1
|
Develin A, Fuglestad B. Inositol Hexaphosphate as an Inhibitor and Potential Regulator of p47 phox Membrane Anchoring. Biochemistry 2024; 63:1097-1106. [PMID: 38669178 PMCID: PMC11080064 DOI: 10.1021/acs.biochem.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
As a key component for NADPH oxidase 2 (NOX2) activation, the peripheral membrane protein p47phox translocates a cytosolic activating complex to the membrane through its PX domain. This study elucidates a potential regulatory mechanism of p47phox recruitment and NOX2 activation by inositol hexaphosphate (IP6). Through NMR, fluorescence polarization, and FRET experimental results, IP6 is shown to be capable of breaking the lipid binding and membrane anchoring events of p47phox-PX with low micromolar potency. Other phosphorylated inositol species such as IP5(1,3,4,5,6), IP4(1,3,4,5), and IP3(1,3,4) show weaker binding and no ability to inhibit lipid interactions in physiological concentration ranges. The low micromolar potency of IP6 inhibition of the p47phox membrane anchoring suggests that physiologically relevant concentrations of IP6 serve as regulators, as seen in other membrane anchoring domains. The PX domain of p47phox is known to be promiscuous to a variety of phosphatidylinositol phosphate (PIP) lipids, and this regulation may help target the domain only to the membranes most highly enriched with the highest affinity PIPs, such as the phagosomal membrane, while preventing aberrant binding to other membranes with high and heterogeneous PIP content, such as the plasma membrane. This study provides insight into a potential novel regulatory mechanism behind NOX2 activation and reveals a role for small-molecule regulation in this important NOX2 activator.
Collapse
Affiliation(s)
- Angela
M. Develin
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
| | - Brian Fuglestad
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
2
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
3
|
Cipriano A, Viviano M, Feoli A, Milite C, Sarno G, Castellano S, Sbardella G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J Med Chem 2023; 66:11632-11655. [PMID: 37650225 PMCID: PMC10510401 DOI: 10.1021/acs.jmedchem.3c00770] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/01/2023]
Abstract
NADPH oxidases (NOXs) form a family of electron-transporting membrane enzymes whose main function is reactive oxygen species (ROS) generation. Strong evidence suggests that ROS produced by NOX enzymes are major contributors to oxidative damage under pathologic conditions. Therefore, blocking the undesirable actions of these enzymes is a therapeutic strategy for treating various pathological disorders, such as cardiovascular diseases, inflammation, and cancer. To date, identification of selective NOX inhibitors is quite challenging, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. The aim of this Perspective is to furnish an updated outlook about the small-molecule NOX inhibitors described over the last two decades. Structures, activities, and in vitro/in vivo specificity are discussed, as well as the main biological assays used.
Collapse
Affiliation(s)
- Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
4
|
NADPH Oxidases in Aortic Aneurysms. Antioxidants (Basel) 2022; 11:antiox11091830. [PMID: 36139902 PMCID: PMC9495752 DOI: 10.3390/antiox11091830] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a progressive dilation of the infrarenal aorta and are characterized by inflammatory cell infiltration, smooth muscle cell migration and proliferation, and degradation of the extracellular matrix. Oxidative stress and the production of reactive oxygen species (ROS) have been shown to play roles in inflammatory cell infiltration, and smooth muscle cell migration and apoptosis in AAAs. In this review, we discuss the principles of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase/NOX) signaling and activation. We also discuss the effects of some of the major mediators of NOX signaling in AAAs. Separately, we also discuss the influence of genetic or pharmacologic inhibitors of NADPH oxidases on experimental pre-clinical AAAs. Experimental evidence suggests that NADPH oxidases may be a promising future therapeutic target for developing pharmacologic treatment strategies for halting AAA progression or rupture prevention in the management of clinical AAAs.
Collapse
|
5
|
Computational Screening for the Anticancer Potential of Seed-Derived Antioxidant Peptides: A Cheminformatic Approach. Molecules 2021; 26:molecules26237396. [PMID: 34885982 PMCID: PMC8659047 DOI: 10.3390/molecules26237396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Some seed-derived antioxidant peptides are known to regulate cellular modulators of ROS production, including those proposed to be promising targets of anticancer therapy. Nevertheless, research in this direction is relatively slow owing to the inevitable time-consuming nature of wet-lab experimentations. To help expedite such explorations, we performed structure-based virtual screening on seed-derived antioxidant peptides in the literature for anticancer potential. The ability of the peptides to interact with myeloperoxidase, xanthine oxidase, Keap1, and p47phox was examined. We generated a virtual library of 677 peptides based on a database and literature search. Screening for anticancer potential, non-toxicity, non-allergenicity, non-hemolyticity narrowed down the collection to five candidates. Molecular docking found LYSPH as the most promising in targeting myeloperoxidase, xanthine oxidase, and Keap1, whereas PSYLNTPLL was the best candidate to bind stably to key residues in p47phox. Stability of the four peptide-target complexes was supported by molecular dynamics simulation. LYSPH and PSYLNTPLL were predicted to have cell- and blood-brain barrier penetrating potential, although intolerant to gastrointestinal digestion. Computational alanine scanning found tyrosine residues in both peptides as crucial to stable binding to the targets. Overall, LYSPH and PSYLNTPLL are two potential anticancer peptides that deserve deeper exploration in future.
Collapse
|
6
|
Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021; 48:102159. [PMID: 34627721 PMCID: PMC8487856 DOI: 10.1016/j.redox.2021.102159] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are enzymes that generate superoxide or hydrogen peroxide from molecular oxygen utilizing NADPH as an electron donor. There are seven enzymes in the NOX family: NOX1-5 and dual oxidase (DUOX) 1-2. NOX enzymes in humans play important roles in diverse biological functions and vary in expression from tissue to tissue. Importantly, NOX2 is involved in regulating many aspects of innate and adaptive immunity, including regulation of type I interferons, the inflammasome, phagocytosis, antigen processing and presentation, and cell signaling. DUOX1 and DUOX2 play important roles in innate immune defenses at epithelial barriers. This review discusses the role of NOX enzymes in normal physiological processes as well as in disease. NOX enzymes are important in autoimmune diseases like type 1 diabetes and have also been implicated in acute lung injury caused by infection with SARS-CoV-2. Targeting NOX enzymes directly or through scavenging free radicals may be useful therapies for autoimmunity and acute lung injury where oxidative stress contributes to pathology.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Xu Z, Liang Y, Delaney MK, Zhang Y, Kim K, Li J, Bai Y, Cho J, Ushio-Fukai M, Cheng N, Du X. Shear and Integrin Outside-In Signaling Activate NADPH-Oxidase 2 to Promote Platelet Activation. Arterioscler Thromb Vasc Biol 2021; 41:1638-1653. [PMID: 33691478 PMCID: PMC8057529 DOI: 10.1161/atvbaha.120.315773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/01/2021] [Indexed: 11/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zheng Xu
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Ying Liang
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - M. Keegan Delaney
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Dupage Medical Technology, Inc (M.K.D.)
| | - Yaping Zhang
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Kyungho Kim
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu (K.K.)
| | - Jing Li
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Yanyan Bai
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Masuko Ushio-Fukai
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Department of Medicine (Cardiology), Vascular Biology Center, Medical College of Georgia at Augusta University (M.U.-F.)
| | - Ni Cheng
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| |
Collapse
|
8
|
Li Y, Cifuentes-Pagano E, DeVallance ER, de Jesus DS, Sahoo S, Meijles DN, Koes D, Camacho CJ, Ross M, St Croix C, Pagano PJ. NADPH oxidase 2 inhibitors CPP11G and CPP11H attenuate endothelial cell inflammation & vessel dysfunction and restore mouse hind-limb flow. Redox Biol 2019; 22:101143. [PMID: 30897521 PMCID: PMC6435978 DOI: 10.1016/j.redox.2019.101143] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
First described as essential to the phagocytic activity of leukocytes, Nox2-derived ROS have emerged as mediators of a range of cellular and tissue responses across species from salubrious to deleterious consequences. Knowledge of their role in inflammation is limited, however. We postulated that TNFα-induced endothelial reactive oxygen species (ROS) generation and pro-inflammatory signaling would be ameliorated by targeting Nox2. Herein, we in silico-modelled two first-in-class Nox2 inhibitors developed in our laboratory, explored their cellular mechanism of action and tested their efficacy in in vitro and mouse in vivo models of inflammation. Our data show that these inhibitors (CPP11G and CPP11H) disrupted canonical Nox2 organizing factor, p47phox, translocation to Nox2 in the plasma membrane; and abolished ROS production, markedly attenuated stress-responsive MAPK signaling and downstream AP-1 and NFκB nuclear translocation in human cells. Consequently, cell adhesion molecule expression and monocyte adherence were significantly inhibited by both inhibitors. In vivo, TNFα-induced ROS and inflammation were ameliorated by targeted Nox2 inhibition, which, in turn, improved hind-limb blood flow. These studies identify a proximal role for Nox2 in propagated inflammatory signaling and support therapeutic value of Nox2 inhibitors in inflammatory disease.
