1
|
Chakraborty S, Umasankar PK, Preston GM, Khandelwal P, Apodaca G, Watkins SC, Traub LM. A phosphotyrosine switch for cargo sequestration at clathrin-coated buds. J Biol Chem 2014; 289:17497-514. [PMID: 24798335 DOI: 10.1074/jbc.m114.556589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AP-2 clathrin adaptor complex oversees endocytic cargo selection in two parallel but independent manners. First, by physically engaging peptide-based endocytic sorting signals, a subset of clathrin-dependent transmembrane cargo is directly collected into assembling buds. Synchronously, by interacting with an assortment of clathrin-associated sorting proteins (CLASPs) that independently select different integral membrane cargo for inclusion within the incipient bud, AP-2 handles additional cargo capture indirectly. The distal platform subdomain of the AP-2 β2 subunit appendage is a privileged CLASP-binding surface that recognizes a cognate, short α-helical interaction motif. This signal, found in the CLASPs β-arrestin and the autosomal recessive hypercholesterolemia (ARH) protein, docks into an elongated groove on the β2 appendage platform. Tyr-888 is a critical constituent of this spatially confined β2 appendage contact interface and is phosphorylated in numerous high-throughput proteomic studies. We find that a phosphomimetic Y888E substitution does not interfere with incorporation of expressed β2-YFP subunit into AP-2 or alter AP-2 deposition at surface clathrin-coated structures. The Y888E mutation does not affect interactions involving the sandwich subdomain of the β2 appendage, indicating that the mutated appendage is folded and operational. However, the Y888E, but not Y888F, switch selectively uncouples interactions with ARH and β-arrestin. Phyogenetic conservation of Tyr-888 suggests that this residue can reversibly control occupancy of the β2 platform-binding site and, hence, cargo sorting.
Collapse
Affiliation(s)
| | | | | | - Puneet Khandelwal
- the Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Gerard Apodaca
- the Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | | | |
Collapse
|
2
|
Hinkle PM, Gehret AU, Jones BW. Desensitization, trafficking, and resensitization of the pituitary thyrotropin-releasing hormone receptor. Front Neurosci 2012; 6:180. [PMID: 23248581 PMCID: PMC3521152 DOI: 10.3389/fnins.2012.00180] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/26/2012] [Indexed: 01/08/2023] Open
Abstract
The pituitary receptor for thyrotropin-releasing hormone (TRH) is a calcium-mobilizing G protein-coupled receptor (GPCR) that signals through Gq/11, elevating calcium, and activating protein kinase C. TRH receptor signaling is quickly desensitized as a consequence of receptor phosphorylation, arrestin binding, and internalization. Following activation, TRH receptors are phosphorylated at multiple Ser/Thr residues in the cytoplasmic tail. Phosphorylation catalyzed by GPCR kinase 2 (GRK2) takes place rapidly, reaching a maximum within seconds. Arrestins bind to two phosphorylated regions, but only arrestin bound to the proximal region causes desensitization and internalization. Phosphorylation at Thr365 is critical for these responses. TRH receptors internalize in clathrin-coated vesicles with bound arrestin. Following endocytosis, vesicles containing phosphorylated TRH receptors soon merge with rab5-positive vesicles. Over approximately 20 min these form larger endosomes rich in rab4 and rab5, early sorting endosomes. After TRH is removed from the medium, dephosphorylated receptors start to accumulate in rab4-positive, rab5-negative recycling endosomes. The mechanisms responsible for sorting dephosphorylated receptors to recycling endosomes are unknown. TRH receptors from internal pools help repopulate the plasma membrane. Dephosphorylation of TRH receptors begins when TRH is removed from the medium regardless of receptor localization, although dephosphorylation is fastest when the receptor is on the plasma membrane. Protein phosphatase 1 is involved in dephosphorylation but the details of how the enzyme is targeted to the receptor remain obscure. It is likely that future studies will identify biased ligands for the TRH receptor, novel arrestin-dependent signaling pathways, mechanisms responsible for targeting kinases and phosphatases to the receptor, and principles governing receptor trafficking.
Collapse
Affiliation(s)
- Patricia M Hinkle
- Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, NY, USA
| | | | | |
Collapse
|
3
|
Abstract
This unit provides detailed protocols for measuring receptor internalization. The techniques are sufficiently generalized to be applicable to most receptors in a wide variety of cell types. Both radioactive and non-radioactive techniques are described that may be used to quantify receptor internalization, and the differences between the two are highlighted. This unit discusses how quantification of internalization may be achieved, and the advantages and drawbacks of each technique. Low- and higher-throughput methods are compared, and the technologies required to conduct the analyses are discussed.
Collapse
|
4
|
Conway BR, Demarest KT. The Use of Biosensors to Study GPCR Function: Applications for High-Content Screening. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820214641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Jones BW, Hinkle PM. Subcellular trafficking of the TRH receptor: effect of phosphorylation. Mol Endocrinol 2009; 23:1466-78. [PMID: 19541745 DOI: 10.1210/me.2009-0119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the G protein-coupled TRH receptor leads to its phosphorylation and internalization. These studies addressed the fundamental question of whether phosphorylation regulates receptor trafficking or endosomal localization regulates the phosphorylation state of the receptor. Trafficking of phosphorylated and dephosphorylated TRH receptors was characterized using phosphosite-specific antibody after labeling surface receptors with antibody to an extracellular epitope tag. Rab5 and phosphoreceptor did not colocalize at the plasma membrane immediately after TRH addition but overlapped extensively by 15 min. Dominant-negative Rab5-S34N inhibited receptor internalization. Later, phosphoreceptor was in endosomes containing Rab5 and Rab4. Dephosphorylated receptor colocalized with Rab4 but not with Rab5. Dominant-negative Rab4, -5, or -11 did not affect receptor phosphorylation or dephosphorylation, showing that phosphorylation determines localization in Rab4(+)/Rab5(-) vesicles and not vice versa. No receptor colocalized with Rab7; a small amount of phosphoreceptor colocalized with Rab11. To characterize recycling, surface receptors were tagged with antibody, or surface receptors containing an N-terminal biotin ligase acceptor sequence were labeled with biotin. Most recycling receptors did not return to the plasma membrane for more than 2 h after TRH was removed, whereas the total cell surface receptor density was largely restored in less than 1 h, indicating that recruited receptors contribute heavily to early repopulation of the plasma membrane.
Collapse
Affiliation(s)
- Brian W Jones
- Department of Pharmacology, University of Rochester Medical Center, Box 711, Rochester, New York 14642, USA
| | | |
Collapse
|
6
|
Lee C, Bhatt S, Shukla A, Desnoyer RW, Yadav SP, Kim M, Jang SH, Karnik SS. Site-specific cleavage of G protein-coupled receptor-engaged beta-arrestin. Influence of the AT1 receptor conformation on scissile site selection. J Biol Chem 2008; 283:21612-20. [PMID: 18505723 PMCID: PMC2490789 DOI: 10.1074/jbc.m803062200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 05/21/2008] [Indexed: 01/14/2023] Open
Abstract
The discovery of beta-arrestin-related approximately 46-kDa polypeptide in transfected cells and mouse hearts led us to examine angiotensin II type 1 receptor (AT(1)R)-dependent proteolytic cleavage of beta-arrestin(s). Receptor-ligand induced proteolysis of beta-arrestin(s) is novel, especially in the endocrine system, since proteolytic and/or splice variants of nonvisual arrestins are unknown. We used a strategy to retrieve AT(1)R-engaged isoforms of beta-arrestin 1 to confirm direct interaction of fragments with this G protein-coupled receptor and determine cleavage sites. Here we show that the angiotensin II-AT(1)R complex is associated with full-length and approximately 46-kDa beta-arrestin forms. Mass spectrometric analysis of the AT(1)R-associated short form suggested a scissile site located within the Arg(363)-Arg(393) region in the bovine beta-arrestin 1. Edman degradation analysis of a beta-arrestin 1 C-terminal fragment fused to enhanced green fluorescent protein confirmed the major cleavage to be after Phe(388) and a minor cleavage after Asn(375). Rather unexpectedly, the inverse agonist EXP3174-bound AT(1)R generated different fragmentation of bovine beta-arrestin 1, at Pro(276). The angiotensin II-induced cleavage is independent of inositol 1,4,5-trisphosphate- and Ca(2+)-mediated signaling pathways. The proteolysis of beta-arrestin 2 occurs, but the pattern is more complex. Our findings suggest that beta-arrestin cleavage upon AT(1)R stimulation is a part of the unraveling beta-arrestin-mediated G protein-coupled receptor signaling diversity.
