1
|
Dzień E, Wątły J, Kola A, Mikołajczyk A, Miller A, Matera-Witkiewicz A, Valensin D, Rowińska-Żyrek M. Impact of metal coordination and pH on the antimicrobial activity of histatin 5 and the products of its hydrolysis. Dalton Trans 2024; 53:7561-7570. [PMID: 38606466 DOI: 10.1039/d4dt00565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This work focuses on the relationship between the coordination chemistry and antimicrobial activity of Zn(II) and Cu(II) complexes of histatin 5 and the products of its hydrolysis: its N-terminal fragment (histatin 5-8) and C-terminal fragment (histatin 8). Cu(II) coordinates in an albumin-like binding mode and Zn(II) binds to up to 3 His imidazoles. The antimicrobial activity of histatins and their metal complexes (i) strongly depends on pH - they are more active at pH 5.4 than at 7.4; (ii) the complexes and ligands alone are more effective in eradicating Gram-positive bacteria than the Gram-negative ones, and (iii) Zn(II) coordination is able to change the structure of the N-terminal region of histatin 5 (histatin 5-8) and moderately increase all of the studied histatins' antimicrobial potency.
Collapse
Affiliation(s)
- Emilia Dzień
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Joanna Wątły
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Arian Kola
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Aleksandra Mikołajczyk
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University Biobank, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Adriana Miller
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Agnieszka Matera-Witkiewicz
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University Biobank, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | | |
Collapse
|
2
|
Abstract
Peptidases generate bioactive peptides that can regulate cell signaling and mediate intercellular communication. While the processing of peptide precursors is initiated intracellularly, some modifications by peptidases may be conducted extracellularly. Thimet oligopeptidase (TOP) is a peptidase that processes neuroendocrine peptides with roles in mood, metabolism, and immune responses, among other functions. TOP also hydrolyzes angiotensin I to angiotensin 1–7, which may be involved in the pathophysiology of COVID-19 infection. Although TOP is primarily cytosolic, it can also be associated with the cell plasma membrane or secreted to the extracellular space. Recent work indicates that membrane-associated TOP can be released with extracellular vesicles (EVs) to the extracellular space. Here we briefly summarize the enzyme’s classical function in extracellular processing of neuroendocrine peptides, as well as its more recently understood role in intracellular processing of various peptides that impact human diseases. Finally, we discuss new findings of EV-associated TOP in the extracellular space.
Collapse
|
3
|
Thimet Oligopeptidase Biochemical and Biological Significances: Past, Present, and Future Directions. Biomolecules 2020; 10:biom10091229. [PMID: 32847123 PMCID: PMC7565970 DOI: 10.3390/biom10091229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15, THOP1) is a metallopeptidase ubiquitously distributed in mammalian tissues. Beyond its previously well characterized role in major histocompatibility class I (MHC-I) antigen presentation, the recent characterization of the THOP1 C57BL6/N null mice (THOP1−/−) phenotype suggests new key functions for THOP1 in hyperlipidic diet-induced obesity, insulin resistance and non-alcoholic liver steatosis. Distinctive levels of specific intracellular peptides (InPeps), genes and microRNAs were observed when comparing wild type C57BL6/N to THOP1−/− fed either standard or hyperlipidic diets. A possible novel mechanism of action was suggested for InPeps processed by THOP1, which could be modulating protein-protein interactions and microRNA processing, thus affecting the phenotype. Together, research into the biochemical and biomedical significance of THOP1 suggests that degradation by the proteasome is a step in the processing of various proteins, not merely for ending their existence. This allows many functional peptides to be generated by proteasomal degradation in order to, for example, control mRNA translation and the formation of protein complexes.
Collapse
|
4
|
Woitowich NC, Philibert KD, Leitermann RJ, Wungjiranirun M, Urban JH, Glucksman MJ. EP24.15 as a Potential Regulator of Kisspeptin Within the Neuroendocrine Hypothalamus. Endocrinology 2016; 157:820-30. [PMID: 26653570 PMCID: PMC4733123 DOI: 10.1210/en.2015-1580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuropeptide kisspeptin (Kiss1) is integral to the advent of puberty and the generation of cyclical LH surges. Although many complex actions of Kiss1 are known, the mechanisms governing the processing/regulation of this peptide have not been unveiled. The metallo enzyme, endopeptidase 24.15 (thimet oligopeptidase), has been demonstrated to play a key role in the processing and thus the duration of action of the reproductive neuropeptide, GnRH, which signals downstream of Kiss1. Initial in silico modeling implied that Kiss1 could also be a putative substrate for EP24.15. Coincubation of Kiss1 and EP24.15 demonstrated multiple cleavages of the peptide predominantly between Arg29-Gly30 and Ser47-Phe48 (corresponding to Ser5-Phe6 in Kiss-10; Kiss-10 as a substrate had an additional cleavage between Phe6-Gly7) as determined by mass spectrometry. Vmax for the reaction was 2.37±0.09 pmol/min · ng with a Km of 19.68 ± 2.53μM, which is comparable with other known substrates of EP24.15. EP24.15 immunoreactivity, as previously demonstrated, is distributed in cell bodies, nuclei, and processes throughout the hypothalamus. Kiss1 immunoreactivity is localized primarily to cell bodies and fibers within the mediobasal and anteroventral-periventricular hypothalamus. Double-label immunohistochemistry indicated coexpression of EP24.15 and Kiss1, implicating that the regulation of Kiss1 by EP24.15 could occur in vivo. Further studies will be directed at determining the precise temporal sequence of EP24.15 effects on Kiss1 as it relates to the control of reproductive hormone secretion and treatment of fertility issues.