Collapse
Affiliation(s)
- Y Li
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | - E Cifuentes-Pagano
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | - E R DeVallance
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | - D S de Jesus
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | - S Sahoo
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | | | - D Koes
- Computational and Systems Biology, University of Pittsburgh, USA
| | - C J Camacho
- Computational and Systems Biology, University of Pittsburgh, USA
| | - M Ross
- Center for Biologic Imaging, University of Pittsburgh, PA, 15261, USA
| | - C St Croix
- Center for Biologic Imaging, University of Pittsburgh, PA, 15261, USA
| | - P J Pagano
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA.
| |
Collapse
|
9
|
Jeong J, Kim YJ, Lee DY, Moon BG, Sohn KY, Yoon SY, Kim JW. 1-Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) attenuates gemcitabine-induced neutrophil extravasation. Cell Biosci 2019; 9:4. [PMID: 30622698 PMCID: PMC6317242 DOI: 10.1186/s13578-018-0266-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/24/2018] [Indexed: 11/10/2022] Open
Abstract
Cancer patients treated with chemotherapy often experience a rapid decline of blood neutrophils, a dose-limiting side effect called chemotherapy-induced neutropenia. This complication brings about dose reductions or cessation of chemotherapy during treatment of cancer patients because a rapid decline of neutrophil counts increases susceptibility to infection. Here, we found that 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) attenuates gemcitabine-induced neutrophil extravasation via the inhibition of neutrophil-attracting chemokine production in macrophages using in vivo and in vitro approaches. A single intraperitoneal administration of gemcitabine induced the migration of circulating neutrophils into the peritoneal cavity in normal mice, and PLAG effectively decreased neutrophil migration by inhibiting the expression of adhesion molecules, L-selectin and LFA-1. Inhibition of CXCR2 by its antagonist, reparixin, abrogated gemcitabine-induced neutrophil migration, indicating that chemokines produced by gemcitabine mainly support neutrophil activation. In vitro experiments demonstrated that PLAG inhibited NADPH oxidase 2 (NOX2)-mediated reactive oxygen species production induced by gemcitabine, which is the upstream of MIP-2 and/or CXCL8. Importantly, PLAG down-regulated gemcitabine-induced membrane translocation of the cytosolic NOX subunit, Rac1, and phosphorylation of p47phox. The activation of upstream signaling molecules of p47phox phosphorylation, phospholipase C β3 and protein kinase C, were effectively regulated by PLAG. We also demonstrated that 1-palmitoyl-2-linoleic-3-hydroxyl-rac-glycerol (PLH), the natural form of diacylglycerol, has no effects on gemcitabine-induced CXCL8 production and dHL-60 migration, suggesting that an acetyl group at the third position of the glycerol backbone may have a key role in the regulation of neutrophil activation. Altogether, this study suggests the potential of PLAG as a therapeutic strategy to modulate chemotherapy-induced neutrophil activation for cancer patients undergoing chemotherapeutic treatment.
Collapse
Affiliation(s)
- Jinseon Jeong
- 1Cell Factory Research Center, Division of Systems Biology and Bioengineering, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-333 Republic of Korea.,2Department of Functional Genomics, University of Science & Technology, Daejeon, Republic of Korea.,Division of Global New Drug Development, ENZYCHEM Lifesciences, Jecheon, 27159 Republic of Korea
| | - Yong-Jae Kim
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Jecheon, 27159 Republic of Korea
| | - Do Young Lee
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Jecheon, 27159 Republic of Korea
| | - Byoung-Gon Moon
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Jecheon, 27159 Republic of Korea
| | - Ki-Young Sohn
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Jecheon, 27159 Republic of Korea
| | - Sun Young Yoon
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Jecheon, 27159 Republic of Korea
| | - Jae Wha Kim
- 1Cell Factory Research Center, Division of Systems Biology and Bioengineering, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-333 Republic of Korea.,2Department of Functional Genomics, University of Science & Technology, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front Cell Infect Microbiol 2017; 7:373. [PMID: 28890882 PMCID: PMC5574878 DOI: 10.3389/fcimb.2017.00373] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs), toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs). Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation. Nonetheless, these pathogens often rely on repair and detoxifying proteins in addition to these secreted effectors and toxins in order to resist mammalian sources of ROS. This suggests that pathogens have both intrinsic and extrinsic mechanisms to avoid restriction by PMN-derived ROS. Here, we review mechanisms of oxidative burst in PMNs in response to bacterial infections, as well as the mechanisms by which bacterial pathogens thwart restriction by ROS to survive under conditions of oxidative stress.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States
| | - Erin R Green
- Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States.,Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| |
Collapse
|
11
|
Rastogi R, Geng X, Li F, Ding Y. NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease. Front Cell Neurosci 2017; 10:301. [PMID: 28119569 PMCID: PMC5222855 DOI: 10.3389/fncel.2016.00301] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX) is an enzyme complex with the sole function of producing superoxide anion and reactive oxygen species (ROS) at the expense of NADPH. Vital to the immune system as well as cellular signaling, NOX is also involved in the pathologies of a wide variety of disease states. Particularly, it is an integral player in many neurological diseases, including stroke, TBI, and neurodegenerative diseases. Pathologically, NOX produces an excessive amount of ROS that exceed the body’s antioxidant ability to neutralize them, leading to oxidative stress and aberrant signaling. This prevalence makes it an attractive therapeutic target and as such, NOX inhibitors have been studied and developed to counter NOX’s deleterious effects. However, recent studies of NOX have created a better understanding of the NOX complex. Comprised of independent cytosolic subunits, p47-phox, p67-phox, p40-phox and Rac, and membrane subunits, gp91-phox and p22-phox, the NOX complex requires a unique activation process through subunit interaction. Of these subunits, p47-phox plays the most important role in activation, binding and translocating the cytosolic subunits to the membrane and anchoring to p22-phox to organize the complex for NOX activation and function. Moreover, these interactions, particularly that between p47-phox and p22-phox, are dependent on phosphorylation initiated by upstream processes involving protein kinase C (PKC). This review will look at these interactions between subunits and with PKC. It will focus on the interaction involving p47-phox with p22-phox, key in bringing the cytosolic subunits to the membrane. Furthermore, the implication of these interactions as a target for NOX inhibitors such as apocynin will be discussed as a potential avenue for further investigation, in order to develop more specific NOX inhibitors based on the inhibition of NOX assembly and activation.
Collapse
Affiliation(s)
- Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
12
|
Abstract
Since its discovery in 1999, a number of studies have evaluated the role of Nox1 NADPH oxidase in the cardiovascular system. Nox1 is activated in vascular cells in response to several different agonists, with its activity regulated at the transcriptional level as well as by NADPH oxidase complex formation, protein stabilization and post-translational modification. Nox1 has been shown to decrease the bioavailability of nitric oxide, transactivate the epidermal growth factor receptor, induce pro-inflammatory signalling, and promote cell migration and proliferation. Enhanced expression and activity of Nox1 under pathologic conditions results in excessive production of reactive oxygen species and dysregulated cellular function. Indeed, studies using genetic models of Nox1 deficiency or overexpression have revealed roles for Nox1 in the pathogenesis of cardiovascular diseases ranging from atherosclerosis to hypertension, restenosis and ischaemia/reperfusion injury. These data suggest that Nox1 is a potential therapeutic target for vascular disease, and drug development efforts are ongoing to identify a specific bioavailable inhibitor of Nox1.
Collapse
|
13
|
Vlahos R, Selemidis S. NADPH Oxidases as Novel Pharmacologic Targets against Influenza A Virus Infection. Mol Pharmacol 2014; 86:747-59. [DOI: 10.1124/mol.114.095216] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
14
|
Streeter J, Schickling BM, Jiang S, Stanic B, Thiel WH, Gakhar L, Houtman JCD, Miller FJ. Phosphorylation of Nox1 regulates association with NoxA1 activation domain. Circ Res 2014; 115:911-8. [PMID: 25228390 DOI: 10.1161/circresaha.115.304267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Activation of Nox1 initiates redox-dependent signaling events crucial in the pathogenesis of vascular disease. Selective targeting of Nox1 is an attractive potential therapy, but requires a better understanding of the molecular modifications controlling its activation. OBJECTIVE To determine whether posttranslational modifications of Nox1 regulate its activity in vascular cells. METHODS AND RESULTS We first found evidence that Nox1 is phosphorylated in multiple models of vascular disease. Next, studies using mass spectroscopy and a pharmacological inhibitor demonstrated that protein kinase C-beta1 mediates phosphorylation of Nox1 in response to tumor necrosis factor-α. siRNA-mediated silencing of protein kinase C-beta1 abolished tumor necrosis factor-α-mediated reactive oxygen species production and vascular smooth muscle cell migration. Site-directed mutagenesis and isothermal titration calorimetry indicated that protein kinase C-beta1 phosphorylates Nox1 at threonine 429. Moreover, Nox1 threonine 429 phosphorylation facilitated the association of Nox1 with the NoxA1 activation domain and was necessary for NADPH oxidase complex assembly, reactive oxygen species production, and vascular smooth muscle cell migration. CONCLUSIONS We conclude that protein kinase C-beta1 phosphorylation of threonine 429 regulates activation of Nox1 NADPH oxidase.
