1
|
Kesić M, Baković P, Farkaš V, Bagarić R, Kolarić D, Štefulj J, Čičin-Šain L. Constitutive Serotonin Tone as a Modulator of Brown Adipose Tissue Thermogenesis: A Rat Study. Life (Basel) 2023; 13:1436. [PMID: 37511811 PMCID: PMC10381595 DOI: 10.3390/life13071436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Brown adipose tissue (BAT), an important regulator of thermogenic and metabolic processes, is considered a promising target to combat metabolic disorders. The neurotransmitter and hormone serotonin (5HT) is a major modulator of energy homeostasis, with its central and peripheral pools acting in opposing ways. To better understand how individual variations in 5HT homeostasis influence the thermogenic functionality of BAT, we used a rat model consisting of two sublines with constitutively increased (high-5HT) or decreased (low-5HT) whole-body 5HT tone, developed by selective breeding for platelet 5HT parameters. We have shown that animals with constitutively low 5HT activity maintained at a standard housing temperature (22 °C) have greater interscapular BAT (iBAT) mass and higher iBAT metabolic activity (as evidenced by measurements of iBAT temperature and glucose uptake), accompanied by increased iBAT mRNA expression of key thermogenic genes, compared to animals with high 5HT tone. In response to further thermogenic challenges-intermittent cold exposure or treatment with a β3-adrenergic agonist-5HT sublines show several functional and molecular differences linking constitutively low endogenous 5HT tone to higher BAT activity/capacity. Overall, the results support a role of 5-HT in the control of BAT thermogenesis They also suggest that individuals with lower 5HT activity may be more sensitive to β3-adrenergic drugs.
Collapse
Affiliation(s)
- Maja Kesić
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Petra Baković
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Vladimir Farkaš
- Department of Experimental Physics, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Robert Bagarić
- Department of Experimental Physics, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Darko Kolarić
- Centre for Informatics and Computing, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Lipa Čičin-Šain
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| |
Collapse
|
2
|
Wu G, Baumeister R, Heimbucher T. Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to Cold. Cells 2023; 12:1353. [PMID: 37408188 PMCID: PMC10216534 DOI: 10.3390/cells12101353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
Temperature changes and periods of detrimental cold occur frequently for many organisms in their natural habitats. Homeothermic animals have evolved metabolic adaptation strategies to increase mitochondrial-based energy expenditure and heat production, largely relying on fat as a fuel source. Alternatively, certain species are able to repress their metabolism during cold periods and enter a state of decreased physiological activity known as torpor. By contrast, poikilotherms, which are unable to maintain their internal temperature, predominantly increase membrane fluidity to diminish cold-related damage from low-temperature stress. However, alterations of molecular pathways and the regulation of lipid-metabolic reprogramming during cold exposure are poorly understood. Here, we review organismal responses that adjust fat metabolism during detrimental cold stress. Cold-related changes in membranes are detected by membrane-bound sensors, which signal to downstream transcriptional effectors, including nuclear hormone receptors of the PPAR (peroxisome proliferator-activated receptor) subfamily. PPARs control lipid metabolic processes, such as fatty acid desaturation, lipid catabolism and mitochondrial-based thermogenesis. Elucidating the underlying molecular mechanisms of cold adaptation may improve beneficial therapeutic cold treatments and could have important implications for medical applications of hypothermia in humans. This includes treatment strategies for hemorrhagic shock, stroke, obesity and cancer.
Collapse
Affiliation(s)
- Gang Wu
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Baumeister
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Heimbucher
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Aleksic M, Golic I, Jankovic A, Cvoro A, Korac A. ACOX-driven peroxisomal heterogeneity and functional compartmentalization in brown adipocytes of hypothyroid rats. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230109. [PMID: 37153362 PMCID: PMC10154930 DOI: 10.1098/rsos.230109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
We previously demonstrated that hypothyroidism increases peroxisomal biogenesis in rat brown adipose tissue (BAT). We also showed heterogeneity in peroxisomal origin and their unique structural association with mitochondria and/or lipid bodies to carry out β-oxidation, contributing thus to BAT thermogenesis. Distinctive heterogeneity creates structural compartmentalization within peroxisomal population, raising the question of whether it is followed by their functional compartmentalization regarding localization/colocalization of two main acyl-CoA oxidase (ACOX) isoforms, ACOX1 and ACOX3. ACOX is the first and rate-limiting enzyme of peroxisomal β-oxidation, and, to date, their protein expression patterns in BAT have not been fully defined. Therefore, we used methimazole-induced hypothyroidism to study ACOX1 and ACOX3 protein expression and their tissue immunolocalization. Additionally, we analysed their specific peroxisomal localization and colocalization in parallel with peroxisomal structural compartmentalization in brown adipocytes. Hypothyroidism caused a linear increase in ACOX1 expression, while a temporary decrease in ACOX3 levels is only recovered to the control level at day 21. Peroxisomal ACOX1 and ACOX3 localization and colocalization patterns entirely mirrored heterogeneous peroxisomal biogenesis pathways and structural compartmentalization, e.g. associations with mitochondria and/or lipid bodies. Hence, different ACOX isoforms localization/colocalization creates distinct functional heterogeneity of peroxisomes and drives their functional compartmentalization in rat brown adipocytes.
Collapse
Affiliation(s)
- Marija Aleksic
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Igor Golic
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Aleksandra Jankovic
- Institute for Biological Research 'Sinisa Stankovic'—National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Aleksandra Cvoro
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Aleksandra Korac
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
4
|
Park WY, Park J, Lee S, Song G, Nam IK, Ahn KS, Choe SK, Um JY. PEX13 is required for thermogenesis of white adipose tissue in cold-exposed mice. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159046. [PMID: 34517131 DOI: 10.1016/j.bbalip.2021.159046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
Non-shivering thermogenesis (NST) is a heat generating process controlled by the mitochondria of brown adipose tissue (BAT). In the recent decade, 'functionally' acting brown adipocytes in white adipose tissue (WAT) has been identified as well: the so-called process of the 'browning' of WAT. While the importance of uncoupling protein 1 (UCP1)-oriented mitochondrial activation has been intensely studied, the role of peroxisomes during the browning of white adipocytes is poorly understood. Here, we assess the change in peroxisomal membrane proteins, or peroxins (PEXs), during cold stimulation and importantly, the role of PEX13 in the cold-induced remodeling of white adipocytes. PEX13, a protein that originally functions as a docking factor and is involved in protein import into peroxisome matrix, was highly increased during cold-induced recruitment of beige adipocytes within the inguinal WAT of C57BL/6 mice. Moreover, beige-induced 3 T3-L1 adipocytes and stromal vascular fraction (SVF) cells by exposure to the peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone showed a significant increase in mitochondrial thermogenic factors along with peroxisomal proteins including PEX13, and these were confirmed in SVF cells with the beta 3 adrenergic receptor (β3AR)-selective agonist CL316,243. To verify the relevance of PEX13, we used the RNA silencing method targeting the Pex13 gene and evaluated the subsequent beige development in SVF cells. Interestingly, siPex13 treatment suppressed expression of thermogenic proteins such as UCP1 and PPARγ coactivator 1 alpha (PGC1α). Overall, our data provide evidence supporting the role of peroxisomal proteins, in particular PEX13, during beige remodeling of white adipocytes.
Collapse
Affiliation(s)
- Woo Yong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Basic Research Laboratory for Comorbidity Regulation and Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sujin Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Gahee Song
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - In-Koo Nam
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea; Basic Research Laboratory for Comorbidity Regulation and Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Jae-Young Um
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Basic Research Laboratory for Comorbidity Regulation and Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Korea..
| |
Collapse
|
5
|
Hypothyroidism Intensifies Both Canonic and the De Novo Pathway of Peroxisomal Biogenesis in Rat Brown Adipocytes in a Time-Dependent Manner. Cells 2021; 10:cells10092248. [PMID: 34571897 PMCID: PMC8472630 DOI: 10.3390/cells10092248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Despite peroxisomes being important partners of mitochondria by carrying out fatty acid oxidation in brown adipocytes, no clear evidence concerning peroxisome origin and way(s) of biogenesis exists. Herein we used methimazole-induced hypothyroidism for 7, 15, and 21 days to study peroxisomal remodeling and origin in rat brown adipocytes. We found that peroxisomes originated via both canonic, and de novo pathways. Each pathway operates in euthyroid control and over the course of hypothyroidism, in a time-dependent manner. Hypothyroidism increased the peroxisomal number by 1.8-, 3.6- and 5.8-fold on days 7, 15, and 21. Peroxisomal presence, their distribution, and their degree of maturation were heterogeneous in brown adipocytes in a Harlequin-like manner, reflecting differences in their origin. The canonic pathway, through numerous dumbbell-like and “pearls on strings” structures, supported by high levels of Pex11β and Drp1, prevailed on day 7. The de novo pathway of peroxisomal biogenesis started on day 15 and became dominant by day 21. The transition of peroxisomal biogenesis from canonic to the de novo pathway was driven by increased levels of Pex19, PMP70, Pex5S, and Pex26 and characterized by numerous tubular structures. Furthermore, specific peroxisomal origin from mitochondria, regardless of thyroid status, indicates their mutual regulation in rat brown adipocytes.
