1
|
Sung MW, Hu K, Hurlimann LM, Lees JA, Fennell KF, West MA, Costales C, Rodrigues AD, Zimmermann I, Dawson RJP, Liu S, Han S. Cyclosporine A sterically inhibits statin transport by solute carrier OATP1B1. J Biol Chem 2025; 301:108484. [PMID: 40199401 PMCID: PMC12127550 DOI: 10.1016/j.jbc.2025.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
Members of the Organic Anion Transporter Polypeptides (OATP) are integral membrane proteins responsible for facilitating the transport of organic anions across the cell membrane. OATP1B1 (SLCO1B1), the prototypic OATP family member, is the most abundant uptake transporter in the liver and a key mediator of the hepatic uptake and clearance of numerous endogenous and xenobiotic compounds. It serves as a locus of important drug-drug interactions, such as those between statins and cyclosporine A, and carries the potential to enable liver-targeting therapeutics. In this study, we report cryo-EM structures of OATP1B1 and its complexes with one of its statin substrates, atorvastatin, and an inhibitor, cyclosporine A. This structural analysis has yielded insights into the mechanisms underlying the OATP1B1-mediated transport of statins and the inhibitory effect of cyclosporine A. These findings contribute to a better understanding of the molecular processes involved in drug transport and offer potential avenues for the development of targeted medications for liver-related conditions.
Collapse
Affiliation(s)
- Min Woo Sung
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Kuan Hu
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | | | - Joshua A Lees
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Kimberly F Fennell
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Mark A West
- Pharmacokinetics, Dynamics, and Metabolism, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Chester Costales
- Pharmacokinetics, Dynamics, and Metabolism, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Amilcar David Rodrigues
- Pharmacokinetics, Dynamics, and Metabolism, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | | | | | - Shenping Liu
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA.
| | - Seungil Han
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA.
| |
Collapse
|
2
|
Ayub Ali M, Maalouf MA, Feng D, Rashid M, Gehrke NR, Chhonker YS, Murry DJ, Wiemer DF, Holstein SA. Impact of fixed phosphorus position on activity of triazole bisphosphonates as geranylgeranyl diphosphate synthase inhibitors. Bioorg Med Chem 2025; 122:118140. [PMID: 40043324 DOI: 10.1016/j.bmc.2025.118140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
Geranylgeranyl diphosphate synthase (GGDPS) produces the 20-carbon isoprenoid species used in protein geranylgeranylation reactions. Inhibition of GGDPS has emerged as a novel means of disrupting the activity of geranylgeranylated proteins in cancers such as myeloma and osteosarcoma. We have focused on developing a series of isoprenoid triazole bisphosphonate-based GGDPS inhibitors, demonstrating a complex structure-activity relationship (SAR), not only at the enzymatic level, but also at the cellular and whole organism levels. To further investigate this SAR, we have prepared a family of novel derivatives that have a fixed phosphorus position by virtue of vinyl, epoxy or cyclopropyl groups that incorporate the α-carbon position. Additional modifications include compounds with homocitronellyl chains instead of homogeranyl or homoneryl chains. All new compounds were evaluated in GGDPS enzyme assays and in cellular assays involving a panel of human myeloma and osteosarcoma cell lines. The homocitronellyl derivatives displayed markedly reduced activity in both enzymatic and cellular assays. While all of the homogeranyl/homoneryl vinyl/epoxy/cyclopropyl compounds had relatively similar activity in the enzyme assay (IC50's 0.37-2.87 μM), the cellular potencies varied more dramatically (ranging from 10 nM to no activity at 100 μM), depending on the olefin stereochemistry, the specific α-carbon modification and the tumor cell type. These findings, coupled with POM-prodrug and membrane permeability studies, support the hypothesis that there are specific membrane transporters mediating cellular uptake of these GGDPS inhibitors. Future studies focused on the identification of the membrane transporters responsible for the cellular uptake will enable further understanding of this complex SAR.
Collapse
Affiliation(s)
- Md Ayub Ali
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA; Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh
| | - Mona A Maalouf
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Dan Feng
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mamunur Rashid
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nathaniel R Gehrke
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daryl J Murry
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Hagenbuch B, Stieger B, Locher KP. Organic anion transporting polypeptides: Pharmacology, toxicology, structure, and transport mechanisms. Pharmacol Rev 2025; 77:100023. [PMID: 40148036 DOI: 10.1016/j.pharmr.2024.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Organic anion transporting polypeptides (OATPs) are membrane proteins that mediate the uptake of a wide range of substrates across the plasma membrane of various cells and tissues. They are classified into 6 subfamilies, OATP1 through OATP6. Humans contain 12 OATPs encoded by 11 solute carrier of organic anion transporting polypeptide (SLCO) genes: OATP1A2, OATP1B1, OATP1B3, the splice variant OATP1B3-1B7, OATP1C1, OATP2A1, OATP2B1, OATP3A1, OATP4A1, OATP4C1, OATP5A1, and OATP6A1. Most of these proteins are expressed in epithelial cells, where they mediate the uptake of structurally unrelated organic anions, cations, and even neutral compounds into the cytoplasm. The best-characterized members are OATP1B1 and OATP1B3, which have an important role in drug metabolism by mediating drug uptake into the liver and are involved in drug-drug interactions. In this review, we aimed to (1) provide a historical perspective on the identification of OATPs and their nomenclature and discuss their phylogenic relationships and molecular characteristics; (2) review the current knowledge of the broad substrate specificity and their role in drug disposition and drug-drug interactions, with a special emphasis on human hepatic OATPs; (3) summarize the different experimental systems that are used to study the function of OATPs and discuss their advantages and disadvantages; (4) review the available experimental 3-dimensional structures and examine how they can help elucidate the transport mechanisms of OATPs; and (5) finally, summarize the current knowledge of the regulation of OATP expression, discuss clinically important single-nucleotide polymorphisms, and outline challenges of physiologically based pharmacokinetic modeling and in vitro to in vivo extrapolation. SIGNIFICANCE STATEMENT: Organic anion transporting polypeptides (OATPs) are a family of 12 uptake transporters in the solute carrier superfamily. Several members, particularly the liver-expressed OATP1B1 and OATP1B3, are important drug transporters. They mediate the uptake of several endobiotics and xenobiotics, including statins and numerous other drugs, into hepatocytes, and their inhibition by other drugs or reduced expression due to single-nucleotide polymorphisms can lead to adverse drug effects. Their recently solved 3-dimensional structures should help to elucidate their transport mechanisms and broad substrate specificities.
Collapse
Affiliation(s)
- Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas.
| | - Bruno Stieger
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Fontana RJ, Li YJ, Chen V, Kleiner D, Stolz A, Odin J, Vuppalanchi R, Gu J, Dara L, Barnhart H. Genetic variants associated with immune-mediated liver injury from checkpoint inhibitors. Hepatol Commun 2024; 8:e0518. [PMID: 39185906 PMCID: PMC11357698 DOI: 10.1097/hc9.0000000000000518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/14/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The clinical features, liver histology, and genetic variants in 57 patients with moderate to severe immune-mediated liver injury from checkpoint inhibitors (ILICI) are presented. METHODS Between 2010 and 2022, 57 high-causality ILICI cases were enrolled in the Drug-Induced Liver Injury Network. HLA and selected candidate gene variants were tested for association with ILICI risk compared to the general population and other DILI controls. RESULTS The 57 high-causality cases were attributed to pembrolizumab (16), ipilimumab (15), ipilimumab and nivolumab (13), and other immune checkpoint inhibitors (13) and occurred at a median of 72 days after the first infusion. Median age was 57.8 years, 66% male, and 89% were non-Hispanic Whites. At DILI onset, 53% had hepatocellular, 35% mixed, and 15% cholestatic, with younger patients more likely to have hepatocellular injury. The incidence of ANA, smooth muscle antibody, and elevated IgG levels was low (17%, 23%, and 0%), but corticosteroids were given to 86%. Microgranulomas and hepatic steatosis were seen in 54% and 46% of the 26 liver biopsies, respectively. The HLA alleles associated with autoimmune hepatitis were not over-represented, but 2 host immune response genes (EDIL3 and SAMA5A) and 3 other genes (GABRP, SMAD3, and SLCO1B1) were associated with ILICI (OR: 2.08-2.4, p<0.01). CONCLUSIONS ILICI typically arises within 12 weeks of initiating immunotherapy and is self-limited in most cases. Genetic variants involved in host T-cell regulation and drug disposition were identified, implicating these pathways in the pathogenesis of ILICI. If validated, these findings could lead to improved diagnostic instruments and possible treatments for ILICI.
Collapse
Affiliation(s)
- Robert J. Fontana
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke School of Medicine, Durham, North Carolina, USA
| | - Vincent Chen
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David Kleiner
- Laboratory of Pathology, Intramural Division, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Andrew Stolz
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joe Odin
- Recanati-Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Raj Vuppalanchi
- Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Jiezhun Gu
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Lily Dara
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Huiman Barnhart
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
5
|
Goetz A, Verloh N, Utpatel K, Fellner C, Rennert J, Einspieler I, Doppler M, Luerken L, Alizadeh LS, Uller W, Stroszczynski C, Haimerl M. Differentiating Well-Differentiated from Poorly-Differentiated HCC: The Potential and the Limitation of Gd-EOB-DTPA in the Presence of Liver Cirrhosis. Diagnostics (Basel) 2024; 14:1676. [PMID: 39125552 PMCID: PMC11311873 DOI: 10.3390/diagnostics14151676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
This study uses magnetic resonance imaging (MRI) to investigate the potential of the hepatospecific contrast agent gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) in distinguishing G1- from G2/G3-differentiated hepatocellular carcinoma (HCC). Our approach involved analyzing the dynamic behavior of the contrast agent in different phases of imaging by signal intensity (SI) and lesion contrast (C), to surrounding liver parenchyma, and comparing it across distinct groups of patients differentiated based on the histopathological grading of their HCC lesions and the presence of liver cirrhosis. Our results highlighted a significant contrast between well- and poorly-differentiated lesions regarding the lesion contrast in the arterial and late arterial phases. Furthermore, the hepatobiliary phase showed limited diagnostic value in cirrhotic liver parenchyma due to altered pharmacokinetics. Ultimately, our findings underscore the potential of Gd-EOB-DTPA-enhanced MRI as a tool for improving preoperative diagnosis and treatment selection for HCC while emphasizing the need for continued research to overcome the diagnostic complexities posed by the disease.