Collapse
Affiliation(s)
- Nicole C Woitowich
- Departments of Physiology and Biophysics (N.C.W., R.J.L., J.H.U.) and Biochemistry and Molecular Biology (N.C.W., K.D.P., M.W., M.J.G.), and Midwest Proteome Center (K.D.P., M.J.G.). Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Keith D Philibert
- Departments of Physiology and Biophysics (N.C.W., R.J.L., J.H.U.) and Biochemistry and Molecular Biology (N.C.W., K.D.P., M.W., M.J.G.), and Midwest Proteome Center (K.D.P., M.J.G.). Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Randy J Leitermann
- Departments of Physiology and Biophysics (N.C.W., R.J.L., J.H.U.) and Biochemistry and Molecular Biology (N.C.W., K.D.P., M.W., M.J.G.), and Midwest Proteome Center (K.D.P., M.J.G.). Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Manida Wungjiranirun
- Departments of Physiology and Biophysics (N.C.W., R.J.L., J.H.U.) and Biochemistry and Molecular Biology (N.C.W., K.D.P., M.W., M.J.G.), and Midwest Proteome Center (K.D.P., M.J.G.). Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Janice H Urban
- Departments of Physiology and Biophysics (N.C.W., R.J.L., J.H.U.) and Biochemistry and Molecular Biology (N.C.W., K.D.P., M.W., M.J.G.), and Midwest Proteome Center (K.D.P., M.J.G.). Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Marc J Glucksman
- Departments of Physiology and Biophysics (N.C.W., R.J.L., J.H.U.) and Biochemistry and Molecular Biology (N.C.W., K.D.P., M.W., M.J.G.), and Midwest Proteome Center (K.D.P., M.J.G.). Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| |
Collapse
|
5
|
Philibert KD, Marr RA, Norstrom EM, Glucksman MJ. Identification and characterization of Aβ peptide interactors in Alzheimer's disease by structural approaches. Front Aging Neurosci 2014; 6:265. [PMID: 25346686 PMCID: PMC4191344 DOI: 10.3389/fnagi.2014.00265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/12/2014] [Indexed: 01/11/2023] Open
Abstract
Currently, there are very limited pharmaceutical interventions for Alzheimer's disease (AD) to alleviate the amyloid burden implicated in the pathophysiology of the disease. Alzheimer's disease is characterized immunohistologically by the accumulation of senile plaques in the brain with afflicted patients progressively losing short-term memory and, ultimately, cognition. Although significant improvements in clinical diagnosis and care for AD patients have been made, effective treatments for this devastating disease remain elusive. A key component of the amyloid burden of AD comes from accumulation of the amyloid-beta (Aβ) peptide which comes from processing of the amyloid precursor protein (APP) by enzymes termed secretases, leading to production of these toxic Aβ peptides of 40-42 amino acids. New therapeutic approaches for reducing Aβ are warranted after the most logical avenues of inhibiting secretase activity appear less than optimal in ameliorating the progression of AD.Novel therapeutics may be gleaned from proteomics biomarker initiatives to yield detailed molecular interactions of enzymes and their potential substrates. Explicating the APPome by deciphering protein complexes forming in cells is a complementary approach to unveil novel molecular interactions with the amyloidogenic peptide precursor to both understand the biology and develop potential upstream drug targets. Utilizing these strategies we have identified EC 3.4.24.15 (EP24.15), a zinc metalloprotease related to neprilysin (NEP), with the ability to catabolize Aβ 1-42 by examining first potential in silico docking and then verification by mass spectrometry. In addition, a hormone carrier protein, transthyreitin (TTR), was identified and with its abundance in cerebrospinal fluid (CSF), found to clear Aβ by inhibiting formation of oligomeric forms of Aβ peptide. The confluence of complementary strategies may allow new therapeutic avenues as well as biomarkers for AD that will aid in diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Keith D Philibert
- Department of Biochemistry and Molecular Biology, Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - Robert A Marr
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - Eric M Norstrom
- Department of Biological Sciences, DePaul University Chicago, IL, USA
| | - Marc J Glucksman
- Department of Biochemistry and Molecular Biology, Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| |
Collapse
|
6
|
Brás NF, Fernandes PA, Ramos MJ. QM/MM Study and MD Simulations on the Hypertension Regulator Angiotensin-Converting Enzyme. ACS Catal 2014. [DOI: 10.1021/cs500093h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Natércia F. Brás
- REQUIMTE,
Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE,
Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE,
Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
Melino S, Santone C, Di Nardo P, Sarkar B. Histatins: salivary peptides with copper(II)- and zinc(II)-binding motifs. FEBS J 2013; 281:657-72. [DOI: 10.1111/febs.12612] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 02/03/2023]
Affiliation(s)
- Sonia Melino
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; Italy
| | - Celeste Santone
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; Italy
| | - Paolo Di Nardo
- Department of Medical Sciences and Translational Medicine; University of Rome Tor Vergata; Italy
| | - Bibudhendra Sarkar
- Department of Molecular Structure and Function; The Hospital for Sick Children; University of Toronto; Ontario Canada
- Department of Biochemistry; University of Toronto; Ontario Canada
| |
Collapse
|
8
|
Probing the catalytically essential residues of a recombinant dipeptidyl carboxypeptidase from Escherichia coli. Biologia (Bratisl) 2010. [DOI: 10.2478/s11756-010-0040-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Cleverly K, Wu TJ. Is the metalloendopeptidase EC 3.4.24.15 (EP24.15), the enzyme that cleaves luteinizing hormone-releasing hormone (LHRH), an activating enzyme? Reproduction 2010; 139:319-30. [DOI: 10.1530/rep-09-0117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
LHRH (GNRH) was first isolated in the mammalian hypothalamus and shown to be the primary regulator of the reproductive neuroendocrine axis comprising of the hypothalamus, pituitary and gonads. LHRH acts centrally through its initiation of pituitary gonadotrophin release. Since its discovery, this form of LHRH (LHRH-I) has been shown to be one of over 20 structural variants with a variety of roles in both the brain and peripheral tissues. LHRH-I is processed by a zinc metalloendopeptidase EC 3.4.24.15 (EP24.15) that cleaves the hormone at the fifth and sixth bond of the decapeptide (Tyr5-Gly6) to form LHRH-(1–5). We have previously reported that the auto-regulation of LHRH-I (GNRH1) gene expression and secretion can also be mediated by itself and its processed peptide, LHRH-(1–5), centrally and in peripheral tissues. In this review, we present the evidence that EP24.15 is the main enzyme of LHRH metabolism. Following this, we look at the metabolism of other neuropeptides where an active peptide fragments is formed during degradation and use this as a platform to postulate that EP24.15 may also produce an active peptide fragment in the process of breaking down LHRH. We close this review by the role EP24.15 may have in regulation of the complex LHRH system.