Collapse
|
6
|
Park H, He A, Tan M, Johnson JM, Dean JM, Pietka TA, Chen Y, Zhang X, Hsu FF, Razani B, Funai K, Lodhi IJ. Peroxisome-derived lipids regulate adipose thermogenesis by mediating cold-induced mitochondrial fission. J Clin Invest 2019; 129:694-711. [PMID: 30511960 PMCID: PMC6355224 DOI: 10.1172/jci120606] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 11/20/2018] [Indexed: 12/27/2022] Open
Abstract
Peroxisomes perform essential functions in lipid metabolism, including fatty acid oxidation and plasmalogen synthesis. Here, we describe a role for peroxisomal lipid metabolism in mitochondrial dynamics in brown and beige adipocytes. Adipose tissue peroxisomal biogenesis was induced in response to cold exposure through activation of the thermogenic coregulator PRDM16. Adipose-specific knockout of the peroxisomal biogenesis factor Pex16 (Pex16-AKO) in mice impaired cold tolerance, decreased energy expenditure, and increased diet-induced obesity. Pex16 deficiency blocked cold-induced mitochondrial fission, decreased mitochondrial copy number, and caused mitochondrial dysfunction. Adipose-specific knockout of the peroxisomal β-oxidation enzyme acyl-CoA oxidase 1 (Acox1-AKO) was not sufficient to affect adiposity, thermogenesis, or mitochondrial copy number, but knockdown of the plasmalogen synthetic enzyme glyceronephosphate O-acyltransferase (GNPAT) recapitulated the effects of Pex16 inactivation on mitochondrial morphology and function. Plasmalogens are present in mitochondria and decreased with Pex16 inactivation. Dietary supplementation with plasmalogens increased mitochondrial copy number, improved mitochondrial function, and rescued thermogenesis in Pex16-AKO mice. These findings support a surprising interaction between peroxisomes and mitochondria regulating mitochondrial dynamics and thermogenesis.
Collapse
Affiliation(s)
- Hongsuk Park
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Anyuan He
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Min Tan
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jordan M. Johnson
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - John M. Dean
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | - Yali Chen
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Xiangyu Zhang
- Cardiology Division, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Babak Razani
- Cardiology Division, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Veterans Affairs St. Louis Healthcare System, John Cochran Division, St. Louis, Missouri, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Irfan J. Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Abstract
Peroxisomes are often dismissed as the cellular hoi polloi, relegated to cleaning up reactive oxygen chemical debris discarded by other organelles. However, their functions extend far beyond hydrogen peroxide metabolism. Peroxisomes are intimately associated with lipid droplets and mitochondria, and their ability to carry out fatty acid oxidation and lipid synthesis, especially the production of ether lipids, may be critical for generating cellular signals required for normal physiology. Here, we review the biology of peroxisomes and their potential relevance to human disorders including cancer, obesity-related diabetes, and degenerative neurologic disease.
Collapse
|
8
|
Peroxisome proliferator-activated receptor gamma (PPAR-γ) and neurodegenerative disorders. Mol Neurobiol 2012; 46:114-24. [PMID: 22434581 DOI: 10.1007/s12035-012-8259-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
As the growth of the aging population continues to accelerate globally, increased prevalence of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke, has generated substantial public concern. Unfortunately, despite of discoveries of common factors underlying these diseases, few drugs are available to effectively treat these diseases. Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a ligand-activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. PPAR-γ has been shown to influence the expression or activity of a large number of genes in a variety of signaling networks, including regulation of insulin sensitivity, glucose homeostasis, fatty acid oxidation, immune responses, redox balance, cardiovascular integrity, and cell fates. Recent epidemiological, preclinical animal, and clinical studies also show that PPAR-γ agonists can lower the incidence of a number of neurological disorders, despite of multiple etiological factors involved in the development of these disorders. In this manuscript, we review current knowledge on mechanisms underlying the beneficial effect of PPAR-γ in different neurodegenerative diseases, in particular, AD, PD, and stroke, and attempt to analyze common and overlapping features among these diseases. Our investigation unveiled information suggesting the ability for PPAR-γ to inhibit NF-κB-mediated inflammatory signaling at multiple sites, and conclude that PPAR-γ agonists represent a novel class of drugs for treating neuroinflammatory diseases.
Collapse
|
9
|
Islinger M, Grille S, Fahimi HD, Schrader M. The peroxisome: an update on mysteries. Histochem Cell Biol 2012; 137:547-74. [DOI: 10.1007/s00418-012-0941-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 12/31/2022]
|
10
|
Rosell M, Hondares E, Iwamoto S, Gonzalez FJ, Wabitsch M, Staels B, Olmos Y, Monsalve M, Giralt M, Iglesias R, Villarroya F. Peroxisome proliferator-activated receptors-α and -γ, and cAMP-mediated pathways, control retinol-binding protein-4 gene expression in brown adipose tissue. Endocrinology 2012; 153:1162-73. [PMID: 22253419 DOI: 10.1210/en.2011-1367] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Retinol binding protein-4 (RBP4) is a serum protein involved in the transport of vitamin A. It is known to be produced by the liver and white adipose tissue. RBP4 release by white fat has been proposed to induce insulin resistance. We analyzed the regulation and production of RBP4 in brown adipose tissue. RBP4 gene expression is induced in brown fat from mice exposed to cold or treated with peroxisome proliferator-activated receptor (PPAR) agonists. In brown adipocytes in culture, norepinephrine, cAMP, and activators of PPARγ and PPARα induced RBP4 gene expression and RBP4 protein release. The induction of RBP4 gene expression by norepinephrine required intact PPAR-dependent pathways, as evidenced by impaired response of the RBP4 gene expression to norepinephrine in PPARα-null brown adipocytes or in the presence of inhibitors of PPARγ and PPARα. PPARγ and norepinephrine can also induce the RBP4 gene in white adipocytes, and overexpression of PPARα confers regulation by this PPAR subtype to white adipocytes. The RBP4 gene promoter transcription is activated by cAMP, PPARα, and PPARγ. This is mediated by a PPAR-responsive element capable of binding PPARα and PPARγ and required also for activation by cAMP. The induction of the RBP4 gene expression by norepinephrine in brown adipocytes is protein synthesis dependent and requires PPARγ-coactivator-1-α, which acts as a norepinephine-induced coactivator of PPAR on the RBP4 gene. We conclude that PPARγ- and PPARα-mediated signaling controls RBP4 gene expression and releases in brown adipose tissue, and thermogenic activation induces RBP4 gene expression in brown fat through mechanisms involving PPARγ-coactivator-1-α coactivation of PPAR signaling.
Collapse
Affiliation(s)
- Meritxell Rosell
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Avinguda Diagonal 643, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fission and proliferation of peroxisomes. Biochim Biophys Acta Mol Basis Dis 2011; 1822:1343-57. [PMID: 22240198 DOI: 10.1016/j.bbadis.2011.12.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/12/2023]
Abstract
Peroxisomes are remarkably dynamic, multifunctional organelles, which react to physiological changes in their cellular environment and adopt their morphology, number, enzyme content and metabolic functions accordingly. At the organelle level, the key molecular machinery controlling peroxisomal membrane elongation and remodeling as well as membrane fission is becoming increasingly established and defined. Key players in peroxisome division are conserved in animals, plants and fungi, and key fission components are shared with mitochondria. However, the physiological stimuli and corresponding signal transduction pathways regulating and modulating peroxisome maintenance and proliferation are, despite a few exceptions, largely unexplored. There is emerging evidence that peroxisomal dynamics and proper regulation of peroxisome number and morphology are crucial for the physiology of the cell, as well as for the pathology of the organism. Here, we discuss several key aspects of peroxisomal fission and proliferation and highlight their association with certain diseases. We address signaling and transcriptional events resulting in peroxisome proliferation, and focus on novel findings concerning the key division components and their interplay. Finally, we present an updated model of peroxisomal growth and division. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.
Collapse
|
12
|
Otašević V, Buzadžić B, Korać A, Stančić A, Janković A, Vučetić M, Korać B. Effects of l-arginine and l-NAME supplementation on mRNA, protein expression and activity of catalase and glutathione peroxidase in brown adipose tissue of rats acclimated to different temperatures. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Tabbi-Anneni I, Cooksey R, Gunda V, Liu S, Mueller A, Song G, McClain DA, Wang L. Overexpression of nuclear receptor SHP in adipose tissues affects diet-induced obesity and adaptive thermogenesis. Am J Physiol Endocrinol Metab 2010; 298:E961-70. [PMID: 20124506 PMCID: PMC2867367 DOI: 10.1152/ajpendo.00655.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The orphan nuclear receptor small heterodimer partner (SHP) regulates metabolic pathways involved in hepatic bile acid production and both lipid and glucose homeostasis via the transcriptional repression of other nuclear receptors. In the present study, we generated fat-specific SHP-overexpressed transgenic (TG) mice and determined the potential role of SHP activation, specifically in adipocytes, in the regulation of adipose tissue function in response to stressors. We determined in 2 mo-old SHP TG mice body weight, fat mass index, adipose tissues morphology, thermogenic and metabolic gene expression, metabolic rates at baseline and in response to beta adrenergic receptor agonists, and brown fat ultrastructural changes in response to cold exposure (6-48 h). Mice were fed a 10-wk high-fat diet (HFD; 42% fat). Weight gain, fat mass index, adipose tissues morphology, glucose tolerance, and metabolic rates were determined at the end of the feeding. Young TG mice had increased body weight and adiposity; however, their energy metabolism was increased and brown fat function was enhanced in response to cold exposure through the activation of thermogenic genes and mitochondrial biogenesis. SHP overexpression exacerbated the diet-induced obesity phenotype as evidence by marked weight gain over time, increased adiposity, and severe glucose intolerance compared with wild-type mice fed a HFD. In addition, SHP-TG mice fed HFD had decreased diet-induced adaptive thermogenesis, increased food intake, and decreased physical activity. In conclusion, SHP activation in adipocytes strongly affects weight gain and diet-induced obesity. Developing a synthetic compound to antagonize the effect of SHP may prove to be useful in treating obesity.