Collapse
Affiliation(s)
- Andrea Goetz
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Niklas Verloh
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Kirsten Utpatel
- Department of Pathology, University Regensburg, 93053 Regensburg, Germany
| | - Claudia Fellner
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Janine Rennert
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ingo Einspieler
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Doppler
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Lukas Luerken
- Department of Radiology, Klinikum Würzburg Mitte, 97074 Würzburg, Germany
| | - Leona S. Alizadeh
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt am Main, Germany
| | - Wibke Uller
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | | | - Michael Haimerl
- Department of Radiology, Klinikum Würzburg Mitte, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Penna GC, Salas-Lucia F, Ribeiro MO, Bianco AC. Gene polymorphisms and thyroid hormone signaling: implication for the treatment of hypothyroidism. Endocrine 2024; 84:309-319. [PMID: 37740833 PMCID: PMC10959761 DOI: 10.1007/s12020-023-03528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION Mutations and single nucleotide polymorphisms (SNPs) in the genes encoding the network of proteins involved in thyroid hormone signaling (TH) may have implications for the effectiveness of the treatment of hypothyroidism with LT4. It is conceivable that loss-of-function mutations or SNPs impair the ability of LT4 to be activated to T3, reach its targets, and ultimately resolve symptoms of hypothyroidism. Some of these patients do benefit from therapy containing LT4 and LT3. METHODS Here, we reviewed the PubMed and examined gene mutations and SNPs in the TH cellular transporters, deiodinases, and TH receptors, along with their impact on TH signaling, and potential clinical implications. RESULTS In some mechanisms, such as the Thr92Ala-DIO2 SNP, there is a compelling rationale for reduced T4 to T3 activation that limits the effectiveness of LT4 to restore euthyroidism. In other mechanisms, a potential case can be made but more studies with a larger number of individuals are needed. DISCUSSION/CONCLUSION Understanding the clinical impact of the genetic makeup of LT4-treated patients may help in the preemptive identification of those individuals that would benefit from therapy containing LT3.
Collapse
Affiliation(s)
- Gustavo C Penna
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Federico Salas-Lucia
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo, SP, Brazil
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Cho CK, Mo JY, Ko E, Kang P, Jang CG, Lee SY, Lee YJ, Bae JW, Choi CI. Physiologically based pharmacokinetic (PBPK) modeling of pitavastatin in relation to SLCO1B1 genetic polymorphism. Arch Pharm Res 2024; 47:95-110. [PMID: 38159179 DOI: 10.1007/s12272-023-01476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Pitavastatin, a potent 3-hydroxymethylglutaryl coenzyme A reductase inhibitor, is indicated for the treatment of hypercholesterolemia and mixed dyslipidemia. Hepatic uptake of pitavastatin is predominantly occupied by the organic anion transporting polypeptide 1B1 (OATP1B1) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene, which is a polymorphic gene that encodes OATP1B1. SLCO1B1 genetic polymorphism significantly alters the pharmacokinetics of pitavastatin. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict pitavastatin pharmacokinetics according to SLCO1B1 genetic polymorphism. PK-Sim® version 10.0 was used to establish the whole-body PBPK model of pitavastatin. Our pharmacogenomic data and a total of 27 clinical pharmacokinetic data with different dose administration and demographic properties were used to develop and validate the model, respectively. Physicochemical properties and disposition characteristics of pitavastatin were acquired from previously reported data or optimized to capture the plasma concentration-time profiles in different SLCO1B1 diplotypes. Model evaluation was performed by comparing the predicted pharmacokinetic parameters and profiles to the observed data. Predicted plasma concentration-time profiles were visually similar to the observed profiles in the non-genotyped populations and different SLCO1B1 diplotypes. All fold error values for AUC and Cmax were included in the two fold range of observed values. Thus, the PBPK model of pitavastatin in different SLCO1B1 diplotypes was properly established. The present study can be useful to individualize the dose administration strategy of pitavastatin in individuals with various ages, races, and SLCO1B1 diplotypes.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ju Yeon Mo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunvin Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
8
|
Shan Z, Yang X, Liu H, Yuan Y, Xiao Y, Nan J, Zhang W, Song W, Wang J, Wei F, Zhang Y. Cryo-EM structures of human organic anion transporting polypeptide OATP1B1. Cell Res 2023; 33:940-951. [PMID: 37674011 PMCID: PMC10709409 DOI: 10.1038/s41422-023-00870-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
Members of the solute carrier organic anion transporting polypeptide (OATPs) family function as transporters for a large variety of amphipathic organic anions including endogenous metabolites and clinical drugs, such as bile salts, steroids, thyroid hormones, statins, antibiotics, antivirals, and anticancer drugs. OATP1B1 plays a vital role in transporting such substances into the liver for hepatic clearance. FDA and EMA recommend conducting in vitro testing of drug-drug interactions (DDIs) involving OATP1B1. However, the structure and working mechanism of OATPs still remains elusive. In this study, we determined cryo-EM structures of human OATP1B1 bound with representative endogenous metabolites (bilirubin and estrone-3-sulfate), a clinical drug (simeprevir), and a fluorescent indicator (2',7'-dichlorofluorescein), in both outward- and inward-open states. These structures reveal major and minor substrate binding pockets and conformational changes during transport. In combination with mutagenesis studies and molecular dynamics simulations, our work comprehensively elucidates the transport mechanism of OATP1B1 and provides the structural basis for DDI predictions involving OATP1B1, which will greatly promote our understanding of OATPs.
Collapse
Affiliation(s)
- Ziyang Shan
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xuemei Yang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huihui Liu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yafei Yuan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Xiao
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Nan
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenqi Song
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jufang Wang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feiwen Wei
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanqing Zhang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Shchulkin AV, Abalenikhina YV, Slepnev AA, Rokunov ED, Yakusheva EN. The Role of Adopted Orphan Nuclear Receptors in the Regulation of an Organic Anion Transporting Polypeptide 1B1 (OATP1B1) under the Action of Sex Hormones. Curr Issues Mol Biol 2023; 45:9593-9605. [PMID: 38132446 PMCID: PMC10741745 DOI: 10.3390/cimb45120600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Organic anion transporting polypeptide 1B1 (OATP1B1) is an influx transporter protein of the SLC superfamily, expressed mainly in the liver and some tumor cells. The mechanisms of its regulation are being actively studied. In the present study, the effect of sex hormones (estradiol, progesterone and testosterone) on OATP1B1 expression in HepG2 cells was examined. The role of adopted orphan receptors, farnasoid X receptor (FXR), constitutive androstane receptor (CAR), pregnane X receptor (PXR) and liver X receptor subtype alpha (LXRa), was also evaluated. Hormones were used in concentrations of 1, 10 and 100 μM, with incubation for 24 h. The protein expression of OATP1B1, FXR, CAR, PXR and LXRa was analyzed by Western blot. It was shown that estradiol (10 and 100 μM) increased the expression of OATP1B1, acting through CAR. Testosterone (1, 10 and 100 μM) increased the expression of OATP1B1, acting through FXR, PXR and LXRa. Progesterone (10 and 100 μM) decreased the expression of OATP1B1 (10 and 100 μM) and adopted orphan receptors are not involved in this process. The obtained results have important practical significance and determine ways for targeted regulation of the transporter, in particular in cancer.
Collapse
Affiliation(s)
- Aleksey V. Shchulkin
- Department of Pharmacology, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (A.A.S.); (E.N.Y.)
| | | | | | | | | |
Collapse
|
10
|
Ramsey LB, Gong L, Lee SB, Wagner JB, Zhou X, Sangkuhl K, Adams SM, Straka RJ, Empey PE, Boone EC, Klein TE, Niemi M, Gaedigk A. PharmVar GeneFocus: SLCO1B1. Clin Pharmacol Ther 2023; 113:782-793. [PMID: 35797228 PMCID: PMC10900141 DOI: 10.1002/cpt.2705] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022]
Abstract
The Pharmacogene Variation Consortium (PharmVar) is now providing star (*) allele nomenclature for the highly polymorphic human SLCO1B1 gene encoding the organic anion transporting polypeptide 1B1 (OATP1B1) drug transporter. Genetic variation within the SLCO1B1 gene locus impacts drug transport, which can lead to altered pharmacokinetic profiles of several commonly prescribed drugs. Variable OATP1B1 function is of particular importance regarding hepatic uptake of statins and the risk of statin-associated musculoskeletal symptoms. To introduce this important drug transporter gene into the PharmVar database and serve as a unified reference of haplotype variation moving forward, an international group of gene experts has performed an extensive review of all published SLCO1B1 star alleles. Previously published star alleles were self-assigned by authors and only loosely followed the star nomenclature system that was first developed for cytochrome P450 genes. This nomenclature system has been standardized by PharmVar and is now applied to other important pharmacogenes such as SLCO1B1. In addition, data from the 1000 Genomes Project and investigator-submitted data were utilized to confirm existing haplotypes, fill knowledge gaps, and/or define novel star alleles. The PharmVar-developed SLCO1B1 nomenclature has been incorporated by the Clinical Pharmacogenetics Implementation Consortium (CPIC) 2022 guideline on statin-associated musculoskeletal symptoms.