Collapse
Affiliation(s)
- Jennifer Streeter
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - Brandon M Schickling
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - Shuxia Jiang
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - Bojana Stanic
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - William H Thiel
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - Lokesh Gakhar
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - Jon C D Houtman
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - Francis J Miller
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.).
| |
Collapse
|
15
|
Zeng KW, Song FJ, Wang YH, Li N, Yu Q, Liao LX, Jiang Y, Tu PF. Induction of hepatoma carcinoma cell apoptosis through activation of the JNK-nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-ROS self-driven death signal circuit. Cancer Lett 2014; 353:220-31. [PMID: 25064608 DOI: 10.1016/j.canlet.2014.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/29/2014] [Accepted: 07/14/2014] [Indexed: 01/08/2023]
Abstract
As an efficient method for inducing tumor cell apoptosis, ROS can be constantly formed and accumulated in NADPH oxidase overactivated-cells, resulting in further mitochondrial membrane damage and mitochondria-dependent apoptosis. In addition, JNK mitogen-activated protein kinase (JNK MAPK) signal also acts as a vital candidate pathway for inducing tumor cell apoptosis by targeting mitochondrial death pathway. However, the relationship between NADPH oxidase-ROS and JNK MAPK signal still remains unclear. Here, we discovered a novel self-driven signal circuit between NADPH oxidase-ROS and JNK MAPK, which was induced by a cytotoxic steroidal saponin (ASC) in hepatoma carcinoma cells. NADPH oxidase-dependent ROS production was markedly activated by ASC and directly led to JNK MAPK activation. Moreover, antioxidant, NADPH oxidase inhibitor and specific knock-out for p47 subunit of NADPH oxidase could effectively block NADPH oxidase-ROS-dependent JNK activation, suggesting that NADPH oxidase is an upstream regulator of JNK MAPK. Conversely, a specific JNK inhibitor could inhibit ASC-induced NADPH oxidase activation and down-regulate ROS levels as well, indicating that JNK might also regulate NADPH oxidase activity to some extent. These observations indicate that NADPH oxidase and JNK MAPK activate each other as a signal circuit. Furthermore, drug pretreatment experiments with ASC showed this signal circuit operated continuously via a self-driven mode and finally induced apoptosis in hepatoma carcinoma cells. Taken together, we provide a proof for inducing hepatoma carcinoma cell apoptosis by activating the JNK-NADPH oxidase-ROS-dependent self-driven signal circuit pathway.
Collapse
Affiliation(s)
- Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fang-Jiao Song
- Research Studio of Integration of Traditional and Western Medicine, First Hospital, Peking University, Beijing 100034, China
| | - Ying-Hong Wang
- Research Studio of Integration of Traditional and Western Medicine, First Hospital, Peking University, Beijing 100034, China
| | - Ning Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qian Yu
- Research Studio of Integration of Traditional and Western Medicine, First Hospital, Peking University, Beijing 100034, China
| | - Li-Xi Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
16
|
Yao M, Rogers NM, Csányi G, Rodriguez AI, Ross MA, St Croix C, Knupp H, Novelli EM, Thomson AW, Pagano PJ, Isenberg JS. Thrombospondin-1 activation of signal-regulatory protein-α stimulates reactive oxygen species production and promotes renal ischemia reperfusion injury. J Am Soc Nephrol 2014; 25:1171-86. [PMID: 24511121 PMCID: PMC4033366 DOI: 10.1681/asn.2013040433] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/29/2013] [Indexed: 01/08/2023] Open
Abstract
Ischemia reperfusion injury (IRI) causes tissue and organ injury, in part, through alterations in tissue blood flow and the production of reactive oxygen species. The cell surface receptor signal-regulatory protein-α (SIRP-α) is expressed on inflammatory cells and suppresses phagocytosis, but the function of SIRP-α in IRI has not been determined. We reported previously that the matricellular protein thrombospondin-1 is upregulated in IRI. Here, we report a novel interaction between thrombospondin-1 and SIRP-α on nonphagocytic cells. In cell-free experiments, thrombospondin-1 bound SIRP-α. In vascular smooth muscle cells and renal tubular epithelial cells, treatment with thrombospondin-1 led to phosphorylation of SIRP-α and downstream activation of Src homology domain 2-containing phosphatase-1. Thrombospondin-1 also stimulated phosphorylation of p47(phox) (an organizer subunit for nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1/2) and increased production of superoxide, both of which were abrogated by knockdown or antibody blockade of SIRP-α. In rodent aortic rings, treatment with thrombospondin-1 increased the production of superoxide and inhibited nitric oxide-mediated vasodilation in a SIRP-α-dependent manner. Renal IRI upregulated the thrombospondin-1-SIRP-α signaling axis and was associated with increased superoxide production and cell death. A SIRP-α antibody that blocks thrombospondin-1 activation of SIRP-α mitigated the effects of renal IRI, increasing blood flow, suppressing production of reactive oxygen species, and preserving cellular architecture. A role for CD47 in SIRP-α activation in these pathways is also described. Overall, these results suggest that thrombospondin-1 binding to SIRP-α on nonphagocytic cells activates NADPH oxidase, limits vasodilation, and promotes renal IRI.
Collapse
Affiliation(s)
| | | | - Gábor Csányi
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology
| | - Andres I Rodriguez
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology
| | | | | | | | | | | | - Patrick J Pagano
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology
| | - Jeffrey S Isenberg
- Vascular Medicine Institute, Starzl Transplantation Institute, Department of Pharmacology and Chemical Biology, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med 2013; 61:473-501. [PMID: 23583330 PMCID: PMC3883979 DOI: 10.1016/j.freeradbiomed.2013.04.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/05/2013] [Accepted: 04/02/2013] [Indexed: 02/07/2023]
Abstract
Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyperactivation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia-reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD.
Collapse
Affiliation(s)
- Nageswara R Madamanchi
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Marschall S Runge
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
Abstract
Peroxiredoxins (Prdxs) are a family of proteins which catalyze the reduction of H2O2 through the interaction of active site cysteine residues. Conserved within all plant and animal kingdoms, the function of these proteins is related to protection from oxidation or participation of signaling through degradation of H2O2. Peroxiredoxin 6 (Prdx6), a protein belonging to the class of 1-cys Prdxs, was identified in polymorphonuclear leukocytes or neutrophils, defined by amino acid sequence and activity, and found associated with a component of the NADPH oxidase (Nox2), p67(phox). Prdx6 plays an important role in neutrophil function and supports the optimal activity of Nox2. In this chapter, methods are described for determining the Prdx activity of Prdx6. In addition, the approach for assessing the effect of Prdx6 on Nox2 in the SDS-activated, cell-free system of NADPH oxidase activity is presented. Finally, the techniques for suppressing Prdx6 expression in phox-competent K562 cells and cultured myeloid cells with siRNA and shRNA methods are described. With these approaches, the role of Prdx6 in Nox2 activity can be explored with intact cells. The biochemical mechanisms of the Prdx6 effect on the NADPH oxidase can be investigated with the experimental strategies described.
Collapse
|
19
|
El-Benna J, Dang PMC, Périanin A. Towards specific NADPH oxidase inhibition by small synthetic peptides. Cell Mol Life Sci 2012; 69:2307-14. [PMID: 22562604 PMCID: PMC11114506 DOI: 10.1007/s00018-012-1008-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 11/26/2022]
Abstract
Reactive oxygen species (ROS) production by the phagocyte NADPH oxidase is essential for host defenses against pathogens. ROS are very reactive with biological molecules such as lipids, proteins and DNA, potentially resulting in cell dysfunction and tissue insult. Excessive NADPH oxidase activation and ROS overproduction are believed to participate in disorders such as joint, lung, vascular and intestinal inflammation. NADPH oxidase is a complex enzyme composed of six proteins: gp91phox (renamed NOX2), p22phox, p47phox, p67phox, p40phox and Rac1/2. Inhibitors of this enzyme could be beneficial, by limiting ROS production and inappropriate inflammation. A few small non-peptide inhibitors of NADPH oxidase are currently used to inhibit ROS production, but they lack specificity as they inhibit NADPH oxidase homologues or other unrelated enzymes. Peptide inhibitors that target a specific sequence of NADPH oxidase components could be more specific than small molecules. Here we review peptide-based inhibitors, with particular focus on a molecule derived from gp91phox/NOX2 and p47phox, and discuss their possible use as specific phagocyte NADPH oxidase inhibitors.
Collapse
Affiliation(s)
- Jamel El-Benna
- INSERM, U, CRB, Faculté de Médecine, Université Paris Denis Diderot, France.
| | | | | |
Collapse
|
20
|
Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 2011; 10:453-71. [PMID: 21629295 PMCID: PMC3361719 DOI: 10.1038/nrd3403] [Citation(s) in RCA: 690] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NADPH oxidases are a family of enzymes that generate reactive oxygen species (ROS). The NOX1 (NADPH oxidase 1) and NOX2 oxidases are the major sources of ROS in the artery wall in conditions such as hypertension, hypercholesterolaemia, diabetes and ageing, and so they are important contributors to the oxidative stress, endothelial dysfunction and vascular inflammation that underlies arterial remodelling and atherogenesis. In this Review, we advance the concept that compared to the use of conventional antioxidants, inhibiting NOX1 and NOX2 oxidases is a superior approach for combating oxidative stress. We briefly describe some common and emerging putative NADPH oxidase inhibitors. In addition, we highlight the crucial role of the NADPH oxidase regulatory subunit, p47phox, in the activity of vascular NOX1 and NOX2 oxidases, and suggest how a better understanding of its specific molecular interactions may enable the development of novel isoform-selective drugs to prevent or treat cardiovascular diseases.
Collapse
Affiliation(s)
- Grant R Drummond
- Vascular Biology & Immunopharmacology Group, Department of Pharmacology, Monash University, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
21
|
Olavarría VH, Gallardo L, Figueroa JE, Mulero V. Lipopolysaccharide primes the respiratory burst of Atlantic salmon SHK-1 cells through protein kinase C-mediated phosphorylation of p47phox. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1242-1253. [PMID: 20621116 DOI: 10.1016/j.dci.2010.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 05/29/2023]
Abstract
The superoxide-producing NADPH oxidase complex of phagocytes plays a crucial role in host defenses against microbial infection. NADPH oxidase consists of a membrane heterodimeric protein, composed of gp91phox and p22phox, and the cytosolic proteins, p40phox, p47phox and p67phox. In the present study, we clone and sequence the full-length cDNAs coding for the Atlantic salmon (Salmo salar) phagocyte NADPH oxidase components, p47phox, p67phox and gp91phox, using a homology cloning approach. The sequences of these cDNAs showed that the S. salar p47phox, p67phox and gp91phox genes contained single open reading frames, which encoded predicted proteins of 413, 504 and 565 amino acids, respectively. Comparison of the deduced amino acid sequences showed that the S. salar p47phox, p67phox and gp91phox sequences shared 51, 45 and 68% identity with those of human components, respectively. Despite this relatively low homology between salmon and mammalian NADPH oxidase subunits, their functional domains are highly conserved. We also found that the mRNA levels of p47phox, p67phox and gp91phox expression were higher in immune-related tissues, such as kidney, spleen and gill. In addition, infection of the salmon macrophage cell line SHK-1 with Piscirickettsia salmonis induced the expression of p47phox, but had no effect on p67phox and gp91phox expression. Finally, we show for the first time in fish that activation of macrophages with lipopolysaccharide promotes the activation of protein kinase C, which in turn phosphorylates p47phox, leading to NADPH oxidase activation and reactive oxygen species generation. Collectively, these results suggest that the mechanisms of activation of phagocyte NADPH oxidase are well conserved from fish to mammals.