Collapse
Affiliation(s)
- Imene Tabbi-Anneni
- Department of Medicine, and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Yang M, Huang Q, Wu J, Yin JY, Sun H, Liu HL, Zhou HH, Liu ZQ. Effects of UCP2 -866 G/A and ADRB3 Trp64Arg on rosiglitazone response in Chinese patients with Type 2 diabetes. Br J Clin Pharmacol 2010; 68:14-22. [PMID: 19659999 DOI: 10.1111/j.1365-2125.2009.03431.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIMS The aim of this study was to explore the impact of UCP2 and ADRB3 genetic polymorphisms on the therapeutic efficacy of rosiglitazone in Chinese Type 2 diabetes (T2DM) patients. METHODS A total of 199 T2DM patients and 155 healthy volunteers were enrolled to identify UCP2 -866 G/A genotypes, and 273 T2DM patients and 166 controls were genotyped for Trp64Arg of ADRB3 by polymerase chain reaction-restriction fragment length polymorphism assay. Nine patients with GG genotype and 27 with GA+AA genotype of UCP2 -866 G/A, 11 with Trp64Trp genotype and 25 with Trp64Arg genotype of ADRB3 received oral rosiglitazone as a single-agent therapy (4 mg day(-1)) for 12 weeks. Serum fasting plasma glucose, postprandial plasma glucose, glycated haemoglobin (HbA(1c)), fasting serum insulin, postprandial serum insulin (PINS), triglycerol (TG), cholesterol, homeostasis model assessment for insulin resistance, leptin and adiponectin in all T2DM patients were determined before and after rosiglitazone treatment. RESULTS There were no differences in allele frequency of either ADRB3 Trp64Arg or UCP2 -866 G/A between T2DM patients and control subjects. The A allele carriers of UCP2 in the T2DM patients had significantly lower PINS (61.5 +/- 34.3 vs. 41.6 +/- 28.7 mU l(-1), P < 0.01) (37.57, 59.16 vs. 34.82, 49.39) and low-density lipoprotein (LDL)-cholesterol compared with GG genotypes (3.4 +/- 1.1 vs. 2.7 +/- 1.1 mmol l(-1), P < 0.05) (2.64, 3.52 vs. 2.66, 3.15). After rosiglitazone treatment for 12 consecutive weeks, we found that A allele carriers of UCP2 in the T2DM patients had smaller attenuated PINS (-3.82 +/- 13.2 vs.-42.1 +/- 30.7 mU l(-1), P < 0.01) (9.45, 51.31 vs. 0.48, 11.88) and greater attenuated HbA(1c) (-1.85 +/- 1.62 vs.-0.61 +/- 0.80, P < 0.05) (0.14, 1.37 vs. 1.10, 2.38) compared with GG genotypes, and ADRB3 Trp64Arg had greater attenuated serum TG (-3.88 +/- 2.77 vs.-0.24 +/- 1.16 mmol l(-1), P < 0.05) (-0.19, 2.74 vs. 1.19, 1.45) and smaller attenuated LDL-cholesterol (1.08 +/- 1.36 vs.-0.36 +/- 0.99, P < 0.01) (-1.26, 0.78 vs.-1.26, 0.79) as well as reduced enhanced adiponectin (1.57 +/- 1.10 vs. 3.15 +/- 2.12 mmol l(-1), P < 0.05) (1.68, 4.08 vs.-9.18, 11.40) compared with ADRB3 Trp64Trp. CONCLUSION UCP2 -866 G/A and ADRB3 Trp64Arg polymorphisms are associated with the therapeutic efficacy of multiple-dose rosiglitazone in Chinese T2DM patients.
Collapse
Affiliation(s)
- Min Yang
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University Xiang-Ya School of Medicine, Changsha, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ehrenborg E, Krook A. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor delta. Pharmacol Rev 2010; 61:373-93. [PMID: 19805479 DOI: 10.1124/pr.109.001560] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Agonists directed against the alpha and gamma isoforms of the peroxisome proliferator-activated receptors (PPARs) have become important for the respective treatment of hypertriglyceridemia and insulin resistance associated with metabolic disease. PPARdelta is the least well characterized of the three PPAR isoforms. Skeletal muscle insulin resistance is a primary risk factor for the development of type 2 diabetes. There is increasing evidence that PPARdelta is an important regulator of skeletal muscle metabolism, in particular, muscle lipid oxidation, highlighting the potential utility of this isoform as a drug target. In addition, PPARdelta seems to be a key regulator of skeletal muscle fiber type and a possible mediator of the adaptations noted in skeletal muscle in response to exercise. In this review we summarize the current status regarding the regulation, and the metabolic effects, of PPARdelta in skeletal muscle.
Collapse
Affiliation(s)
- Ewa Ehrenborg
- Atherosclerosis Research Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
16
|
Komatsu M, Tong Y, Li Y, Nakajima T, Li G, Hu R, Sugiyama E, Kamijo Y, Tanaka N, Hara A, Aoyama T. Multiple roles of PPARalpha in brown adipose tissue under constitutive and cold conditions. Genes Cells 2009; 15:91-100. [PMID: 20002497 DOI: 10.1111/j.1365-2443.2009.01368.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a member of the nuclear receptor family, regulating fatty acid degradation in many organs. Two-dimensional SDS-PAGE of brown adipose tissue (BAT) from PPARalpha-null mice produced a higher-density spot. Proteomic analysis indicated that the protein was pyruvate dehydrogenase beta (PDHbeta). To observe PDHbeta regulation in BAT, the organ was stimulated by long-term cold exposure, and the activities of associated enzymes were investigated. Histological and biochemical analyses of BAT showed a significant decrease in the triglyceride content in wild-type mice and some degree of decrease in PPARalpha-null mice on cold exposure. Analyses of molecules related to glucose metabolism showed that the expression of PDHbeta is under PPARalpha-specific regulation, and that glucose degradation ability may decrease on cold exposure. In contrast, analyses of molecules related to fatty acid metabolism showed that numerous PPARalpha/gamma target molecules are induced on cold exposure, and that fatty acid degradation ability in wild-type mice is markedly enhanced and also increases to same degree in PPARalpha-null mice on cold exposure. Thus, this study proposes novel and multiple roles of PPARalpha in BAT.
Collapse
Affiliation(s)
- Makiko Komatsu
- Department of Metabolic Regulation, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
7-Chloroarctinone-b as a new selective PPARgamma antagonist potently blocks adipocyte differentiation. Acta Pharmacol Sin 2009; 30:1351-8. [PMID: 19684608 DOI: 10.1038/aps.2009.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM Peroxisome proliferator-activated receptor gamma (PPARgamma) is a therapeutic target for obesity, cancer and diabetes mellitus. In order to develop potent lead compounds for obesity treatment, we screened a natural product library for novel PPARgamma antagonists with inhibitory effects on adipocyte differentiation. METHODS Surface plasmon resonance (SPR) technology and cell-based transactivation assay were used to screen for PPARgamma antagonists. To investigate the antagonistic mechanism of the active compound, we measured its effect on PPARgamma/RXRalpha heterodimerization and PPARgamma co-activator recruitment using yeast two-hybrid assay, Gal4/UAS cell-based assay and SPR based assay. The 3T3-L1 cell differentiation assay was used to evaluate the effect of the active compound on adipocyte differentiation. RESULTS A new thiophene-acetylene type of natural product, 7-chloroarctinone-b (CAB), isolated from the roots of Rhaponticum uniflorum, was discovered as a novel PPARgamma antagonist capable of inhibiting rosiglitazone-induced PPARgamma transcriptional activity. SPR analysis suggested that CAB bound tightly to PPARgamma and considerably antagonized the potent PPARgamma agonist rosiglitazone-stimulated PPARgamma-LBD/RXRalpha-LBD binding. Gal4/UAS and yeast two-hybrid assays were used to evaluate the antagonistic activity of CAB on rosiglitazone-induced recruitment of the coactivator for PPARgamma. CAB could efficiently antagonize both hormone and rosiglitazone-induced adipocyte differentiation in cell culture. CONCLUSION CAB shows antagonistic activity to PPARgamma and can block the adipocyte differentiation, indicating it may be of potential use as a lead therapeutic compound for obesity.