Collapse
|
10
|
Abstract
Gonadotrophin-releasing hormone (GnRH) was first isolated in the mammal and shown to be the primary regulator of the reproductive system through its initiation of pituitary gonadotrophin release. Subsequent to its discovery, this form of GnRH has been shown to be one of many structural variants found in the brain and peripheral tissues. Accordingly, the original form first discovered and cloned in the mammal is commonly referred to as GnRH-I. In addition to the complex regulation of GnRH-I synthesis, release and function, further evidence suggests that the processing of GnRH-I produces yet another layer of complexity in its activity. GnRH-I is processed by a zinc metalloendopeptidase EC 3.4.24.15 (EP24.15), which cleaves the hormone at the covalent bond between the fifth and sixth residue of the decapeptide (Tyr(5)-Gly(6)) to form GnRH-(1-5). It was previously thought that the cleavage of GnRH-I by EP24.15 represents the initiation of its degradation. Here, we review the evidence for the involvement of GnRH-(1-5), the metabolite of GnRH-I, in the regulation of GnRH-I synthesis, secretion and facilitation of reproductive behaviour.
Collapse
Affiliation(s)
- T John Wu
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | |
Collapse
|
11
|
Bruce LA, Sigman JA, Randall D, Rodriguez S, Song MM, Dai Y, Elmore DE, Pabon A, Glucksman MJ, Wolfson AJ. Hydrogen bond residue positioning in the 599-611 loop of thimet oligopeptidase is required for substrate selection. FEBS J 2008; 275:5607-17. [PMID: 18959747 DOI: 10.1111/j.1742-4658.2008.06685.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thimet oligopeptidase (EC 3.4.24.15) is a zinc(II) endopeptidase implicated in the processing of numerous physiological peptides. Although its role in selecting and processing peptides is not fully understood, it is believed that flexible loop regions lining the substrate-binding site allow the enzyme to conform to substrates of varying structure. This study describes mutant forms of thimet oligopeptidase in which Gly or Tyr residues in the 599-611 loop region were replaced, individually and in combination, to elucidate the mechanism of substrate selection by this enzyme. Decreases in k(cat) observed on mutation of Tyr605 and Tyr612 demonstrate that these residues contribute to the efficient cleavage of most substrates. Modeling studies showing that a hinge-bend movement brings both Tyr612 and Tyr605 within hydrogen bond distance of the cleaved peptide bond supports this role. Thus, molecular modeling studies support a key role in transition state stabilization of this enzyme by Tyr605. Interestingly, kinetic parameters show that a bradykinin derivative is processed distinctly from the other substrates tested, suggesting that an alternative catalytic mechanism may be employed for this particular substrate. The data demonstrate that neither Tyr605 nor Tyr612 is necessary for the hydrolysis of this substrate. Relative to other substrates, the bradykinin derivative is also unaffected by Gly mutations in the loop. This distinction suggests that the role of Gly residues in the loop is to properly orientate these Tyr residues in order to accommodate varying substrate structures. This also opens up the possibility that certain substrates may be cleaved by an open form of the enzyme.
Collapse
Affiliation(s)
- Lisa A Bruce
- Chemistry Department, Wellesley College, MA 02481-8203, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Luteinizing Hormone-Releasing Hormone I (LHRH-I) and Its Metabolite in Peripheral Tissues. Exp Biol Med (Maywood) 2008; 233:123-30. [DOI: 10.3181/0707-mr-201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Luteinizing hormone-releasing hormone (LHRH) was first isolated in the mammalian hypothalamus and shown to be the primary regulator of the reproductive system through its initiation of pituitary gonadotropin release. Since its discovery, this form of LHRH (LHRH-I) has been shown to be one of many structural variants with a variety of roles in both the brain and peripheral tissues. Enormous interest has been focused on LHRH-I and LHRH-II and their cognate receptors as targets for designing therapies to treat cancers of the reproductive system. LHRH-I is processed by a zinc metalloendopeptidase EC 3.4.24.15 (EP24.15) that cleaves the hormone at the fifth and sixth bond of the decapeptide (Tyr5-Gly6) to form LHRH-( 1 – 5 ). We have previously reported that the autoregulation of LHRH gene expression can also be mediated by its processed peptide, LHRH-( 1 – 5 ). Furthermore, LHRH-( 1 – 5 ) has also been shown to be involved in cell proliferation. This review will focus on the possible roles of LHRH and its processed peptide, LHRH-( 1 – 5 ), in non-hypothalamic tissues.
Collapse
|
13
|
|
14
|
Identification and characterisation of the angiotensin converting enzyme-3 (ACE3) gene: a novel mammalian homologue of ACE. BMC Genomics 2007; 8:194. [PMID: 17597519 PMCID: PMC1925091 DOI: 10.1186/1471-2164-8-194] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 06/27/2007] [Indexed: 11/28/2022] Open
Abstract
Background Mammalian angiotensin converting enzyme (ACE) plays a key role in blood pressure regulation. Although multiple ACE-like proteins exist in non-mammalian organisms, to date only one other ACE homologue, ACE2, has been identified in mammals. Results Here we report the identification and characterisation of the gene encoding a third homologue of ACE, termed ACE3, in several mammalian genomes. The ACE3 gene is located on the same chromosome downstream of the ACE gene. Multiple sequence alignment and molecular modelling have been employed to characterise the predicted ACE3 protein. In mouse, rat, cow and dog, the predicted protein has mutations in some of the critical residues involved in catalysis, including the catalytic Glu in the HEXXH zinc binding motif which is Gln, and ESTs or reverse-transcription PCR indicate that the gene is expressed. In humans, the predicted ACE3 protein has an intact HEXXH motif, but there are other deletions and insertions in the gene and no ESTs have been identified. Conclusion In the genomes of several mammalian species there is a gene that encodes a novel, single domain ACE-like protein, ACE3. In mouse, rat, cow and dog ACE3, the catalytic Glu is replaced by Gln in the putative zinc binding motif, indicating that in these species ACE3 would lack catalytic activity as a zinc metalloprotease. In humans, no evidence was found that the ACE3 gene is expressed and the presence of deletions and insertions in the sequence indicate that ACE3 is a pseudogene.