Collapse
Affiliation(s)
- Víctor H Olavarría
- Department of Biochemistry, Faculty of Science, University Austral, Campus Isla Teja, Valdivia, Chile
| | | | | | | |
Collapse
|
22
|
Peptide-based inhibitors of the phagocyte NADPH oxidase. Biochem Pharmacol 2010; 80:778-85. [PMID: 20510204 DOI: 10.1016/j.bcp.2010.05.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 11/23/2022]
Abstract
Phagocytes such as neutrophils, monocytes and macrophages play an essential role in host defenses against pathogens. To kill these pathogens, phagocytes produce and release large quantities of antimicrobial molecules such as reactive oxygen species (ROS), microbicidal peptides, and proteases. The enzyme responsible for ROS generation is called NADPH oxidase, or respiratory burst oxidase, and is composed of six proteins: gp91phox, p22phox, p47phox, p67phox, p40phox and Rac1/2. The vital importance of this enzyme in host defenses is illustrated by a genetic disorder called chronic granulomatous disease (CGD), in which the phagocyte NADPH oxidase is dysfunctional, leading to life-threatening recurrent bacterial and fungal infections. However, excessive NADPH oxidase activation and ROS over-production can damage surrounding tissues and participate in exaggerated inflammatory processes. As ROS production is believed to be involved in several inflammatory diseases, specific phagocyte NADPH oxidase inhibitors might have therapeutic value. In this commentary, we summarize the structure and activation of the phagocyte NADPH oxidase, and describe pharmacological inhibitors of this enzyme, with particular emphasis on peptide-based inhibitors derived from gp91phox, p22phox and p47phox.
Collapse
|
23
|
Dutta S, Rittinger K. Regulation of NOXO1 activity through reversible interactions with p22 and NOXA1. PLoS One 2010; 5:e10478. [PMID: 20454568 PMCID: PMC2864300 DOI: 10.1371/journal.pone.0010478] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/12/2010] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS) have been known for a long time to play important roles in host defense against microbial infections. In addition, it has become apparent that they also perform regulatory roles in signal transduction and cell proliferation. The source of these chemicals are members of the NOX family of NADPH oxidases that are found in a variety of tissues. NOX1, an NADPH oxidase homologue that is most abundantly expressed in colon epithelial cells, requires the regulatory subunits NOXO1 (NOX organizing protein 1) and NOXA1 (NOX activating protein 1), as well as the flavocytochrome component p22(phox) for maximal activity. Unlike NOX2, the phagocytic NADPH oxidase whose activity is tightly repressed in the resting state, NOX1 produces superoxide constitutively at low levels. These levels can be further increased in a stimulus-dependent manner, yet the molecular details regulating this activity are not fully understood. Here we present the first quantitative characterization of the interactions made between the cytosolic regulators NOXO1 and NOXA1 and membrane-bound p22(phox). Using isothermal titration calorimetry we show that the isolated tandem SH3 domains of NOXO1 bind to p22(phox) with high affinity, most likely adopting a superSH3 domain conformation. In contrast, complex formation is severely inhibited in the presence of the C-terminal tail of NOXO1, suggesting that this region competes for binding to p22(phox) and thereby contributes to the regulation of superoxide production. Furthermore, we provide data indicating that the molecular details of the interaction between NOXO1 and NOXA1 is significantly different from that between the homologous proteins of the phagocytic oxidase, suggesting that there are important functional differences between the two systems. Taken together, this study provides clear evidence that the assembly of the NOX1 oxidase complex can be regulated through reversible protein-protein interactions.
Collapse
Affiliation(s)
- Sujit Dutta
- National Institute for Medical Research, Medical Research Council, London, United Kingdom
| | - Katrin Rittinger
- National Institute for Medical Research, Medical Research Council, London, United Kingdom
| |
Collapse
|
24
|
El-Benna J, Dang PMC, Gougerot-Pocidalo MA, Marie JC, Braut-Boucher F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp Mol Med 2009; 41:217-25. [PMID: 19372727 DOI: 10.3858/emm.2009.41.4.058] [Citation(s) in RCA: 326] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Phagocytes such as neutrophils play a vital role in host defense against microbial pathogens. The anti-microbial function of neutrophils is based on the production of superoxide anion (O2 -), which generates other microbicidal reactive oxygen species (ROS) and release of antimicrobial peptides and proteins. The enzyme responsible for O2 - production is called the NADPH oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two trans- membrane proteins (p22phox and gp91phox, also called NOX2, which together form the cytochrome b558) and four cytosolic proteins (p47phox, p67phox, p40phox and a GTPase Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate agents. This process is dependent on the phosphorylation of the cytosolic protein p47phox. p47phox is a 390 amino acids protein with several functional domains: one phox homology (PX) domain, two src homology 3 (SH3) domains, an auto-inhibitory region (AIR), a proline rich domain (PRR) and has several phosphorylated sites located between Ser303 and Ser379. In this review, we will describe the structure of p47phox, its phosphorylation and discuss how these events regulate NADPH oxidase activation.
Collapse
Affiliation(s)
- Jame El-Benna
- Universite Paris 7 Denis Diderot, Faculte de Medecine, site Bichat, Paris, F-75018, France.
| | | | | | | | | |
Collapse
|
25
|
A region N-terminal to the tandem SH3 domain of p47phox plays a crucial role in the activation of the phagocyte NADPH oxidase. Biochem J 2009; 419:329-38. [DOI: 10.1042/bj20082028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The superoxide-producing NADPH oxidase in phagocytes is crucial for host defence; its catalytic core is the membrane-integrated protein gp91phox [also known as Nox2 (NADPH oxidase 2)], which forms a stable heterodimer with p22phox. Activation of the oxidase requires membrane translocation of the three cytosolic proteins p47phox, p67phox and the small GTPase Rac. At the membrane, these proteins assemble with the gp91phox–p22phox heterodimer and induce a conformational change of gp91phox, leading to superoxide production. p47phox translocates to membranes using its two tandemly arranged SH3 domains, which directly interact with p22phox, whereas p67phox is recruited in a p47phox-dependent manner. In the present study, we show that a short region N-terminal to the bis-SH3 domain is required for activation of the phagocyte NADPH oxidase. Alanine substitution for Ile152 in this region, a residue that is completely conserved during evolution, results in a loss of the ability to activate the oxidase; and the replacement of Thr153 also prevents oxidase activation, but to a lesser extent. In addition, the corresponding isoleucine residue (Ile155) of the p47phox homologue Noxo1 (Nox organizer 1) participates in the activation of non-phagocytic oxidases, such as Nox1 and Nox3. The I152A substitution in p47phox, however, does not affect its interaction with p22phox or with p67phox. Consistent with this, a mutant p47phox (I152A), as well as the wild-type protein, is targeted upon cell stimulation to membranes, and membrane recruitment of p67phox and Rac normally occurs in p47phox (I152A)-expressing cells. Thus the Ile152-containing region of p47phox plays a crucial role in oxidase activation, probably by functioning at a process after oxidase assembly.
Collapse
|
26
|
Ma L, Xie B, Hong Z, Verma DPS, Zhang Z. A novel RNA-binding protein associated with cell plate formation. PLANT PHYSIOLOGY 2008; 148:223-34. [PMID: 18621982 PMCID: PMC2528124 DOI: 10.1104/pp.108.120527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 07/07/2008] [Indexed: 05/20/2023]
Abstract
Building a cell plate during cytokinesis in plant cells requires the participation of a number of proteins in a multistep process. We previously identified phragmoplastin as a cell plate-specific protein involved in creating a tubulovesicular network at the cell plate. We report here the identification and characterization of a phragmoplastin-interacting protein, PHIP1, in Arabidopsis (Arabidopsis thaliana). It contains multiple functional motifs, including a lysine-rich domain, two RNA recognition motifs, and three CCHC-type zinc fingers. Polypeptides with similar motif structures were found only in plant protein databases, but not in the sequenced prokaryotic, fungal, and animal genomes, suggesting that PHIP1 represents a plant-specific RNA-binding protein. In addition to phragmoplastin, two Arabidopsis small GTP-binding proteins, Rop1 and Ran2, are also found to interact with PHIP1. The zinc fingers of PHIP1 were not required for its interaction with Rop1 and phragmoplastin, but they may participate in its binding with the Ran2 mRNA. Immunofluorescence, in situ RNA hybridization, and green fluorescent protein tagging experiments showed the association of PHIP1 with the forming cell plate during cytokinesis. Taken together, our data suggest that PHIP1 is a novel RNA-binding protein and may play a unique role in the polarized mRNA transport to the vicinity of the cell plate.