Collapse
|
18
|
Xiao XQ, Williams SM, Grayson BE, Glavas MM, Cowley MA, Smith MS, Grove KL. Excess weight gain during the early postnatal period is associated with permanent reprogramming of brown adipose tissue adaptive thermogenesis. Endocrinology 2007; 148:4150-9. [PMID: 17525123 DOI: 10.1210/en.2007-0373] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Excess weight gain during the early postnatal period increases the risk of persistent obesity into adulthood and impacts on the subsequent risk for metabolic and cardiovascular diseases. The current study investigated the long-term effect of early excess weight gain, through reduced nursing litter size, on body weight regulation and its relation to brown adipose tissue (BAT) thermogenesis. Animals raised in a small litter (SL, three pups per litter) were compared with those raised in a normal litter size (NL, eight pups per litter). BAT from young adult NL and SL rats, maintained under either ambient or cold conditions, were used for gene expression, morphological, and functional analysis. Compared with NL, SL rats showed excess weight gain, and adult SL animals had a reduced thermogenic capacity as displayed by lower levels of uncoupling protein 1 (UCP1). When exposed to cold, BAT from SL rats was less active and demonstrated reduced responsiveness to cold. Furthermore, reduction in transcript abundance of several lipid lipases and transcriptional regulators was observed in SL rats either at ambient temperature or under cold conditions. Finally, the expression of sympathetic beta 3-adrenergic receptor and the response to the sympathetic receptor agonist isoproterenol were decreased in SL rats. Overall, these observations provide the first evidence that postnatal excess weight gain results in abnormalities in BAT thermogenesis and sympathetic outflow, which likely increases susceptibility to obesity in adulthood.
Collapse
Affiliation(s)
- Xiao Qiu Xiao
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Dongol B, Shah Y, Kim I, Gonzalez FJ, Hunt MC. The acyl-CoA thioesterase I is regulated by PPARalpha and HNF4alpha via a distal response element in the promoter. J Lipid Res 2007; 48:1781-91. [PMID: 17485727 DOI: 10.1194/jlr.m700119-jlr200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytosolic acyl-coenzyme A thioesterase I (Acot1) is an enzyme that hydrolyzes long-chain acyl-CoAs of C(12)-C(20)-CoA in chain length to the free fatty acid and CoA. Acot1 was shown previously to be strongly upregulated at the mRNA and protein level in rodents by fibrates. In this study, we show that Acot1 mRNA levels were increased by 90-fold in liver by treatment with Wy-14,643 and that Acot1 mRNA was also increased by 15-fold in the liver of hepatocyte nuclear factor 4alpha (HNF4alpha) knockout animals. Our study identified a direct repeat 1 (DR1) located in the Acot1 gene promoter in mouse, which binds the peroxisome proliferator-activated receptor alpha (PPARalpha) and HNF4alpha. Chromatin immunoprecipitation (ChIP) assay showed that the identified DR1 bound PPARalpha/retinoid X receptor alpha (RXRalpha) and HNF4alpha, whereas the binding in ChIP was abrogated in the PPARalpha and HNF4alpha knockout mouse models. Reporter gene assays showed activation of the Acot1 promoter in cells by the PPARalpha agonist Wy-14,643 after cotransfection with PPARalpha/RXRalpha. However, transfection with a plasmid containing HNF4alpha also resulted in an increase in promoter activity. Together, these data show that Acot1 is under regulation by an interplay between HNF4alpha and PPARalpha.
Collapse
Affiliation(s)
- Bikesh Dongol
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital at Huddinge, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
20
|
Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S, Palmer CNA, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2007; 58:726-41. [PMID: 17132851 DOI: 10.1124/pr.58.4.5] [Citation(s) in RCA: 726] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The three peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear hormone receptor superfamily. They share a high degree of structural homology with all members of the superfamily, particularly in the DNA-binding domain and ligand- and cofactor-binding domain. Many cellular and systemic roles have been attributed to these receptors, reaching far beyond the stimulation of peroxisome proliferation in rodents after which they were initially named. PPARs exhibit broad, isotype-specific tissue expression patterns. PPARalpha is expressed at high levels in organs with significant catabolism of fatty acids. PPARbeta/delta has the broadest expression pattern, and the levels of expression in certain tissues depend on the extent of cell proliferation and differentiation. PPARgamma is expressed as two isoforms, of which PPARgamma2 is found at high levels in the adipose tissues, whereas PPARgamma1 has a broader expression pattern. Transcriptional regulation by PPARs requires heterodimerization with the retinoid X receptor (RXR). When activated by a ligand, the dimer modulates transcription via binding to a specific DNA sequence element called a peroxisome proliferator response element (PPRE) in the promoter region of target genes. A wide variety of natural or synthetic compounds was identified as PPAR ligands. Among the synthetic ligands, the lipid-lowering drugs, fibrates, and the insulin sensitizers, thiazolidinediones, are PPARalpha and PPARgamma agonists, respectively, which underscores the important role of PPARs as therapeutic targets. Transcriptional control by PPAR/RXR heterodimers also requires interaction with coregulator complexes. Thus, selective action of PPARs in vivo results from the interplay at a given time point between expression levels of each of the three PPAR and RXR isotypes, affinity for a specific promoter PPRE, and ligand and cofactor availabilities.
Collapse
Affiliation(s)
- Liliane Michalik
- Center for Integrative Genomics, National Research Centre "Frontiers in Genetics," University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Benndorf RA, Rudolph T, Appel D, Schwedhelm E, Maas R, Schulze F, Silberhorn E, Böger RH. Telmisartan improves insulin sensitivity in nondiabetic patients with essential hypertension. Metabolism 2006; 55:1159-64. [PMID: 16919533 DOI: 10.1016/j.metabol.2006.04.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
Hypertension is a cardiovascular risk factor commonly associated with insulin resistance, the metabolic syndrome, and type 2 diabetes mellitus. Recent in vitro data indicate that certain angiotensin receptor antagonists, for example, telmisartan, activate peroxisome proliferator-activated receptor gamma (PPAR-gamma) and increase adiponectin protein content in adipocytes. By this means, they may improve insulin sensitivity in vivo. To investigate the effect of antihypertensive treatment on insulin sensitivity and fasting adiponectin serum levels, 37 nondiabetic patients with essential hypertension were randomized to receive telmisartan, the calcium channel blocker nisoldipine, or their combination for 6 weeks in a prospective, parallel group study. Fasting serum glucose, insulin, and adiponectin were evaluated before, 3 weeks (low dose), and 6 weeks (high dose) after initiation of treatment. Furthermore, the effect of telmisartan on PPAR-gamma receptor activity was investigated in vitro using a PPAR-gamma reporter gene assay. As reported previously, telmisartan significantly enhanced PPAR-gamma receptor activity in vitro. At baseline, a positive correlation between insulin serum levels and body mass index of investigated subjects was observed, whereas body mass index and serum adiponectin levels were negatively associated. High-dose treatment with telmisartan but not with nisoldipine reduced serum insulin levels as well as the homeostasis model assessment of insulin resistance, but did not affect serum adiponectin levels. In conclusion, in our study cohort of nondiabetic patients with essential hypertension, telmisartan improved insulin sensitivity by mechanisms apparently not involving adiponectin induction. Future studies will demonstrate whether these telmisartan-induced effects may contribute to a blood pressure-independent reduction in cardiovascular morbidity.
Collapse
Affiliation(s)
- Ralf A Benndorf
- Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Matsusue K, Miyoshi A, Yamano S, Gonzalez FJ. Ligand-activated PPARbeta efficiently represses the induction of LXR-dependent promoter activity through competition with RXR. Mol Cell Endocrinol 2006; 256:23-33. [PMID: 16806672 PMCID: PMC1544360 DOI: 10.1016/j.mce.2006.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 04/07/2006] [Accepted: 05/16/2006] [Indexed: 12/27/2022]
Abstract
Angiopoietin-like protein 3 (angptl3), a member of the vascular endothelial growth factor family, was shown to play an important role in regulating lipid metabolism. To elucidate the mechanism by which PPARbeta represses angptl3 promoter activity, reporter constructs were prepared and transfection analysis carried out. PPARbeta repressed angptl3-Luc promoter activity and activation of PPARbeta by L-165041, a PPARbeta-specific ligand, increased the extent of repression. The repression by L-165041 was lost in angptl3-Luc plasmids having a deleted or mutated LXRalpha binding site (DR4). PPARbetaL405R, deficient in RXRalpha binding, had no effect on angptl3-Luc promoter activity. PPARbeta did not repress the activity of GAL4-LXRalpha which activates of GAL4DBD TK-Luc independent of RXR. Addition of RXRalpha completely abolished the repression of angptl3-Luc activity by PPARbeta. Mammalian two-hybrid analysis revealed that PPARbeta ligand binding enhanced the dissociation of the LXRalpha-RXRalpha heterodimer. Gel shift assays also indicated that PPARbeta ligand binding increased dissociation of LXRalpha/RXRalpha binding to a DR4 oligonucleotide probe; addition of RXRalpha restored the binding lost by addition of PPARbeta. Collectively, these results suggest that the binding of PPARbeta-specific ligand enhances the affinity between RXRalpha and activated PPARbeta and thus may regulate angptl3 gene expression through a DR4 element by competing with LXRalpha for RXRalpha.