Collapse
|
15
|
Kukreja RV, Sharma S, Cai S, Singh BR. Role of two active site Glu residues in the molecular action of botulinum neurotoxin endopeptidase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1774:213-22. [PMID: 17189717 DOI: 10.1016/j.bbapap.2006.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
Botulinum neurotoxin type A (BoNT/A) light chain (LC) is a zinc endopeptidase that causes neuroparalysis by blocking neurotransmitter release at the neuromuscular junctions. The X-ray crystal structure of the toxin reveals that His223 and His227 of the Zn(2+) binding motif HEXXH directly coordinate the active site zinc. Two Glu residues (Glu224 and Glu262) are also part of the active site, with Glu224 coordinating the zinc via a water molecule whereas Glu262 coordinates the zinc directly as the fourth ligand. In the past we have investigated the topographical role of Glu224 by replacing it with Asp thus reducing the side chain length by 1.4 A that reduced the endopeptidase activity dramatically [L. Li, T. Binz, H. Niemann, and B.R. Singh, Probing the role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain, Biochemistry 39 (2000) 2399-2405]. In this study we have moved the Glu 224 laterally by a residue (HXEXH) to assess its positional influence on the endopeptidase activity, which was completely lost. The functional implication of Glu262 was investigated by replacing this residue with aspartate and glutamine using site-directed mutagenesis. Substitution of Glu262 with Asp resulted in a 3-fold decrease in catalytic efficiency. This mutation did not induce any significant structural alterations in the active site and did not interfere with substrate binding. Substitution of Glu262 with Gln however, dramatically impaired the enzymatic activity and this is accompanied by global alterations in the active site conformation in terms of topography of aromatic amino acid residues, zinc binding, and substrate binding, resulting from the weakened interaction between the active site zinc and Gln. These results suggest a pivotal role of the negatively charged carboxyl group of Glu262 which may play a critical role in enhancing the stability of the active site with strong interaction with zinc. The zinc may thus play structural role in addition to its catalytic role.
Collapse
Affiliation(s)
- Roshan V Kukreja
- Botulinum Research Center and Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | | | | | | |
Collapse
|
16
|
Jeske NA, Berg KA, Cousins JC, Ferro ES, Clarke WP, Glucksman MJ, Roberts JL. Modulation of bradykinin signaling by EP24.15 and EP24.16 in cultured trigeminal ganglia. J Neurochem 2006; 97:13-21. [PMID: 16515556 DOI: 10.1111/j.1471-4159.2006.03706.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Metalloendopeptidases expressed in neural tissue are characterized in terms of their neuropeptide substrates. One such neuropeptide, bradykinin (BK), is an important inflammatory mediator that activates the type-2 BK receptor (B2R) on the terminal endings of specialized pain-sensing neurons known as nociceptors. Among several metalloendopeptidases that metabolize and inactivate BK, EP24.15 and EP24.16 are known to associate with the plasma membrane in several immortalized cell lines. Potentially, the colocalization of EP24.15/16 and B2R at plasma membrane microdomains known as lipid rafts in a physiologically relevant nociceptive system would allow for discrete, peptidase regulation of BK signaling. Western blot analysis of crude subcellular fractions and lipid raft preparations of cultured rat trigeminal ganglia demonstrate similar expression profiles between EP24.15/16 and B2R on a subcellular level. Furthermore, the treatment of primary cultures of trigeminal ganglia with inhibitors of EP24.15/16 led to the potentiation of several bradykinin-induced events that occur downstream of B2R activation. EP24.15/16 inhibition by N-[1(R,S)-carboxy-3-phenylpropyl]-Ala-AlalTyr-p-aminobenzoate (cFP) resulted in a 1000-fold increase in B2R sensitivity to BK as measured by inositol phosphate accumulation. In addition, cFP treatment resulted in a 31.1+/-5.0% potentiation of the ability of BK to inhibit protein kinase B (Akt) activity. Taken together, these data demonstrate that EP24.15/16 modulate intracellular, peptidergic signaling cascades through B2R in a physiologically relevant nociceptive system.
Collapse
Affiliation(s)
- Nathaniel A Jeske
- Department of Pharmacology, UTHSCSA, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Morty RE, Vadász I, Bulau P, Dive V, Oliveira V, Seeger W, Juliano L. Tropolysin, a New Oligopeptidase from African Trypanosomes†,‡. Biochemistry 2005; 44:14658-69. [PMID: 16262265 DOI: 10.1021/bi051035k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligopeptidases are emerging as important pathogenic factors and therapeutic targets in trypanosome infections. We describe here the purification, cloning, and biochemical analysis of a new oligopeptidase from two pathogenic African trypanosomes. This oligopeptidase, which we have called tropolysin (encoded by the trn gene), represents an evolutionarily distant member of the M3A subfamily of metallopeptidases, ancestral to thimet oligopeptidase, neurolysin, and saccharolysin. The trn gene was present as a single copy per haploid genome, was expressed in both the mammalian and insect stages of the parasite life cycle, and encoded an 84 kDa protein. Both purified and hyperexpressed tropolysin hydrolyzed bradykinin-derived fluorogenic peptide substrates at restricted sites, with an alkaline pH optimum, and were activated by dithiothreitol and reduced glutathione and by divalent metal cations, in the order Zn(2+) > Co(2+) > Mn(2+). Under oxidizing conditions, tropolysin reversibly formed inactive multimers. Tropolysin exhibited a preference for acidic amino acid side chains in P(4), hydrophobic side chains in P(3), and hydrophobic or large uncharged side chains in P(1), P(1)', and P(3)', while the S(2)' site was unselective. Highly charged residues were not tolerated in P(1)'. Tropolysin was responsible for the bulk of the kinin-degrading activity in trypanosome lysates, potently (k(cat) approximately 119 s(-)(1)) inactivated the vasoactive kinins bradykinin and kallidin, and generated angiotensin(1-7) from angiotensin I. This hydrolysis both abolished the capacity of bradykinin to stimulate the bradykinin B(2) receptor and abrogated bradykinin prohypotensive properties in vivo, raising the possibility that tropolysin may play a role in the dysregulated kinin metabolism observed in the plasma of trypanosome-infected hosts.