Collapse
Affiliation(s)
- Lian Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
27
|
Fc gamma R-stimulated activation of the NADPH oxidase: phosphoinositide-binding protein p40phox regulates NADPH oxidase activity after enzyme assembly on the phagosome. Blood 2008; 112:3867-77. [PMID: 18711001 DOI: 10.1182/blood-2007-11-126029] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phagocyte NADPH oxidase generates superoxide for microbial killing, and includes a membrane-bound flavocytochrome b(558) and cytosolic p67(phox), p47(phox), and p40(phox) subunits that undergo membrane translocation upon cellular activation. The function of p40(phox), which binds p67(phox) in resting cells, is incompletely understood. Recent studies showed that phagocytosis-induced superoxide production is stimulated by p40(phox) and its binding to phosphatidylinositol-3-phosphate (PI3P), a phosphoinositide enriched in membranes of internalized phagosomes. To better define the role of p40(phox) in FcgammaR-induced oxidase activation, we used immunofluorescence and real-time imaging of FcgammaR-induced phagocytosis. YFP-tagged p67(phox) and p40(phox) translocated to granulocyte phagosomes before phagosome internalization and accumulation of a probe for PI3P. p67(phox) and p47(phox) accumulation on nascent and internalized phagosomes did not require p40(phox) or PI3 kinase activity, although superoxide production before and after phagosome sealing was decreased by mutation of the p40(phox) PI3P-binding domain or wortmannin. Translocation of p40(phox) to nascent phagosomes required binding to p67(phox) but not PI3P, although the loss of PI3P binding reduced p40(phox) retention after phagosome internalization. We conclude that p40(phox) functions primarily to regulate FcgammaR-induced NADPH oxidase activity rather than assembly, and stimulates superoxide production via a PI3P signal that increases after phagosome internalization.
Collapse
|
28
|
El-Benna J, Dang PMC, Gougerot-Pocidalo MA. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin Immunopathol 2008; 30:279-89. [PMID: 18536919 DOI: 10.1007/s00281-008-0118-3] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
Abstract
Neutrophils play an essential role in host defense against microbial pathogens and in the inflammatory reaction. Upon activation, neutrophils produce superoxide anion (O*2), which generates other reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH*) and hypochlorous acid (HOCl), together with microbicidal peptides and proteases. The enzyme responsible for O2* production is called the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two trans-membrane proteins (p22phox and gp91phox/NOX2, which form the cytochrome b558), three cytosolic proteins (p47phox, p67phox, p40phox) and a GTPase (Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate factors. Three major events accompany NAPDH oxidase activation: (1) protein phosphorylation, (2) GTPase activation, and (3) translocation of cytosolic components to the plasma membrane to form the active enzyme. Actually, the neutrophil NADPH oxidase exists in different states: resting, primed, activated, or inactivated. The resting state is found in circulating blood neutrophils. The primed state can be induced by neutrophil adhesion, pro-inflammatory cytokines, lipopolysaccharide, and other agents and has been characterized as a "ready to go" state, which results in a faster and higher response upon exposure to a second stimulus. The active state is found at the inflammatory or infection site. Activation is induced by the pathogen itself or by pathogen-derived formylated peptides and other agents. Finally, inactivation of NADPH oxidase is induced by anti-inflammatory agents to limit inflammation. Priming is a "double-edged sword" process as it contributes to a rapid and efficient elimination of the pathogens but can also induce the generation of large quantities of toxic ROS by hyperactivation of the NADPH oxidase, which can damage surrounding tissues and participate to inflammation. In order to avoid extensive damage to host tissues, NADPH oxidase priming and activation must be tightly regulated. In this review, we will discuss some of the mechanisms of NADPH oxidase priming in neutrophils and the relevance of this process to physiology and pathology.
Collapse
|
29
|
Renwick J, Reeves EP, Wientjes FB, Kavanagh K. Translocation of proteins homologous to human neutrophil p47phox and p67phox to the cell membrane in activated hemocytes of Galleria mellonella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:347-59. [PMID: 16920193 DOI: 10.1016/j.dci.2006.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 06/18/2006] [Accepted: 06/20/2006] [Indexed: 05/11/2023]
Abstract
Activation of the superoxide forming respiratory burst oxidase of human neutrophils, crucial in host defence, requires the cytosolic proteins p47phox and p67phox which translocate to the plasma membrane upon cell stimulation and activate flavocytochrome b558, the redox centre of this enzyme system. We have previously demonstrated the presence of proteins (67 and 47kDa) in hemocytes of the insect Galleria mellonella homologous to proteins of the superoxide-forming NADPH oxidase complex of neutrophils. The work presented here illustrates for the first time translocation of homologous hemocyte proteins, 67 and 47kDa from the cytosol to the plasma membrane upon phorbol 12-myristate 13 acetate (PMA) activation. In hemocytes, gliotoxin (GT), the fungal secondary metabolite significantly suppressed PMA-induced superoxide generation in a concentration dependent manner and reduced translocation to basel nonstimulated levels. Primarily these results correlate translocation of hemocyte 47 and 67kDa proteins with PMA induced oxidase activity. Collectively results presented here, demonstrate further cellular and functional similarities between phagocytes of insects and mammals and further justify the use of insects in place of mammals for modelling the innate immune response to microbial pathogens.
Collapse
Affiliation(s)
- Julie Renwick
- Medical Mycology Unit, National Institute for Cellular Biotechnology, Department of Biology, NUI Maynooth, Co. Kildare, Ireland
| | | | | | | |
Collapse
|
30
|
Watanabe Y, Tsuboi H, Koyama M, Kubo M, Del Carpio CA, Broclawik E, Ichiishi E, Kohno M, Miyamoto A. Molecular dynamics study on the ligand recognition by tandem SH3 domains of p47phox, regulating NADPH oxidase activity. Comput Biol Chem 2006; 30:303-12. [PMID: 16798095 DOI: 10.1016/j.compbiolchem.2006.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 04/10/2006] [Accepted: 04/24/2006] [Indexed: 11/26/2022]
Abstract
The phagocyte NADPH oxidase complex plays a crucial role in host defense against microbial infection through the production of superoxides. Chronic granulomatous disease (CGD) is an inherited immune deficiency caused by the absence of certain components of the NADPH oxidase. Key to the activation of the NADPH oxidase is the cytoplasmic subunit p47phox, which includes the tandem SH3 domains (N-SH3 and C-SH3). In active phagocytes, p47phox forms a stable complex with the cytoplasmic region of membrane subunit p22phox that forms a left-handed polyproline type-II (PPII) helix conformation. In this report, we have analyzed the conformational changes of p47phox-p22phox complexes of wild-type and three mutants, which have been detected in CGD patients, using molecular dynamics simulations. We have found that in the wild-type, two basal planes of PPII prism in cytoplasmic region of p22phox interacted with N-SH3 and C-SH3. In contrast, in the modeled mutants, the residue at the ape of PPII helix, which interacts simultaneously with both of the tandem SH3 domains in the wild-type, moved toward C-SH3. Furthermore, interaction energies of the cytoplasmic region of p22phox with C-SH3 tend to decrease in these mutants. All these findings led us to conclude that interactions between N-SH3 of p47phox and PPII helix, which is formed by cytoplasmic region of p22phox, may play a significant role in the activation of the NADPH oxidase.
Collapse
Affiliation(s)
- Yoko Watanabe
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-11-1302 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nobuhisa I, Takeya R, Ogura K, Ueno N, Kohda D, Inagaki F, Sumimoto H. Activation of the superoxide-producing phagocyte NADPH oxidase requires co-operation between the tandem SH3 domains of p47phox in recognition of a polyproline type II helix and an adjacent alpha-helix of p22phox. Biochem J 2006; 396:183-92. [PMID: 16460309 PMCID: PMC1449995 DOI: 10.1042/bj20051899] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activation of the superoxide-producing phagocyte NADPH oxidase, crucial for host defence, requires an SH3 (Src homology 3)-domain-mediated interaction of the regulatory protein p47phox with p22phox, a subunit of the oxidase catalytic core flavocytochrome b558. Although previous analysis of a crystal structure has demonstrated that the tandem SH3 domains of p47phox sandwich a short PRR (proline-rich region) of p22phox (amino acids 151-160), containing a polyproline II helix, it has remained unknown whether this model is indeed functional in activation of the oxidase. In the present paper we show that the co-operativity between the two SH3 domains of p47phox, as expected from the model, is required for oxidase activation. Deletion of the linker between the p47phox SH3 domains results not only in a defective binding to p22phox but also in a loss of the activity to support superoxide production. The present analysis using alanine-scanning mutagenesis identifies Pro152, Pro156 and Arg158 in the p22phox PRR as residues indispensable for the interaction with p47phox. Pro152 and Pro156 are recognized by the N-terminal SH3 domain, whereas Arg158 contacts with the C-terminal SH3 domain. Amino acid substitution for any of the three residues in the p22phox PRR abrogates the superoxide-producing activity of the oxidase reconstituted in intact cells. The bis-SH3-mediated interaction of p47phox with p22phox thus functions to activate the phagocyte oxidase. Furthermore, we provide evidence that a region C-terminal to the PRR of p22phox (amino acids 161-164), adopting an a-helical conformation, participates in full activation of the phagocyte oxidase by fortifying the association with the p47phox SH3 domains.