Collapse
Affiliation(s)
- Kimihiko Matsusue
- Laboratory of Metabolism, Building 37, Room 3106, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Aya Miyoshi
- Department of Forensic Medicine, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shigeru Yamano
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Building 37, Room 3106, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
- * Corresponding author. Tel.: +1 301 496 9067; fax: +1 301 496 8419. E-mail address: (F.J. Gonzalez)
| |
Collapse
|
23
|
Hauton D, Richards SB, Egginton S. The role of the liver in lipid metabolism during cold acclimation in non-hibernator rodents. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:372-81. [PMID: 16730468 DOI: 10.1016/j.cbpb.2006.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 11/24/2022]
Abstract
Cold exposure increases the demand for energy substrates. Cold acclimation of rats led to a 3-fold increase in fatty acid (FA) beta-oxidation (P<0.01) for ex vivo livers perfused at 37 degrees C. This increase was preserved following perfusion at 25 degrees C (P<0.001). In vitro measurement of absolute rates of hepatic beta-oxidation revealed no significant difference following cold acclimation, implying changes in fatty acid flux through beta-oxidation rather than increased oxidation capacity. Total FA uptake was increased one-third following perfusion at 25 degrees C (P<0.001) and cold acclimation (P<0.05) and cold acclimation led to diversion of tissue FA from storage to beta-oxidation (P<0.01). In separate experiments, in vivo hepatic lipogenesis rates for saponifiable lipids doubled (P<0.01) and cholesterol synthesis increased one-third (P<0.001). Taken together these data suggest the oxidation and synthesis of lipids occur simultaneously in hepatic tissue possibly to increase prevailing tissue FA concentrations and to generate heat through increased metabolic flux rates.
Collapse
Affiliation(s)
- David Hauton
- Department of Physiology, Division of Medical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | |
Collapse
|
24
|
Coyle AT, Kinsella BT. Synthetic peroxisome proliferator-activated receptor γ agonists rosiglitazone and troglitazone suppress transcription by promoter 3 of the human thromboxane A2 receptor gene in human erythroleukemia cells. Biochem Pharmacol 2006; 71:1308-23. [PMID: 16499875 DOI: 10.1016/j.bcp.2006.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 01/20/2006] [Accepted: 01/20/2006] [Indexed: 10/25/2022]
Abstract
The human thromboxane (TX)A2 receptor (TP) gene encodes two TP isoforms, TPalpha and TPbeta, that are regulated by distinct promoters designated promoter Prm1 and Prm3, respectively. Previous studies established that 15d-Delta12,14-prostaglandin J2 (15d-PGJ2) selectively inhibits Prm3 activity and TPbeta expression through a peroxisome proliferator-activated receptor (PPAR)gamma mechanism without affecting Prm1 activity or TPalpha expression in human megakaryocytic erythroleukemia (HEL) 92.1.7 cells. Herein, we investigated the effect of synthetic thiazolidinedione (TZD) PPARgamma ligands rosiglitazone and troglitazone on TP gene expression in HEL cells. Like 15d-PGJ2, both TZDs suppressed Prm3 activity, TPbeta mRNA expression and TP-mediated calcium mobilization without affecting Prm1 or TPalpha mRNA expression. However, unlike 15d-PGJ2, both TZDs mediated their PPARgamma-dependent effects through trans-repression of an activator protein-1 (AP-1) element, a site previously found to be critical for basal Prm3 activity. These data provide further evidence for the role of PPARgamma in regulating the human TP gene; they highlight further differences in TPalpha and TPbeta expression/regulation and point to essential differences between natural and synthetic PPARgamma agonists in mediating those effects.
Collapse
MESH Headings
- Cell Line
- Cell Line, Tumor
- Chromans/pharmacology
- Genes, Reporter
- Humans
- Leukemia, Erythroblastic, Acute
- Luciferases
- PPAR gamma/agonists
- Promoter Regions, Genetic/genetics
- Prostaglandin D2/analogs & derivatives
- Prostaglandin D2/pharmacology
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Retinoid X Receptor alpha
- Rosiglitazone
- Thiazolidinediones/pharmacology
- Transcription Factor AP-1
- Transcription, Genetic
- Troglitazone
Collapse
Affiliation(s)
- Adrian T Coyle
- School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
25
|
Abstract
Peroxisomes are ubiquitous subcellular organelles, which are highly dynamic and display large plasticity in response to cellular and environmental conditions. Novel proteins and pathways that mediate and control peroxisome formation, growth, and division continue to be discovered, and the cellular machineries that act together to regulate peroxisome number and size are under active investigation. Here, advances in the field of peroxisomal dynamics and proliferation in mammals and yeast are reviewed. The authors address the signals, conditions, and proteins that affect, regulate, and control the number and size of this essential organelle, especially the components involved in the division of peroxisomes. Special emphasis is on the function of dynamin-related proteins (DRPs), on Fis1, a putative adaptor for DRPs, on the role of the Pex11 family of peroxisomal membrane proteins, and the cytoskeleton.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
26
|
Omi T, Brenig B, Spilar Kramer S, Iwamoto S, Stranzinger G, Neuenschwander S. Identification and characterization of novel peroxisome proliferator-activated receptor-gamma (PPAR-gamma) transcriptional variants in pig and human. J Anim Breed Genet 2005; 122 Suppl 1:45-53. [PMID: 16130456 DOI: 10.1111/j.1439-0388.2005.00508.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the steroid/thyroid/retinoid receptor superfamily, and is primarily expressed in fat tissue. To date, two major PPAR-gamma isoforms have been identified in pig, PPAR-gamma1 and PPAR-gamma2. Porcine PPAR-gamma1a consists of two leader exons, designated A1 and A2, followed by six exons containing the open reading frame. Here, we report the isolation and characterization of three novel PPAR-gamma1 transcripts. PPAR-gamma1b is derived from exon A1, with exon A2 spliced out. PPAR-gamma1c and PPAR-gamma1d are derived from the new exon, A', containing exon A2 (gamma1c) or without exon A2 (gamma1d). Based on PCR analysis of PAC clones that included sequences from the 5'-untranslated region of the PPAR-gamma gene, the new A' exon is located between the known exons A1 and A2. We also isolated the human homologue to exon A', as well as the two new PPAR-gamma1c and -gamma1d splice variants, from human adipose tissue. Studies of the expression of porcine PPAR-gamma by real time reverse transcription-polymerase chain reaction analysis show that transcripts derived from exon A1 were not expressed at significantly different levels in visceral fat (lamina subserosa) or subcutaneous fat (back fat, inner and outer layer). In contrast, exon A'-derived transcripts were expressed at progressively higher levels in the inner and outer layers of subcutaneous fat than in visceral fat. The same expression pattern was also observed for PPAR-gamma2. We hypothesize that there are three promoters, which differentially regulate PPAR-gamma1 and PPAR-gamma2 gene expression, depending on the specific localization of the fat tissue.
Collapse
Affiliation(s)
- T Omi
- Swiss Federal Institute of Technology, Institute of Animal Sciences, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Zurich MG, Lengacher S, Braissant O, Monnet-Tschudi F, Pellerin L, Honegger P. Unusual astrocyte reactivity caused by the food mycotoxin ochratoxin A in aggregating rat brain cell cultures. Neuroscience 2005; 134:771-82. [PMID: 15994020 DOI: 10.1016/j.neuroscience.2005.04.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Revised: 02/21/2005] [Accepted: 04/13/2005] [Indexed: 11/26/2022]
Abstract
Ochratoxin A (OTA), a mycotoxin and widespread food contaminant, is known for its patent nephrotoxicity and potential neurotoxicity. Previous observations in vitro showed that in the CNS, glial cells were particularly sensitive to OTA. In the search for the molecular mechanisms underlying OTA neurotoxicity, we investigated the relationship between OTA toxicity and glial reactivity, in serum-free aggregating brain cell cultures. Using quantitative reverse transcriptase-polymerase chain reaction to analyze changes in gene expression, we found that in astrocytes, non cytotoxic concentrations of OTA down-regulated glial fibrillary acidic protein, while it up-regulated vimentin and the peroxisome proliferator-activated receptor-gamma expression. OTA also up-regulated the inducible nitric oxide synthase and the heme oxygenase-1. These OTA-induced alterations in gene expression were more pronounced in cultures at an advanced stage of maturation. The natural peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-delta(12,14) prostaglandin J2, and the cyclic AMP analog, bromo cyclic AMP, significantly attenuated the strong induction of peroxisome proliferator-activated receptor-gamma and inducible nitric oxide synthase, while they partially reversed the inhibitory effect of OTA on glial fibrillary acidic protein. The present results show that OTA affects the cytoskeletal integrity of astrocytes as well as the expression of genes pertaining to the brain inflammatory response system, and suggest that a relationship exists between the inflammatory events and the cytoskeletal changes induced by OTA. Furthermore, these results suggest that, by inducing an atypical glial reactivity, OTA may severely affect the neuroprotective capacity of glial cells.