Collapse
Affiliation(s)
- Laura B Ramsey
- Divisions of Clinical Pharmacology and Research in Patient Services, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Li Gong
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Seung-Been Lee
- Precision Medicine Institute, Macrogen Inc., Seoul, Korea
| | - Jonathan B Wagner
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Solomon M Adams
- School of Pharmacy, Shenandoah University, Fairfax, Virginia, USA
| | - Robert J Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Philip E Empey
- School of Pharmacy and Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erin C Boone
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Department of Medicine (BMIR), Stanford University, Stanford, California, USA
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
11
|
Chatterjee S, Deshpande AA, Shen H. Recent advances in the in vitro and in vivo methods to assess impact of P-glycoprotein and breast cancer resistance protein transporters in central nervous system drug disposition. Biopharm Drug Dispos 2023; 44:7-25. [PMID: 36692150 DOI: 10.1002/bdd.2345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 01/25/2023]
Abstract
One challenge in central nervous system (CNS) drug discovery has been ensuring the blood-brain barrier (BBB) penetration of compounds at an efficacious concentration that provides suitable safety margins for clinical investigation. Research providing for the accurate prediction of brain penetration of compounds during preclinical discovery is important to a CNS program. In the BBB, P-glycoprotein (P-gp) (ABCB1) and breast cancer resistance protein (BCRP) (ABCG2) transporters have been demonstrated to play a major role in the active efflux of endogenous compounds and xenobiotics out of the brain microvessel cells and back to the systemic circulation. In the past 10 years, there has been significant technological improvement in the sensitivity of quantitative proteomics methods, in vivo imaging, in vitro methods of organoid and microphysiological systems, as well as in silico quantitative physiological based pharmacokinetic and systems pharmacology models. Scientists continually leverage these advancements to interrogate the distribution of compounds in the CNS which may also show signals of substrate specificity of P-gp and/or BCRP. These methods have shown promise toward predicting and quantifying the unbound concentration(s) within the brain relevant for efficacy or safety. In this review, the authors have summarized the in vivo, in vitro, and proteomics advancements toward understanding the contribution of P-gp and/or BCRP in restricting the entry of compounds to the CNS of either healthy or special populations. Special emphasis has been provided on recent investigations on the application of a proteomics-informed approach to predict steady-state drug concentrations in the brain. Moreover, future perspectives regarding the role of these transporters in newer modalities are discussed.
Collapse
Affiliation(s)
- Sagnik Chatterjee
- Drug Metabolism and Pharmacokinetics, Ferring Pharmaceuticals A/S, Kastrup, Denmark
| | - Anup Arunrao Deshpande
- Drug Metabolism and Pharmacokinetics, Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd, Bangalore, India
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Company, Princeton, New Jersey, USA
| |
Collapse
|
12
|
Gyimesi G, Hediger MA. Transporter-Mediated Drug Delivery. Molecules 2023; 28:molecules28031151. [PMID: 36770817 PMCID: PMC9919865 DOI: 10.3390/molecules28031151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Transmembrane transport of small organic and inorganic molecules is one of the cornerstones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine their efficacy, including bioavailability and intertissue distribution. Apart from the well-established prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical compositions has recently been used as a means to enhance their targeting and absorption. In this review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as new directions for the advanced development of therapeutics that target SLC transporters.
Collapse
|
13
|
Annisa N, Barliana MI, Santoso P, Ruslami R. Transporter and metabolizer gene polymorphisms affect fluoroquinolone pharmacokinetic parameters. Front Pharmacol 2022; 13:1063413. [PMID: 36588725 PMCID: PMC9798452 DOI: 10.3389/fphar.2022.1063413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease that occurs globally. Treatment of TB has been hindered by problems with multidrug-resistant strains (MDR-TB). Fluoroquinolones are one of the main drugs used for the treatment of MDR-TB. The success of therapy can be influenced by genetic factors and their impact on pharmacokinetic parameters. This review was conducted by searching the PubMed database with keywords polymorphism and fluoroquinolones. The presence of gene polymorphisms, including UGT1A1, UGT1A9, SLCO1B1, and ABCB1, can affect fluoroquinolones pharmacokinetic parameters such as area under the curve (AUC), creatinine clearance (CCr), maximum plasma concentration (Cmax), half-life (t1/2) and peak time (tmax) of fluoroquinolones.
Collapse
Affiliation(s)
- Nurul Annisa
- Department of Biological Pharmacy, Biotechnology Pharmacy Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia,Unit of Clinical Pharmacy and Community, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - Melisa I. Barliana
- Department of Biological Pharmacy, Biotechnology Pharmacy Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia,Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia,*Correspondence: Melisa I. Barliana,
| | - Prayudi Santoso
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran-Hasan Sadikin Hospital, Bandung, Indonesia
| | - Rovina Ruslami
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
14
|
Hönes GS, Sivakumar RG, Hoppe C, König J, Führer D, Moeller LC. Cell-Specific Transport and Thyroid Hormone Receptor Isoform Selectivity Account for Hepatocyte-Targeted Thyromimetic Action of MGL-3196. Int J Mol Sci 2022; 23:ijms232213714. [PMID: 36430194 PMCID: PMC9691000 DOI: 10.3390/ijms232213714] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Thyroid hormones (THs) and TH receptor-beta (TRβ) reduce hepatic triglycerides, indicating a therapeutic potential for TH analogs in liver steatosis. To avoid adverse extrahepatic, especially TRα-mediated effects such as tachycardia and bone loss, TH analogs with combined TRβ and hepatocyte specificity are desired. MGL-3196 is a new TH analog that supposedly meets these criteria. Here, we characterize the thyromimetic potential of MGL-3196 in cell-based assays and address its cellular uptake requirements. We studied the contribution of liver-specific organic anion transporters (OATP)1B1 and 1B3 to MGL-3196 action. The TR isoform-specific efficacy of MGL-3196 compared with 3,5,3'-triiodothyronine (T3) was determined with luciferase assays and gene expression analysis in OATP1B1 and OATP1B3 and TRα- or TRβ-expressing cells and in primary murine hepatocytes (PMHs) from wild-type and TRβ knockout mice. We measured the oxygen consumption rate to compare the effects of MGL-3196 and T3 on mitochondrial respiration. We identified OATP1B1 as the primary transporter for MGL-3196. MGL-3196 had a high efficacy (90% that of T3) in activating TRβ, while the activation of TRα was only 25%. The treatment of PMHs with T3 and MGL-3196 at EC50 resulted in a similar induction of Dio1 and repression of Serpina7. In HEK293 cells stably expressing OATP1B1, MGL-3196 had comparable effects on mitochondrial respiration as T3. These data indicate that MGL-3196's hepatic thyromimetic action, the basis for its therapeutic use, results from a combination of hepatocyte-specific transport by OATP1B1 and the selective activation of TRβ over TRα.
Collapse
Affiliation(s)
- Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Ramona Gowry Sivakumar
- Department of Endocrinology, Diabetes and Metabolism, Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Christoph Hoppe
- Department of Endocrinology, Diabetes and Metabolism, Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Lars Christian Moeller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-201-723-6401
| |
Collapse
|
15
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
16
|
Hau RK, Tash JS, Georg GI, Wright SH, Cherrington NJ. Physiological Characterization of the Transporter-Mediated Uptake of the Reversible Male Contraceptive H2-Gamendazole Across the Blood-Testis Barrier. J Pharmacol Exp Ther 2022; 382:299-312. [PMID: 35779861 PMCID: PMC9426764 DOI: 10.1124/jpet.122.001195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
The blood-testis barrier (BTB) is formed by a tight network of Sertoli cells (SCs) to limit the movement of reproductive toxicants from the blood into the male genital tract. Transporters expressed at the basal membranes of SCs also influence the disposition of drugs across the BTB. The reversible, nonhormonal contraceptive, H2-gamendazole (H2-GMZ), is an indazole carboxylic acid analog that accumulates over 10 times more in the testes compared with other organs. However, the mechanism(s) by which H2-GMZ circumvents the BTB are unknown. This study describes the physiologic characteristics of the carrier-mediated process(es) that permit H2-GMZ and other analogs to penetrate SCs. Uptake studies were performed using an immortalized human SC line (hT-SerC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Uptake of H2-GMZ and four analogs followed Michaelis-Menten transport kinetics (one analog exhibited poor penetration). H2-GMZ uptake was strongly inhibited by indomethacin, diclofenac, MK-571, and several analogs. Moreover, H2-GMZ uptake was stimulated by an acidic extracellular pH, reduced at basic pHs, and independent of extracellular Na+, K+, or Cl- levels, which are intrinsic characteristics of OATP-mediated transport. Therefore, the characteristics of H2-GMZ transport suggest that one or more OATPs may be involved. However, endogenous transporter expression in wild-type Chinese hamster ovary (CHO), Madin-Darby canine kidney (MDCK), and human embryonic kidney-293 (HEK-293) cells limited the utility of heterologous transporter expression to identify a specific OATP transporter. Altogether, characterization of the transporters involved in the flux of H2-GMZ provides insight into the selectivity of drug disposition across the human BTB to understand and overcome the pharmacokinetic and pharmacodynamic difficulties presented by this barrier. SIGNIFICANCE STATEMENT: Despite major advancements in female contraceptives, male alternatives, including vasectomy, condom usage, and physical withdrawal, are antiquated and the widespread availability of nonhormonal, reversible chemical contraceptives is nonexistent. Indazole carboxylic acid analogs such as H2-GMZ are promising new reversible, antispermatogenic drugs that are highly effective in rodents. This study characterizes the carrier-mediated processes that permit H2-GMZ and other drugs to enter Sertoli cells and the observations made here will guide the development of drugs that effectively circumvent the BTB.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Joseph S Tash
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Gunda I Georg
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Stephen H Wright
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| |
Collapse
|
17
|
Choudhuri S, Klaassen CD. Molecular Regulation of Bile Acid Homeostasis. Drug Metab Dispos 2022; 50:425-455. [PMID: 34686523 DOI: 10.1124/dmd.121.000643] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
Bile acids have been known for decades to aid in the digestion and absorption of dietary fats and fat-soluble vitamins in the intestine. The development of gene knockout mice models and transgenic humanized mouse models have helped us understand other functions of bile acids, such as their role in modulating fat, glucose, and energy metabolism, and in the molecular regulation of the synthesis, transport, and homeostasis of bile acids. The G-protein coupled receptor TGR5 regulates the bile acid induced alterations of intermediary metabolism, whereas the nuclear receptor FXR regulates bile acid synthesis and homeostasis. However, this review indicates that unidentified factors in addition to FXR must exist to aid in the regulation of bile acid synthesis and homeostasis. SIGNIFICANCE STATEMENT: This review captures the present understanding of bile acid synthesis, the role of bile acid transporters in the enterohepatic circulation of bile acids, the role of the nuclear receptor FXR on the regulation of bile acid synthesis and bile acid transporters, and the importance of bile acids in activating GPCR signaling via TGR5 to modify intermediary metabolism. This information is useful for developing drugs for the treatment of various hepatic and intestinal diseases, as well as the metabolic syndrome.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland (S.C.) and Department of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kansas (C.D.K.)
