabetic patients decreases serum IGF-I bioactivity in a similar manner.
Collapse
Affiliation(s)
- A. J. Varewijck
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | - J. A. M. J. L. Janssen
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | | | - L. J. Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | - S. W. J. Lamberts
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | - H. Yki-Järvinen
- Department of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
da Silva Almeida AC, Strous GJ, van Rossum AGSH. βTrCP controls GH receptor degradation via two different motifs. Mol Endocrinol 2011; 26:165-77. [PMID: 22034227 DOI: 10.1210/me.2011-1211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The physiological roles of GH are broad and include metabolism regulation and promotion of somatic growth. Therefore, the responsiveness of cells to GH must be tightly regulated. This is mainly achieved by a complex and well-controlled mechanism of GH receptor (GHR) endocytosis. GHR endocytosis occurs independently of GH and requires the ubiquitin ligase, SCF (βTrCP) that is recruited to the ubiquitin-dependent endocytosis (UbE) motif in the cytoplasmic tail of the GHR. In this study we report that, in addition to the UbE motif, a downstream degron, DSGRTS, binds to βTrCP. The WD40 residues on βTrCP involved in the interaction with this sequence are identical to the ones necessary for binding the classical motif, DSGxxS, in inhibitor of NFκB signalling, and β-catenin. Previously, we showed that this motif is not involved in GH-induced endocytosis. We show here that the DSGRTS sequence significantly contributes to GHR endocytosis/degradation in basal conditions, whereas the UbE motif is involved both in basal and GH-induced conditions. These findings explain the high rate of GHR degradation under basal conditions, which is important for regulating the responsiveness of cells to GH.
Collapse
Affiliation(s)
- Ana C da Silva Almeida
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | |
Collapse
|
22
|
Bortoff KD, Keeton AB, Franklin JL, Messina JL. Anti-Inflammatory Action of Insulin via Induction of Gadd45-β Transcription by the mTOR Signaling Pathway. Hepat Med 2010; 2001:79-85. [PMID: 21286247 PMCID: PMC3030126 DOI: 10.2147/hmer.s7083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insulin regulates a large number of genes in a tissue-specific manner. We have previously identified genes modulated by insulin in the liver and in liver-derived cells that have not yet been characterized as insulin regulated, and results of these previous studies indicated that numerous genes are induced by insulin via the MEK-ERK pathway. We now describe new studies indicating that Gadd45-β can be induced by acute insulin treatment. Although other regulators of Gadd45-β expression may utilize the MEK-ERK pathway, the data indicate that insulin utilizes signaling pathways separate from either MEK-ERK, PI3-K, or p38 signaling pathways in the regulation of Gadd45-β transcription. Our findings show that activation of a downstream effector of multiple signaling pathways, mTOR, was required for insulin-induction of Gadd45-β gene transcription. Increased expression of Gadd45-β can inhibit c-Jun N-terminal kinase (JNK) activity. Since TNFα is increased during inflammation, and acts, at least in part, via the JNK signaling pathway, insulin induction of Gadd45-β suggests a mechanism for the anti-inflammatory actions of insulin.
Collapse
Affiliation(s)
- Katherine D Bortoff
- Department of Pathology, Division of Molecular and Cellular Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019
| | | | | | | |
Collapse
|
23
|
Brugts MP, van Duijn CM, Hofland LJ, Witteman JC, Lamberts SW, Janssen JA. Igf-I bioactivity in an elderly population: relation to insulin sensitivity, insulin levels, and the metabolic syndrome. Diabetes 2010; 59:505-8. [PMID: 20103714 PMCID: PMC2809963 DOI: 10.2337/db09-0583] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE There is a complex relationship between IGF-I, IGF binding proteins, growth hormone, and insulin. The IGF-I kinase receptor activation assay (KIRA) is a novel method for measuring IGF-I bioactivity in human serum. We speculated that determination of IGF-I bioactivity might broaden our understanding of the IGF-I system in subjects with the metabolic syndrome. The purpose of our study was to investigate whether IGF-I bioactivity was related to insulin sensitivity and the metabolic syndrome. RESEARCH DESIGN AND METHODS We conducted a cross-sectional study embedded in a random sample (1,036 elderly subjects) of a prospective population-based cohort study. IGF-I bioactivity was determined by the IGF-I KIRA. Categories of glucose (in)tolerance were defined by the 2003 American Diabetes Association criteria. Insulin sensitivity was assessed by homeostasis model assessment. The Adult Treatment Panel III definition of the metabolic syndrome was used. RESULTS In subjects with normal fasting glucose and impaired fasting glucose, IGF-I bioactivity progressively increased with increasing insulin resistance, peaked at fasting glucose levels just below 7.0 mmol/l, and dropped at higher glucose levels. Mean IGF-I bioactivity peaked when three criteria of the metabolic syndrome were present and then declined significantly when five criteria of the metabolic syndrome were present. CONCLUSIONS We observed that IGF-I bioactivity was related to insulin sensitivity, insulin levels, and the metabolic syndrome. Our study suggests that there exists an inverse U-shaped relationship between IGF-I bioactivity and number of components of the metabolic syndrome. This observation contrasts with previous results reporting an inverse relationship between total IGF-I and components of the metabolic syndrome.