Collapse
Affiliation(s)
- ChangWoo Lee
- Department of Molecular Cardiology and Molecular Biotechnology Core, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Jones BW, Song GJ, Greuber EK, Hinkle PM. Phosphorylation of the endogenous thyrotropin-releasing hormone receptor in pituitary GH3 cells and pituitary tissue revealed by phosphosite-specific antibodies. J Biol Chem 2007; 282:12893-906. [PMID: 17329249 DOI: 10.1074/jbc.m610854200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study phosphorylation of the endogenous type I thyrotropin-releasing hormone receptor in the anterior pituitary, we generated phosphosite-specific polyclonal antibodies. The major phosphorylation site of receptor endogenously expressed in pituitary GH3 cells was Thr(365) in the receptor tail; distal sites were more phosphorylated in some heterologous models. beta-Arrestin 2 reduced thyrotropin-releasing hormone (TRH)-stimulated inositol phosphate production and accelerated internalization of the wild type receptor but not receptor mutants where the critical phosphosites were mutated to Ala. Phosphorylation peaked within seconds and was maximal at 100 nm TRH. Based on dominant negative kinase and small interfering RNA approaches, phosphorylation was mediated primarily by G protein-coupled receptor kinase 2. Phosphorylated receptor, visualized by immunofluorescence microscopy, was initially at the plasma membrane, and over 5-30 min it moved to intracellular vesicles in GH3 cells. Dephosphorylation was rapid (t((1/2)) approximately 1 min) if agonist was removed while receptor was at the surface. Dephosphorylation was slower (t((1/2)) approximately 4 min) if agonist was withdrawn after receptor had internalized. After agonist removal and dephosphorylation, a second pulse of agonist caused extensive rephosphorylation, particularly if most receptor was still on the plasma membrane. Phosphorylated receptor staining was visible in prolactin- and thyrotropin-producing cells in rat pituitary tissue from untreated rats and much stronger in tissue from animals injected with TRH. Our results show that the TRH receptor can rapidly cycle between a phosphorylated and nonphosphorylated state in response to changing agonist concentrations and that phosphorylation can be used as an indicator of receptor activity in vivo.
Collapse
Affiliation(s)
- Brian W Jones
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
8
|
Aguila B, Roussel M, Jauzac P, Allouche S. High-purity selection and maintenance of gene expression in human neuroblastoma cells stably over-expressing GFP fusion protein. Application for opioid receptors desensitization studies. Brain Res 2006; 1114:11-8. [PMID: 16938287 DOI: 10.1016/j.brainres.2006.07.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 07/10/2006] [Accepted: 07/18/2006] [Indexed: 11/28/2022]
Abstract
Chronic use of opiates such as morphine is associated with drug tolerance, which is correlated with the desensitization of opioid receptors. This latter process involves phosphorylation of opioid receptors by G protein-coupled receptors kinases (GRKs) and subsequent uncoupling by beta-arrestins. To explore these molecular mechanisms, neuronal cell lines, endogenously expressing the opioid receptors, provide an ideal cellular model. Unfortunately, there are two major drawbacks: (1) these cells are refractory to cDNA introduction, resulting in low transfection efficiency; (2) continuous culturing of transfected cells invariably leads to phenotypic drift of the cultures even after an antibiotic selection. So, these cells were dropped in favor of heterologous expression systems, which are easier to transfect but whose relevance as adequate cellular model for studying opioid receptor regulation should be questioned, as recently demonstrated by [Haberstock-Debic, H., Kim, K.A.,Yu, Y.J., von Zastrow, M., 2005. Morphine promotes rapid, arrestin-dependent endocytosis of mu-opioid receptors in striatal neurons. J. Neurosci. 25, 7847-7857]. In this work, we describe a method, based on fluorescence-activated cell sorting (FACS), to select and maintain a high proportion of transfected SK-N-BE cells (a neuronal cell line endogenously expressing human Delta-Opioid Receptor (hDOR)), expressing the beta-arrestin1 fused to green fluorescent protein (GFP). While in functional experiments, we were not able to observe a major effect in non-sorted SK-N-BE cells expressing beta-arrestin1-GFP, the enrichment by 18-fold with FACS resulted in a robust increase of beta-arrestin1-GFP expression associated with strong hDOR desensitization. Moreover, this method also allows to counteract the phenotypic drift and to maintain a high-purity selection of SK-N-BE cells expressing beta-arrestin1-GFP. Thus, this approach provides a valuable tool for exploring opioid receptors desensitization in neuronal cells.
Collapse
Affiliation(s)
- Benjamin Aguila
- Laboratoire de Biologie cellulaire et moléculaire de la signalisation, UPRES-EA 3919, Université de Caen, France
| | | | | | | |
Collapse
|
9
|
Oh DY, Kim K, Kwon HB, Seong JY. Cellular and molecular biology of orphan G protein-coupled receptors. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 252:163-218. [PMID: 16984818 DOI: 10.1016/s0074-7696(06)52003-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The superfamily of G protein-coupled receptors (GPCRs) is the largest and most diverse group of membrane-spanning proteins. It plays a variety of roles in pathophysiological processes by transmitting extracellular signals to cells via heterotrimeric G proteins. Completion of the human genome project revealed the presence of approximately 168 genes encoding established nonsensory GPCRs, as well as 207 genes predicted to encode novel GPCRs for which the natural ligands remained to be identified, the so-called orphan GPCRs. Eighty-six of these orphans have now been paired to novel or previously known molecules, and 121 remain to be deorphaned. A better understanding of the GPCR structures and classification; knowledge of the receptor activation mechanism, either dependent on or independent of an agonist; increased understanding of the control of GPCR-mediated signal transduction; and development of appropriate ligand screening systems may improve the probability of discovering novel ligands for the remaining orphan GPCRs.