Collapse
Affiliation(s)
- Ikuo Nobuhisa
- *Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- †Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Japan
| | - Ryu Takeya
- *Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- †Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Japan
- ‡CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Kenji Ogura
- §Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Noriko Ueno
- *Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Daisuke Kohda
- *Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Fuyuhiko Inagaki
- §Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideki Sumimoto
- *Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- †Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Japan
- ‡CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
32
|
Abstract
The role for reactive oxygen species (ROS) in cellular (patho)physiology, in particular in signal transduction, is increasingly recognized. The family of NADPH oxidases (NOXes) plays an important role in the production of ROS in response to receptor agonists such as growth factors or inflammatory cytokines that signal through the Rho-like small GTPases Rac1 or Rac2. The phagocyte oxidase (gp91phox/NOX2) is the best characterized family member, and its mode of activation is relatively well understood. Recent work has uncovered novel and increasingly complex modes of control of the NOX2-related proteins. Some of these, including NOX2, have been implicated in various aspects of (cardio)vascular disease, including vascular smooth muscle and endothelial cell hypertrophy and proliferation, inflammation, and atherosclerosis. This review focuses on the role of the Rac1 and Rac2 GTPases in the activation of the various NOX family members.
Collapse
Affiliation(s)
- Peter L Hordijk
- Department Molecular Cell Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Abstract
Hydrogen peroxide (H2O2) is a well-documented component of living cells. It plays important roles in host defense and oxidative biosynthetic reactions. In addition there is growing evidence that at low levels, H2O2 also functions as a signaling agent, particularly in higher organisms. This review evaluates the evidence that H2O2 functions as a signaling agent in higher organisms in light of the known biology and biochemistry of H2O2. All aerobic organisms studied to date from prokaryotes to humans appear to tightly regulate their intracellular H2O2 concentrations at relatively similar levels. Multiple biochemical strategies for rapidly reacting with these low endogenous levels of H2O2 have been elucidated from the study of peroxidases and catalases. Well-defined biochemical pathways involved in the response to exogenous H2O2 have been described in both prokaryotes and yeast. In animals and plants, regulated enzymatic systems for generating H2O2 have been described. In addition oxidation-dependent steps in signal transduction pathways are being uncovered, and evidence is accumulating regarding the nature of the specific reactive oxygen species involved in each of these pathways. Application of physiologic levels of H2O2 to mammalian cells has been shown to stimulate biological responses and to activate specific biochemical pathways in these cells.
Collapse
Affiliation(s)
- James R Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
34
|
Dey R, Sarkar A, Majumder N, Bhattacharyya Majumdar S, Roychoudhury K, Bhattacharyya S, Roy S, Majumdar S. Regulation of impaired protein kinase C signaling by chemokines in murine macrophages during visceral leishmaniasis. Infect Immun 2006; 73:8334-44. [PMID: 16299331 PMCID: PMC1307035 DOI: 10.1128/iai.73.12.8334-8344.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein kinase C (PKC) family regulates macrophage function involved in host defense against infection. In the case of Leishmania donovani infection, the impairment of PKC-mediated signaling is one of the crucial events for the establishment of parasite into the macrophages. Earlier reports established that C-C chemokines mediated protection against leishmaniasis via the generation of nitric oxide after 48 h. In this study, we investigated the role of MIP-1alpha and MCP-1 in the regulation of impaired PKC activity in the early hours (6 h) of infection. These chemokines restored Ca2+-dependent PKC activity and inhibited Ca2+-independent atypical PKC activity in L. donovani-infected macrophages under both in vivo and in vitro conditions. Pretreatment of macrophages with chemokines induced superoxide anion generation by activating NADPH oxidase components in infected cells. Chemokine administration in vitro induced the migration of infected macrophages and triggered the production of reactive oxygen species. In vivo treatment with chemokines significantly restricted the parasitic burden in livers as well as in spleens. Collectively, these results indicate a novel regulatory role of C-C chemokines in controlling the intracellular growth and multiplication of L. donovani, thereby demonstrating the antileishmanial properties of C-C chemokines in the disease process.
Collapse
Affiliation(s)
- Ranadhir Dey
- Department of Microbiology, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700 054, India
| | | | | | | | | | | | | | | |
Collapse
|
35
|
WATANABE Y, TSUBOI H, KOYAMA M, KUBO M, A. DEL CARPIO C, ICHIISHI E, KOHNO M, MIYAMOTO A. Molecular Dynamics Study on the Activation Mechanism of p47phox in the Auto-Inhibited Form. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2006. [DOI: 10.2477/jccj.5.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Ogura K, Nobuhisa I, Yuzawa S, Takeya R, Torikai S, Saikawa K, Sumimoto H, Inagaki F. NMR solution structure of the tandem Src homology 3 domains of p47phox complexed with a p22phox-derived proline-rich peptide. J Biol Chem 2005; 281:3660-8. [PMID: 16326715 DOI: 10.1074/jbc.m505193200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phagocyte NADPH oxidase plays a crucial role in host defense against microbial infections by generating reactive oxygen species. It is a multisubunit enzyme composed of membrane-bound flavocytochrome b558 as well as cytosolic components, including p47phox, which is essential for assembly of the complex. When phagocytes are activated, the cytosolic components of the NADPH oxidase translocate to flavocytochrome b558 due to binding of the tandem Src homology 3 (SH3) domains of p47phox to a proline-rich region in p22phox, a subunit of flavocytochrome b558. Using NMR titration, we first identified the proline-rich region of p22phox that is essential for binding to the tandem SH3 domains of p47phox. We subsequently determined the solution structure of the p47phox tandem SH3 domains complexed with the proline-rich peptide of p22phox using NMR spectroscopy. In contrast to the intertwined dimer reported for the crystal state, the solution structure is a monomer. The central region of the p22phox peptide forms a polyproline type II helix that is sandwiched by the N- and C-terminal SH3 domains, as was observed in the crystal structure, whereas the C-terminal region of the peptide takes on a short alpha-helical conformation that provides an additional binding site with the N-terminal SH3 domain. Thus, the C-terminal alpha-helical region of the p22phox peptide increases the binding affinity for the tandem SH3 domains of p47phox more than 10-fold.
Collapse
Affiliation(s)
- Kenji Ogura
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12 W-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yuzawa S, Suzuki NN, Fujioka Y, Ogura K, Sumimoto H, Inagaki F. A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Genes Cells 2005; 9:443-56. [PMID: 15147273 DOI: 10.1111/j.1356-9597.2004.00733.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The phagocyte NADPH oxidase is a multisubunit enzyme responsible for the production of reactive oxygen species. p47(phox) is a cytosolic component of the NADPH oxidase and plays an important role in the assembly of the activated complex. The structural determination of the tandem SH3 domains of p47(phox) is crucial for elucidation of the molecular mechanism of the activation of p47(phox). We determined the X-ray crystal structure of the tandem SH3 domains with the polybasic/autoinhibitory region (PBR/AIR) of p47(phox). The GAPPR sequence involved in PBR/AIR forms a left-handed polyproline type-II helix (PPII) and interacts with the conserved SH3 binding surfaces of the SH3 domains simultaneously. These SH3 domains are related by a 2-fold pseudosymmetry axis at the centre of the binding groove and interact with the single PPII helix formed by the GAPPR sequence with opposite orientation. In addition, a number of intra-molecular interactions among the SH3 domains, PBR/AIR and the linker tightly hold the architecture of the tandem SH3 domains into the compact structure and stabilize the autoinhibited form synergistically. Phosphorylation of the serine residues in PBR/AIR could destabilize and successively release the intra-molecular interactions. Thus, the overall structure could be rearranged from the autoinhibitory conformation to the active conformation and the PPII ligand binding surfaces on the SH3 domains are now unmasked, which enables their interaction with the target sequence in p22(phox).
Collapse
Affiliation(s)
- Satoru Yuzawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Sheppard FR, Kelher MR, Moore EE, McLaughlin NJD, Banerjee A, Silliman CC. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 2005; 78:1025-42. [PMID: 16204621 DOI: 10.1189/jlb.0804442] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is part of the microbicidal arsenal used by human polymorphonuclear neutrophils (PMNs) to eradicate invading pathogens. The production of a superoxide anion (O2-) into the phagolysosome is the precursor for the generation of more potent products, such as hydrogen peroxide and hypochlorite. However, this production of O2- is dependent on translocation of the oxidase subunits, including gp91phox, p22phox, p47phox, p67phox, p40phox, and Rac2 from the cytosol or specific granules to the plasma membrane. In response to an external stimuli, PMNs change from a resting, nonadhesive state to a primed, adherent phenotype, which allows for margination from the vasculature into the tissue and chemotaxis to the site of infection upon activation. Depending on the stimuli, primed PMNs display altered structural organization of the NADPH oxidase, in that there is phosphorylation of the oxidase subunits and/or translocation from the cytosol to the plasma or granular membrane, but there is not the complete assembly required for O2- generation. Activation of PMNs is the complete assembly of the membrane-linked and cytosolic NADPH oxidase components on a PMN membrane, the plasma or granular membrane. This review will discuss the individual components associated with the NADPH oxidase complex and the function of each of these units in each physiologic stage of the PMN: rested, primed, and activated.
Collapse
|
39
|
Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H. The NADPH Oxidase Nox3 Constitutively Produces Superoxide in a p22 -dependent Manner. J Biol Chem 2005; 280:23328-39. [PMID: 15824103 DOI: 10.1074/jbc.m414548200] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nox3, a member of the superoxide-producing NADPH oxidase (Nox) family, participates in otoconia formation in mouse inner ears, which is required for perception of balance and gravity. The activity of other Nox enzymes such as gp91(phox)/Nox2 and Nox1 is known to absolutely require both an organizer protein (p47(phox) or Noxo1) andanactivatorprotein (p67(phox) or Noxa1); for the p47(phox)-dependent activation of these oxidases, treatment of cells with stimulants such as phorbol 12-myristate 13-acetate is also indispensable. Here we show that ectopic expression of Nox3 in various types of cells leads to phorbol 12-myristate 13-acetate-independent constitutive production of a substantial amount of superoxide under the conditions where gp91(phox) and Nox1 fail to generate superoxide, i.e. in the absence of the oxidase organizers and activators. Nox3 likely forms a functional complex with p22(phox); Nox3 physically interacts with and stabilizes p22(phox), and the Nox3-dependent superoxide production is totally dependent on p22(phox). The organizers p47(phox) and Noxo1 are capable of enhancing the superoxide production by Nox3 in the absence of the activators, and the enhancement requires the interaction of the organizers with p22(phox), further indicating a link between Nox3 and p22(phox). The p47(phox)-enhanced Nox3 activity is further facilitated by p67(phox) or Noxa1, whereas the activators cancel the Noxo1-induced enhancement. On the other hand, the small GTPase Rac, essential for the gp91(phox) activity, is likely dispensable to the Nox3 system. Thus Nox3 functions together with p22(phox) as an enzyme constitutively producing superoxide, which can be distinctly regulated by combinatorial use of the organizers and activators.