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, University Hospital Giessen, Aulweg 123, D-35392 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kim SI, Grum-Tokars V, Swanson TA, Cotter EJ, Cahill PA, Roberts JL, Cummins PM, Glucksman MJ. Novel roles of neuropeptide processing enzymes: EC3.4.24.15 in the neurome. J Neurosci Res 2003; 74:456-67. [PMID: 14598322 DOI: 10.1002/jnr.10779] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuropeptide processing metalloenzymes, such as angiotensin converting enzyme, neprilysin, endothelin converting enzyme, neurolysin, and EC3.4.24.15 (EP24.15), are central to the formation and degradation of bioactive peptides. We present EP24.15 as a paradigm for novel functions ascribed to these enzymes in the neurome. Although the neurome typically encompasses proteomes of the brain and central nervous system, exciting new roles of these neuropeptidases have been demonstrated in other organ systems. We discuss the involvement of EP24.15 with clinical sequelae involving the use of gonadotropin-releasing hormone (GnRH; LHRH) analogs that act as enzyme inhibitors, in vascular physiology (blood pressure regulation), and in the hematologic system (immune surveillance). Hemodynamic forces, such as cyclic strain and shear stress, on vascular cells, induce an increase in EP24.15 transcription, suggesting that neuropeptidase-mediated hydrolysis of pressor/depressor peptides is likely regulated by changes in hemodynamic force and blood pressure. Lastly, EP24.15 regulates surface expression of major histocompatibility complex Class I proteins in vivo, suggesting that EP24.15 may play an important role in maintenance of immune privilege in sites of increased endogenous expression. In these extraneural systems, regulation of both neuropeptide and other peptide substrates by neuropeptidases indicates that the influence of these enzymes may be more global than was anticipated previously, and suggests that their attributed role as neuropeptidases underestimates their physiologic actions in the neural system.
Collapse
Affiliation(s)
- S I Kim
- Midwest Proteome Center, Department of Biochemistry and Molecular Biology, Finch University of Health Sciences/Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim SI, Pabon A, Swanson TA, Glucksman MJ. Regulation of cell-surface major histocompatibility complex class I expression by the endopeptidase EC3.4.24.15 (thimet oligopeptidase). Biochem J 2003; 375:111-20. [PMID: 12877658 PMCID: PMC1223673 DOI: 10.1042/bj20030490] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 07/23/2003] [Accepted: 07/24/2003] [Indexed: 11/17/2022]
Abstract
Endopeptidase EP24.15 (EC 3.4.24.15; thimet oligopeptidase), traditionally classified as a neuropeptide-processing enzyme, degrades well-known MHC I (major histocompatibility complex class I) peptides in cell extracts. In the present study, we determine the contribution of EP24.15 in vivo to the surface expression of MHC I on intact cells. CTLs (cytotoxic T-lymphocytes) recognize a vast array of peptides presented in the context of MHC I cell-surface molecules. Stable retroviral overexpression of EP24.15 induces a dramatic, long-term inhibition of surface MHC I. In contrast, overexpression of a mutant EP24.15, which is expressed, but is enzymically inactive, does not affect the surface MHC I expression level. We observed no difference in the effect of EP24.15 on the expression of different classes of MHC I. IFN-gamma (interferon-gamma) treatment re-established MHC I expression on these EP24.15-overexpressing cells, and also induced EP24.15 cytosolic protein expression and enzyme activity. To our knowledge, this is the first demonstration of cytokine-induced EP24.15 expression and activity. Conversely, stable retroviral silencing of endogenous EP24.15 by RNA interference induced a striking, long-term increase in surface MHC I. Subcellular fractionation and enzyme-activity experiments localized the vast majority of EP24.15 protein expression and function to the cytosol. Therefore we introduce a novel function of the cytosolic form of EP24.15. EP24.15 activity in the extracellular space is significant for neuropeptide processing, and in the present paper, we demonstrate that EP24.15 activity in the cytosol may be significant for regulation of MHC I cell-surface expression.
Collapse
Affiliation(s)
- Sandra I Kim
- Midwest Proteome Center, Department of Biochemistry and Molecular Biology, Finch University of Health Sciences/Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | |
Collapse
|
20
|
Rioli V, Gozzo FC, Heimann AS, Linardi A, Krieger JE, Shida CS, Almeida PC, Hyslop S, Eberlin MN, Ferro ES. Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. J Biol Chem 2003; 278:8547-55. [PMID: 12500972 DOI: 10.1074/jbc.m212030200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endopeptidase 24.15 (EC; ep24.15), neurolysin (EC; ep24.16), and angiotensin-converting enzyme (EC; ACE) are metallopeptidases involved in neuropeptide metabolism in vertebrates. Using catalytically inactive forms of ep24.15 and ep24.16, we have identified new peptide substrates for these enzymes. The enzymatic activity of ep24.15 and ep24.16 was inactivated by site-directed mutagenesis of amino acid residues within their conserved HEXXH motifs, without disturbing their secondary structure or peptide binding ability, as shown by circular dichroism and binding assays. Fifteen of the peptides isolated were sequenced by electrospray ionization tandem mass spectrometry and shared homology with fragments of intracellular proteins such as hemoglobin. Three of these peptides (PVNFKFLSH, VVYPWTQRY, and LVVYPWTQRY) were synthesized and shown to interact with ep24.15, ep24.16, and ACE, with K(i) values ranging from 1.86 to 27.76 microm. The hemoglobin alpha-chain fragment PVNFKFLSH, which we have named hemopressin, produced dose-dependent hypotension in anesthetized rats, starting at 0.001 microg/kg. The hypotensive effect of the peptide was potentiated by enalapril only at the lowest peptide dose. These results suggest a role for hemopressin as a vasoactive substance in vivo. The identification of these putative intracellular substrates for ep24.15 and ep24.16 is an important step toward the elucidation of the role of these enzymes within cells.