Collapse
Affiliation(s)
- M-G Zurich
- Department of Physiology, University of Lausanne, Rue du Bugnon 7, CH-1005 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
28
|
Coyle AT, O'Keeffe MB, Kinsella BT. 15-deoxy Delta12,14-prostaglandin J2 suppresses transcription by promoter 3 of the human thromboxane A2 receptor gene through peroxisome proliferator-activated receptor gamma in human erythroleukemia cells. FEBS J 2005; 272:4754-73. [PMID: 16156795 DOI: 10.1111/j.1742-4658.2005.04890.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In humans, thromboxane (TX) A2 signals through two receptor isoforms, thromboxane receptor (TP)alpha and TPbeta, which are transcriptionally regulated by distinct promoters, Prm1 and Prm3, respectively, within the single TP gene. The aim of the current study was to investigate the ability of the endogenous peroxisome proliferator-activated receptor (PPAR)gamma ligand 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) to regulate expression of the human TP gene and to ascertain its potential effects on the individual TPalpha and TPbeta isoforms. 15d-PGJ2 suppressed Prm3 transcriptional activity and TPbeta mRNA expression in the platelet progenitor megakaryocytic human erythroleukemia (HEL) 92.1.7 cell line but had no effect on Prm1 or Prm2 activity or on TPalpha mRNA expression. 15d-PGJ2 also resulted in reductions in the overall level of TP protein expression and TP-mediated intracellular calcium mobilization in HEL cells. 15d-PGJ2 suppression of Prm3 transcriptional activity and TPbeta mRNA expression was found to occur through a novel mechanism involving direct binding of PPARgamma-retinoic acid X receptor (RXR) heterodimers to a PPARgamma response element (PPRE) composed of two imperfect hexameric direct repeat (DR) sequences centred at -159 and -148, respectively, spaced by five nucleotides (DR5). These data provide direct evidence for the role of PPARgamma in the regulation of human TP gene expression within the vasculature and point to further critical differences in the modes of transcriptional regulation of TPalpha and TPbeta in humans. Moreover, these data highlight a further link between enhanced risk of cardiovascular disease in diabetes mellitus associated with increased synthesis and action of thromboxane A2 (TXA2).
Collapse
MESH Headings
- Binding Sites
- Cell Line, Tumor
- Gene Expression Regulation
- Humans
- Leukemia, Erythroblastic, Acute/pathology
- Ligands
- PPAR gamma/metabolism
- PPAR gamma/physiology
- Promoter Regions, Genetic
- Prostaglandin D2/analogs & derivatives
- Prostaglandin D2/physiology
- Protein Isoforms
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/analysis
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Response Elements
- Transcription, Genetic
Collapse
Affiliation(s)
- Adrian T Coyle
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | | | | |
Collapse
|
29
|
Kohno S, Endo H, Hashimoto A, Hayashi I, Murakami Y, Kitasato H, Kojima F, Kawai S, Kondo H. Inhibition of skin sclerosis by 15deoxy delta12,14-prostaglandin J2 and retrovirally transfected prostaglandin D synthase in a mouse model of bleomycin-induced scleroderma. Biomed Pharmacother 2005; 60:18-25. [PMID: 16337105 DOI: 10.1016/j.biopha.2005.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 04/25/2005] [Indexed: 01/24/2023] Open
Abstract
Hematopoietic prostaglandin D synthase (PGDS) is a key enzyme involved in production of the PGD and J series, which have various role in inflammation and immunity. We evaluated the effect of treatment with 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) or the injection of prostaglandin D(2) synthase (PGDS) cDNA expressing-retrovirally transfected fibroblasts on bleomycin (BLM)-induced scleroderma-like skin sclerosis. Daily injection of BLM (30 microg) for 4 weeks induced histological evidence of dermal sclerosis in C3H mice. We examined the effect of injection of 15d-PGJ(2) (30 ng twice a day) or PGDS expressing-retrovirally transfected fibroblast on BLM-induced dermal sclerosis. Administration of 15d-PGJ(2) (a nonenzymatic metabolite of PGD(2)) injection of PGDS cDNA-expressing fibroblasts significantly reduced dermal sclerosis, the hydroxyproline content, and dermal thickness. Moreover, 15-d PGJ2 down-regulation of the expression of transforming growth factor beta(1) and connective tissue growth factor which had been induced by BLM. Mast cells were also increased in the skin by BLM injection and there was prominent degranulation of these mast cells along with elevated plasma histamine levels. 15-d PGJ(2) and PGDS-expressing cells also suppressed degranulation of cultured mast cells and histamine release by these cells. These results show that 15-d PGJ(2) and PGDS-expressing cells can prevent experimental skin sclerosis induced by BLM and raise the possibility of therapeutic approaches targeting of PPARgamma for the skin lesion of scleroderma.
Collapse
Affiliation(s)
- Shizuka Kohno
- Division of Rheumatology, Department of Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yamasaki M, Hasegawa S, Suzuki H, Hidai K, Saitoh Y, Fukui T. Acetoacetyl-CoA synthetase gene is abundant in rat adipose, and related with fatty acid synthesis in mature adipocytes. Biochem Biophys Res Commun 2005; 335:215-9. [PMID: 16055091 DOI: 10.1016/j.bbrc.2005.07.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 07/16/2005] [Indexed: 11/18/2022]
Abstract
Acetoacetyl-CoA synthetase (AACS, acetoacetate-CoA ligase, EC 6.2.1.16) is a novel cytosolic ketone body (acetoacetate)-specific ligase, the physiological role of which remains to be elucidated. We examined the expression profiles of AACS mRNA in adult rat tissues, finding that it was particularly abundant in male subcutaneous white adipose tissue after weaning. In white adipose tissue, AACS mRNA was preferentially detected in mature adipocytes but not in preadipocytes. The AACS mRNA expression in primary preadipocytes increased during the adipocyte differentiation. These expression profiles were similar to that of acetyl-CoA carboxylase-1, but not like to that of 3-hydroxy-3-methylglutaryl-CoA reductase. These results suggest that AACS in adipose tissue plays an important role in utilizing ketone body for the fatty acid-synthesis during adipose tissue development.
Collapse
Affiliation(s)
- Masahiro Yamasaki
- Department of Health Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Kabine M, El Kebbaj Z, Oaxaca-Castillo D, Clémencet MC, El Kebbaj MS, Latruffe N, Cherkaoui-Malki M. Peroxisome proliferator-activated receptors as regulators of lipid metabolism; tissue differential expression in adipose tissues during cold acclimatization and hibernation of jerboa (Jaculus orientalis). Biochimie 2005; 86:763-70. [PMID: 15589684 DOI: 10.1016/j.biochi.2004.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 10/08/2004] [Indexed: 12/22/2022]
Abstract
Brown (BAT) and white (WAT) adipose tissues play a key role in the body energy balance orchestrated by the central nervous system. Hibernators have developed a seasonal obesity to respond to inhospitable environment. Jerboa is one of the deep hibernator originated from sub-desert highlands. Thus, this animal represents an excellent model to study cold adaptation mechanism. We report that the adipogenic factor PPARgamma exhibits a differential expression between BAT and WAT at mRNA level. A specific induction was only seen in WAT of pre-hibernating jerboa. Interestingly, PPAR beta/delta is specifically induced in BAT and brain of pre-hibernating jerboa, highlighting for the first time the possible key role of this ubiquitous isoform in the cold adaptation of this true hibernator. Inductions of PPARgamma(2) in WAT and PPAR beta/delta in BAT are blunted by a hypolipemic drug, the ciprofibrate. These changes may be correlated with hibernation arrest and death of treated jerboa. Mitochondrial acyl-CoA dehydrogenase and peroxisomal acyl-CoA oxidase activities in brown and white adipose tissues are decreased up to 85% during cold acclimatization (without food privation). These enzyme activities are subject to a strong induction in BAT and in WAT (3.4-7.5 fold) during the hibernation period. The BAT thermogenesis marker is also largely induced (approximately 4 fold of UCP1 mRNA level) during pre-hibernation period. Unexpectedly, treatment with ciprofibrate deeply affects lipolysis in BAT by increasing acyl-CoA dehydrogenase activity (3.4 fold) and acyl-CoA oxidase at both activity and mRNA levels (2.8 and 3.8 fold, respectively) and enhances strongly UCP1 mRNA level (9.5 fold) during pre-hibernation.