| | - Curtis D Klaassen
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland (S.C.) and Department of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kansas (C.D.K.)
| |
Collapse
|
18
|
Han JM, Choi KH, Lee HH, Gwak HS. Association between SLCO1B1 polymorphism and methotrexate-induced hepatotoxicity: a systematic review and meta-analysis. Anticancer Drugs 2022; 33:75-79. [PMID: 34726639 DOI: 10.1097/cad.0000000000001125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reports on the association between the solute carrier organic anion transporter 1B1 (SLCO1B1) T521C polymorphism and methotrexate-induced hepatotoxicity in patients with malignancies are inconsistent. This meta-analysis evaluated the association between the SLCO1B1 T521C polymorphism and methotrexate-induced hepatotoxicity. We performed a systematic review of previous reports from the PubMed, Web of Science, and EMBASE databases, and a meta-analysis was conducted. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated to evaluate the effect of the SLCO1B1 T521C polymorphism on the occurrence of methotrexate-induced hepatotoxicity. In total, data from five studies including 465 patients were analyzed. Patients had received a high-dose methotrexate regimen (1-5 g/m2). The SLCO1B1 variant allele (C allele) carriers had a 1.9-fold higher risk of hepatotoxicity than wild-type homozygote carriers (TT; OR, 1.94; 95% CI, 1.14-3.31). This meta-analysis demonstrated that C allele carriers of the SLCO1B1 polymorphism had a higher risk of hepatotoxicity than patients with the TT genotype. The SLCO1B1 T521C polymorphism may be a useful predictor for methotrexate-induced hepatotoxicity in patients with malignancies.
Collapse
Affiliation(s)
- Ji Min Han
- College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do
| | - Kyung Hee Choi
- College of Pharmacy, Sunchon National University, Suncheon, Jeollanam-do
| | | | - Hye Sun Gwak
- Graduate School of Clinical Biohealth
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
19
|
Quantification of contrast agent uptake in the hepatobiliary phase helps to differentiate hepatocellular carcinoma grade. Sci Rep 2021; 11:22991. [PMID: 34837039 PMCID: PMC8626433 DOI: 10.1038/s41598-021-02499-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
This study aimed to assess the degree of differentiation of hepatocellular carcinoma (HCC) using Gd-EOB-DTPA-assisted magnetic resonance imaging (MRI) with T1 relaxometry. Thirty-three solitary HCC lesions were included in this retrospective study. This study's inclusion criteria were preoperative Gd-EOB-DTPA-assisted MRI of the liver and a histopathological evaluation after hepatic tumor resection. T1 maps of the liver were evaluated to determine the T1 relaxation time and reduction rate between the native phase and hepatobiliary phase (HBP) in liver lesions. These findings were correlated with the histopathologically determined degree of HCC differentiation (G1, well-differentiated; G2, moderately differentiated; G3, poorly differentiated). There was no significant difference between well-differentiated (950.2 ± 140.2 ms) and moderately/poorly differentiated (1009.4 ± 202.0 ms) HCCs in the native T1 maps. After contrast medium administration, a significant difference (p ≤ 0.001) in the mean T1 relaxation time in the HBP was found between well-differentiated (555.4 ± 140.2 ms) and moderately/poorly differentiated (750.9 ± 146.4 ms) HCCs. For well-differentiated HCCs, the reduction rate in the T1 time was significantly higher at 0.40 ± 0.15 than for moderately/poorly differentiated HCCs (0.25 ± 0.07; p = 0.006). In conclusion this study suggests that the uptake of Gd-EOB-DTPA in HCCs is correlated with tumor grade. Thus, Gd-EOB-DTPA-assisted T1 relaxometry can help to further differentiation of HCC.
Collapse
|
20
|
Effect of type 2 diabetes on Gd-EOB-DTPA uptake into liver parenchyma: replication study in human subjects. Abdom Radiol (NY) 2021; 46:4682-4688. [PMID: 34164726 DOI: 10.1007/s00261-021-03184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) is a contrast agent for magnetic resonance imaging (MRI), which specifically taken up by hepatocytes through organic anion-transporting polypeptides (OATPs). Previous research in mice has shown that type 2 diabetes is associated with reduced uptake of Gd-EOB-DTPA into the liver parenchyma, reflecting reduced expression of OATP. Since considerable differences in OATP expression exist between mice and humans, human studies are necessary to clarify the effect of diabetes to Gd-EOB-DTPA uptake. The purpose of this study was to validate the effect of diabetes to Gd-EOB-DTPA liver uptake by a confirmatory study in humans. METHODS Patients who underwent Gd-EOB-DTPA-enhanced MRI were retrospectively reviewed and divided into two groups: severe or uncontrolled diabetic group (patients with insulin therapy and/or HbA1c ≥ 8.4%) and the control group. Liver-to-spleen ratio (LSR) and relative enhancement of the liver (REL) were calculated to represent Gd-EOB-DTPA liver uptake. RESULTS A total of 94 patients fulfilled the criteria. The severe or uncontrolled diabetic group (n = 15) showed significantly lower LSR (1.74 ± 0.26 vs. 1.98 ± 0.31, p = 0.007) and REL (0.69 ± 0.23 vs. 0.87 ± 0.31, p = 0.005), compared to the control group (n = 79). CONCLUSION Our study revealed decreased uptake of Gd-EOB-DTPA into liver parenchyma in the severe or uncontrolled diabetic patients. Further studies to determine the impact of the reduced liver enhancement on clinical diagnostic practice will be needed.
Collapse
|
21
|
Neuvonen M, Tornio A, Hirvensalo P, Backman JT, Niemi M. Performance of Plasma Coproporphyrin I and III as OATP1B1 Biomarkers in Humans. Clin Pharmacol Ther 2021; 110:1622-1632. [PMID: 34580865 PMCID: PMC9292572 DOI: 10.1002/cpt.2429] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
A previous study in 356 healthy Finnish volunteers showed that glycochenodeoxycholate 3‐O‐glucuronide (GCDCA‐3G) and glycodeoxycholate 3‐O‐glucuronide (GDCA‐3G) are promising biomarkers of organic anion transporting polypeptide 1B1 (OATP1B1). In the same cohort, we now evaluated the performances of two other OATP1B1 biomarkers, coproporphyrin I (CPI) and III (CPIII), and compared them with GCDCA‐3G and GDCA‐3G. Based on decreased (*5 and *15) and increased (*14 and *20) function SLCO1B1 haplotypes, we stratified the participants to poor, decreased, normal, increased, and highly increased OATP1B1 function groups. Fasting plasma CPI concentration was 68% higher in the poor (95% confidence interval, 44%, 97%; P = 1.74 × 10−10), 7% higher in the decreased (0%, 15%; P = 0.0385), 10% lower in the increased (3%, 18%; P = 0.0087), and 23% lower in the highly increased (1%, 40%; P = 0.0387) function group than in the normal function group. CPIII concentration was 27% higher (7%, 51%; P = 0.0071) in the poor function group than in the normal function group. CPI and CPIII detected poor OATP1B1 function with areas under the precision‐recall curve (AUPRC) of 0.388 (95% confidence interval, 0.197, 0.689) and 0.0798 (0.0485, 0.203), and receiver operating characteristic curve (AUROC) of 0.888 (0.851, 0.919) and 0.731 (0.682, 0.776). The AUPRC and AUROC of GCDCA‐3G were, however, 0.389 (0.258, 0.563) and 0.100 (−0.0046, 0.204; P = 0.0610) larger than those of CPI, and 0.697 (0.555, 0.831) and 0.257 (0.141, 0.373; P < 0.0001) larger than those of CPIII. In conclusion, these data indicate that plasma CPI outperforms CPIII in detecting altered OATP1B1 function, but GCDCA‐3G is an even more sensitive OATP1B1 biomarker than CPI.