Collapse
Affiliation(s)
- Michael P. Brugts
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Cornelia M. van Duijn
- Department of Epidemiology and Biostatistics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Leo J. Hofland
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jacqueline C. Witteman
- Department of Epidemiology and Biostatistics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Steven W.J. Lamberts
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Joseph A.M.J.L. Janssen
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Corresponding author: Joseph A.M.J.L. Janssen,
| |
Collapse
|
24
|
Liao Z, Chen X, Wu M. Molecular cloning and functional analysis of Chinese sturgeon (Acipenser sinensis) growth hormone receptor. ACTA ACUST UNITED AC 2009; 52:911-21. [DOI: 10.1007/s11427-009-0131-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
|
25
|
Touvier T, Conte-Auriol F, Briand O, Cudejko C, Paumelle R, Caron S, Baugé E, Rouillé Y, Salles JP, Staels B, Bailleul B. LEPROT and LEPROTL1 cooperatively decrease hepatic growth hormone action in mice. J Clin Invest 2009; 119:3830-8. [PMID: 19907080 DOI: 10.1172/jci34997] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 09/23/2009] [Indexed: 01/14/2023] Open
Abstract
Growth hormone (GH) is a major metabolic regulator that functions by stimulating lipolysis, preventing protein catabolism, and decreasing insulin-dependent glucose disposal. Modulation of hepatic sensitivity to GH and the downstream effects on the GH/IGF1 axis are important events in the regulation of metabolism in response to variations in food availability. For example, during periods of reduced nutrient availability, the liver becomes resistant to GH actions. However, the mechanisms controlling hepatic GH resistance are currently unknown. Here, we investigated the role of 2 tetraspanning membrane proteins, leptin receptor overlapping transcript (LEPROT; also known as OB-RGRP) and LEPROT-like 1 (LEPROTL1), in controlling GH sensitivity. Transgenic mice expressing either human LEPROT or human LEPROTL1 displayed growth retardation, reduced plasma IGF1 levels, and impaired hepatic sensitivity to GH, as measured by STAT5 phosphorylation and Socs2 mRNA expression. These phenotypes were accentuated in transgenic mice expressing both proteins. Moreover, gene silencing of either endogenous Leprot or Leprotl1 in H4IIE hepatocytes increased GH signaling and enhanced cell-surface GH receptor. Importantly, we found that both LEPROT and LEPROTL1 expression were regulated in the mouse liver by physiologic and pathologic changes in glucose homeostasis. Together, these data provide evidence that LEPROT and LEPROTL1 influence liver GH signaling and that regulation of the genes encoding these proteins may constitute a molecular link between nutritional signals and GH actions on body growth and metabolism.
Collapse
|
26
|
Abstract
Growth hormone (GH) regulates somatic growth, substrate metabolism and body composition. Its actions are elaborated through the GH receptor (GHR). GHR signalling involves the role of at least three major pathways, STATs, MAPK, and PI3-kinase/Akt. GH receptor function can be modulated by changes to the ligand, to the receptor or by factors regulating signal transduction. Insights on the physico-chemical basis of the binding of GH to its receptor and the stoichiometry required for activation of the GH receptor-dimer has led to the development of novel GH agonists and antagonists. Owing to the fact that GH has short half-life, several approaches have been taken to create long-acting GHR agonists. This includes the pegylation, sustained release formulations, and ligand-receptor fusion proteins. Pegylation of a GH analogue (pegvisomant) which binds but not activate signal transduction forms the basis of a new successful approach to the treatment of acromegaly. GH receptors can be regulated at a number of levels, by modifying receptor expression, surface availability and signalling. Insulin, thyroid hormones and sex hormones are among hormones that modulate GHR through some of these mechanisms. Estrogens inhibit GH signalling by stimulating the expression of SOCS proteins which are negative regulators of cytokine receptor signalling. This review of GHR modulators will cover the effects of ligand modification, and of factors regulating receptor expression and signalling.
Collapse
Affiliation(s)
- Vita Birzniece
- Pituitary Research Unit, Garvan Institute of Medical Research and Department of Endocrinology, St. Vincent's Hospital, NSW, Australia
| | | | | |
Collapse
|
27
|
Rosa JS, Galassetti PR. Altered molecular adaptation to exercise in children with type 1 diabetes: beyond hypoglycemia. Pediatr Diabetes 2009; 10:213-26. [PMID: 18828794 DOI: 10.1111/j.1399-5448.2008.00452.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jaime S Rosa
- Department of Pediatrics, Institute for Clinical Translational Science, University of California, Irvine, Orange, CA 92868, USA
| | | |
Collapse
|
28
|
Wilson FA, Suryawan A, Orellana RA, Nguyen HV, Jeyapalan AS, Gazzaneo MC, Davis TA. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis. Am J Physiol Endocrinol Metab 2008; 295:E876-83. [PMID: 18682537 PMCID: PMC3774258 DOI: 10.1152/ajpendo.90423.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 microg x kg(-1) x day(-1)) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P<0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P<0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1.eIF4E complex association, and increased active eIF4E.eIF4G complex formation (P<0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.
Collapse
Affiliation(s)
- Fiona A Wilson
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Wilson FA, Orellana RA, Suryawan A, Nguyen HV, Jeyapalan AS, Frank J, Davis TA. Stimulation of muscle protein synthesis by somatotropin in pigs is independent of the somatotropin-induced increase in circulating insulin. Am J Physiol Endocrinol Metab 2008; 295:E187-94. [PMID: 18460595 PMCID: PMC3751036 DOI: 10.1152/ajpendo.90253.2008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated through an insulin-induced stimulation of translation initiation. After 7-10 days of pST (150 microg x kg(-1) x day(-1)) or control saline treatment, pancreatic glucose-amino acid clamps were performed in overnight-fasted pigs to reproduce 1) fasted (5 microU/ml), 2) fed control (25 microU/ml), and 3) fed pST-treated (50 microU/ml) insulin levels while glucose and amino acids were maintained at baseline fasting levels. Fractional protein synthesis rates and indexes of translation initiation were examined in skeletal muscle. Effectiveness of pST treatment was confirmed by reduced urea nitrogen and elevated insulin-like growth factor I levels in plasma. Skeletal muscle protein synthesis was independently increased by both insulin and pST. Insulin increased the phosphorylation of protein kinase B and the downstream effectors of the mammalian target of rapamycin, ribosomal protein S6 kinase, and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1). Furthermore, insulin reduced inactive 4E-BP1.eIF4E complex association and increased active eIF4E.eIF4G complex formation, indicating enhanced eIF4F complex assembly. However, pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of skeletal muscle protein synthesis in growing pigs is independent of the insulin-associated activation of translation initiation.