Collapse
Affiliation(s)
- Vanessa Rioli
- Department of Histology and Embryology, Cell Biology Program, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sheng S, Perry CJ, Kleyman TR. External nickel inhibits epithelial sodium channel by binding to histidine residues within the extracellular domains of alpha and gamma subunits and reducing channel open probability. J Biol Chem 2002; 277:50098-111. [PMID: 12397059 DOI: 10.1074/jbc.m209975200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial sodium channels (ENaC) are regulated by various intracellular and extracellular factors including divalent cations. We studied the inhibitory effect and mechanism of external Ni(2+) on cloned mouse alpha-beta-gamma ENaC expressed in Xenopus oocytes. Ni(2+) reduced amiloride-sensitive Na(+) currents of the wild type mouse ENaC in a dose-dependent manner. The Ni(2+) block was fast and partially reversible at low concentrations and irreversible at high concentrations. ENaC inhibition by Ni(2+) was accompanied by moderate inward rectification at concentrations higher than 0.1 mm. ENaC currents were also blocked by the histidine-reactive reagent diethyl pyrocarbonate. Pretreatment of the oocytes with the reagent reduced Ni(2+) inhibition of the remaining current. Mutations at alphaHis(282) and gammaHis(239) located within the extracellular loops significantly decreased Ni(2+) inhibition of ENaC currents. The mutation alphaH282D or double mutations alphaH282R/gammaH239R eliminated Ni(2+) block. All mutations at gammaHis(239) eliminated Ni(2+)-induced inward current rectification. Ni(2+) block was significantly enhanced by introduction of a histidine at alphaArg(280). Lowering extracellular pH to 5.5 and 4.4 decreased or eliminated Ni(2+) block. Although alphaH282C-beta-gamma channels were partially inhibited by the sulfhydryl-reactive reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET), alpha-beta-gamma H239C channels were insensitive to MTSET. From patch clamp studies, Ni(2+) did not affect unitary current but decreased open probability when perfused into the recording pipette. Our results suggest that external Ni(2+) reduces ENaC open probability by binding to a site consisting of alphaHis(282) and gammaHis(239) and that these histidine residues may participate in ENaC gating.
Collapse
MESH Headings
- Amiloride/pharmacology
- Amino Acid Sequence
- Animals
- Binding Sites
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Epithelial Sodium Channels
- Histidine/chemistry
- Kinetics
- Magnesium/pharmacology
- Mice
- Models, Biological
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nickel/pharmacology
- Oocytes/metabolism
- Patch-Clamp Techniques
- Point Mutation
- Protein Binding
- Protein Structure, Tertiary
- RNA, Complementary/metabolism
- Sequence Homology, Amino Acid
- Sodium/metabolism
- Sodium/pharmacology
- Sodium Channels/chemistry
- Sodium Channels/metabolism
- Time Factors
- Xenopus
Collapse
Affiliation(s)
- Shaohu Sheng
- Renal-Electrolyte Division, the Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
22
|
Abstract
Peptidases play a vital and often highly specific role in the physiological and pathological generation and termination of peptide hormone signals. The thermolysin-like family of metalloendopeptidases involved in the extracellular processing of neuroendocrine and cardiovascular peptides are of particular significance, reflecting both their specificity for particular peptide substrates and their utility as therapeutic targets. Although the functions of the membrane-bound members of this family, such as angiotensin-converting enzyme and neutral endopeptidase, are well established, a role for the predominantly soluble family members in peptide metabolism is only just emerging. This review will focus on the biochemistry, cell biology, and physiology of the soluble metalloendopeptidases EC 3.4.24.15 (thimet oligopeptidase) and EC 3.4.24.16 (neurolysin), as well as presenting evidence that both peptidases play an important role in such diverse functions as reproduction, nociception, and cardiovascular homeostasis.
Collapse
|
23
|
Steer D, Lew R, Perlmutter P, Smith AI, Aguilar MI. Inhibitors of metalloendopeptidase EC 3.4.24.15 and EC 3.4.24.16 stabilized against proteolysis by the incorporation of beta-amino acids. Biochemistry 2002; 41:10819-26. [PMID: 12196021 DOI: 10.1021/bi0203334] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzyme EC 3.4.24.15 (EP 24.15) is a zinc metalloendopeptidase whose precise function in vivo remains unknown but is thought to participate in the regulated metabolism of a number of specific neuropeptides. The lack of stable and selective inhibitors has hindered the determination of the exact function of EP 24.15. Of the limited number of EP 24.15 inhibitors that have been developed, N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (CFP) is the most widely studied. CFP is a potent and specific inhibitor, but it is unstable in vivo due to cleavage between the alanine and tyrosine residues by the enzyme neprilysin (EP 24.11). This cleavage by EP 24.11 generates a potent inhibitor of angiotensin converting enzyme, thereby limiting the use of CFP for in vivo studies. To develop specific inhibitors of EP 24.15 that are resistant to in vitro and potentially in vivo proteolysis by EP 24.11, this study incorporated beta-amino acids replacing the Ala-Tyr scissile alpha-amino acids of CFP. Both C2 and C3 substituted beta-amino acids were synthesized and substituted at the EP 24.11 scissile Ala-Tyr bond. Significant EP 24.15 inhibitory activity was observed with some of the beta-amino acid containing analogues. Moreover, binding to EP 24.11 was eliminated, thus rendering all analogues containing beta-amino acids resistant to degradation by EP 24.11. Selective inhibition of either EP 24.15 or EP 24.16 was also observed with some analogues. The results demonstrated the use of beta-amino acids in the design of inhibitors of EP 24.15 and EP 24.16 with K(i)'s in the low micromolar range. At the same time, these analogues were resistant to cleavage by the related metalloendopeptidase EP 24.11, in contrast to the alpha-amino acid based parent peptide. This study has therefore clearly shown the potential of beta-amino acids in the design of stable enzyme inhibitors and their use in generating molecules with selectivity between closely related enzymes.