Collapse
Affiliation(s)
- Mostafa Kabine
- Laboratoire de Biochimie, LBBCM, Faculté des Sciences, Km 8 Aïn Chock, Université Hassan II, Casablanca, Morocco
| | | | | | | | | | | | | |
Collapse
|
32
|
Nedergaard J, Petrovic N, Lindgren EM, Jacobsson A, Cannon B. PPARgamma in the control of brown adipocyte differentiation. Biochim Biophys Acta Mol Basis Dis 2005; 1740:293-304. [PMID: 15949696 DOI: 10.1016/j.bbadis.2005.02.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 01/22/2005] [Accepted: 02/04/2005] [Indexed: 01/08/2023]
Abstract
The effects of fatty acids and retinoic acid (carotene) on brown adipose tissue differentiation are mediated by activation of the transcription factors PPARgamma and PPARalpha in combination with RXR. There is good support for the idea that activated PPARgamma promotes adipogenesis also in brown adipose tissue. However, the issue is more complex concerning the full differentiation to the brown adipocyte phenotype, particularly the expression of the brown-fat-specific marker UCP1. The effect of norepinephrine on PPARgamma gene expression, at least in-vitro, is negative, PPARgamma-ablated brown adipose tissue can express UCP1, and PGC-1alpha coactivates other transcription factors (including PPARalpha); thus, the significance of PPARgamma for the physiological control of UCP1 gene expression is not settled. However, importantly, the effects of PPAR agonists demonstrate the existence of a pathway for brown adipose tissue recruitment that is not dependent on chronic adrenergic stimulation and may be active in recruitment conditions such as prenatal and prehibernation recruitment. The ability of chronic PPARgamma agonist treatment to promote the occurrence of brown-fat features in white adipose tissue-like depots implies a role in anti-obesity treatment, but this will only be effective if the extra thermogenic capacity is activated by adrenergic stimulation.
Collapse
Affiliation(s)
- Jan Nedergaard
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
33
|
Ibabe A, Bilbao E, Cajaraville MP. Expression of peroxisome proliferator-activated receptors in zebrafish (Danio rerio) depending on gender and developmental stage. Histochem Cell Biol 2004; 123:75-87. [PMID: 15616845 DOI: 10.1007/s00418-004-0737-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2004] [Indexed: 01/09/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors involved in embryo development and differentiation of several tissues in mammals. The aim of the present study was to investigate the possible differential expression of the three PPAR subtypes (PPARalpha, PPARbeta, and PPARgamma) in relation to gender and developmental stage in zebrafish. For this purpose PPAR expression was assessed by immunohistochemistry in 7-day-old larvae, 1-month-old juveniles, and 1-year-old adults. Additionally, the activity of peroxisomal acyl-CoA oxidase (AOX), a gene regulated by PPARs, and the volume density of catalase-immunolabeled liver peroxisomes (V(VP)) was examined. No significant gender-related differences were detected in the tissue distribution of the three PPAR subtypes or in peroxisomal AOX activity and V(VP). The percentage of PPARbeta-positive hepatocytes was significantly higher in females than in males suggesting a specific regulatory role of this subtype in female zebrafish. The three PPAR subtypes were already expressed at the larval stage, with a similar tissue distribution pattern to that found in adults. For all stages, PPARalpha and PPARgamma were expressed at higher levels than PPARbeta, and PPARbeta immunolabeling was stronger in juveniles than in larval or adult stages. The percentages of hepatocyte nuclei immunolabeled for PPARs was higher in early developmental stages than in adults, similarly to AOX activity and V(VP). In conclusion, our results indicate that PPAR expression, the activity of its target gene AOX, and peroxisomal biogenesis are developmentally modulated in zebrafish.
Collapse
Affiliation(s)
- Arantza Ibabe
- Biologia Zelularra eta Histologia Laborategia, Zoologia eta Animali Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Universidad del País Vasco, 644 PK, 48080 Bilbo, Spain.
| | | | | |
Collapse
|
34
|
Lindgren E, Nielsen R, Petrovic N, Jacobsson A, Mandrup S, Cannon B, Nedergaard J. Noradrenaline represses PPAR (peroxisome-proliferator-activated receptor) gamma2 gene expression in brown adipocytes: intracellular signalling and effects on PPARgamma2 and PPARgamma1 protein levels. Biochem J 2004; 382:597-606. [PMID: 15193150 PMCID: PMC1133817 DOI: 10.1042/bj20031622] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 06/04/2004] [Accepted: 06/14/2004] [Indexed: 11/17/2022]
Abstract
PPAR (peroxisome-proliferator-activated receptor) gamma is expressed in brown and white adipose tissues and is involved in the control of differentiation and proliferation. Noradrenaline stimulates brown pre-adipocyte proliferation and brown adipocyte differentiation. The aim of the present study was thus to investigate the influence of noradrenaline on PPARgamma gene expression in brown adipocytes. In primary cultures of brown adipocytes, PPARgamma2 mRNA levels were 20-fold higher than PPARgamma1 mRNA levels. PPARgamma expression occurred during both the proliferation and the differentiation phases, with the highest mRNA levels being found at the time of transition between the phases. PPARgamma2 mRNA levels were downregulated by noradrenaline treatment (EC50, 0.1 microM) in both proliferative and differentiating cells, with a lagtime of 1 h and lasting up to 4 h, after which expression gradually recovered. The down-regulation was beta-adrenoceptor-induced and intracellularly mediated via cAMP and protein kinase A; the signalling pathway did not involve phosphoinositide 3-kinase, Src, p38 mitogen-activated protein kinase or extracellular-signal-regulated kinases 1 and 2. Treatment of the cells with the protein synthesis inhibitor cycloheximide not only abolished the noradrenaline-induced down-regulation of PPARgamma2 mRNA, but also in itself induced PPARgamma2 hyperexpression. The down-regulation was probably the result of suppression of transcription. The down-regulation of PPARgamma2 mRNA resulted in similar down-regulation of PPARgamma2 and phosphoPPARgamma2 protein levels. Remarkably, the level of PPARgamma1 protein was similar to that of PPARgamma2 (despite almost no PPARgamma1 mRNA), and the down-regulation by noradrenaline demonstrated similar kinetics to that of PPARgamma2; thus PPARgamma1 was apparently translated from the PPARgamma2 template. It is suggested that beta-adrenergic stimulation via cAMP and protein kinase A represses PPARgamma gene expression, leading to reduction of PPARgamma2 mRNA levels, which is then reflected in down-regulated levels of PPARgamma2, phosphoPPARgamma2 and PPARgamma1.
Collapse
Key Words
- brown adipocyte
- camp
- cycloheximide
- noradrenaline
- peroxisome-proliferator-activated receptor γ2 (pparγ2)
- protein kinase a
- creb, camp-response-element-binding protein
- dmem, dulbecco's modified eagle's medium
- erk, extracellular-signal-regulated kinase
- mapk, mitogen-activated protein kinase
- mek, mapk/erk kinase
- pi3k, phosphoinositide 3-kinase
- pka, protein kinase a
- ppar, peroxisome-proliferator-activated receptor
- ppre, ppar-response element
- tfiib, transcription factor iib
- ucp1, uncoupling protein 1
Collapse
Affiliation(s)
- Eva M. Lindgren
- *The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ronni Nielsen
- †Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Natasa Petrovic
- *The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Anders Jacobsson
- *The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Susanne Mandrup
- †Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Barbara Cannon
- *The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jan Nedergaard
- *The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
35
|
Latruffe N, Vamecq J, Cherkaoui Malki M. Genetic-dependency of peroxisomal cell functions - emerging aspects. J Cell Mol Med 2004; 7:238-48. [PMID: 14594548 PMCID: PMC6741413 DOI: 10.1111/j.1582-4934.2003.tb00224.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This paper reviews aspects concerning the genetic regulation of the expression of the well studied peroxisomal genes including those of fatty acid beta-oxidation enzymes; acyl-CoA oxidase, multifunctional enzyme and thiolase from different tissues and species. An important statement is PPARalpha, which is now long known to be in rodents the key nuclear receptor orchestrating liver peroxisome proliferation and enhanced peroxisomal beta-oxidation, does not appear to control so strongly in man the expression of genes involved in peroxisomal fatty acid beta-oxidation related enzymes. In this respect, the present review strengthens among others the emerging concept that, in the humans, the main genes whose expression is up-regulated by PPARalpha are mitochondrial and less peroxisomal genes. A special emphasis is also made on the animal cold adaptation and on need for sustained study of peroxisomal enzymes and genes; challenging that some essential roles of peroxisomes in cell function and regulation still remain to be discovered.
Collapse
Affiliation(s)
- N Latruffe
- Laboratory of Cell Molecular Biology, Faculty of Life Sciences, University of Burgundy, Dijon, France.
| | | | | |
Collapse
|
36
|
Rim JS, Xue B, Gawronska-Kozak B, Kozak LP. Sequestration of thermogenic transcription factors in the cytoplasm during development of brown adipose tissue. J Biol Chem 2004; 279:25916-26. [PMID: 15073176 DOI: 10.1074/jbc.m402102200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors that regulate gene expression during adipogenesis also control the expression of genes of thermogenesis in brown adipose tissue, in particular, the mitochondrial uncoupling protein gene (Ucp1). There is evidence that a plasticity exists among adipocytes in which activation of the Ucp1 gene together with mitochondrial biogenesis can increase the brown adipocyte character of white fat. To understand this process, we have characterized the changes in transcription that occur in interscapular brown adipocytes during development. We have found dramatic reductions in both DNA-binding activity to probes and immunoreactive protein for peroxisome proliferator-activated receptor, retinoid X receptor, CCAAT/enhancer binding protein, and cAMP-response element-binding protein regulatory motifs in nuclear extracts when mice reach adulthood. Exposure of adult mice to the cold, which reactivates Ucp1 expression, leads to a re-accumulation of factors in the nucleus. We propose that transcription factors are sequestered in the cytoplasm as mice age under conditions of reduced thermogenesis. Changes in isoform sub-types for peroxisome proliferator-activated receptor-gamma and cAMP-response element-binding proteins indicate an additional level of control on gene expression during thermogenesis. The increased movement of the RIIbeta protein kinase A regulatory subunit into the nucleus with age suggests a mechanism for regulating the phosphorylation of transcription factors in the nucleus in response to the thermogenic requirements of the animal. Nuclear factor-kappaB has been used as a model to demonstrate that the nuclear localization of transcription factors in brown fat are reduced during post-natal development. Furthermore, it was found by immunofluorescence that adrenergic stimulation of primary adipocyte cultures causes an increase of both the protein kinase A catalytic alpha-subunit and nuclear factor-kappaB into the nucleus.