Collapse
Affiliation(s)
- Fiona A Wilson
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St., Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Jin H, Lanning NJ, Carter-Su C. JAK2, but not Src family kinases, is required for STAT, ERK, and Akt signaling in response to growth hormone in preadipocytes and hepatoma cells. Mol Endocrinol 2008; 22:1825-41. [PMID: 18499741 DOI: 10.1210/me.2008-0015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Janus kinase 2 (JAK2), a tyrosine kinase that associates with the GH receptor and is activated by GH, has been implicated as a key mediator of GH signaling. Several published reports suggest that members of the Src family of tyrosine kinases may also participate in GH signaling. We therefore investigated the extent to which JAK2 and Src family kinases mediate GH activation of signal transducers and activators of transcription (STATs) 1, 3, and 5a/b, ERKs 1 and 2, and Akt, in the highly GH-responsive cell lines 3T3-F442A preadipocytes and H4IIE hepatoma cells. GH activation of Src family kinases was not detected in either cell line. Further, blocking basal activity of Src kinases with the Src inhibitors PP1 and PP2 did not inhibit GH activation of STATs 1, 3, or 5a/b, or ERKs 1 and 2. When levels of JAK2 were depressed by short hairpin RNA in 3T3-F442A and H4IIE cells, GH-stimulated activation of STATs 1, 3, and 5a/b, ERKs 1 and 2, and Akt were significantly reduced; however, basal activity of Src family kinases was unaffected. These results were supported genetically by experiments showing that GH robustly activates JAK2, STATs 3 and 5a/b, ERKs 1 and 2, and Akt in murine embryonic fibroblasts derived from Src/Yes/ Fyn triple-knockout embryos that lack known Src kinases. These results strongly suggest that JAK2, but not Src family kinases, is critical for transducing these GH signals in 3T3-F442A and H4IIE cells.
Collapse
Affiliation(s)
- Hui Jin
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109-5622, USA
| | | | | |
Collapse
|
31
|
Schäfer C, Gehrmann T, Richter L, Keitel V, Köhrer K, Häussinger D, Schliess F. Modulation of Gene Expression Profiles by Hyperosmolarity and Insulin. Cell Physiol Biochem 2008; 20:369-86. [PMID: 17762165 DOI: 10.1159/000107522] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2007] [Indexed: 01/11/2023] Open
Abstract
Cell hydration changes play a key role in the regulation of cell function and critically affect insulin sensitivity of carbohydrate- and protein metabolism. Here, the modulation of gene expression profiles by hyperosmolarity and insulin was examined in H4IIE rat hepatoma cells by cDNA/oligonucleotiode array-, Northern- and Western blot analysis. Osmosensitive expression of the insulin-like growth factor binding protein Igfbp1, the multidrug resistance protein Mrp5 (Abcc5a) and cyclin D1 (Ccnd1) was established at the mRNA and protein level. Despite a hyperosmotic increase of cyclin D1 mRNA induction by insulin, the cyclin D1 protein expression was decreased by hyperosmolarity, suggesting a hyperosmotic interference with cyclin D1 mRNA translation. Hyperosmolarity at the mRNA level blunted the insulin response of betaine homocysteine-S-methyl transferase, the multidrug resistance proteins Mdr1a (Abcb1a) and 2 (Abcb4), the Igfbp 2 and 5, cyclin G1, dual specificity phosphatase Dusp1, signal transducers and activators of transcription Stat3 and 5, catalase and the bile salt export pump Bsep (Abcb11), whereas the insulin response was increased for Mrp5, cyclin D1 and the phosphoenolpyruvate carboxykinase. Insulin effects on the mRNA expression of the eukaryotic initiation factor 4E binding protein 4e-bp1, tubulin, gene 33, growth hormone receptor, keratin18, ornithine decarboxylase and heme oxygenase 1 were largely insensitive to hyperosmolarity. The data indicate that hyperosmolarity differentially modulates insulin sensitivity at the level of gene expression.
Collapse
Affiliation(s)
- Christine Schäfer
- Heinrich-Heine-University, Clinic for Gastroenterology, Hepatology, and Infectiology, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Landau D, Segev Y. Role of IGF-I in Type 2 diabetes: a focus on the mouse model. Expert Rev Endocrinol Metab 2008; 3:43-49. [PMID: 30743784 DOI: 10.1586/17446651.3.1.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insulin resistance, the key mechanism in Type 2 diabetes mellitus (T2DM) is also associated with the deregulation of other glucose homeostasis pathways, such as the growth hormone (GH)-IGF-I system. In this review, we summarize the endocrine and renal GH-IGF axis changes in db/db mice, a model of T2DM, and compare it with the nonobese diabetic mouse model of T1DM. In the latter, elevated circulating GH levels (associated with kidney disease) could be ameliorated with the use of GH antagonists. Contrary to that, in the obese db/db mice, serum GH and IGF-I levels are decreased and tissue levels of IGF-binding protein 1 (Igfbp1) are increased. The latter hinted again for the known inverse correlation between insulin and Igfbp1 and was mediated by changes in the transcription factor phosphorylated forkhead box O1 in obese animals. In addition, the decrease in circulating IGF-I and GH levels causes a state of low free and active IGF-I, which may further impair tissue viability (including pancreatic β-cells). Thus, further GH inhibition to modulate complications in T2DM is not indicated, but the therapeutic role of IGF-1 in this disease remains to be determined.