Collapse
Affiliation(s)
- Da Young Oh
- Laboratory of G Protein-Coupled Receptors, Korea University College of Medicine, Seoul 136-707, Korea
| | | | | | | |
Collapse
|
10
|
Jones BW, Hinkle PM. β-Arrestin Mediates Desensitization and Internalization but Does Not Affect Dephosphorylation of the Thyrotropin-releasing Hormone Receptor. J Biol Chem 2005; 280:38346-54. [PMID: 16183993 DOI: 10.1074/jbc.m502918200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G protein-coupled thyrotropin-releasing hormone (TRH) receptor is phosphorylated and binds to beta-arrestin after agonist exposure. To define the importance of receptor phosphorylation and beta-arrestin binding in desensitization, and to determine whether beta-arrestin binding and receptor endocytosis are required for receptor dephosphorylation, we expressed TRH receptors in fibroblasts from mice lacking beta-arrestin-1 and/or beta-arrestin-2. Apparent affinity for [(3)H]MeTRH was increased 8-fold in cells expressing beta-arrestins, including a beta-arrestin mutant that did not permit receptor internalization. TRH caused extensive receptor endocytosis in the presence of beta-arrestins, but receptors remained primarily on the plasma membrane without beta-arrestin. beta-Arrestins strongly inhibited inositol 1,4,5-trisphosphate production within 10 s. At 30 min, endogenous beta-arrestins reduced TRH-stimulated inositol phosphate production by 48% (beta-arrestin-1), 71% (beta-arrestin-2), and 84% (beta-arrestins-1 and -2). In contrast, receptor phosphorylation, detected by the mobility shift of deglycosylated receptor, was unaffected by beta-arrestins. Receptors were fully phosphorylated within 15 s of TRH addition. Receptor dephosphorylation was identical with or without beta-arrestins and almost complete 20 min after TRH withdrawal. Blocking endocytosis with hypertonic sucrose did not alter the rate of receptor phosphorylation or dephosphorylation. Expressing receptors in cells lacking Galpha(q) and Galpha(11) or inhibiting protein kinase C pharmacologically did not prevent receptor phosphorylation or dephosphorylation. Overexpression of dominant negative G protein-coupled receptor kinase-2 (GRK2), however, retarded receptor phosphorylation. Receptor activation caused translocation of endogenous GRK2 to the plasma membrane. The results show conclusively that receptor dephosphorylation can take place on the plasma membrane and that beta-arrestin binding is critical for desensitization and internalization.
Collapse
MESH Headings
- Alkaline Phosphatase/metabolism
- Animals
- Arrestins/chemistry
- Arrestins/metabolism
- Arrestins/physiology
- CHO Cells
- COS Cells
- Calcium Channels/metabolism
- Cell Line
- Cell Membrane/metabolism
- Chlorocebus aethiops
- Cricetinae
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Endocytosis
- Fibroblasts/metabolism
- G-Protein-Coupled Receptor Kinase 2
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Proteins/metabolism
- Glycosylation
- Green Fluorescent Proteins/metabolism
- Immunoblotting
- Immunoglobulin G/chemistry
- Immunoprecipitation
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Inositol Phosphates/chemistry
- Inositol Phosphates/metabolism
- Kinetics
- Mice
- Mice, Knockout
- Mutation
- Phosphates/chemistry
- Phosphorylation
- Plasmids/metabolism
- Protein Binding
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Structure, Tertiary
- Protein Transport
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Thyrotropin-Releasing Hormone/chemistry
- Receptors, Thyrotropin-Releasing Hormone/physiology
- Sucrose/chemistry
- Sucrose/pharmacology
- Time Factors
- Transfection
- beta-Adrenergic Receptor Kinases/metabolism
- beta-Arrestin 1
- beta-Arrestin 2
- beta-Arrestins
Collapse
Affiliation(s)
- Brian W Jones
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
11
|
Brady AE, Wang Q, Allen PB, Rizzo M, Greengard P, Limbird LE. Alpha 2-adrenergic agonist enrichment of spinophilin at the cell surface involves beta gamma subunits of Gi proteins and is preferentially induced by the alpha 2A-subtype. Mol Pharmacol 2005; 67:1690-6. [PMID: 15705742 DOI: 10.1124/mol.104.005215] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Agonist activation regulates reciprocal interactions of spinophilin and arrestin with the alpha2A- and alpha2B -adrenergic receptor (AR) subtypes via their 3i loop. Because arrestin association with G protein-coupled receptor is preceded by redistribution of arrestin to the cell surface, the present studies explored whether agonist activation of the alpha2A- and alpha2B -AR subtypes also led to spinophilin enrichment at the cell surface. Live cell imaging studies using a green fluorescent protein-tagged spinophilin examined spinophilin localization and its regulation by alpha2 -AR agonist. Agonist activation of alpha2A-AR preferentially, compared with the alpha2B-AR, led to spinophilin enrichment at the cell surface in human embryonic kidney 293 cells and in mouse embryo fibroblasts derived from spinophilin null mice. Activation of the delta LEESSSS alpha2A-AR, which has enriched association with spinophilin compared with the wild-type (WT) alpha2A-AR, does not show an enhanced redistribution of spinophilin to the surface compared with WT alpha2A-AR, demonstrating that the ability or affinity of the receptor in binding spinophilin may be independent of the ability of the receptor to effect spinophilin redistribution to the surface. Agonist-evoked enrichment of spinophilin at the cell surface seems to involve downstream signaling events, manifested both by the pertussis toxin sensitivity of the process and by the marked attenuation of spinophilin redistribution in cells expressing the beta-adrenergic receptor kinase-C tail, which sequesters beta gamma subunits of G proteins. Together, the data suggest that agonist-evoked spinophilin enrichment at the cell surface is caused by receptor-evoked signaling pathways and is independent of the affinity of the receptor for the spinophilin molecule.
Collapse
Affiliation(s)
- Ashley E Brady
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | | | |
Collapse
|
12
|
Cook LB, Hinkle PM. Fate of internalized thyrotropin-releasing hormone receptors monitored with a timer fusion protein. Endocrinology 2004; 145:3095-100. [PMID: 15117874 DOI: 10.1210/en.2004-0304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trafficking of TRH receptors was studied in a stable HEK293 cell line expressing receptor fused to a Timer protein (TRHR-Timer) that spontaneously changes from green to red over 10 h. Cells expressing TRHR-Timer responded to TRH with an 11-fold increase in inositol phosphate formation, increased intracellular free calcium, and internalization of 75% of bound [(3)H][N(3)-methyl-His(2)]TRH within 10 min. After a 20-min exposure to TRH at 37 C, 75-80% of surface binding sites disappeared as receptors internalized. When TRH was removed and cells incubated in hormone-free medium, approximately 75% of [(3)H][N(3)-methyl-His(2)]TRH binding sites reappeared at the surface over the next 2 h with or without cycloheximide. Trafficking of TRHR-Timer was monitored microscopically after addition and withdrawal of TRH. In untreated cells, both new (green) and old (red) receptors were seen at the plasma membrane, and TRH caused rapid movement of young and old receptors into cytoplasmic vesicles. When TRH was withdrawn, some TRHR-Timer reappeared at the plasma membrane after several hours, but much of the internalized receptor remained intracellular in vesicles that condensed to larger structures in perinuclear regions deeper within the cell. Strikingly, receptors that moved to the plasma membrane were generally younger (more green) than those that underwent endocytosis. There was no change in the red to green ratio over the course of the experiment in cells exposed to vehicle. The results indicate that, after agonist-driven receptor internalization, the plasma membrane is replenished with younger receptors, arising either from an intracellular pool or preferential recycling of younger receptors.
Collapse
Affiliation(s)
- Laurie B Cook
- Department of Pharmacology and Physiology, Box 711, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
13
|
Pfleger KDG, Kroeger KM, Eidne KA. Receptors for hypothalamic releasing hormones TRH and GnRH: oligomerization and interactions with intracellular proteins. Semin Cell Dev Biol 2004; 15:269-80. [PMID: 15125890 DOI: 10.1016/j.semcdb.2003.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studies of TRH and GnRH receptors have revealed much information about the roles of G-proteins and beta-arrestins, as well as receptor residues important for signaling, desensitization and internalization. However, the proteins involved are only just beginning to be identified and characterized. Additional complexity now exists with the observation that these receptors form oligomers in live cells. Indeed, hetero-oligomerization of TRH receptor subtypes 1 and 2 potentially alters interactions with intracellular regulatory proteins. Knowledge of proteins that interact with TRH or GnRH receptors will increase our understanding of receptor function and provide potential drug targets for a range of receptor-associated conditions.