Collapse
Affiliation(s)
- David Steer
- Department of Biochemistry and Molecular Biology, P.O. Box 13D, Monash University, Clayton, Vic 3800, Australia
| | | | | | | | | |
Collapse
|
24
|
Portaro FCV, Hayashi MAF, De Arauz LJ, Palma MS, Assakura MT, Silva CL, de Camargo ACM. The Mycobacterium leprae hsp65 displays proteolytic activity. Mutagenesis studies indicate that the M. leprae hsp65 proteolytic activity is catalytically related to the HslVU protease. Biochemistry 2002; 41:7400-6. [PMID: 12044173 DOI: 10.1021/bi011999l] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study reports, for the first time, that the recombinant hsp65 from Mycobacterium leprae (chaperonin 2) displays a proteolytic activity toward oligopeptides. The M. leprae hsp65 proteolytic activity revealed a trypsin-like specificity toward quenched fluorescence peptides derived from dynorphins. When other peptide substrates were used (beta-endorphin, neurotensin, and angiotensin I), the predominant peptide bond cleavages also involved basic amino acids in P(1), although, to a minor extent, the hydrolysis involving hydrophobic and neutral amino acids (G and F) was also observed. The amino acid sequence alignment of the M. leprae hsp65 with Escherichia coli HslVU protease suggested two putative threonine catalytic groups, one in the N-domain (T(136), K(168), and Y(264)) and the other in the C-domain (T(375), K(409), and S(502)). Mutagenesis studies showed that the replacement of K(409) by A caused a complete loss of the proteolytic activity, whereas the mutation of K(168) to A resulted in a 25% loss. These results strongly suggest that the amino acid residues T(375), K(409), and S(502) at the C-domain form the catalytic group that carries out the main proteolytic activity of the M. leprae hsp65. The possible pathophysiological implications of the proteolytic activity of the M. leprae hsp65 are now under investigation in our laboratory.
Collapse
Affiliation(s)
- Fernanda C V Portaro
- Center for Applied Toxinology, Butantan Institute, CAT/CEPID, Rua Murajuba 125, São Paulo, SP 05467-010, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Saikawa N, Ito K, Akiyama Y. Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB). Biochemistry 2002; 41:1861-8. [PMID: 11827531 DOI: 10.1021/bi015748o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli FtsH (HflB) is a membrane-bound and ATP-dependent metalloprotease. Its cytoplasmic domain contains a zinc-binding motif, H(417)EXXH, whose histidine residues have been shown to be functionally important. Although they are believed to be involved directly in zinc coordination, nothing is known about the third zinc ligand of this protease. Sequence alignment indicates that glutamic acid residues are conserved among the FtsH homologues at positions corresponding to Glu(479) and Glu(585) of E. coli FtsH. We replaced each of them by Gln, Asp, Lys, or Val. Mutations at position 479 compromised the proteolytic functions of FtsH in vivo. In vitro proteolytic activities of the E479Q, E479V, and E479D mutant enzymes were much lower than that of the wild-type protein and were significantly stimulated by a high concentration of zinc ion. These mutant proteins retained the wild-type levels of ATPase activities, and their trypsin susceptibilities as well as CD spectra were essentially indistinguishable from those of the wild-type protein, indicating that the mutations did not cause gross conformational changes in FtsH. They exhibited reduced zinc contents upon purification. From these results, we conclude that Glu(479) is a zinc-coordinating residue.
Collapse
Affiliation(s)
- Naoya Saikawa
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
26
|
Oliveira V, Campos M, Melo RL, Ferro ES, Camargo AC, Juliano MA, Juliano L. Substrate specificity characterization of recombinant metallo oligo-peptidases thimet oligopeptidase and neurolysin. Biochemistry 2001; 40:4417-25. [PMID: 11284698 DOI: 10.1021/bi002715k] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a systematic and detailed analysis of recombinant neurolysin (EC 3.4.24.16) specificity in parallel with thimet oligopeptidase (TOP, EC 3.4.24.15) using Bk sequence and its C- and N-terminal extensions as in human kininogen as motif for synthesis of internally quenched fluorescent substrates. The influence of the substrate size was investigated, and the longest peptide susceptible to TOP and neurolysin contains 17 amino acids. The specificities of both oligopeptidases to substrate sites P(4) to P(3)' were also characterized in great detail using seven series of peptides based on Abz-GFSPFRQ-EDDnp taken as reference substrate. Most of the peptides were hydrolyzed at the bond corresponding to P(4)-F(5) in the reference substrate and some of them were hydrolyzed at this bond or at F(2)-S(3) bond. No restricted specificity was found for P(1)' as found in thermolysin as well for P(1) substrate position, however the modifications at this position (P(1)) showed to have large influence on the catalytic constant and the best substrates for TOP contained at P(1), Phe, Ala, or Arg and for neurolysin Asn or Arg. Some amino acid residues have large influence on the K(m) constants independently of its position. On the basis of these results, we are hypothesizing that some amino acids of the substrates can bind to different sub-sites of the enzyme fitting P-F or F-S bond, which requires rapid interchange for the different forms of interaction and convenient conformations of the substrate in order to expose and fit the cleavage bonds in correct position for an efficient hydrolysis. Finally, this plasticity of interaction with the substrates can be an essential property for a class of cytosolic oligopeptidases that are candidates to participate in the selection of the peptides to be presented by the MHC class I.
Collapse
Affiliation(s)
- V Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 São Paulo - SP - 04044-020, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Portaro FC, Hayashi MA, Silva CL, de Camargo AC. Free ATP inhibits thimet oligopeptidase (EC 3.4.24.15) activity, induces autophosphorylation in vitro, and controls oligopeptide degradation in macrophage. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:887-94. [PMID: 11179954 DOI: 10.1046/j.1432-1327.2001.01978.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fate of the proteasome-generated peptides depends upon the cytosolic peptidases whose activities ought to be regulated. One of the most important oligopeptide-degrading and -binding proteins in the cytosol is the thimet oligopeptidase (EC 3.4.24.15), ubiquitously found in mammalian tissues. To date, there is no indication whether thimet oligopeptidase activities are physiologically regulated. Here, we present evidences suggesting that the concentration of unbound ATP in the cytosol regulates the thimet oligopeptidase activities both, in vitro and ex vivo. To perform these studies two oligopeptides were used: a quenched fluorescent peptide, which is susceptible to thimet oligopeptidase degradation, and the ovalbumin257-264 (MHC class I ovalbumin epitope), which displays high affinity to the thimet oligopeptidase without being degraded. We also showed that the thimet oligopeptidase undergoes autophosphorylation by ATP, a modification that does not affect the peptidase activity. The autophosphorylation is abolished in the presence of the thimet oligopeptidase substrates, as well as by the effect of a site directed inhibitor of this enzyme, and by the substitution of Glu474 for Asp at the metallo-peptidase motif. Altogether, the results presented here suggest that Zn2+ at the active center of the thimet oligopeptidase is the target for the ATP binding, leading to the inhibition of the enzyme activity, and inducing autophosphorylation. These effects, which depend upon the concentration of the unbound ATP, may help to explain the fate of the proteasomal-generated oligopeptides in the cytosol.