Collapse
Affiliation(s)
- Daniel Landau
- a Department of Pediatrics A, Faculty of Health Sciences, Ben Gurion University of the Negev, Soroka University Medical Center, PO Box 151, Beer Sheva 84101, Israel.
| | - Yael Segev
- b Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Soroka University Medical Center, PO Box 151, Beer Sheva 84101, Israel.
| |
Collapse
|
33
|
Bennett WL, Keeton AB, Ji S, Xu J, Messina JL. Insulin regulation of growth hormone receptor gene expression: involvement of both the PI-3 kinase and MEK/ERK signaling pathways. Endocrine 2007; 32:219-26. [PMID: 18040895 DOI: 10.1007/s12020-007-9021-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/28/2007] [Accepted: 10/29/2007] [Indexed: 12/29/2022]
Abstract
The mechanism(s) of insulin's effects on growth hormone receptor (GHR) gene expression are poorly understood. Using rat hepatoma cells, we have previously shown that insulin treatment reduces GHR mRNA and protein in a time- and concentration-dependent manner, at least in part via down-regulation of GHR transcription. The present study determines whether the phosphatidylinositol-3 kinase (PI-3 kinase) and mitogen activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways are involved in mediating these effects of insulin. Inhibition of the PI-3 kinase pathway partially blocked insulin's reduction of GHR mRNA, as did inhibition of the MEK/ERK pathway, resulting in higher GHR mRNA levels. Inhibition of both pathways was necessary to completely block insulin effects. Similar results were obtained for GHR protein. Collectively, these data suggest that insulin signaling via either the PI-3 kinase or MEK/ERK pathway may result in partial reduction of GHR gene expression, whereas signaling via both pathways may be required to achieve the full insulin effect.
Collapse
Affiliation(s)
- William L Bennett
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Volker Hall, G019, 1670 University Blvd, Birmingham, AL 35294-0019, USA
| | | | | | | | | |
Collapse
|
34
|
Bennett WL, Ji S, Messina JL. Insulin regulation of growth hormone receptor gene expression. Evidence for a transcriptional mechanism of down-regulation in rat hepatoma cells. Mol Cell Endocrinol 2007; 274:53-9. [PMID: 17658679 DOI: 10.1016/j.mce.2007.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 05/28/2007] [Indexed: 11/21/2022]
Abstract
The role of insulin in regulating responsiveness to growth hormone (GH) remains unclear. Continuous insulin treatment reduces GH binding, which suggests that insulin may effect growth hormone receptor (GHR) levels. The present study used rat hepatoma cells to examine the effects of insulin and GH on GHR gene expression. Prolonged insulin treatment (greater than 3h) significantly reduced GHR mRNA, and removal of insulin led to a gradual recovery. This effect of insulin occurred at physiologic concentrations, occurred many hours before the insulin-regulated decrease in GHR protein, and was mediated by reduction of GHR transcription. GH treatment dramatically reduced GHR protein, but caused only a modest reduction in GHR mRNA. These findings indicate that the heterologous reduction of GHR by insulin occurs via transcriptional downregulation, and the homologous reduction of GHR by GH occurs via a different mechanism. Furthermore, with insulin, extended time of exposure may be necessary for appreciable reduction of GHR.
Collapse
Affiliation(s)
- William L Bennett
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | |
Collapse
|
35
|
Segev Y, Eshet R, Yakir O, Haim N, Phillip M, Landau D. Systemic and renal growth hormone-IGF1 axis involvement in a mouse model of type 2 diabetes. Diabetologia 2007; 50:1327-34. [PMID: 17443310 DOI: 10.1007/s00125-007-0663-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS In previous studies we have shown a significant involvement of the growth hormone (GH)-IGF axis in animal models of type 1 diabetes mellitus, but the role of this endocrine system in type 2 diabetes mellitus is less well characterised. We therefore examined the endocrine and renal GH-IGF axis changes in db/db mice, a model of type 2 diabetes mellitus and nephropathy. MATERIALS AND METHODS Obese and lean animals were followed, beginning at hyperglycaemia onset, for 4 weeks. Albuminuria and creatinine clearance, as well as kidney and glomerular morphology were assessed. Tissue protein levels were determined by western blotting and mRNA levels by RT-PCR. RESULTS Serum GH and IGF1 levels immediately prior to killing were decreased and liver mRNA levels of insulin-like growth factor binding protein 1 (Igfbp1) were increased in obese animals. Kidney weight was increased in obese animals, associated with hyperfiltration, albuminuria and glomerular hypertrophy. Administration of a somatostatin analogue (PTR-313) did not improve any of these parameters of diabetic renal involvement. Renal Igf1 mRNA was decreased and renal Igfbp1 mRNA and protein were significantly increased in obese animals. Renal insulin-driven levels of phosphorylated forkhead box O1 (FOXO1) were decreased in obese animals. CONCLUSIONS/INTERPRETATION Diabetic db/db mice show significant renal changes (and IGFBP1 renal accumulation), similar to the findings in models of type 1 diabetes mellitus. A decreased signalling through the insulin receptor and decreased FOXO1 phosphorylation may allow Igfbp1 gene transcription. These renal changes are associated with low circulating IGF1 and GH levels and unchanged hepatic growth hormone receptor expression, unlike the condition in type 1 diabetes mellitus. This suggests that further GH inhibition to modulate renal complications in type 2 diabetes mellitus is not indicated.
Collapse
Affiliation(s)
- Y Segev
- Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Jørgensen JOL, Jessen N, Pedersen SB, Vestergaard E, Gormsen L, Lund SA, Billestrup N. GH receptor signaling in skeletal muscle and adipose tissue in human subjects following exposure to an intravenous GH bolus. Am J Physiol Endocrinol Metab 2006; 291:E899-905. [PMID: 16757551 DOI: 10.1152/ajpendo.00024.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth hormone (GH) regulates muscle and fat metabolism, which impacts on body composition and insulin sensitivity, but the underlying GH signaling pathways have not been studied in vivo in humans. We investigated GH signaling in biopsies from muscle and abdominal fat obtained 30 (n = 3) or 60 (n = 3) min after an intravenous bolus of GH (0.5 mg) vs. saline in conjunction with serum sampling in six healthy males after an overnight fast. Expression of the following signal proteins were assayed by Western blotting: STAT5/p-STAT5, MAPK, and Akt/PKB. IRS-1-associated PI 3-kinase activity was measured by in vitro phosphorylation of PI. STAT5 DNA binding activity was assessed with EMSA, and the expression of IGF-I and SOCS mRNA was measured by real-time RT-PCR. GH induced a 52% increase in circulating FFA levels with peak values after 155 min (P = 0.03). Tyrosine-phosphorylated STAT5 was detected in muscle and fat of all subjects after GH. Activation of MAPK was observed in several lysates but without GH dependency. Neither PKB/Akt nor PI 3-kinase activity was affected by GH. GH-induced STAT5 DNA binding and expression of IGF-I mRNA were detected in fat, whereas expression of SOCS-1 and -3 tended to increase after GH in muscle and fat, respectively. We conclude that 1) STAT5 is acutely activated in human muscle and fat after a GH bolus, but additional downstream GH signaling was significant only in fat; 2) the direct GH effects in muscle need further characterization; and 3) this human in vivo model may be used to study the mechanisms subserving the actions of GH on substrate metabolism and insulin sensitivity in muscle and fat.