Collapse
Affiliation(s)
- Kevin Donald George Pfleger
- Molecular Endocrinology Research Group/7TM Receptor Laboratory, Western Australian Institute for Medical Research, Centre for Medical Research, Sir Charles Gairdner Hospital, University of Western Australia, Nedlands, Perth, 6009, Australia
| | | | | |
Collapse
|
14
|
Abstract
Fluorescent molecules bound to receptors can show their location and, if binding is reversible, can provide pharmacological information such as affinity and proximity between interacting molecules. The spatial precision offered by visualisation transcends the diverse localisation and low molecular concentration of receptor molecules. Consequently, the relationships between receptor location and function and life cycles of receptors have become better understood as a result of fluorescent labeling. Each of these aspects contributes new insights to drug action and potential new targets. The relationships between spatial distribution of receptor and function are largely unknown. This is particularly apparent for native receptors expressed in their normal host tissues where communication between heterogeneous cell types influences receptor distribution and function. In cultured cell systems, particularly for G-protein-coupled receptors (GPCR), fluorescence-based methods have enabled the visualisation of the cycle of agonist-stimulated receptor clustering, endocytic internalisation to the perinuclear region, degradation of the receptor-ligand complex, and recycling back to the surface membrane. Using variant forms of green fluorescent protein (GFP), antibodies, or fluorescent ligands, it is possible to detect or visualise the formation of oligomeric receptor complexes. Careful selection of fluorescent molecules based on their spectral properties enables resonance energy transfer and multilabel visualisation with colocalisation studies. Fluorescent agonist and antagonist ligands are now being used in parallel with GFP to study receptor cycling in live cells. This review covers how labeling and visualisation technologies have been applied to the study of major pharmacologically important receptors and illustrates this by giving examples of recent techniques that have relied on GFP, antibodies, or fluorescent ligands alone or in combination for the purpose of studying GPCR.
Collapse
Affiliation(s)
- Craig J Daly
- Faculty of Biomedical and Life Sciences, Division of Neuroscience and Biomedical Systems, University of Glasgow, Wolfson Building (Office 448), West Medical Building (Lab 440), University Avenue, G12 8QQ, Glasgow, UK.
| | | |
Collapse
|
15
|
Vilardaga JP, Bünemann M, Krasel C, Castro M, Lohse MJ. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat Biotechnol 2003; 21:807-12. [PMID: 12808462 DOI: 10.1038/nbt838] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Accepted: 04/24/2003] [Indexed: 11/08/2022]
Abstract
Hormones and neurotransmitters transduce signals through G protein-coupled receptors (GPCR). Despite their common signaling pathways, however, the responses they elicit have different temporal patterns. To reveal the molecular basis for these differences we have developed a generally applicable fluorescence-based technique for real-time monitoring of the activation switch of GPCRs in living cells. We used such direct measurements to investigate the activation of the alpha(2A)-adrenergic receptor (alpha(2A)AR; neurotransmitter) and the parathyroid hormone receptor (PTHR; hormone) and observed much faster kinetics than expected: approximately 40 ms for the alpha(2A)AR and approximately 1 s for the PTHR. The different switch times are in agreement with the different receptors' biological functions. Agonists and antagonists could rapidly switch the receptors on or off, whereas a partial agonist caused only a partial signal. This approach allows the comparison of agonist and partial agonist intrinsic activities at the receptor level and provides evidence for millisecond activation times of GPCRs.
Collapse
MESH Headings
- Adrenergic alpha-2 Receptor Agonists
- Adrenergic alpha-2 Receptor Antagonists
- Cell Culture Techniques/methods
- Cell Line
- Clonidine/pharmacology
- GTP-Binding Proteins/chemistry
- GTP-Binding Proteins/metabolism
- Humans
- Kidney/chemistry
- Kidney/drug effects
- Kidney/metabolism
- Parathyroid Hormone/pharmacology
- Protein Binding
- Receptor, Parathyroid Hormone, Type 1/agonists
- Receptor, Parathyroid Hormone, Type 1/antagonists & inhibitors
- Receptor, Parathyroid Hormone, Type 1/chemistry
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/physiology
- Spectrometry, Fluorescence/methods
Collapse
Affiliation(s)
- Jean-Pierre Vilardaga
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
16
|
Hanyaloglu AC, Seeber RM, Kohout TA, Lefkowitz RJ, Eidne KA. Homo- and hetero-oligomerization of thyrotropin-releasing hormone (TRH) receptor subtypes. Differential regulation of beta-arrestins 1 and 2. J Biol Chem 2002; 277:50422-30. [PMID: 12393857 DOI: 10.1074/jbc.m209340200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are regulated by a complex network of mechanisms such as oligomerization and internalization. Using the GPCR subtypes for thyrotropin-releasing hormone (TRHR1 and TRHR2), the aim of this study was to determine if subtype-specific differences exist in the trafficking process. If so, we wished to determine the impact of homo- and hetero-oligomerization on TRHR subtype trafficking as a potential mechanism for the differential cellular responses induced by TRH. Expression of either beta-arrestin 1 or 2 promoted TRHR1 internalization. In contrast, only beta-arrestin 2 could enhance TRHR2 internalization. The preference for beta-arrestin 2 by TRHR2 was supported by the impairment of TRHR2 trafficking in mouse embryonic fibroblasts (MEFs) from either a beta-arrestin 2 knockout or a beta-arrestin 1/2 knockout, while TRHR1 trafficking was only abolished in MEFs lacking both beta-arrestins. The differential beta-arrestin-dependence of TRHR2 was directly measured in live cells using bioluminescence resonance energy transfer (BRET). Both BRET and confocal microscopy were also used to demonstrate that TRHR subtypes form hetero-oligomers. In addition, these hetero-oligomers have altered internalization kinetics compared with the homo-oligomer. The formation of TRHR1/2 heteromeric complexes increased the interaction between TRHR2 and beta-arrestin 1. This may be due to conformational differences between TRHR1/2 hetero-oligomers versus TRHR2 homo-oligomers as a mutant TRHR1 (TRHR1 C335Stop) that does not interact with beta-arrestins, could also enhance TRHR2/beta-arrestin 1 interaction. This study demonstrates that TRHR subtypes are differentially regulated by the beta-arrestins and also provides the first evidence that the interactions of TRHRs with beta-arrestin may be altered by hetero-oligomer formation.
Collapse
Affiliation(s)
- Aylin C Hanyaloglu
- 7TM Receptor Laboratory, Western Australian Institute for Medical Research (WAIMR), University of Western Australia, Centre for Medical Research, Nedlands, Perth, WA 6009, Australia
| | | | | | | | | |
Collapse
|
17
|
Ferguson G, Watterson KR, Palmer TM. Subtype-specific regulation of receptor internalization and recycling by the carboxyl-terminal domains of the human A1 and rat A3 adenosine receptors: consequences for agonist-stimulated translocation of arrestin3. Biochemistry 2002; 41:14748-61. [PMID: 12475223 DOI: 10.1021/bi0262911] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we have characterized the differential effects on inhibitory adenosine receptor (AR) trafficking of disrupting predicted sites for palmitoylation and phosphorylation within each receptor's carboxyl terminus. While a Cys(302,305)Ala-mutated rat A(3)AR mutant internalizes significantly faster than the wild-type (WT) receptor in response to agonist exposure, analogous mutation of the human A(1)AR (Cys(309)Ala) had no effect on receptor internalization. Moreover, unlike the WT A(3)AR, the entire pool of internalized mutant A(3)AR is able to recycle back to the plasma membrane following agonist removal. These properties do not reflect utilization of an alternative trafficking pathway, as internalized WT and mutant A(3)ARs both accumulate into transferrin receptor-positive endosomal compartments. However, receptor accumulation into endosomes is dependent upon prior G-protein-coupled receptor kinase (GRK)-mediated phosphorylation of the receptor's carboxyl terminus, as replacement of the carboxyl-terminal domain of the human A(1)AR with the 14 GRK-phosphorylated amino acids of the rat A(3)AR confers rapid agonist-mediated endosomal accumulation of the resulting chimeric A(1)CT3AR. Sensitivity to GRK-mediated phosphorylation also dictates the distinct redistribution of arrestin3 observed upon agonist exposure. Thus, while the nonphosphorylated A(1)AR redistributes arrestin3 from the cytoplasm to punctate clusters at the plasma membrane, GRK-phosphorylated WT and Cys(302,305)Ala-mutated A(3)ARs, as well as the A(1)CT3AR chimera, each induce the redistribution of arrestin3 into punctate accumulations both at the plasma membrane and within the cytoplasm. Neither the human A(1)AR nor the rat A(3)AR colocalized with arrestin3 under basal or agonist-stimulated conditions. Together, these results demonstrate that inhibitory AR-mediated changes in arrestin3 distribution are subtype-specific, with specificity correlating with the sensitivity of the receptor's carboxyl-terminal domain to GRK phosphorylation. In the case of the rat A(3)AR, sensitivity to GRK-mediated internalization appears to be regulated in part by the integrity of putative palmitate attachment sites upstream of its GRK phosphoacceptor sites.