Collapse
Affiliation(s)
- Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Hirvensalo
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
22
|
Miyauchi S, Kim SJ, Lee W, Sugiyama Y. Consideration of albumin-mediated hepatic uptake for highly protein-bound anionic drugs: Bridging the gap of hepatic uptake clearance between in vitro and in vivo. Pharmacol Ther 2021; 229:107938. [PMID: 34171335 DOI: 10.1016/j.pharmthera.2021.107938] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The accuracy in predicting in vivo hepatic clearance of drugs from in vitro data (often termed as in vitro-to-in vivo extrapolation, IVIVE) has improved in part by applying the extended-clearance concept that considers the interplay between hepatic metabolism and uptake/efflux processes. However, the IVIVE-based prediction performs poorly in predicting the hepatic uptake clearance of highly albumin-bound anionic drugs. Their hepatic uptake clearances tend to be much higher than expected based on the free-drug theory. Such observation can be attributable to a phenomenon called albumin-mediated hepatic uptake, for which various models have been thus far proposed. Our group has been applying a facilitated-dissociation model, which assumes the enhanced dissociation of the drug-albumin complex upon interaction with the cell surface. By considering the albumin-mediated hepatic uptake (using the facilitated-dissociation model or alternative kinetic models), a number of investigations demonstrated the improvement in the prediction accuracy for the hepatic clearance of highly protein-bound anionic drugs that are substrates for hepatic uptake transporters. This review summarizes the reported kinetic analyses of the albumin-mediated hepatic uptake of highly albumin-bound drugs concerning the IVIVE and the clinical and physiological relevance.
Collapse
Affiliation(s)
- Seiji Miyauchi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, Japan
| | - Soo-Jin Kim
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
23
|
Franca R, Zudeh G, Lucafò M, Rabusin M, Decorti G, Stocco G. Genome wide association studies for treatment-related adverse effects of pediatric acute lymphoblastic leukemia. WIREs Mech Dis 2021; 13:e1509. [PMID: 33016644 DOI: 10.1002/wsbm.1509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/01/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric hematological malignancy; notwithstanding the success of ALL therapy, severe adverse drugs effects represent a serious issue in pediatric oncology, because they could be both an additional life threatening condition for ALL patients per se and a reason to therapy delay or discontinuation with important fallouts on final outcome. Cancer treatment-related toxicities have generated a significant need of finding predictive pharmacogenomic markers for the a priori identification of at risk patients. In the era of precision medicine, high throughput genomic screening such as genome wide association studies (GWAS) might provide useful markers to tailor therapy intensity on patients' genetic profile. Furthermore, these findings could be useful in basic research for better understanding the mechanistic and regulatory pathways of the biological functions associated with ALL treatment toxicities. The purpose of this review is to give an overview of high throughput genomic screening of the last 10 years that had investigated the landscape of ALL treatment-associated toxicities. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Zudeh
- University of Trieste, PhD Course in Reproductive and Developmental Sciences, Trieste, Italy
| | - Marianna Lucafò
- Institute for Maternal and Child Health I.R.C.C.S Burlo Garofolo, Trieste, Italy
| | - Marco Rabusin
- Institute for Maternal and Child Health I.R.C.C.S Burlo Garofolo, Trieste, Italy
| | - Giuliana Decorti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health I.R.C.C.S Burlo Garofolo, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
24
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Stanković B, Kotur N, Gašić V, Klaassen K, Ristivojević B, Stojiljković M, Pavlović S, Zukić B. Pharmacogenomics landscape of COVID-19 therapy response in Serbian population and comparison with worldwide populations. J Med Biochem 2020; 39:488-499. [PMID: 33312066 PMCID: PMC7710379 DOI: 10.5937/jomb0-26725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Since there are no certified therapeutics to treat COVID-19 patients, drug repurposing became important. With lack of time to test individual pharmacogenomics markers, population pharmacogenomics could be helpful in predicting a higher risk of developing adverse reactions and treatment failure in COVID-19 patients. Aim of our study was to identify pharmacogenes and pharmacogenomics markers associated with drugs recommended for COVID-19 treatment, chloroquine/hydroxychloroquine, azithromycin, lopinavir and ritonavir, in population of Serbia and other world populations. METHODS Genotype information of 143 individuals of Serbian origin was extracted from database previously obtained using TruSight One Gene Panel (Illumina). Genotype data of individuals from different world populations were extracted from the 1000 Genome Project. Fisher's exact test was used for comparison of allele frequencies. RESULTS We have identified 11 potential pharmacogenomics markers in 7 pharmacogenes relevant for COVID-19 treatment. Based on high alternative allele frequencies in population and the functional effect of the variants, ABCB1 rs1045642 and rs2032582 could be relevant for reduced clearance of azithromycin, lopinavir and ritonavir drugs and UGT1A7 rs17868323 for hyperbilirubinemia in ritonavir treated COVID-19 patients in Serbian population. SLCO1B1 rs4149056 is a potential marker of lopinavir response, especially in Italian population. Our results confirmed that pharmacogenomics profile of African population is different from the rest of the world. CONCLUSIONS Considering population specific pharmacogenomics landscape, preemptive testing for pharmacogenes relevant for drugs used in COVID-19 treatment could contribute to better understanding of the inconsistency in therapy response and could be applied to improve the outcome of the COVID-19 patients.
Collapse
Affiliation(s)
- Biljana Stanković
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Nikola Kotur
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Vladimir Gašić
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Kristel Klaassen
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Bojan Ristivojević
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Maja Stojiljković
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Sonja Pavlović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Branka Zukić
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| |
Collapse
|
26
|
Neuvonen M, Hirvensalo P, Tornio A, Rago B, West M, Lazzaro S, Mathialagan S, Varma M, Cerny MA, Costales C, Ramanathan R, Rodrigues AD, Niemi M. Identification of Glycochenodeoxycholate 3-O-Glucuronide and Glycodeoxycholate 3-O-Glucuronide as Highly Sensitive and Specific OATP1B1 Biomarkers. Clin Pharmacol Ther 2020; 109:646-657. [PMID: 32961594 PMCID: PMC7983942 DOI: 10.1002/cpt.2053] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/07/2020] [Indexed: 11/09/2022]
Abstract
The aim of this study was to investigate the sensitivity and specificity of endogenous glycochenodeoxycholate and glycodeoxycholate 3-O-glucuronides (GCDCA-3G and GDCA-3G) as substrates for organic anion transporting polypeptide 1B1 (OATP1B1) in humans. We measured fasting levels of plasma GCDCA-3G and GDCA-3G using liquid chromatography-tandem mass spectrometry in 356 healthy volunteers. The mean plasma levels of both compounds were ~ 50% lower in women than in men (P = 2.25 × 10-18 and P = 4.73 × 10-9 ). In a microarray-based genome-wide association study, the SLCO1B1 rs4149056 (c.521T>C, p.Val174Ala) variation showed the strongest association with the plasma GCDCA-3G (P = 3.09 × 10-30 ) and GDCA-3G (P = 1.60 × 10-17 ) concentrations. The mean plasma concentration of GCDCA-3G was 9.2-fold (P = 8.77 × 10-31 ) and that of GDCA-3G was 6.4-fold (P = 2.45x10-13 ) higher in individuals with the SLCO1B1 c.521C/C genotype than in those with the c.521T/T genotype. No other variants showed independent genome-wide significant associations with GCDCA-3G or GDCA-3G. GCDCA-3G was highly efficacious in detecting the SLCO1B1 c.521C/C genotype with an area under the receiver operating characteristic curve of 0.996 (P < 0.0001). The sensitivity (98-99%) and specificity (100%) peaked at a cutoff value of 180 ng/mL for men and 90 ng/mL for women. In a haplotype-based analysis, SLCO1B1*5 and *15 were associated with reduced, and SLCO1B1*1B, *14, and *35 with increased OATP1B1 function. In vitro, both GCDCA-3G and GDCA-3G showed at least 6 times higher uptake by OATP1B1 than OATP1B3 or OATP2B1. These data indicate that the hepatic uptake of GCDCA-3G and GDCA-3G is predominantly mediated by OATP1B1. GCDCA-3G, in particular, is a highly sensitive and specific OATP1B1 biomarker in humans.
Collapse
Affiliation(s)
- Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Päivi Hirvensalo
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Brian Rago
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Mark West
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Sarah Lazzaro
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | | | - Manthena Varma
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Matthew A Cerny
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Chester Costales
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Ragu Ramanathan
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - A David Rodrigues
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Uptake Transporters of the SLC21, SLC22A, and SLC15A Families in Anticancer Therapy-Modulators of Cellular Entry or Pharmacokinetics? Cancers (Basel) 2020; 12:cancers12082263. [PMID: 32806706 PMCID: PMC7464370 DOI: 10.3390/cancers12082263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Solute carrier transporters comprise a large family of uptake transporters involved in the transmembrane transport of a wide array of endogenous substrates such as hormones, nutrients, and metabolites as well as of clinically important drugs. Several cancer therapeutics, ranging from chemotherapeutics such as topoisomerase inhibitors, DNA-intercalating drugs, and microtubule binders to targeted therapeutics such as tyrosine kinase inhibitors are substrates of solute carrier (SLC) transporters. Given that SLC transporters are expressed both in organs pivotal to drug absorption, distribution, metabolism, and elimination and in tumors, these transporters constitute determinants of cellular drug accumulation influencing intracellular drug concentration required for efficacy of the cancer treatment in tumor cells. In this review, we explore the current understanding of members of three SLC families, namely SLC21 (organic anion transporting polypeptides, OATPs), SLC22A (organic cation transporters, OCTs; organic cation/carnitine transporters, OCTNs; and organic anion transporters OATs), and SLC15A (peptide transporters, PEPTs) in the etiology of cancer, in transport of chemotherapeutic drugs, and their influence on efficacy or toxicity of pharmacotherapy. We further explore the idea to exploit the function of SLC transporters to enhance cancer cell accumulation of chemotherapeutics, which would be expected to reduce toxic side effects in healthy tissue and to improve efficacy.