Collapse
Affiliation(s)
- Jens O L Jørgensen
- Aarhus University Hospital and Institute of Clinical Research, Aarhus University, Aarhus, and Steno Diabetes Center, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
37
|
Xu J, Liu Z, Clemens TL, Messina JL. Insulin reverses growth hormone-induced homologous desensitization. J Biol Chem 2006; 281:21594-21606. [PMID: 16717097 DOI: 10.1074/jbc.m513612200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Growth hormone (GH) is secreted in a pulsatile pattern to promote body growth and metabolism. GH exerts its function by activating several signaling pathways, including JAK2/STAT and MEK/ERK. ERK1/2 activation by GH plays important roles in gene expression, cell proliferation, and growth. We previously reported that in rat H4IIE hepatoma cells after an initial GH exposure, a second GH exposure induces STAT5 phosphorylation but not ERK1/2 phosphorylation (Ji, S., Frank, S. J., and Messina, J. L. (2002) J. Biol. Chem. 277, 28384-28393). In this study the mechanisms underlying GH-induced homologous desensitization were investigated. A second GH exposure activated the signaling intermediates upstream of MEK/ERK, including JAK2, Ras, and Raf-1. This correlated with recovery of GH receptor levels, but was insufficient for GH-induced phosphorylation of MEK1/2 and ERK1/2. Insulin restored the ability of a second GH exposure to induce phosphorylation of MEK1/2 and ERK1/2 without altering GH receptor levels or GH-induced phosphorylation/activation of JAK2 and Raf-1. GH and insulin synergized in promoting cell proliferation. Further investigation suggested that insulin increased the amount of MEK bound to KSR (kinase suppressor of Ras) and restored GH-induced tyrosine phosphorylation of KSR. Previous GH exposure also induced desensitization of STAT1 and STAT3 phosphorylation, but this desensitization was not reversed by insulin. Thus, insulin-regulated resensitization of GH signaling may be necessary to reset the complete response to GH after a normal, physiologic pulse of GH.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | - Zhongyu Liu
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | - Thomas L Clemens
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | - Joseph L Messina
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019.
| |
Collapse
|
38
|
Fisker S. Physiology and pathophysiology of growth hormone-binding protein: methodological and clinical aspects. Growth Horm IGF Res 2006; 16:1-28. [PMID: 16359897 DOI: 10.1016/j.ghir.2005.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/01/2005] [Accepted: 11/01/2005] [Indexed: 11/20/2022]
Abstract
Circulating GH is partly bound to a high-affinity binding protein (GHBP), which in humans is derived from cleavage of the extracellular domain of the GH receptor. The precise biological function GHBP is unknown, although a regulation of GH bioactivity appears plausible. GHBP levels are determined by GH secretory status, body composition, age, and sex hormones, but the cause-effect relationships remain unclarified. In addition to the possible in vivo significance of GHBP, the interaction between GH and GHBP has methodological implications for both GH and GHBP assays. The present review concentrates on methodological aspects of GHBP measurements, GHBP levels in certain clinical conditions with a special emphasis on disturbances in the GH-IGF axis, and discusses the possible relationship between plasma GHBP and GH receptor status in peripheral tissues.
Collapse
Affiliation(s)
- Sanne Fisker
- Medical Department M (Endocrinology and Diabetes), Aarhus University Hospital, Aarhus Sygehus, Nørrebrogade 44, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
39
|
Xu J, Keeton AB, Franklin JL, Li X, Venable DY, Frank SJ, Messina JL. Insulin enhances growth hormone induction of the MEK/ERK signaling pathway. J Biol Chem 2005; 281:982-92. [PMID: 16272159 DOI: 10.1074/jbc.m505484200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth hormone (GH) plays an important role in growth and metabolism by signaling via at least three major pathways, including STATs, ERK1/2, and phosphatidylinositol 3-kinase/Akt. Physiological concentrations of insulin promote growth probably by modulating liver GH receptor (GHR) levels in vivo, but the possible effects of insulin on GH-induced post-GHR signaling have yet to be studied. We hypothesized that short-term insulin, similar to the fluctuations that occur following feeding, affects GH-induced post-GHR signaling. Our present studies suggest that, in rat H4IIE hepatoma cells, insulin (4 h or less) selectively enhanced GH-induced phosphorylation of MEK1/2 and ERK1/2, but not GH-induced activation of STAT5 and Akt. Although insulin pretreatment altered GH-induced formation of Shc.Grb2.SOS complex, it did not significantly affect GH-induced activation of other signaling intermediates upstream of MEK/ERK, including JAK2, Ras, and Raf-1. Immunofluorescent staining indicated that insulin pretreatment facilitated GH-induced cell membrane translocation of MEK1/2. Insulin pretreatment also increased the amount of MEK association with its scaffolding protein, KSR. In summary, short-term insulin treatment of cultured, liver-derived cells selectively sensitized GH-induced MEK/ERK phosphorylation independent of JAK2, Ras, and Raf-1, but likely resulted from increased cell membrane translocation of MEK1/2. These findings suggest that insulin may be necessary for sensitization of cells to GH-induced ERK1/2 activation and provides a potential cellular mechanism by which insulin promotes growth.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Guido M, Romualdi D, Giuliani M, Suriano R, Tienforti D, Costantini B, Lanzone A. Effect of metformin on the growth hormone response to growth hormone–releasing hormone in obese women with polycystic ovary syndrome. Fertil Steril 2005; 84:1470-6. [PMID: 16275246 DOI: 10.1016/j.fertnstert.2005.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 05/05/2005] [Accepted: 05/05/2005] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Obese women with polycystic ovary syndrome (PCOS) show a marked growth hormone (GH) hyporesponsiveness to several stimuli. We aimed to evaluate the impact of insulin metabolism on the GH secretion impairment in these subjects in relation to food ingestion. DESIGN Prospective clinical study. SETTING Academic research center. PATIENT(S) Nine obese women with PCOS. INTERVENTION(S) Metformin (1,500 mg/daily) was administered for three months. The study protocol, which was performed before and after therapy, included hormonal and lipid assays, oral glucose tolerance test (75 g), euglycemic hyperinsulinemic clamp, and growth hormone-releasing hormone (GHRH) test (50 microg/ev), both on fasting and after a standard meal. MAIN OUTCOME MEASURE(S) Growth hormone response to GHRH (expressed as the area under the curve) in different experimental conditions. RESULT(S) The preprandial GH response to GHRH was not modified by the therapy, whereas a significant increase (P<.05) occurred in the postprandial GH secretion, thus resembling the response of obese normal persons. This change was accompanied by a trend towards improvement, though not statistically significant, of all the evaluated glycoinsulinemic parameters. A significant reduction in cholesterol (P<.01) and androstenedione (P<.05) and an increase in sex hormone-binding globulin (P<.05) were also achieved. CONCLUSION(S) These data suggest that metformin is able to affect GH secretion in obese women with PCOS, even with minimal metabolic modifications.