Collapse
Affiliation(s)
- Gail Ferguson
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | | | | |
Collapse
|
18
|
Castro M, Dicker F, Vilardaga JP, Krasel C, Bernhardt M, Lohse MJ. Dual regulation of the parathyroid hormone (PTH)/PTH-related peptide receptor signaling by protein kinase C and beta-arrestins. Endocrinology 2002; 143:3854-65. [PMID: 12239097 DOI: 10.1210/en.2002-220232] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined here the role of second messenger-dependent kinases and beta-arrestins in short-term regulation of the PTH receptor (PTHR) signaling. The inhibition of protein kinase C (PKC) in COS-7 cells transiently expressing PTHR, led to an approximately 2-fold increase in PTH-stimulated inositol phosphate (IP) and cAMP production. The inhibition of protein kinase A increased cAMP production 1.5-fold without affecting IP signaling. The effects of PKC inhibition on PTHR-mediated G(q) signaling were strongly decreased for a carboxy-terminally truncated PTHR (T480) that is phosphorylation deficient. PKC inhibition was associated with a decrease in agonist-stimulated PTHR phosphorylation and internalization without blocking PTH-dependent mobilization of beta-arrestin2 to the plasma membrane. Overexpression of beta-arrestins strongly decreased the PTHR-mediated IP signal, whereas cAMP production was impaired to a much lower extent. The regulation of PTH-stimulated signals by beta-arrestins was impaired for the truncated T480 receptor. Our data reveal mechanisms at, and distal to, the receptor regulating PTHR-mediated signaling pathways by second messenger-dependent kinases. We conclude that regulation of PTHR-mediated signaling by PKC and beta-arrestins are separable phenomena that both involve the carboxy terminus of the receptor. A major role for PKC and beta-arrestins in preferential regulation of PTHR-mediated G(q) signaling by independent mechanisms at the receptor level was established.
Collapse
Affiliation(s)
- Marián Castro
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Vilardaga JP, Krasel C, Chauvin S, Bambino T, Lohse MJ, Nissenson RA. Internalization determinants of the parathyroid hormone receptor differentially regulate beta-arrestin/receptor association. J Biol Chem 2002; 277:8121-9. [PMID: 11726668 DOI: 10.1074/jbc.m110433200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Arrestins have been implicated in regulating internalization of the parathyroid hormone receptor (PTHR), but the structural features in the receptor required for this effect are unknown. In the present study performed in HEK-293 cells, we demonstrated that different topological domains of PTHR are implicated in agonist-dependent receptor internalization; truncation of the cytoplasmic tail (PTHR-TR), selective mutations of the cytoplasmic tail to remove the sites of parathyroid hormone (PTH)-stimulated phosphorylation (PTHR-PD), and mutations in the third transmembrane helix (N289A) or in the third cytoplasmic loop (K382A) resulted in a 30-60% reduction in (125)I-PTH-related protein internalization. To better define the role of these internalization determinants, we have tested the ability of these mutant PTHRs to associate with beta-arrestins by using three different methodological approaches: 1) ability of overexpression of beta-arrestins to restore the internalization of (125)I-PTH-related protein for the mutant PTHRs; 2) visualization of PTH-mediated trafficking of beta-arrestin1 and -2 fused to the green fluorescent protein with receptors by confocal microscopy; 3) quantification of beta-arrestin1-green fluorescent protein translocation by Western blot. Our data reveal that the receptor' cytoplasmic tail contains determinants of beta-arrestin interaction that are distinct from the phosphorylation sites and are sufficient for transient association of beta-arrestin2, but stable association requires receptor phosphorylation. Determinants in the receptor's core (Asn-289 and Lys-382) appear to regulate internalization of the receptor/beta-arrestin complex toward early endocytic endosomes during the initial step of endocytosis.
Collapse
Affiliation(s)
- Jean-Pierre Vilardaga
- Department of Pharmacology, Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg D-97078, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Buckley DA, Loughran G, Murphy G, Fennelly C, O'Connor R. Identification of an IGF-1R kinase regulatory phosphatase using the fission yeast Schizosaccharomyces pombe and a GFP tagged IGF-1R in mammalian cells. Mol Pathol 2002; 55:46-54. [PMID: 11836447 PMCID: PMC1187146 DOI: 10.1136/mp.55.1.46] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS To study the regulation of type 1 insulin like growth factor receptor (IGF-1R) tyrosine kinase activity using the fission yeast Schizosaccharomyces pombe and a green fluorescent protein (GFP) tagged, full length IGF-1R. METHODS The beta chain of the IGF-1R (betawt) was expressed under inducible conditions in the fission yeast S. pombe. Western blot analysis with antiphosphotyrosine antibodies was used to assess the kinase activity of betawt. A GFP tagged IGF-1R (GFP-IGF-1R) was constructed to study the tyrosine kinase activity of the full length IGF-1R. The signalling capabilities of GFP-IGF-1R in response to IGF-1 stimulation were investigated in transiently transfected fibroblasts. Immunofluorescent staining for cellular phosphotyrosine content was used to assess the localisation and tyrosine kinase activity of GFP-IGF-1R. RESULTS The betawt protein displayed functional tyrosine kinase activity in S pombe and phosphorylated endogenous yeast proteins. In response to IGF-1 stimulation, the GFP-IGF-1R became autophosphorylated and also activated the phosphatidylinositol 3-kinase and mitogen activated protein kinase pathways. Tyrosine phosphorylation and kinase activity of the GFP-IGF-1R could be visualised by immunofluorescence with antiphosphotyrosine antibodies. Coexpression of a mammalian tyrosine phosphatase PTP1B with betawt completely inhibited this tyrosine kinase activity in yeast and also reduced the tyrosine phosphorylation in COS cells transfected with the GFP-IGF-1R. CONCLUSIONS Schizosaccharomyces pombe can be used to analyse the tyrosine kinase activity of the IGF-1R beta chain and its regulation by tyrosine phosphatases. In addition, the regulation of IGF-1R tyrosine kinase activity can be studied using a GFP tagged IGF-1R. Using both of these methods, IGF-1R kinase activity was shown to be inhibited by the protein tyrosine phosphatase, PTP1B.