Collapse
|
28
|
Human organic anion transporting polypeptide (OATP) 1B3 and mouse OATP1A/1B affect liver accumulation of Ochratoxin A in mice. Toxicol Appl Pharmacol 2020; 401:115072. [DOI: 10.1016/j.taap.2020.115072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022]
|
29
|
Choudhuri S, Klaassen CD. Elucidation of OATP1B1 and 1B3 transporter function using transgenic rodent models and commonly known single nucleotide polymorphisms. Toxicol Appl Pharmacol 2020; 399:115039. [DOI: 10.1016/j.taap.2020.115039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/02/2020] [Accepted: 05/09/2020] [Indexed: 02/08/2023]
|
30
|
Fan X, Bai J, Hu M, Xu Y, Zhao S, Sun Y, Wang B, Hu J, Li Y. Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects. Toxicology 2020; 437:152445. [PMID: 32259555 DOI: 10.1016/j.tox.2020.152445] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/14/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Organic anion transporting polypeptide 1B1 (OATP1B1), a liver-specific uptake transporter, was associated with drug induced liver injury (DILI). Screening and identifying potent OATP1B1 inhibitors with little toxicity is of great value in reducing OATP1B1-mediated DILI. Flavonoids are a group of polyphenols ubiquitously present in vegetables, fruits and herbal products, some of them were reported to produce transporter-mediated DDI. Our objective was to investigate potential inhibitors of OATP1B1 from 99 flavonoids, and to assess the hepatoprotective effects on bosentan induced liver injury. Eight flavonoids, including biochanin A, hispidulin, isoliquiritigenin, isosinensetin, kaempferol, licochalcone A, luteolin and sinensetin exhibited significant inhibition (>50 %) on OATP1B1 in OATP1B1-HEK293 cells, which reduced the OATP1B1-mediated influx of methotrexate, accordingly decreased its cytotoxicity in OATP1B1-HEK293 cells and increased its AUC0-t in different extents in rats, from 28.27%-82.71 %. In bosentan-induced rat liver injury models, 8 flavonoids reduced the levels of serum total bile acid (TBA) and the liver concentration of bosentan in different degrees. Among them, kaempferol decreased the concentration most significantly, by 54.17 %, which indicated that flavonoids may alleviate bosentan-induced liver injury by inhibiting OATP1B1-mediated bosentan uptake. Furthermore, the pharmacophore model indicated the hydrogen bond acceptors and hydrogen bond donors may play critical role in the potency of flavonoids inhibition on OATP1B1. Taken together, our findings would provide helpful information for predicting the potential risks of flavonoid-containing food/herb-drug interactions in humans and alleviating bosentan -induced liver injury by OATP1B1 regulation.
Collapse
Affiliation(s)
- Xiaoqing Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jie Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Minwan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanxia Xu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shengyu Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanhong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
31
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
32
|
Gadoxetic acid-enhanced MR imaging for hepatocellular carcinoma: molecular and genetic background. Eur Radiol 2020; 30:3438-3447. [PMID: 32064560 DOI: 10.1007/s00330-020-06687-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Gadoxetic acid-enhanced magnetic resonance imaging (MRI) plays important roles in diagnosis of hepatic lesions because of its superiority in the detectability of small lesions, its differentiation ability, and its utility for the early diagnosis of hepatocellular carcinoma (HCC). In HCC, expression of organic anion transporting polypeptide (OATP) 1B3 correlates with the enhancement ratio in the hepatobiliary phase. Gadoxetic acid-enhanced MRI, an indirect molecular imaging method, reflects OATP1B3 expression in HCC. OATP1B3 expression gradually decreases from the dysplastic nodule stage to advanced HCC. Decreased expression is a sensitive marker of multistep hepatocarcinogenesis, especially in the early stages. Hypervascular HCCs commonly show hypointensity in the hepatobiliary phase corresponding to a decrease in OATP1B3; however, approximately 10% of HCCs show hyperintensity due to OATP1B3 overexpression. This hyperintense HCC shows less aggressive biological features and has a better prognosis than hypointense HCC. Hyperintense HCC can be classified into a genetic subtype of HCC with a mature hepatocyte-like molecular expression. OATP1B3 expression and the less aggressive nature of hyperintense HCC are regulated by the molecular interaction of β-catenin signaling and hepatocyte nuclear factor 4α, a tumor suppressor factor. Gadoxetic acid-enhanced MR imaging has the potential to be an imaging biomarker for HCC. KEY POINTS: • The hepatobiliary phase is a sensitive indirect indicator of organic anion transporting polypeptide1B3 (OATP1B3) expression in hepatocellular carcinoma (HCC). • The OATP1B3 expression, namely, enhancement in the hepatobiliary phase, decreases from the very early stage of hepatocarcinogenesis, contributing to early diagnosis of HCC. • HCC showing hyperintensity on the hepatobiliary phase is a peculiar genetic subtype of HCC with OATP1B3 overexpression, a less aggressive nature, and mature hepatocyte-like molecular/genetic features.
Collapse
|
33
|
El Saadany T, van Rosmalen B, Gai Z, Hiller C, Verheij J, Stieger B, van Gulik T, Visentin M, Kullak-Ublick GA. microRNA-206 modulates the hepatic expression of the organic anion-transporting polypeptide 1B1. Liver Int 2019; 39:2350-2359. [PMID: 31408569 DOI: 10.1111/liv.14212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/28/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The organic anion-transporting polypeptide 1B1 (OATP1B1) is an anion exchanger expressed at the hepatocyte sinusoidal membrane, which mediates the uptake of several endogenous metabolites and drugs. OATP1B1 expression level and activity are major sources of inter-patient variability of pharmacokinetics and pharmacodynamics of several drugs. Besides the genotype, factors that contribute to the inter-individual variability in OATP1B1 expression level are practically unknown. The aim of this work was to uncover novel epigenetic mechanisms of OATP1B1 regulation. METHODS A functional screening strategy to assess the effect of microRNAs on the uptake of estrone-3-sulphate, an OATP1B1 substrate, into human hepatocellular carcinoma (Huh-7) cells was used. microRNA-206 (miR-206) expression in human liver tissues was measured by real-time RT-PCR. OATP1B1 expression in Huh-7 and in human liver tissues was assessed by real-time RT-PCR, Western blotting and immunostaining. The mRNA-miRNA interaction was assessed by reporter assay. RESULTS miR-206 mimic repressed mRNA and protein expression of OATP1B1 in Huh-7 cells. The intracellular accumulation of estrone-3-sulphate was reduced by 30% in cells overexpressing miR-206. The repressive effect of miR-206 on the activity of the firefly luciferase gene 2 under the control of the OATP1B1 3' untranslated region was lost upon deletion of the predicted miR-206 binding site. Hepatic miR-206 level negatively correlated with OATP1B1 mRNA and protein levels extracted from normal human liver tissues. CONCLUSIONS miR-206 exerts a suppressive effect on OATP1B1 expression by an epigenetic mechanism. Individuals with high hepatic levels of miR-206 appear to display lower level of OATP1B1.
Collapse
Affiliation(s)
- Tämer El Saadany
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Belle van Rosmalen
- Department of Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zürich, Switzerland.,Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Christian Hiller
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Joanne Verheij
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Thomas van Gulik
- Department of Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zürich, Switzerland.,Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| |
Collapse
|
34
|
Abstract
Objective: Response to menopausal hormone therapy (MHT) shows individual variation. SLCO1B1 encodes the OATP1B1 transporter expressed in the liver that transports many endogenous substances, including estrone sulfate, from the blood into hepatocytes. This study evaluated the relationship between genetic variation in SLCO1B1 and response to MHT in women enrolled in the Kronos Early Estrogen Prevention Study (KEEPS) at Mayo Clinic, Rochester, MN. Methods: KEEPS participants were randomized to oral conjugated equine estrogen (n = 33, oCEE), transdermal 17β-estradiol (n = 33, tE2), or placebo (n = 34) for 48 months. Menopausal symptoms (hot flashes, night sweats, insomnia, palpitations) were self-reported before treatment and at 48 months. Estrone (E1), E2, and sulfated conjugates (E1S, E2S) were measured using high-performance liquid chromatography-tandem mass spectrometry. SLCO1B1 rs4149056 (c.521T>C, p.Val174Ala) was genotyped using a TaqMan assay. Results: After adjusting for treatment, there was a significant association between the SLCO1B1 rs4149056 TT genotype (encoding normal function transporter) and lower E1S, E1S/E1, and E2S (P = 0.032, 0.010, and 0.008, respectively) compared with women who were heterozygous (TC) or homozygous (CC) for the reduced function allele. The interactions between genotype, treatment, and E2S concentration were stronger in women assigned to tE2 (P = 0.013) than the women taking oCEE (P = 0.056). Among women assigned to active treatment, women with the CT genotype showed a significantly greater decrease in night sweats (P = 0.041) than those with the TT genotype. Conclusions: Individual variation in sulfated estrogens is explained, in part, by genetic variation in SLCO1B1. Bioavailability of sulfated estrogens may contribute to relief of night sweats.