Collapse
Affiliation(s)
- Maurizio Guido
- Department of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Flores-Morales A, Greenhalgh CJ, Norstedt G, Rico-Bautista E. Negative regulation of growth hormone receptor signaling. Mol Endocrinol 2005; 20:241-53. [PMID: 16037128 DOI: 10.1210/me.2005-0170] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
GH has been of significant scientific interest for decades because of its capacity to dramatically change physiological growth parameters. Furthermore, GH interacts with a range of other hormonal pathways and is an established pharmacological agent for which novel therapeutical applications can be foreseen. It is easy to see the requirement for a number of postreceptor mechanisms to regulate and control target tissue sensitivity to this versatile hormone. In recent years, some of the components that take part in the down-regulatory mechanism targeting the activated GH receptor (GHR) have been defined, and the physiological significance of some of these key components has begun to be characterized. Down-regulation of the GHR is achieved through a complex mechanism that involves rapid ubiquitin-dependent endocytosis of the receptor, the action of tyrosine phosphatases, and the degradation by the proteasome. The suppressors of cytokine signaling (SOCS) protein family, particularly SOCS2, plays an important role in regulating GH actions. The aim of this review is to summarize collected knowledge, including very recent findings, regarding the intracellular mechanisms responsible for the GHR signaling down-regulation. Insights into these mechanisms can be of relevance to several aspects of GH research. It can help to understand growth-related disease conditions, to explain GH resistance, and may be used to develop pharmaceuticals that enhance some the beneficial actions of endogenously secreted GH in a tissue-specific manner.
Collapse
|
42
|
Xu J, Keeton AB, Wu L, Franklin JL, Cao X, Messina JL. Gene 33 inhibits apoptosis of breast cancer cells and increases poly(ADP-ribose) polymerase expression. Breast Cancer Res Treat 2005; 91:207-15. [PMID: 15952054 DOI: 10.1007/s10549-005-1040-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The structure of the Gene 33 protein suggests that it plays a role in intracellular signaling and Gene 33 is induced by many mitogenic and stressful stimuli. Previously, we found that Gene 33 expression is significantly induced by retinoic acid (RA), insulin and synergistically by both in a liver-derived cell line. In the present study, we investigated the basal expression and regulation of Gene 33 in multiple human breast cancer cell lines. These cell lines expressed different levels of Gene 33 protein, but Gene 33 protein was not regulated by RA or insulin, either alone, or in combination. However, epidermal growth factor (EGF) induced Gene 33 expression in SK-BR-3 cells and this induction was inhibited by co-treatment with RA. There was a strong correlation between endogenous basal Gene 33 expression and doubling time. Exogenous expression of Gene 33 in MCF-7 cells did not affect cell cycle distribution, but inhibited apoptosis and specifically increased the level of Poly(ADP-ribose) Polymerase (PARP-1) protein. This suggests that Gene 33 promotes breast cancer cell growth by an anti-apoptotic rather than a mitogenic effect, possibly involving up-regulation of PARP-1.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Gene33 is a cytoplasmic protein expressed in many cell types, including those of renal and hepatic origin. Its expression is regulated by a large number of mitogenic and stressful stimuli, both in cultured cells and in vivo. Gene33 protein possesses binding domains for ErbB receptors, 14-3-3 proteins, SH-3 domains, and GTP bound Cdc42, suggesting that it may play a role in signal transduction. Indeed, these regions of Gene33 have been reported to modulate signaling through the ERK, JNK, and NFkappaB pathways. In the present work, epitope-tagged full-length and truncation mutants, as well as wild-type Gene33, were overexpressed in 293 cells. The expression of these proteins was compared to the level of endogenous Gene33 by Western blot using a newly developed polyclonal antibody. As proxies for activity of the ERK and JNK pathways, Elk- and c-Jun-dependent transcription were measured by a luciferase reporter gene. Moderate expression levels of full-length Gene33 caused a twofold increase in Elk-dependent transcription, while at higher levels, c-Jun-dependent transcription was partially inhibited. The C-terminal half of Gene33 significantly increased both Elk- and c-Jun-dependent transcription when expressed at approximately threefold above control levels. This effect on Elk-dependent transcription was lost at higher levels of Gene33 expression. In contrast, higher levels of the C-terminal half of Gene33 caused a progressively greater effect on c-Jun-dependent transcription. These findings suggest that Gene33 may increase ERK activity, and that the C-terminal half of Gene33 may act less specifically in the absence of the N-terminal half, inducing JNK activity.