Collapse
Affiliation(s)
- D A Buckley
- Cell Biology Laboratory, Department of Biochemistry, Biosciences Research Institute, National University of Ireland, Cork, Ireland
| | | | | | | | | |
Collapse
|
21
|
Scott MGH, Benmerah A, Muntaner O, Marullo S. Recruitment of activated G protein-coupled receptors to pre-existing clathrin-coated pits in living cells. J Biol Chem 2002; 277:3552-9. [PMID: 11602587 DOI: 10.1074/jbc.m106586200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The process of clathrin-mediated endocytosis tightly regulates signaling of the superfamily of seven-transmembrane G protein-coupled receptors (GPCRs). A fundamental question in the cell biology of membrane receptor endocytosis is whether activated receptors can initiate the formation of clathrin-coated pits (CPs) or whether they are simply mobilized to pre-existing CPs. Here, using various approaches, including a dynamic assay to monitor the distribution of CPs and GPCR-beta-arrestin complexes in live HeLa cells, we demonstrate for the first time that activated GPCRs do not initiate the de novo formation of CPs but instead are targeted to pre-existing CPs.
Collapse
Affiliation(s)
- Mark G H Scott
- Department of Cell Biology, Institut Cochin de Génétique Moléculaire, Pavillon Gustave Roussy, 75679 Paris CEDEX 14, France
| | | | | | | |
Collapse
|
22
|
Bushell T, Endoh T, Simen AA, Ren D, Bindokas VP, Miller RJ. Molecular components of tolerance to opiates in single hippocampal neurons. Mol Pharmacol 2002; 61:55-64. [PMID: 11752206 DOI: 10.1124/mol.61.1.55] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the effect of acute and chronic opioid treatment on synaptic transmission and mu-opioid receptor (MOR) endocytosis in cultures of naïve rat hippocampal neurons. Opioid agonists that activate MOR inhibited synaptic transmission at inhibitory but not excitatory autapses. [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), morphine, and methadone were all effective at blocking inhibitory transmission. These same drugs also reduced the amplitude of voltage-dependent Ca(2+) currents in inhibitory but not excitatory neurons. Chronic treatment with all three opioids reduced the subsequent effects of a challenge with either the same drug or one of the others in individual autaptic neurons. Chronic treatment with DAMGO or methadone produced internalization of enhanced yellow fluorescent protein-tagged MOR expressed in hippocampal neurons within hours, whereas morphine produced internalization much more slowly, even when accompanied by overexpression of beta-arrestin-2. We conclude that DAMGO, methadone, and morphine all produce tolerance in single hippocampal neurons. Morphine-induced tolerance does not necessarily seem to involve receptor endocytosis.
Collapse
Affiliation(s)
- T Bushell
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
23
|
Qian H, Pipolo L, Thomas WG. Association of beta-Arrestin 1 with the type 1A angiotensin II receptor involves phosphorylation of the receptor carboxyl terminus and correlates with receptor internalization. Mol Endocrinol 2001; 15:1706-19. [PMID: 11579203 DOI: 10.1210/mend.15.10.0714] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arrestins bind to phosphorylated G protein-coupled receptors and participate in receptor desensitization and endocytosis. Although arrestins traffic with activated type 1 (AT(1A)) angiotensin II (AngII) receptors, the contribution of arrestins to AT(1A) receptor internalization is controversial, and the physical association of arrestins with the AT(1A) receptor has not been established. In this study, by coimmunoprecipitating AT(1A) receptors and beta-arrestin 1, we provide direct evidence for an association between arrestins and the AT(1A) receptor that was agonist- and time-dependent and contingent upon the level of beta-arrestin 1 expression. Serial truncation of the receptor carboxyl terminus resulted in a graded loss of beta-arrestin 1 association, which correlated with decreases in receptor phosphorylation. Truncation of the AT(1A) receptor to lysine(325) prevented AngII-induced phosphorylation and beta-arrestin 1 association as well as markedly inhibiting receptor internalization, indicating a close correlation between these receptor parameters. AngII-induced association was also dramatically reduced in a phosphorylation- and internalization-impaired receptor mutant in which four serine and threonine residues in the central portion of the AT(1A) receptor carboxyl terminus (Thr(332), Ser(335), Thr(336), Ser(338)) were substituted with alanine. In contrast, substitutions in another serine/threonine-rich region (Ser(346), Ser(347), Ser(348)) and at three PKC phosphorylation sites (Ser(331), Ser(338), Ser(348)) had no effect on AngII-induced beta-arrestin 1 association or receptor internalization. While AT(1A) receptor internalization could be inhibited by a dominant-negative beta-arrestin 1 mutant (beta arr1(319-418)), treatment with hyperosmotic sucrose to inhibit internalization did not abrogate the differences in arrestin association observed between the wild-type and mutant receptors, indicating that arrestin binding precedes, and is not dependent upon, receptor internalization. Interestingly, a substituted analog of AngII, [Sar(1)Ile(4)Ile(8)]-AngII, which promotes robust phosphorylation of the receptor but does not activate receptor signaling, stimulated strong beta-arrestin 1 association with the full-length AT(1A) receptor. These results identify the central portion of the AT(1A) receptor carboxyl terminus as the important determinant for beta-arrestin 1 binding and internalization and indicate that AT(1A) receptor phosphorylation is crucial for beta-arrestin docking.
Collapse
Affiliation(s)
- H Qian
- Molecular Endocrinology Laboratory, Baker Medical Research Institute, Melbourne 8008, Australia
| | | | | |
Collapse
|
24
|
Vilardaga JP, Frank M, Krasel C, Dees C, Nissenson RA, Lohse MJ. Differential conformational requirements for activation of G proteins and the regulatory proteins arrestin and G protein-coupled receptor kinase in the G protein-coupled receptor for parathyroid hormone (PTH)/PTH-related protein. J Biol Chem 2001; 276:33435-43. [PMID: 11387315 DOI: 10.1074/jbc.m011495200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After stimulation with agonist, G protein-coupled receptors (GPCRs) activate G proteins and become phosphorylated by G protein-coupled receptor kinases (GRKs), and most of them translocate cytosolic arrestin proteins to the cytoplasmic membrane. Agonist-activated GPCRs are specifically phosphorylated by GRKs and are targeted for endocytosis by arrestin proteins, suggesting a connection between GPCR conformational changes and interaction with GRKs and arrestins. Previously, we showed that by substitution of histidine for residues at the cytoplasmic side of helix 3 (H3) and helix 6 (H6) of the parathyroid hormone (PTH) receptor (PTHR), a zinc metal ion-binding site is engineered that prevents PTH-stimulated G(s) activation (Sheikh, S. P., Vilardaga, J.-P., Baranski, T. J., Lichtarge, O., Iiri, T., Meng, E. C., Nissenson, R. A., and Bourne, H. R. (1999) J. Biol. Chem. 274, 17033-17041). These data suggest that relative movements between H3 and H6 are critical for G(s) activation. Does this molecular event play a similar role in activation of GRK and arrestin and in PTHR-mediated G(q) activation? To answer this question, we utilized the two previously described mutant forms of PTHR, H401 and H402, which contain a naturally present histidine residue at position 301 in H3 and a second substituted histidine residue at positions 401 and 402 in H6, respectively. Both mutant receptors showed inhibition of PTH-stimulated inositol phosphate and cAMP generation in the presence of increasing concentrations of Zn(II). However, the mutants showed no Zn(II)-dependent impairment of phosphorylation by GRK-2. Likewise, the mutants were indistinguishable from wild-type PTHR in the ability to translocate beta-arrestins/green fluorescent protein to the cell membrane and were also not affected by sensitivity to Zn(II). These results suggest that agonist-mediated phosphorylation and internalization of PTHR require conformational switches of the receptor distinct from the cAMP and inositol phosphate signaling state. Furthermore, PTHR sequestration does not appear to require G protein activation.