Collapse
|
35
|
Zeng T, Liu Z, Liu H, He W, Tang X, Xie L, Wu R. Exploring Chemical and Biological Space of Terpenoids. J Chem Inf Model 2019; 59:3667-3678. [DOI: 10.1021/acs.jcim.9b00443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tao Zeng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Zhihong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P.R. China
| | - Huawei Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Wengan He
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Xiaowen Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
36
|
Malagnino V, Duthaler U, Seibert I, Krähenbühl S, Meyer Zu Schwabedissen HE. OATP1B3-1B7 (LST-3TM12) Is a Drug Transporter That Affects Endoplasmic Reticulum Access and the Metabolism of Ezetimibe. Mol Pharmacol 2019; 96:128-137. [PMID: 31127008 DOI: 10.1124/mol.118.114934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/15/2019] [Indexed: 02/14/2025] Open
Abstract
Drug transporters play a crucial role in pharmacokinetics. One subfamily of transporters with proven clinical relevance are the OATP1B transporters. Recently we identified a new member of the OATP1B family named OATP1B3-1B7 (LST-3TM12). This functional transporter is encoded by SLCO1B3 and SLCO1B7 OATP1B3-1B7 is expressed in hepatocytes and is located in the membrane of the smooth endoplasmic reticulum (SER). One aim of this study was to test whether OATP1B3-1B7 interacts with commercial drugs. First, we screened a selection of OATP1B substrates for inhibition of OATP1B3-1B7-mediated transport of dehydroepiandrosterone sulfate and identified several inhibitors. One such inhibitor was ezetimibe, which not only inhibited OATP1B3-1B7 but is also a substrate, as its cellular content was significantly increased in cells heterologously expressing the transporter. In humans, ezetimibe is extensively metabolized by hepatic and intestinal uridine-5'-diphospho-glucuronosyltransferases (UGTs), the catalytic site of which is located within the SER lumen. After verification of OATP1B3-1B7 expression in the small intestine, we determined in microsomes whether SER access can be modulated by inhibitors of OATP1B3-1B7. We were able to show that these compounds significantly reduced accumulation in small intestinal and hepatic microsomes, which influenced the rate of ezetimibe β-D-glucuronide formation as determined in microsomes treated with bromsulphthalein. Notably, this molecule not only inhibits the herein reported transporter but also other transport systems. In conclusion, we report that multiple drugs interact with OATP1B3-1B7; for ezetimibe, we were able to show that SER access and metabolism is significantly reduced by bromsulphthalein, which is an inhibitor of OATP1B3-1B7. SIGNIFICANCE STATEMENT: OATP1B3-1B3 (LST-3TM12) is a transporter that has yet to be fully characterized. We provide valuable insight into the interaction potential of this transporter with several marketed drugs. Ezetimibe, which interacted with OATP1B3-1B7, is highly metabolized by uridine-5'-diphospho-glucuronosyltransferases (UGTs), whose catalytic site is located within the smooth endoplasmic reticulum (SER) lumen. Through microsomal assays with ezetimibe and the transport inhibitor bromsulphthalein we investigated the interdependence of SER access and the glucuronidation rate of ezetimibe. These findings led us to the hypothesis that access or exit of drugs to the SER is orchestrated by SER transporters such as OATP1B3-1B7.
Collapse
Affiliation(s)
- Vanessa Malagnino
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| | - Urs Duthaler
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| | - Stephan Krähenbühl
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| | - Henriette E Meyer Zu Schwabedissen
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| |
Collapse
|
37
|
Nie Y, Yang J, Liu S, Sun R, Chen H, Long N, Jiang R, Gui C. Genetic polymorphisms of human hepatic OATPs: functional consequences and effect on drug pharmacokinetics. Xenobiotica 2019; 50:297-317. [DOI: 10.1080/00498254.2019.1629043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yingmin Nie
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jingjie Yang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shuai Liu
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ruiqi Sun
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Huihui Chen
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Nan Long
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Rui Jiang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chunshan Gui
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
38
|
Petrykey K, Lippé S, Robaey P, Sultan S, Laniel J, Drouin S, Bertout L, Beaulieu P, St-Onge P, Boulet-Craig A, Rezgui A, Yasui Y, Sapkota Y, Krull KR, Hudson MM, Laverdière C, Sinnett D, Krajinovic M. Influence of genetic factors on long-term treatment related neurocognitive complications, and on anxiety and depression in survivors of childhood acute lymphoblastic leukemia: The Petale study. PLoS One 2019; 14:e0217314. [PMID: 31181069 PMCID: PMC6557490 DOI: 10.1371/journal.pone.0217314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A substantial number of survivors of childhood acute lymphoblastic leukemia suffer from treatment-related late adverse effects including neurocognitive impairment. While multiple studies have described neurocognitive outcomes in childhood acute lymphoblastic leukemia (ALL) survivors, relatively few have investigated their association with individual genetic constitution. METHODS To further address this issue, genetic variants located in 99 genes relevant to the effects of anticancer drugs and in 360 genes implicated in nervous system function and predicted to affect protein function, were pooled from whole exome sequencing data of childhood ALL survivors (PETALE cohort) and analyzed for an association with neurocognitive complications, as well as with anxiety and depression. Variants that sustained correction for multiple testing were genotyped in entire cohort (n = 236) and analyzed with same outcomes. RESULTS Common variants in MTR, PPARA, ABCC3, CALML5, CACNB2 and PCDHB10 genes were associated with deficits in neurocognitive tests performance, whereas a variant in SLCO1B1 and EPHA5 genes was associated with anxiety and depression. Majority of associations were modulated by intensity of treatment. Associated variants were further analyzed in an independent SJLIFE cohort of 545 ALL survivors. Two variants, rs1805087 in methionine synthase, MTR and rs58225473 in voltage-dependent calcium channel protein encoding gene, CACNB2 are of particular interest, since associations of borderline significance were found in replication cohort and remain significant in combined discovery and replication groups (OR = 1.5, 95% CI, 1-2.3; p = 0.04 and; OR = 3.7, 95% CI, 1.25-11; p = 0.01, respectively). Variant rs4149056 in SLCO1B1 gene also deserves further attention since previously shown to affect methotrexate clearance and short-term toxicity in ALL patients. CONCLUSIONS Current findings can help understanding of the influence of genetic component on long-term neurocognitive impairment. Further studies are needed to confirm whether identified variants may be useful in identifying survivors at increased risk of these complications.
Collapse
Affiliation(s)
- Kateryna Petrykey
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
| | - Sarah Lippé
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe Robaey
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| | - Serge Sultan
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Laniel
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Simon Drouin
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Laurence Bertout
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Patrick Beaulieu
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Pascal St-Onge
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Aubrée Boulet-Craig
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Aziz Rezgui
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Yutaka Yasui
- Epidemiology and Cancer Control Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Yadav Sapkota
- Epidemiology and Cancer Control Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Kevin R. Krull
- Epidemiology and Cancer Control Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Melissa M. Hudson
- Epidemiology and Cancer Control Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
- Oncology Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Caroline Laverdière
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Daniel Sinnett
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Maja Krajinovic
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nat Commun 2018; 9:4455. [PMID: 30367059 PMCID: PMC6203810 DOI: 10.1038/s41467-018-06356-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022] Open
Abstract
Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves’ disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets. Thyroid dysfunction is a common public health problem and associated with cardiovascular co-morbidities. Here, the authors carry out genome-wide meta-analysis for thyroid hormone (TH) levels, hyper- and hypothyroidism and identify SLC17A4 as a TH transporter and AADAT as a TH metabolizing enzyme.
Collapse
|
40
|
Clinical Pharmacokinetics of Anaplastic Lymphoma Kinase Inhibitors in Non-Small-Cell Lung Cancer. Clin Pharmacokinet 2018; 58:403-420. [DOI: 10.1007/s40262-018-0689-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Liu SG, Gao C, Zhang RD, Zhao XX, Cui L, Li WJ, Chen ZP, Yue ZX, Zhang YY, Wu MY, Wang JX, Li ZG, Zheng HY. Polymorphisms in methotrexate transporters and their relationship to plasma methotrexate levels, toxicity of high-dose methotrexate, and outcome of pediatric acute lymphoblastic leukemia. Oncotarget 2018; 8:37761-37772. [PMID: 28525903 PMCID: PMC5514947 DOI: 10.18632/oncotarget.17781] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/14/2017] [Indexed: 11/25/2022] Open
Abstract
High-dose methotrexate (HDMTX) plays an important role in the treatment of acute lymphoblastic leukemia (ALL) although there is great inter-patient variability in the efficacy and toxicity of MTX. The relationship between polymorphisms in genes encoding MTX transporters and MTX response is controversial. In the present study, 322 Chinese children with standard- and intermediate-risk ALL were genotyped for 12 polymorphisms. SLCO1B1 rs10841753 showed a significant association with plasma MTX levels at 48 h (P = 0.017). Patients who had the ABCB1 rs1128503 C allele had longer duration of hospitalization than did those with the TT genotype (P = 0.006). No association was found between oral mucositis and any polymorphism. Long-term outcome was worse in patients with the SLCO1B1 rs4149056 CC genotype than in patients with TT or TC (5-year event-free survival [EFS] 33.3 ± 19.2% vs. 90.5 ± 1.7%, P < 0.001), and was worse in patients with the SCL19A1 rs2838958 AA genotype than in patients with AG or GG (5-year EFS 78.5 ± 4.6% vs. 92.2 ± 1.8%, P = 0.008). Multiple Cox regression analyses revealed associations of minimal residual disease (MRD) at day 33 (hazard ratio 3.458; P = 0.002), MRD at day 78 (hazard ratio 6.330; P = 0.001), SLCO1B1 rs4149056 (hazard ratio 12.242; P < 0.001), and SCL19A1 rs2838958 (hazard ratio 2.324; P = 0.019) with EFS. Our findings show that polymorphisms in genes encoding MTX transporters substantially influence the kinetics and response to HDMTX therapy in childhood ALL.
Collapse
Affiliation(s)
- Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.,Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 30020, China
| | - Rui-Dong Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Xiao-Xi Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Lei Cui
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Wei-Jing Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Zhen-Ping Chen
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Zhi-Xia Yue
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Yuan-Yuan Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Min-Yuan Wu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Jian-Xiang Wang
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 30020, China
| | - Zhi-Gang Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Hu-Yong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| |
Collapse
|
42
|
Hoffmann TJ, Theusch E, Haldar T, Ranatunga DK, Jorgenson E, Medina MW, Kvale MN, Kwok PY, Schaefer C, Krauss RM, Iribarren C, Risch N. A large electronic-health-record-based genome-wide study of serum lipids. Nat Genet 2018; 50:401-413. [PMID: 29507422 PMCID: PMC5942247 DOI: 10.1038/s41588-018-0064-5] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022]
Abstract
A genome-wide association study of 94,674 multi-ethnic Kaiser Permanente members utilizing 478,866 longitudinal untreated serum lipid electronic-health-record-derived measurements (EHRs) empowered multiple novel findings: 121 new SNP associations (46 primary, 15 conditional, 60 in meta-analysis with Global Lipids Genetic Consortium); increase of 33-42% in variance explained with multiple measurements; sex differences in genetic impact (greater in females for LDL, HDL, TC, the opposite for TG); differences in variance explained amongst non-Hispanic whites, Latinos, African Americans, and East Asians; genetic dominance and epistasis, with strong evidence for both at ABOxFUT2 for LDL; and eQTL tissue-enrichment implicating the liver, adipose, and pancreas. Utilizing EHR pharmacy data, both LDL and TG genetic risk scores (477 SNPs) were strongly predictive of age-at-initiation of lipid-lowering treatment. These findings highlight the value of longitudinal EHRs for identifying novel genetic features of cholesterol and lipoprotein metabolism with implications for lipid treatment and risk of coronary heart disease.