Collapse
Affiliation(s)
- Adam B Keeton
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019
| | | |
Collapse
|
44
|
Keeton AB, Xu J, Franklin JL, Messina JL. Regulation of Gene33 expression by insulin requires MEK–ERK activation. ACTA ACUST UNITED AC 2004; 1679:248-55. [PMID: 15358516 DOI: 10.1016/j.bbaexp.2004.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 07/07/2004] [Accepted: 07/19/2004] [Indexed: 11/30/2022]
Abstract
Gene33 and its human homologue, mitogen inducible gene-6/receptor-associated late transducer (mig-6, RALT), is a 53-kDa soluble protein that was identified as a hepatic gene regulated by glucocorticoids and insulin. Its mRNA is expressed in numerous tissues in addition to the liver. Mitogen inducibility of Gene33 mRNA has been described in several experimental systems. Recent reports have suggested a role for Gene33 in inhibition of proliferation induced by factors that bind to members of the ErbB family of receptors. In the present work, we examine the regulation of Gene33 protein by insulin in hepatoma cells of rat (H4IIE) and human (HepG2/Hep3B) origin. Inhibition of MEK1 significantly inhibited extracellularly regulated kinase (ERK)1/2 activation and insulin-regulated Gene33 transcription and protein levels in H4IIE cells. Inhibition of phosphatidylinositol 3-kinase (PI3-K) activity alone did not significantly alter transcription of Gene33. In Hep3B and HepG2 cells, insulin did not significantly induce either ERK1/2 activation or Gene33 expression. This work suggests that the MEK-ERK, but not the phosphatidylinositol 3-kinase (PI3-K), pathway plays a direct role in insulin regulation of Gene33 transcription and protein expression.
Collapse
Affiliation(s)
- Adam B Keeton
- Department of Pathology, Division of Molecular and Cellular Pathology, Volker Hall, G019, 1670 University Blvd., University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | | | |
Collapse
|
45
|
Murray RD, Kim K, Ren SG, Chelly M, Umehara Y, Melmed S. Central and peripheral actions of somatostatin on the growth hormone-IGF-I axis. J Clin Invest 2004; 114:349-56. [PMID: 15286801 PMCID: PMC484973 DOI: 10.1172/jci19933] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 06/08/2004] [Indexed: 11/17/2022] Open
Abstract
Somatostatin (SRIF) analogs provide safe and effective therapy for acromegaly. In a proportion of patients, however, SRIF analogs may lead to discordant growth hormone (GH) and IGF-I suppression, which suggests a more complex mechanism than attributable to inhibition of GH release alone. To elucidate whether SRIF acts peripherally on the GH-IGF-I axis, we showed that rat hepatocytes express somatostatin receptor subtypes-2 and -3 and that IGF-I mRNA and protein levels were suppressed in a dose-dependent manner by administration of octreotide. The inhibitory effect of SRIF was not apparent without added GH and in the presence of GH was specific for IGF-I induction and did not inhibit GH-induced c-myc or extracellular signal regulated kinase (ERK) phosphorylation. Pertussis toxin treatment of hepatocytes incubated with GH and SRIF, or with GH and octreotide, abrogated the inhibitory effect on GH-induced IGF-I, which confirms the requirement for the inhibitory G-protein. Treatment with SRIF and GH increased protein tyrosine phosphatase (PTP) activity and inhibited signal transducer and activator of transcription-5b (STAT5b) phosphorylation and nuclear localization. Octreotide also inhibited GH-stimulated IGF-I protein content of ex vivo-perfused rat livers. The results demonstrate that SRIF acts both centrally and peripherally to control the GH-IGF-I axis, providing a mechanistic explanation for SRIF analog action in treating patients with GH-secreting pituitary adenomas.
Collapse
Affiliation(s)
- Robert D Murray
- Department of Medicine, Cedars Sinai Research Institute, UCLA School of Medicine, Los Angeles, California 90048, USA
| | | | | | | | | | | |
Collapse
|
46
|
Yoshioka S, Okimura Y, Takahashi Y, Iida K, Kaji H, Matsuo M, Chihara K. Up-regulation of mitochondrial transcription factor 1 mRNA levels by GH in VSMC. Life Sci 2004; 74:2097-109. [PMID: 14969715 DOI: 10.1016/j.lfs.2003.07.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 07/02/2003] [Indexed: 11/26/2022]
Abstract
It is well known that growth hormone (GH) is involved in the development of arteriosclerosis in which vascular smooth muscle cells (VSMC) play an important role. In this study, we attempted to specify the genes up- or down-regulated by recombinant human GH (rhGH) in VSMC using a differential display method. We found that rhGH increased cytochrome oxidase subunit II/III mRNA in VSMC. Furthermore, the mRNA for mitochondrial transcription factor 1 (mtTF1), which stimulates the expression of cytochrome oxidase subunit II/III, was found to be up-regulated by rhGH in a dose dependent manner using a quantitative PCR method. On the other hand, IGF-I alone did not change mtTF1 mRNA levels. In rat L6 myoblasts and rat H4-II-E hepatocytes, rhGH did not change mtTF1 mRNA levels. Pretreatment with a JAK2 inhibitor AG490 (10 nM) and a MEK inhibitor PD98059 (10 microM) suppressed rhGH-induced rise in mtTF1 mRNA levels of VSMC to the control levels. Pretreatment with a PI-3kinase inhibitor wortomannin (1 nM) did not suppress rhGH-induced rise in mtTF1 mRNA levels. These findings suggest that GH up-regulates mtTF1 mRNA levels through JAK2 and MEK signaling in VSMC.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Animals
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Electron Transport Complex IV/biosynthesis
- Enzyme Inhibitors/pharmacology
- Female
- Flavonoids/pharmacology
- Gene Expression Profiling
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Human Growth Hormone/pharmacology
- Humans
- Insulin-Like Growth Factor I/pharmacology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA/analysis
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tyrphostins/pharmacology
- Up-Regulation/drug effects
- Wortmannin
Collapse
Affiliation(s)
- Shiro Yoshioka
- Division of Endocrinology/Metabolism, Neurology, and Hematology/Oncology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chu-o, Kobe 650-0017 Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Stred SE, Cote D, Weinstock RS, Messina JL. Regulation of hemopexin transcription by calcium ionophores and phorbol ester in hepatoma cells. Mol Cell Endocrinol 2003; 204:111-6. [PMID: 12850286 DOI: 10.1016/s0303-7207(03)00150-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hemopexin (Hx) is an acute-phase hepatic protein, whose transcription is upregulated by IL-6. The transcription rate of Hx was found to be increased 11-fold by the calcium ionophore A23187, 25-fold by the calcium ionophore ionomycin, and 4-5-fold by phorbol 12-myristate 13-acetate (PMA) in serum-starved H4IIE rat hepatoma cells. Insulin did not affect the transcription rate of Hx. These findings are consistent with involvement of intracellular calcium concentrations and activation of protein kinase C (PKC) action in the regulation of Hx.