Collapse
Affiliation(s)
- J P Vilardaga
- Department of Pharmacology, Institute of Pharmacology and Toxicology, University of Würzburg, D-97078 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Chen F, Selinger Z, Marks P, Belinsky G, Tashjian AH. Production and characterization of an antiserum which recognizes the native receptor for thyrotropin-releasing hormone. Biochem Biophys Res Commun 2001; 285:742-50. [PMID: 11453656 DOI: 10.1006/bbrc.2001.5140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite attempts in several laboratories, it has been difficult to prepare antiserum to the thyrotropin-releasing hormone receptor (TRHR). We have prepared a polyclonal anti-rat TRHR antiserum by immunization of rabbits with a synthetic peptide corresponding to the C-terminus of the TRHR. The specificity of the antiserum was assessed by enzyme-linked immunosorbent assay. The affinity-purified antibody recognized a major broad band at 50-60 kDa and a minor broad band at 100-120 kDa in Western blot analysis of membrane proteins from TRHR-transfected, but not control, HEK293t cells. Binding to both bands was abolished by preincubation with the immunizing peptide but not control peptide. The approach was repeated with rat pituitary F4C1 cells, which lack endogenous TRHRs; membranes from F4C1 cells transfected with TRHR cDNA, but not control cells, showed specific binding by Western blot. Using laser confocal microscopy, the TRHR was visualized on the plasma membrane of transfected, but not control, F4C1 cells. Similar confocal findings were observed in TRHR-transfected HEK293t cells. Within 5 min after TRH addition, the TRHR signal translocated from the plasma membrane to the cytoplasm of F4C1 cells transfected with TRHR cDNA. Ten minutes after TRH addition, the TRHR signal formed aggregates in the cytoplasm. Thirty minutes after TRH treatment, both cytoplasmic and plasma membrane localizations were observed, suggesting recycling of some TRHRs back to the plasma membrane. These observations are consistent with our previous findings using an epitope-tagged TRHR. In conclusion, we have prepared an antiserum that recognizes the native TRHR by Western blot analysis and confocal microscopy.
Collapse
Affiliation(s)
- F Chen
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Hanyaloglu AC, Vrecl M, Kroeger KM, Miles LE, Qian H, Thomas WG, Eidne KA. Casein kinase II sites in the intracellular C-terminal domain of the thyrotropin-releasing hormone receptor and chimeric gonadotropin-releasing hormone receptors contribute to beta-arrestin-dependent internalization. J Biol Chem 2001; 276:18066-74. [PMID: 11278484 DOI: 10.1074/jbc.m009275200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have previously shown that the mammalian gonadotropin-releasing hormone receptor (GnRHR), a unique G-protein-coupled receptor (GPCR) lacking an intracellular carboxyl tail (C-tail), does not follow a beta-arrestin-dependent internalization pathway. However, internalization of a chimeric GnRHR with the thyrotropin-releasing hormone receptor (TRHR) C-tail does utilize beta-arrestin. Here, we have investigated the sites within the intracellular C-tail domain that are important for conferring beta-arrestin-dependent internalization. In contrast to the chimeric GnRHR with a TRHR C-tail, a chimeric GnRHR with the catfish GnRHR C-tail is not beta-arrestin-dependent. Sequence comparisons between these chimeric receptors show three consensus phosphorylation sites for casein kinase II (CKII) in the TRHR C-tail but none in the catfish GnRHR C-tail. We thus investigated a role for CKII sites in determining GPCR internalization via beta-arrestin. Sequential introduction of three CKII sites into the chimera with the catfish C-tail (H354D,A366E,G371D) resulted in a change in the pattern of receptor phosphorylation and beta-arrestin-dependence, which only occurred when all three sites were introduced. Conversely, mutation of the putative CKII sites (T365A,T371A,S383A) in the C-tail of a beta-arrestin-sensitive GPCR, the TRHR, resulted in decreased receptor phosphorylation and a loss of beta-arrestin-dependence. Mutation of all three CKII sites was necessary before a loss of beta-arrestin-dependence was observed. Visualization of beta-arrestin/GFP redistribution confirmed a loss or gain of beta-arrestin sensitivity for receptor mutants. Internalization of receptors without C-tail CKII sites was promoted by a phosphorylation-independent beta-arrestin mutant (R169E), suggesting that these receptors do not contain the necessary phosphorylation sites required for beta-arrestin-dependent internalization. Apigenin, a specific CKII inhibitor, blocked the increase in receptor internalization by beta-arrestin, thus providing further support for the involvement of CKII. This study presents evidence of a novel role for C-tail CKII consensus sites in targeting these GPCRs to the beta-arrestin-dependent pathway.
Collapse
Affiliation(s)
- A C Hanyaloglu
- 7TM Receptor Laboratory, Western Australian Institute for Medical Research, Keogh Institute for Medical Research, Sir Charles Gairdner Hospital, and Animal Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Evans NA, Groarke DA, Warrack J, Greenwood CJ, Dodgson K, Milligan G, Wilson S. Visualizing differences in ligand-induced beta-arrestin-GFP interactions and trafficking between three recently characterized G protein-coupled receptors. J Neurochem 2001; 77:476-85. [PMID: 11299310 DOI: 10.1046/j.1471-4159.2001.00269.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
beta-Arrestin 1-GFP or beta-arrestin 2-GFP were coexpressed transiently with G protein-coupled receptor kinase 2 within cells stably expressing the orexin-1, apelin or melanin-concentrating hormone (MCH), receptors. In response to agonist ligands both the orexin-1 and apelin receptors were able to rapidly translocate both beta-arrestin 1-GFP and beta-arrestin 2-GFP from cytoplasm to the plasma membrane. For the MCH receptor this was only observed for beta-arrestin 2-GFP. beta-Arrestin 1-GFP translocated by the apelin receptor remained at the plasma membrane during prolonged exposure to ligand even though the receptor became internalized. By contrast, for the orexin-1 receptor, internalization of beta-arrestin 1-GFP within punctate vesicles could be observed for over 60 min in the continued presence of agonist. Co-internalization of the orexin-1 receptor was observed by monitoring the binding and trafficking of TAMRA-(5- and 6-carboxytetramethylrhodamine) labelled orexin-A. Subsequent addition of an orexin-1 receptor antagonist resulted in cessation of incorporation of beta-arrestin 1-GFP into vesicles at the plasma membrane and a gradual clearance of beta-arrestin 1-GFP from intracellular vesicles. For the melanin-concentrating hormone receptor the bulk of translocated beta-arrestin 2-GFP was maintained at concentrated foci close to, or at, the plasma membrane. These results demonstrate very distinct features of beta-arrestin-GFP interactions and trafficking for three G protein-coupled receptors for which the natural ligands have only recently been identified and which were thus previously considered as orphan receptors.
Collapse
Affiliation(s)
- N A Evans
- SmithKline Beecham Pharmaceuticals, Harlow, Essex, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Groarke DA, Drmota T, Bahia DS, Evans NA, Wilson S, Milligan G. Analysis of the C-terminal tail of the rat thyrotropin-releasing hormone receptor-1 in interactions and cointernalization with beta-arrestin 1-green fluorescent protein. Mol Pharmacol 2001; 59:375-85. [PMID: 11160875 DOI: 10.1124/mol.59.2.375] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coexpression of the rat thyrotropin releasing hormone receptor-1 with beta-arrestin 1-green fluorescent protein (GFP) in human embryonic kidney 293 cells results in agonist-dependent translocation of the arrestin to the plasma membrane followed by its cointernalization with the receptor. Truncations of the receptor C-terminal tail from 93 to 50 amino acids did not alter this. Truncations to fewer than 47 amino acids prevented such interactions and inhibited but did not fully eliminate agonist-induced internalization of the receptor. Deletion and site-directed mutants of the C-terminal tail indicated that separate elimination of a potential casein kinase II phosphorylation site or clathrin/clathrin adapter motifs was insufficient to prevent either internalization of the receptor or its cointernalization with beta-arrestin 1-GFP. Alteration of sites of acylation reduced internalization and prevented interactions with beta-arrestin 1-GFP. Combinations of these mutants resulted in lack of interaction with beta-arrestin 1-GFP and a 10-fold reduction in internalization of the receptor. Despite this, the receptor construct that lacked the three protein sequence motifs was fully functional. These studies map sites that contribute the interactions of the thyrotropin releasing hormone receptor-1 C-terminal tail required for effective contacts with beta-arrestin 1-GFP and indicate key roles for these interactions in agonist-induced internalization of the receptor.