Collapse
Affiliation(s)
- Thomas J Hoffmann
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA. .,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
| | | | - Tanushree Haldar
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Dilrini K Ranatunga
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA
| | - Marisa W Medina
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Mark N Kvale
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Carlos Iribarren
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA
| | - Neil Risch
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA. .,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA. .,Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA.
| |
Collapse
|
43
|
The inhibitory effects of eighteen front-line antibiotics on the substrate uptake mediated by human Organic anion/cation transporters, Organic anion transporting polypeptides and Oligopeptide transporters in in vitro models. Eur J Pharm Sci 2018; 115:132-143. [DOI: 10.1016/j.ejps.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
|
44
|
Malagnino V, Hussner J, Seibert I, Stolzenburg A, Sager CP, Meyer Zu Schwabedissen HE. LST-3TM12 is a member of the OATP1B family and a functional transporter. Biochem Pharmacol 2017; 148:75-87. [PMID: 29248594 DOI: 10.1016/j.bcp.2017.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/13/2017] [Indexed: 02/04/2023]
Abstract
Organic anion transporting polypeptides (OATPs) and particularly the two members of the OATP1B family are known for their role in pharmacokinetics. Both SLCO1B3 and SLCO1B1 are located on chromosome 12 encompassing the gene locus SLCO1B7. Hitherto, this particular gene has been assumed to be a pseudogene, even though there are published mRNA sequences linked to this chromosomal area. It was aim of this study to further investigate SLCO1B7 and the associated mRNA LST-3TM12. In a first step, we aligned all mRNAs linked to the chromosomal region of SLCO1B-transporters. This in silico analysis revealed that LST-3TM12 is a product of splicing of SLCO1B3 and SLCO1B7, and encodes for a protein with twelve transmembrane domains. The existence of LST-3TM12 mRNA was verified by polymerase chain reaction showing liver enriched expression. In addition, immunohistological staining showed that LST-3TM12 protein was expressed in the endoplasmic reticulum (ER) of hepatocytes. Localization in the ER was further verified by immunoblot analysis showing high amounts of LST-3TM12 in liver microsomes. Function of LST-3TM12 was assessed by transport studies after heterologous expression in HeLa cells, where the transporter was shown to be expressed not only in the ER but also in the plasma membrane. Overexpression of LST-3TM12 was associated with enhanced cellular accumulation of dehydroepiandrosterone sulfate (Vmax 300.2 pmol mg-1 min-1; Km 34.2 µm) and estradiol 17β-glucuronide (Vmax 29.9 mol mg-1 min-1 and Km 32.8 µM). In conclusion, LST-3TM12 is a functional splice variant of SLCO1B3 and SLCO1B7 expressed in the ER of human liver.
Collapse
Affiliation(s)
- Vanessa Malagnino
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Antje Stolzenburg
- Department of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Germany
| | - Christoph P Sager
- Molecular Modeling, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
45
|
Narumi K, Sato Y, Kobayashi M, Furugen A, Kasashi K, Yamada T, Teshima T, Iseki K. Effects of proton pump inhibitors and famotidine on elimination of plasma methotrexate: Evaluation of drug-drug interactions mediated by organic anion transporter 3. Biopharm Drug Dispos 2017; 38:501-508. [PMID: 28801980 DOI: 10.1002/bdd.2091] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/18/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022]
Abstract
Methotrexate (MTX) is an antifolate agent used in the treatment of numerous types of cancer, and eliminated by active tubular secretion via organic anion transporter 3 (OAT3). Gastric antisecretory drugs, such as proton pump inhibitors (PPIs) and histamine H2 receptor antagonists, are widely used among patients with cancer in clinical practice. The aim of the present study was to analyse the potential drug-drug interactions between MTX and gastric antisecretory drugs in high-dose MTX (HD-MTX) therapy. The impact of PPIs on the plasma MTX concentration on 73 cycles of HD-MTX therapy was analysed retrospectively in 43 patients. Also investigated was the involvement of OAT3 in PPI-MTX drug interaction in an in vitro study using human OAT3 expressing HEK293 cells. In a retrospective study, patients who received a PPI had significantly higher MTX levels at 48 h (0.38 vs. 0.15 μmol l-1 , respectively, p = 0.000018) and 72 h (0.13 vs. 0.05 μmol l-1 , respectively, p = 0.0002) compared with patients who did not receive a PPI (but received famotidine). Moreover, in vitro experiments demonstrated that PPIs (esomeprazole, lansoprazole, omeprazole and rabeprazole) inhibited hOAT3-mediated uptake of MTX in a concentration-dependent manner (IC50 values of 0.40-5.5 μ m), with a rank order of lansoprazole > esomeprazole > rabeprazole > omeprazole. In contrast to PPIs, famotidine showed little inhibitory effect on hOAT3-mediated MTX uptake. These results demonstrated that co-administration of PPI, but not famotidine, could result in a pharmacokinetic interaction that increases the plasma MTX levels, at least in part, via hOAT3 inhibition.
Collapse
Affiliation(s)
- Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.,Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Yu Sato
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Kumiko Kasashi
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Takehiro Yamada
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Takanori Teshima
- Faculty of Medicine, Hokkaido University, Kita-15-jo, Nishi-7-chome, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.,Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| |
Collapse
|
46
|
Park JE, Ryoo G, Lee W. Alternative Splicing: Expanding Diversity in Major ABC and SLC Drug Transporters. AAPS JOURNAL 2017; 19:1643-1655. [DOI: 10.1208/s12248-017-0150-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/10/2017] [Indexed: 01/18/2023]
|
47
|
Park SH, Kim H, Kim EK, Kim H, Choi DK, Chung YE, Kim MJ, Choi JY. Aberrant expression of OATP1B3 in colorectal cancer liver metastases and its clinical implication on gadoxetic acid-enhanced MRI. Oncotarget 2017; 8:71012-71023. [PMID: 29050339 PMCID: PMC5642614 DOI: 10.18632/oncotarget.20295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 07/11/2017] [Indexed: 12/29/2022] Open
Abstract
Purpose To investigate the factors associated with hepatobiliary phase (HBP) enhancement at gadoxetic acid-enhanced magnetic resonance imaging (MRI) and to determine whether HBP images could be used to predict prognosis in patients with colorectal cancer liver metastasis (CRLM). Results Of the 96 total nodules, 65 and 31 nodules were in the mixed and clearly hypointense groups, respectively. In the 55 nodules without preoperative chemotherapy, organic anionic transporting polypeptide 1B3 (OATP1B3) expression was a significant factor regarding the HBP enhancement (P=0.042). In this subgroup, nodules with OATP1B3 expression displayed a significantly higher relative intensity ratio on the HBP image (RIRpost) and relative enhancement ratio (RER) than those lacking this marker (P=0.024, 0.003, respectively). No significant factor was associated with the enhancement pattern in the chemotherapy group. The mixed hypointense group displayed worse survival rates (P=0.002). Materials and Methods Ninety-six patients who underwent pre-operative liver MRI and surgical resection for CRLM from January 2010 to June 2012 were retrospectively analyzed. We qualitatively evaluated the HBP enhancement pattern of CRLMs and classified them into mixed and clearly hypointense groups. For quantitative measurement, the RIRpost and RER were analyzed. To investigate factors associated with HBP enhancement, tumor components (fibrosis, necrosis, and cellularity) and OATP1B3 expression were scored on a 4-point scale. Univariate and multivariate analyses were done to determine significant factors for visual enhancement and quantitative parameters. Conclusions OATP1B3 expression is associated with mixed hypointense CRLMs without chemotherapy. Signal intensity on HBP has potential usefulness to predict prognosis in CRLMs.
Collapse
Affiliation(s)
- Seung Hyun Park
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Honsoul Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Kyung Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hogeun Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Kyu Choi
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Yong Eun Chung
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Myeong-Jin Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Young Choi
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
49
|
Zhou F, Zhu L, Wang K, Murray M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev 2017; 116:21-36. [PMID: 27320645 DOI: 10.1016/j.addr.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Drug pharmacokinetics is influenced by the function of metabolising enzymes and influx/efflux transporters. Genetic variability of these genes is known to impact on clinical therapies. Solute Carrier Transporters (SLCs) are the primary influx transporters responsible for the cellular uptake of drug molecules, which consequently, impact on drug efficacy and toxicity. The Organic Anion Transporting Polypeptides (OATPs), Organic Anion Transporters (OATs) and Organic Cation Transporters (OCTs/OCTNs) are the most important SLCs involved in drug disposition. The information regarding the influence of SLC polymorphisms on drug pharmacokinetics is limited and remains a hot topic of pharmaceutical research. This review summarises the recent advance in the pharmacogenomics of SLCs with an emphasis on human OATPs, OATs and OCTs/OCTNs. Our current appreciation of the degree of variability in these transporters may contribute to better understanding the inter-patient variation of therapies and thus, guide the optimisation of clinical treatments.
Collapse
|
50
|
Affiliation(s)
- Eleni Kotsampasakou
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14 1090 Vienna Austria
| | - Gerhard F. Ecker
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14 1090 Vienna Austria
| |
Collapse
|