Collapse
Affiliation(s)
- Susan E Stred
- Cell and Molecular Biology Program and Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
48
|
Abstract
A cDNA library from the liver of a growth hormone (GH)-treated hypophysectomized rat was constructed and screened for GH-inducible genes (GIGs). Three cDNAs specific for putative GIG mRNAs (GIG-3, -7 and -12) were isolated and, when sequenced, were found to be homologous to portions of rat hemopexin, a Class 2 acute-phase gene. Hemopexin is an essential heme scavenger produced primarily in the liver, which upon binding to free heme, transports it to the liver where the heme iron is re-utilized. Hemopexin has not been previously described as being GH-responsive. GIG-3 and GIG-12 encode overlapping portions of the entire coding sequence starting within a few hundred base pairs from the 5' end of the hemopexin mRNA, and GIG-7 encodes the 3'-most end of the hemopexin mRNA. Northern analysis and ribonuclease protection assays of RNA from livers of control rats using the cDNA probes demonstrated a major transcript of approximately 2.0 kb. The hemopexin mRNA was low or undetectable in livers of hypophysectomized rats. Daily treatment with bovine growth hormone (bGH) for 10 days restored hemopexin mRNA to levels comparable or greater than that of intact rats. GH-dependence in cultured rat H4IIE hepatoma cells was then examined. Using hemopexin cDNA probes (GIG-3, -7, and -12) we identified a mRNA on Northern blots, which increased in concentration following bGH, compared with untreated cells. When measured by ribonuclease protection assay, a maximal increase in hemopexin mRNA concentration was obtained following 4-6 h of bGH administration. We conclude that hemopexin is a GH-inducible gene in rat liver in vivo and in cultured rat hepatoma cells.
Collapse
Affiliation(s)
- Susan E Stred
- Cell and Molecular Biology Program and Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
49
|
Zvonic S, Story DJ, Stephens JM, Mynatt RL. Growth hormone, but not insulin, activates STAT5 proteins in adipocytes in vitro and in vivo. Biochem Biophys Res Commun 2003; 302:359-62. [PMID: 12604355 DOI: 10.1016/s0006-291x(03)00179-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
STAT 5 proteins are latent transcription factors which have been shown to be activated by growth hormone (GH) in many cell types. However, some recent studies also suggest that STAT 5B is a physiological substrate of the insulin receptor. In our studies, we have shown that physiological levels of insulin do not induce STAT 5 tyrosine phosphorylation or affect the nuclear distribution of STATs 5A or 5B in 3T3-L1 adipocytes. Moreover, we did not observe the activation of STAT 5 in the adipose tissue or skeletal muscle of mice following an acute intraperitoneal injection of insulin. However, acute GH administration, both in vitro and in vivo, resulted in the activation of STAT 5 proteins. In summary, our results indicate that STAT 5 proteins are not activated by physiological levels of insulin in adipose tissue.
Collapse
Affiliation(s)
- Sanjin Zvonic
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
50
|
Keeton AB, Amsler MO, Venable DY, Messina JL. Insulin signal transduction pathways and insulin-induced gene expression. J Biol Chem 2002; 277:48565-73. [PMID: 12364332 DOI: 10.1074/jbc.m207837200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin regulates metabolic activity, gene transcription, and cell growth by modulating the activity of several intracellular signaling pathways. Insulin activation of one mitogen-activated protein kinase cascade, the MEK/ERK kinase cascade, is well described. However, the effect of insulin on the parallel p38 pathway is less well understood. The present work examines the effect of inhibiting the p38 signaling pathway by use of specific inhibitors, either alone or in combination with insulin, on the activation of ERK1/2 and on the regulation of gene transcription in rat hepatoma cells. Activation of ERK1/2 was induced by insulin and was dependent on the activation of MEK1, the kinase upstream of ERK in this pathway. Treatment of cells with p38 inhibitors also induced ERK1/2 activation/phosphorylation. The addition of p38 inhibitors followed by insulin addition resulted in a greater than additive activation of ERK1/2. The two genes studied, c-Fos and Pip92, are immediate-early genes that are dependent on the ERK1/2 pathway for insulin-regulated induction because the insulin effect was inhibited by pretreatment with a MEK1 inhibitor. The addition of p38 inhibitors induced transcription of both genes in a dose-dependent manner, and insulin stimulation of both genes was enhanced by prior treatment with p38 inhibitors. The ability of the p38 inhibitors to induce ERK1/2 and gene transcription, both alone and in combination with insulin, was abolished by prior inhibition of MEK1. These data suggest possible cross-talk between the p38 and ERK1/2 signaling pathways and a potential role of p38 in insulin signaling.
Collapse
Affiliation(s)
- Adam B Keeton
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham 35294, USA
| | | | | | | |
Collapse
|