Collapse
Affiliation(s)
- D A Groarke
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
Lundin A, Rondahl H, Walum E, Wilcke M. Expression and intracellular localization of leptin receptor long isoform-GFP chimera. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1499:130-138. [PMID: 11118645 DOI: 10.1016/s0167-4889(00)00114-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The leptin receptor (OBR) and its ligand leptin (OB) are key players in the regulation of body weight. The OBR is a member of the class I cytokine receptor family and is alternatively spliced into at least six different isoforms. The multiple forms are identical in their extracellular and transmembrane regions but differ in lengths. The two predominant isoforms include a long form (OBR(l)) with an intracellular domain of 303 amino acids and a shorter form (OBR(s)) with an intracellular domain of 34 amino acids. We have constructed a recombinant OBR(l) chimera with the green fluorescent protein (GFP) by fusing GFP to the C-terminus of the OBR(l). The OBR(l)-GFP chimera was transiently transfected and expressed in SHSY5Y and HEK293 cells. In a STAT-Luciferase assay we show that the GFP moiety in this chimera did not affect the signalling capacity of OBR(l)-GFP. In both SHSY5Y and HEK293 cells transfected with OBR(l)-GFP, a predominant intracellular green OBR(l)-GFP fluorescence was detected in vesicles also positive for internalized fluorophore conjugated leptin. We also found that treatment with the lysosomotropic reagent monensin did not relocalize OBR(l)-GFP together with the human transferrin receptor in recycling endosomes, indicating OBR(l)-GFP not to participate in this pathway. In biotinylation-streptavidin pulse chase experiments, using antibodies raised against GFP and OBR, we observed that the rate of early appearance of OBR(s) at the cell surface, upon leptin stimulation, was faster than that found for OBR(l)-GFP. Taken together, our results provide novel data concerning the intracellular trafficking of the two different isoforms of the leptin receptor.
Collapse
Affiliation(s)
- A Lundin
- Molecular Biology and Genomics, Department of Biology, Pharmacia Corporation, S-112 87, Stockholm, Sweden
| | | | | | | |
Collapse
|
30
|
Mundell SJ, Matharu AL, Kelly E, Benovic JL. Arrestin isoforms dictate differential kinetics of A2B adenosine receptor trafficking. Biochemistry 2000; 39:12828-36. [PMID: 11041847 DOI: 10.1021/bi0010928] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adenosine mediates the activation of adenylyl cyclase via its interaction with specific A(2A) and A(2B) adenosine receptors. Previously, we demonstrated that arrestins are involved in rapid agonist-promoted desensitization of the A(2B) adenosine receptor (A(2B)AR) in HEK293 cells. In the present study, we investigate the role of arrestins in A(2B)AR trafficking. Initial studies demonstrated that HEK293 cells stably expressing arrestin antisense constructs, which reduce endogenous arrestin levels, effectively reduced A(2B)AR internalization. A(2B)AR recycling after agonist-induced endocytosis was also significantly impaired in cells with reduced arrestin levels. Interestingly, while overexpression of arrestin-2 or arrestin-3 rescued A(2B)AR internalization and recycling, arrestin-3 promoted a significantly faster rate of recycling as compared to arrestin-2. The specificity of arrestin interaction with A(2B)ARs was further investigated using arrestins fused to the green fluorescent protein (arr-2-GFP and arr-3-GFP). Both arrestins underwent rapid translocation (<1 min) from the cytosol to the plasma membrane following A(2B)AR activation. However, longer incubations with agonist (>10 min) revealed that arr-2-GFP but not arr-3-GFP colocalized with the A(2B)AR in rab-5 and transferrin receptor containing early endosomes. At later times, the A(2B)AR but not arr-2-GFP was observed in an apparent endocytic recycling compartment. Thus, while arrestin-2 and arrestin-3 mediate agonist-induced A(2B)AR internalization with relative equal potency, arrestin isoform binding dictates the differential kinetics of A(2B)AR recycling and resensitization.
Collapse
Affiliation(s)
- S J Mundell
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
31
|
Shiina T, Kawasaki A, Nagao T, Kurose H. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors. J Biol Chem 2000; 275:29082-90. [PMID: 10862778 DOI: 10.1074/jbc.m909757199] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.
Collapse
Affiliation(s)
- T Shiina
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
32
|
McLean AJ, Milligan G. Ligand regulation of green fluorescent protein-tagged forms of the human beta(1)- and beta(2)-adrenoceptors; comparisons with the unmodified receptors. Br J Pharmacol 2000; 130:1825-32. [PMID: 10952671 PMCID: PMC1572266 DOI: 10.1038/sj.bjp.0703506] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Stable clones of HEK293 cells expressing either FLAG(TM) epitope-tagged, wild type human beta(1)- and beta(2)-adrenoceptors or C-terminally green fluorescent protein (GFP)-tagged forms of these receptors were established. The binding affinity of [(3)H]-dihydroalprenolol and other ligands was little affected by addition of GFP to the C-terminal of either receptor. Isoprenaline induced the internalisation of both beta(1)-adrenoceptor-GFP and beta(2)-adrenoceptor-GFP and following removal of the agonist both constructs were able to recycle to the cell surface. The extent of internalisation of beta(2)-adrenoceptor-GFP produced by isoprenaline was substantially greater than for beta(1)-adrenoceptor-GFP. C-terminal addition of GFP slowed markedly the rate of internalization of both the beta(1)-adrenoceptor and the beta(2)-adrenoceptor in response to isoprenaline. Sustained exposure to isoprenaline (24 h) produced substantially greater levels of downregulation of native beta(2)-adrenoceptor compared to beta(2)-adrenoceptor-GFP although both were equally effectively removed from the plasma membrane. Sustained exposure to isoprenaline resulted in a large fraction of beta(2)-adrenoceptor-GFP becoming trapped in internal vesicles/lysosomes but not degraded. Even after sustained exposure to isoprenaline a significant fraction of beta(1)-adrenoceptor-GFP remained at the cell surface. These results indicate that although GFP tagging of beta-adrenoceptors can provide qualitative visual patterns of agonist-induced receptor trafficking and regulation in HEK293 cells the quantitative details vary markedly from those obtained with the unmodified receptors.
Collapse
MESH Headings
- Betaxolol/pharmacology
- Binding, Competitive/drug effects
- Cell Line
- Dihydroalprenolol/metabolism
- Endocytosis/drug effects
- Green Fluorescent Proteins
- Humans
- Isoproterenol/pharmacology
- Kinetics
- Ligands
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Confocal
- Oligopeptides
- Peptides/genetics
- Propanolamines/metabolism
- Radioligand Assay
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Tritium
Collapse
Affiliation(s)
- A J McLean
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ
| | | |
Collapse
|
33
|
Milligan G. Exploring the dynamics of regulation of G protein-coupled receptors using green fluorescent protein. Br J Pharmacol 1999; 128:501-10. [PMID: 10516625 PMCID: PMC1571667 DOI: 10.1038/sj.bjp.0702824] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1999] [Accepted: 07/02/1999] [Indexed: 11/09/2022] Open
Affiliation(s)
- G Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow.
| |
Collapse
|