Collapse
Affiliation(s)
- Noriko Ueno
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
40
|
Chowdhury AK, Watkins T, Parinandi NL, Saatian B, Kleinberg ME, Usatyuk PV, Natarajan V. Src-mediated Tyrosine Phosphorylation of p47 in Hyperoxia-induced Activation of NADPH Oxidase and Generation of Reactive Oxygen Species in Lung Endothelial Cells. J Biol Chem 2005; 280:20700-11. [PMID: 15774483 DOI: 10.1074/jbc.m411722200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Superoxide (O(2)(-)) production by nonphagocytes, similar to phagocytes, is by activation of the NADPH oxidase multicomponent system. Although activation of neutrophil NADPH oxidase involves extensive serine phosphorylation of p47(phox), the role of tyrosine phosphorylation of p47(phox) in NADPH oxidase-dependent O(2)(-) production is unclear. We have shown recently that hyperoxia-induced NADPH oxidase activation in human pulmonary artery endothelial cells (HPAECs) is regulated by mitogen-activated protein kinase signal transduction. Here we provided evidence on the role of nonreceptor tyrosine kinase, Src, in hyperoxia-induced tyrosine phosphorylation of p47(phox) and NADPH oxidase activation in HPAECs. Exposure of HPAECs to hyperoxia for 1 h resulted in increased O(2)(-) and reactive oxygen species (ROS) production and enhanced tyrosine phosphorylation of Src as determined by Western blotting with phospho-Src antibodies. Pretreatment of HPAECs with the Src kinase inhibitor PP2 (1 mum) or transient expression of a dominant-negative mutant of Src attenuated hyperoxia-induced tyrosine phosphorylation of Src and ROS production. Furthermore, exposure of cells to hyperoxia enhanced tyrosine phosphorylation of p47(phox) and its translocation to cell peripheries that were attenuated by PP2. In vitro, Src phosphorylated recombinant p47(phox) in a time-dependent manner. Src immunoprecipitates of cell lysates from control cells revealed the presence of immunodetectable p47(phox) and p67(phox), suggesting the association of oxidase components with Src under basal conditions. Moreover, exposure of HPAECs to hyperoxia for 1 h enhanced the association of p47(phox), but not p67(phox), with Src. These results indicated that Src-dependent tyrosine phosphorylation of p47(phox) regulates hyperoxia-induced NADPH oxidase activation and ROS production in HPAECs.
Collapse
Affiliation(s)
- Ashis K Chowdhury
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Dunn JS, Freed BM, Gustafson DL, Stringer KA. Inhibition of human neutrophil reactive oxygen species production and p67phox translocation by cigarette smoke extract. Atherosclerosis 2005; 179:261-7. [PMID: 15777540 DOI: 10.1016/j.atherosclerosis.2004.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 10/25/2004] [Accepted: 11/19/2004] [Indexed: 11/25/2022]
Abstract
The association between cigarette smoking and atherogenesis is well established. Inflammatory cells may participate in atherogenesis via activation of the NADPH oxidase and the subsequent production of reactive oxygen species (ROS), which exacerbates endothelial injury. However, little is known about the ability of cigarette smoke (CS) to modulate NADPH oxidase protein function. In this study, we investigated the ability of a CS extract derived from a high tar cigarette to alter human neutrophil ROS production and the translocation of two NADPH oxidase proteins, p47phox and p67phox. Phorbol ester-induced intracellular and extracellular production of ROS was reduced following CS treatment as measured by enhanced luminol or isoluminol chemiluminescence, respectively, (luminol AUC was reduced by 59%, p < or =0.0001; isoluminol by 49%, p < or =0.001). The phorbol ester-induced phosphorylation and translocation of p47phox from the cytosol to the membrane was not changed by CS treatment but the translocation of p67phox was reduced. Cigarette smoke treatment alone did not provoke neutrophil ROS production. These findings demonstrate that CS treatment reduced agonist-induced human neutrophil ROS production independent of p47phox phosphorylation and translocation from the cytosol to the membrane. However, this inhibition could be attributed to a reduction in translocation of another cytosolic NADPH oxidase protein, p67phox. Although neutrophil-generated ROS have been implicated in the pathogenesis of atherosclerosis, this does not appear to be the mechanism by which CS induces vascular injury.
Collapse
Affiliation(s)
- John S Dunn
- Department of Clinical Pharmacy, School of Pharmacy, Box C238, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
42
|
Groemping Y, Rittinger K. Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 2005; 386:401-16. [PMID: 15588255 PMCID: PMC1134858 DOI: 10.1042/bj20041835] [Citation(s) in RCA: 425] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 12/02/2004] [Accepted: 12/10/2004] [Indexed: 11/17/2022]
Abstract
The NADPH oxidase of professional phagocytes is a crucial component of the innate immune response due to its fundamental role in the production of reactive oxygen species that act as powerful microbicidal agents. The activity of this multi-protein enzyme is dependent on the regulated assembly of the six enzyme subunits at the membrane where oxygen is reduced to superoxide anions. In the resting state, four of the enzyme subunits are maintained in the cytosol, either through auto-inhibitory interactions or through complex formation with accessory proteins that are not part of the active enzyme complex. Multiple inputs are required to disrupt these inhibitory interactions and allow translocation to the membrane and association with the integral membrane components. Protein interaction modules are key regulators of NADPH oxidase assembly, and the protein-protein interactions mediated via these domains have been the target of numerous studies. Many models have been put forward to describe the intricate network of reversible protein interactions that regulate the activity of this enzyme, but an all-encompassing model has so far been elusive. An important step towards an understanding of the molecular basis of NADPH oxidase assembly and activity has been the recent solution of the three-dimensional structures of some of the oxidase components. We will discuss these structures in the present review and attempt to reconcile some of the conflicting models on the basis of the structural information available.
Collapse
Key Words
- nadph oxidase
- oxidase assembly
- phosphorylation
- protein–protein interaction
- reactive oxygen species
- ac, acidic cluster
- bc, basic cluster
- cgd, chronic granulomatous disease
- gap, gtpase-activating protein
- gdi, gdp-dissociation inhibitor
- gef, guanine-nucleotide-exchange factor
- gst, glutathione s-transferase
- itc, isothermal titration calorimetry
- mapk, mitogen-activated protein kinase
- pb1, phox and bem1
- pc, phox and cdc24
- phox, phagocytic oxidase
- ppii helix, polyproline type ii helix
- px, phox homology
- prr, proline-rich region
- rms, root mean square
- ros, reactive oxygen species
- sh3, src homology 3
- spr, surface plasmon resonance
- tpr, tetratricopeptide repeat
Collapse
Affiliation(s)
- Yvonne Groemping
- *Abteilung Biomolekulare Mechanismen, Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Katrin Rittinger
- †Division of Protein Structure, National Institute for Medical Research, London, U.K
| |
Collapse
|
43
|
Perisic O, Wilson MI, Karathanassis D, Bravo J, Pacold ME, Ellson CD, Hawkins PT, Stephens L, Williams RL. The role of phosphoinositides and phosphorylation in regulation of NADPH oxidase. ACTA ACUST UNITED AC 2005; 44:279-98. [PMID: 15581496 DOI: 10.1016/j.advenzreg.2003.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Olga Perisic
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bizargity P, Adigüzel C, Ozilhan G, Bayik M, Eksioglu-Demiralp E. Imatinib does not inhibit neutrophil oxidative burst function in patients with chronic myelogenous leukemia. CLINICAL AND LABORATORY HAEMATOLOGY 2005; 27:79-80. [PMID: 15686514 DOI: 10.1111/j.1365-2257.2004.00657.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Nishida S, Yoshida LS, Shimoyama T, Nunoi H, Kobayashi T, Tsunawaki S. Fungal metabolite gliotoxin targets flavocytochrome b558 in the activation of the human neutrophil NADPH oxidase. Infect Immun 2005; 73:235-44. [PMID: 15618159 PMCID: PMC538966 DOI: 10.1128/iai.73.1.235-244.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungal gliotoxin (GT) is a potent inhibitor of the O(2)(-)-generating NADPH oxidase of neutrophils. We reported that GT-treated neutrophils fail to phosphorylate p47(phox), a step essential for the enzyme activation, because GT prevents the colocalization of protein kinase C betaII with p47(phox) on the membrane. However, it remains unanswered whether GT directly affects any of NADPH oxidase components. Here, we examine the effect of GT on the NADPH oxidase components in the cell-free activation assay. The O(2)(-)-generating ability of membranes obtained from GT-treated neutrophils is 40.0 and 30.6% lower, respectively, than the untreated counterparts when assayed with two distinct electron acceptors, suggesting that flavocytochrome b(558) is affected in cells by GT. In contrast, the corresponding cytosol remains competent for activation. Next, GT addition in vitro to the assay consisting of flavocytochrome b(558) and cytosolic components (native cytosol or recombinant p67(phox), p47(phox), and Rac2) causes a striking inhibition (50% inhibitory concentration = 3.3 microM) when done prior to the stimulation with myristic acid. NADPH consumption is also prevented by GT, but the in vitro assembly of p67(phox), p47(phox), and Rac2 with flavocytochrome b(558) is normal. Posterior addition of GT to the activated enzyme is ineffective. The separate treatment of membranes with GT also causes a marked loss of flavocytochrome b(558)'s ability to reconstitute O(2)(-) generation, supporting the conclusion at the cellular level. The flavocytochrome b(558) heme spectrum of the GT-treated membranes stays, however, unchanged, showing that hemes remain intact. These results suggest that GT directly harms site(s) crucial for electron transport in flavocytochrome b(558), which is accessible only before oxidase activation.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Infectious Diseases, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Robinson JM, Ohira T, Badwey JA. Regulation of the NADPH-oxidase complex of phagocytic leukocytes. Recent insights from structural biology, molecular genetics, and microscopy. Histochem Cell Biol 2004; 122:293-304. [PMID: 15365846 DOI: 10.1007/s00418-004-0672-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 11/26/2022]
Abstract
The NADPH-oxidase complex is a multisubunit enzyme complex that catalyzes the formation of superoxide (O2-) by phagocytic leukocytes. This paper reviews some of the major advances in understanding the assembly and regulation of this enzyme system that have occurred during the past decade. For example, novel domains/motifs have been identified in p47-phox (PX and super SH3 domains) and p67-phox (tetratricopeptide repeat motifs). X-ray crystallography and NMR spectroscopy have provided detailed structural data on these domains and how p47-phox and p67-phox interact with p22-phox and activated Rac, respectively. Site-directed mutagenesis and knockout experiments have identified the critical phosphorylation sites in p47-phox, revealed an "activation domain" in p67-phox, and demonstrated that a specific pathway exists for activating Rac to participate in oxidase assembly/activation. Cytochemistry and immunofluorescence microscopy have provided new insights into the assembly of the oxidase and reveal a level of complexity not previously appreciated.