Collapse
Affiliation(s)
- F C Portaro
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, Brazil
| | | | | | | |
Collapse
|
28
|
McCool S, Pierotti AR. Expression of the thimet oligopeptidase gene is regulated by positively and negatively acting elements. DNA Cell Biol 2000; 19:729-38. [PMID: 11177571 DOI: 10.1089/104454900750058099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thimet oligopeptidase (TOP) is a thiol-dependent metallopeptidase, which can cleave and thereby modulate the activity of many neuropeptides. The enzyme is active in many endocrine tissues, including testis, brain, and pituitary. In rat, the richest source of TOP is the testes, with a specific activity fivefold that of brain. The mechanism whereby rat TOP expression is regulated at the transcriptional level has been examined by reporter gene assay and electromobility shift assays after isolation of 1020 bp of upstream sequence. Computer analysis predicts a number of potential transcription factor-binding sites, which were examined by deletion analysis and DNA-binding studies. The promoter or its deletion fragments were fused to luciferase reporter gene vectors and introduced into GH3 pituitary, COS-1 kidney, MAT-Lu prostate, and GC-2spd(ts) spermatid cells. Two regions of the promoter have been identified: a positively acting region (-901/-219) and a strong negatively acting region (-219/-102). Concomitantly, potential transcription factors interacting with the cis-acting elements of the promoter were studied by gel electromobility shift assays. This work has identified a number of transcription factor-binding sites. However, no differences in the binding behavior in the various cell lines was observed.
Collapse
Affiliation(s)
- S McCool
- School of Biological & Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | | |
Collapse
|
29
|
Tullai JW, Cummins PM, Pabon A, Roberts JL, Lopingco MC, Shrimpton CN, Smith AI, Martignetti JA, Ferro ES, Glucksman MJ. The neuropeptide processing enzyme EC 3.4.24.15 is modulated by protein kinase A phosphorylation. J Biol Chem 2000; 275:36514-22. [PMID: 10969067 DOI: 10.1074/jbc.m001843200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metalloendopeptidase EC (EP24.15) is a neuropeptide-metabolizing enzyme expressed predominantly in brain, pituitary, and testis, and is implicated in several physiological processes and diseases. Multiple putative phosphorylation sites in the primary sequence led us to investigate whether phosphorylation effects the specificity and/or the kinetics of substrate cleavage. Only protein kinase A (PKA) treatment resulted in serine phosphorylation with a stoichiometry of 1.11 +/- 0.12 mol of phosphate/mol of recombinant rat EP24.15. Mutation analysis of each putative PKA site, in vitro phosphorylation, and phosphopeptide mapping indicated serine 644 as the phosphorylation site. Phosphorylation effects on catalytic activity were assessed using physiological (GnRH, GnRH(1-9), bradykinin, and neurotensin) and fluorimetric (MCA-PLGPDL-Dnp and orthoaminobenzoyl-GGFLRRV-Dnp-edn) substrates. The most dramatic change upon PKA phosphorylation was a substrate-specific, 7-fold increase in both K(m) and k(cat) for GnRH. In both rat PC12 and mouse AtT-20 cells, EP24.15 was serine-phosphorylated, and EP24.15 phosphate incorporation was enhanced by forskolin treatment, and attenuated by H89, consistent with PKA-mediated phosphorylation. Cloning of the full-length mouse EP24.15 cDNA revealed 96.7% amino acid identity to the rat sequence, and conservation at serine 644, consistent with its putative functional role. Therefore, PKA phosphorylation is suggested to play a regulatory role in EP24.15 enzyme activity.
Collapse
Affiliation(s)
- J W Tullai
- Fishberg Research Center for Neurobiology and Departments of Human Genetics and Pediatrics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Steer DL, Lew RA, Perlmutter P, Smith AI, Aguilar MI. Design and synthesis of inhibitors incorporating beta -amino acids of metalloendopeptidase EC 3.4.24.15. J Pept Sci 2000; 6:470-7. [PMID: 11016884 DOI: 10.1002/1099-1387(200009)6:9<470::aid-psc287>3.0.co;2-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endopeptidase EC 3.4.24.15 (EP 24.15) is a thermolysin-like metalloendopeptidase which is expressed widely throughout the body, with the highest concentrations in the brain, pituitary and testis. While the precise role of EP 24.15 remains unknown, it is thought to participate in the regulated metabolism of a number of specific neuropeptides. Of the limited number of inhibitors described for EP 24.15, N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-amino benzoate (CFP) is the most widely studied. CFP is a potent and specific inhibitor, but is unstable in vivo due to its cleavage between the alanine and tyrosine residues by the enzyme neprilysin (EP 24.11). The cpp-Ala-Ala N-terminal product of this cleavage is a potent inhibitor of angiotensin converting enzyme, which further limits the use of CFP in vivo. To generate specific inhibitors of EP 24.15 that are resistant to in vivo proteolysis by EP 24.11, beta-amino acids have been incorporated into the structure of CFP. We have prepared racemic mixtures of beta-amino acids containing proteogenic side chains, which are 9-fluorenylmethoxycarbonyl (Fmoc)-protected, and several analogues of CFP containing beta-amino acids have been synthesized by solid phase peptide synthesis. The results of stability and inhibitory studies of these new analogues show that the incorporation of beta-amino acids adjacent to the scissile bond can indeed stabilize the peptides against cleavage by EP 24.11 and still inhibit EP 24.15. The results obtained in these studies demonstrate the potential of these amino acids in the synthesis of peptidomimetics and in the design of new stable and specific therapeutics.
Collapse
Affiliation(s)
- D L Steer
- Department of Biochemistry & Molecular Biology, Monash University, Victoria, Australia
| | | | | | | | | |
Collapse
|