Collapse
Affiliation(s)
- John M Robinson
- Department of Physiology and Cell Biology, Ohio State University, 302 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210-1239, USA.
| | | | | |
Collapse
|
47
|
Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 2004; 76:760-81. [PMID: 15240752 DOI: 10.1189/jlb.0404216] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophils play an essential role in the body's innate defense against pathogens and are one of the primary mediators of the inflammatory response. To defend the host, neutrophils use a wide range of microbicidal products, such as oxidants, microbicidal peptides, and lytic enzymes. The generation of microbicidal oxidants by neutrophils results from the activation of a multiprotein enzyme complex known as the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which is responsible for transferring electrons from NADPH to O2, resulting in the formation of superoxide anion. During oxidase activation, cytosolic oxidase proteins translocate to the phagosome or plasma membrane, where they assemble around a central membrane-bound component known as flavocytochrome b. This process is highly regulated, involving phosphorylation, translocation, and multiple conformational changes. Originally, it was thought that the NADPH oxidase was restricted to phagocytes and used solely in host defense. However, recent studies indicate that similar NADPH oxidase systems are present in a wide variety of nonphagocytic cells. Although the nature of these nonphagocyte NADPH oxidases is still being defined, it is clear that they are functionally distinct from the phagocyte oxidases. It should be noted, however, that structural features of many nonphagocyte oxidase proteins do seem to be similar to those of their phagocyte counterparts. In this review, key structural and functional features of the neutrophil NADPH oxidase and its protein components are described, including a consideration of transcriptional and post-translational regulatory features. Furthermore, relevant details about structural and functional features of various nonphagocyte oxidase proteins will be included for comparison.
Collapse
Affiliation(s)
- Mark T Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman 59717-3610, USA.
| | | |
Collapse
|
48
|
Yuzawa S, Ogura K, Horiuchi M, Suzuki NN, Fujioka Y, Kataoka M, Sumimoto H, Inagaki F. Solution Structure of the Tandem Src Homology 3 Domains of p47 in an Autoinhibited Form. J Biol Chem 2004; 279:29752-60. [PMID: 15123602 DOI: 10.1074/jbc.m401457200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phagocyte NADPH oxidase is a multisubunit enzyme responsible for the generation of superoxide anions (O(2).) that kill invading microorganisms. p47(phox) is a cytosolic subunit of the phagocyte NADPH oxidase, which plays a crucial role in the assembly of the activated NADPH oxidase complex. The molecular shapes of the p47(phox) tandem SH3 domains either with or without a polybasic/autoinhibitory region (PBR/AIR) at the C terminus were studied using small angle x-ray scattering. The tandem SH3 domains with PBR/AIR formed a compact globular structure, whereas the tandem SH3 domains lacking the PBR/AIR formed an elongated structure. Alignment anisotropy analysis by NMR based on the residual dipolar couplings revealed that the tandem SH3 domains with PBR/AIR were in good agreement with a globular module corresponding to the split half of the intertwisted dimer in crystalline state. The structure of the globular module was elucidated to represent a solution structure of the tandem SH3 domain in the autoinhibited form, where the PBR/AIR bundled the tandem SH3 domains and the linker forming a closed structure. Once PBR/AIR is released by phosphorylation, rearrangements of the SH3 domains may occur, forming an open structure that binds to the cytoplasmic proline-rich region of membrane-bound p22(phox).
Collapse
Affiliation(s)
- Satoru Yuzawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Shin EY, Woo KN, Lee CS, Koo SH, Kim YG, Kim WJ, Bae CD, Chang SI, Kim EG. Basic fibroblast growth factor stimulates activation of Rac1 through a p85 betaPIX phosphorylation-dependent pathway. J Biol Chem 2003; 279:1994-2004. [PMID: 14557270 DOI: 10.1074/jbc.m307330200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In a previous study (Shin, E. Y., Shin, K. S., Lee, C. S., Woo, K. N., Quan, S. H., Soung, N. K., Kim, Y. G., Cha, C. I., Kim, S. R., Park, D., Bokoch, G. M., and Kim, E. G. (2002) J. Biol. Chem. 277, 44417-44430) we reported that phosphorylation of p85 betaPIX, a guanine nucleotide exchange factor (GEF) for Rac1/Cdc42, is a signal for translocation of the PIX complex to neuronal growth cones and is associated with basic fibroblast growth factor (bFGF)-induced neurite outgrowth. However, the issue of whether p85 betaPIX phosphorylation affects GEF activity on Rac1/Cdc42 is yet to be explored. Here we show that Rac1 activation occurs in a p85 betaPIX phosphorylation-dependent manner. A GST-PBD binding assay reveals that Rac1 is activated in a dose- and time-dependent manner in PC12 cells in response to bFGF. Inhibition of ERK or PAK2, the kinases upstream of p85 betaPIX in the bFGF signaling, prevents Rac1 activation, suggesting that phosphorylation of p85 betaPIX functions upstream of Rac1 activation. To directly address this issue, transfection studies with wild-type and mutant p85 betaPIX (S525A/T526A, a non-phosphorylatable form) were performed. Expression of mutant PIX markedly inhibits both bFGF- and nerve growth factor (NGF)-induced activation of Rac1, indicating that phosphorylation of p85 betaPIX is responsible for activation of this G protein. Both wild-type and mutant p85 betaPIX displaying negative GEF activity (L238R/L239S) are similarly recruited to growth cones, suggesting that Rac1 activation is not essential for translocation of the PIX complex (PAK2-p85 betaPIX-Rac1). However, expression of mutant p85 betaPIX (L238R/L239S) results in retraction of the pre-existing neurites. Our results provide evidence that bFGF- and NGF-induced phosphorylation of p85 betaPIX mediates Rac1 activation, which in turn regulates cytoskeletal reorganization at growth cones, but not translocation of the PIX complex.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biochemistry, College of Medicine, Medical Research Institute and Biotechnology Research Institute, College of Natural Sciences, Chungbuk National University, San 48, Gaesin-dong, Heungduk-ku, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H, Sumimoto H. Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 2003; 278:25234-46. [PMID: 12716910 DOI: 10.1074/jbc.m212856200] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic core of a superoxide-producing NADPH oxidase (Nox) in phagocytes is gp91phox/Nox2, a membrane-integrated protein that forms a heterodimer with p22phox to constitute flavocytochrome b558. The cytochrome becomes activated by interacting with the adaptor proteins p47phox and p67phox as well as the small GTPase Rac. Here we describe the cloning of human cDNAs for novel proteins homologous to p47phox and p67phox, designated p41nox and p51nox, respectively; the former is encoded by NOXO1 (Nox organizer 1), and the latter is encoded by NOXA1 (Nox activator 1). The novel homologue p41nox interacts with p22phox via the two tandem SH3 domains, as does p47phox. The protein p51nox as well as p67phox can form a complex with p47phox and with p41nox via the C-terminal SH3 domain and binds to GTP-bound Rac via the N-terminal domain containing four tetratricopeptide repeat motifs. These bindings seem to play important roles, since p47phox and p67phox activate the phagocyte oxidase via the same interactions. Indeed, p41nox and p51nox are capable of replacing the corresponding classical homologue in activation of gp91phox. Nox1, a homologue of gp91phox, also can be activated in cells, when it is coexpressed with p41nox and p51nox, with p41nox and p67phox, or with p47phox and p51nox; in the former two cases, Nox1 is partially activated without any stimulants added, suggesting that p41nox is normally in an active state. Thus, the novel homologues p41nox and p51nox likely function together or in combination with a classical one, thereby activating the two Nox family oxidases.
Collapse
Affiliation(s)
- Ryu Takeya
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|