Collapse
Affiliation(s)
- Jong S Rim
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | | | | | | |
Collapse
|
37
|
Abstract
The function of brown adipose tissue is to transfer energy from food into heat; physiologically, both the heat produced and the resulting decrease in metabolic efficiency can be of significance. Both the acute activity of the tissue, i.e., the heat production, and the recruitment process in the tissue (that results in a higher thermogenic capacity) are under the control of norepinephrine released from sympathetic nerves. In thermoregulatory thermogenesis, brown adipose tissue is essential for classical nonshivering thermogenesis (this phenomenon does not exist in the absence of functional brown adipose tissue), as well as for the cold acclimation-recruited norepinephrine-induced thermogenesis. Heat production from brown adipose tissue is activated whenever the organism is in need of extra heat, e.g., postnatally, during entry into a febrile state, and during arousal from hibernation, and the rate of thermogenesis is centrally controlled via a pathway initiated in the hypothalamus. Feeding as such also results in activation of brown adipose tissue; a series of diets, apparently all characterized by being low in protein, result in a leptin-dependent recruitment of the tissue; this metaboloregulatory thermogenesis is also under hypothalamic control. When the tissue is active, high amounts of lipids and glucose are combusted in the tissue. The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Collapse
Affiliation(s)
- Barbara Cannon
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
38
|
Chen YE, Fu M, Zhang J, Zhu X, Lin Y, Akinbami MA, Song Q. Peroxisome proliferator-activated receptors and the cardiovascular system. VITAMINS AND HORMONES 2003; 66:157-88. [PMID: 12852255 DOI: 10.1016/s0083-6729(03)01005-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin resistance syndrome (also called syndrome X) includes obesity, diabetes, hypertension, and dyslipidemia and is a complex phenotype of metabolic abnormalities. The disorder poses a major public health problem by predisposing individuals to coronary heart disease and stroke, the leading causes of mortality in Western countries. Given that hypertension, diabetes, dyslipidemia, and obesity exhibit a substantial heritable component, it is postulated that certain genes may predispose some individuals to this cluster of cardiovascular risk factors. Emerging data suggest that peroxisome proliferator-activated receptors (PPARs), including alpha, gamma, and delta, are important determinants that may provide a functional link between obesity, hypertension, and diabetes. It has been well documented that hypolipidemic fibrates and antidiabetic thiazolidinediones are synthetic ligands for PPAR alpha and PPAR gamma, respectively. In addition, PPAR natural ligands, such as leukotriene B4 for PPAR alpha, 15-deoxy-delta 12,14-prostaglandin J2 for PPAR gamma, and prostacyclin for PPAR delta, are known to be eicosanoids and fatty acids. Studies have documented that PPARs are present in all critical vascular cells: endothelial cells, vascular smooth muscle cells, and monocyte-macrophages. These observations suggest that PPARs not only control lipid metabolism but also regulate vascular diseases such as atherosclerosis and hypertension. In this review, we present structure and tissue distribution of PPAR nuclear receptors, discuss the mechanisms of action and regulation, and summarize the rapid progress made in this area of study and its impact on the cardiovascular system.
Collapse
Affiliation(s)
- Yuqing E Chen
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Kabine M, Clémencet MC, Bride J, El Kebbaj MS, Latruffe N, Cherkaoui-Malki M. Changes of peroxisomal fatty acid metabolism during cold acclimatization in hibernating jerboa (Jaculus orientalis). Biochimie 2003; 85:707-14. [PMID: 14505827 DOI: 10.1016/s0300-9084(03)00117-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Jerboa (Jaculus orientalis) is a deep hibernator originating from sub-desert highlands and represents an excellent model to help to understand the incidence of seasonal variations of food intake and of body as well as environmental temperatures on lipid metabolism. In jerboa, hibernation processes are characterized by changes in the size of mitochondria, the number of peroxisomes in liver and in the expression of enzymes linked to fatty acid metabolism. In liver and kidney, cold acclimatization shows an opposite effect on the activities of the mitochondrial acyl-CoA dehydrogenase (-50%) and the peroxisomal acyl-CoA oxidase (AOX) (+50%), while in brown and white adipose tissues, both activities are decreased down to 85%. These enzymes activities are subject to a strong induction in brown and in white adipose tissue (3.4- to 7.5-fold, respectively) during the hibernation period which is characterized by a low body temperature (around 10 degrees C) and by starvation. Expression level of AOX mRNA and protein are increased during both pre-hibernation and hibernation periods. Unexpectedly, treatment with ciprofibrate, a hypolipemic agent, deeply affects lipolysis in brown adipose tissue by increasing acyl-CoA dehydrogenase activity (3.4-fold), both AOX activity and mRNA levels (2.8- and 3.8-fold, respectively) during pre-hibernation. Therefore, during pre-hibernation acclimatization, there is a negative regulation of fatty acid degradation allowing to accumulate a lipid stock which is later degraded during the hibernation period (starvation) due to a positive regulation of enzymes providing the required energy for animal survival.
Collapse
Affiliation(s)
- Mostafa Kabine
- BMC (GDR-CNRS n degrees 2583), Faculté des Sciences Gabriel, LBMC - Université de Bourgogne, 6, boulevard Gabriel, 21000, Dijon, France
| | | | | | | | | | | |
Collapse
|
40
|
Peralta JG, Finocchietto PV, Converso D, Schöpfer F, Carreras MC, Poderoso JJ. Modulation of mitochondrial nitric oxide synthase and energy expenditure in rats during cold acclimation. Am J Physiol Heart Circ Physiol 2003; 284:H2375-83. [PMID: 12609820 DOI: 10.1152/ajpheart.00785.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To preserve thermoneutrality, cold exposure is followed by changes in energy expenditure and basal metabolic rate (BMR). Because nitric oxide (NO) modulates mitochondrial O(2) uptake and energy levels, we analyzed cold effects (30 days at 4 degrees C) on rat liver and skeletal muscle mitochondrial NO synthases (mtNOS) and their putative impact on BMR. Cold exposure delimited two periods: A (days 1-10), with high systemic O(2) uptake and weight loss, and B (days 10-30), with lower O(2) uptake and fat deposition. mtNOS activity and expression decreased in period A and then increased in period B by 60-100% in liver and skeletal muscle (P < 0.05). Conversely, mitochondrial O(2) uptake remained initially high in the presence of l-arginine and later fell by 30-50% (P < 0.05). On this basis, the estimated fractional contribution of liver plus muscle to total BMR varied from 40% in period A to 25% in period B. The transitional modulation of mtNOS in rat cold acclimation could participate in adaptive responses that favor calorigenesis or conservative energy-saving mechanisms.
Collapse
Affiliation(s)
- Jorge Guillermo Peralta
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
41
|
Bengtsson SHM, Madeyski-Bengtson K, Nilsson J, Bjursell G. Transcriptional regulation of the human carboxyl ester lipase gene in THP-1 monocytes: an E-box required for activation binds upstream stimulatory factors 1 and 2. Biochem J 2002; 365:481-8. [PMID: 11945176 PMCID: PMC1222691 DOI: 10.1042/bj20020223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2002] [Revised: 04/02/2002] [Accepted: 04/11/2002] [Indexed: 11/17/2022]
Abstract
The bile salt-stimulated carboxyl ester lipase (CEL) is important for the digestion and absorption of dietary lipids, and is expressed at high levels by the exocrine pancreas and the lactating mammary gland. However, the presence of CEL in human plasma suggests that the role of CEL in lipid metabolism may stretch beyond its function in the intestinal lumen, and possibly include interactions with cholesterol and oxidized lipoproteins to modulate the progression of atherosclerosis. We have used the CEL-expressing human monocytic cell line THP-1 to investigate the transcriptional regulation of the human CEL in monocytes. Analyses of the promoter region revealed that an E-box located at -47/-52 is necessary for CEL expression. Point mutations in the E-box almost completely abolish the transcriptional activity. Electrophoretic mobility-shift assay analyses reveal that the E-box binds the upstream stimulatory factors 1 and 2, and the binding of an upstream stimulatory factor-containing complex in THP-1 cells also requires the presence of a putative nuclear receptor-binding site at -60/-66. Furthermore, we demonstrate that the E-box is also necessary for CEL expression in the pancreas and the mammary gland, although there are tissue-specific requirements for additional activating elements.
Collapse
Affiliation(s)
- Sara H M Bengtsson
- Department of CMB/Molecular Biology, Box 462, S-405 30 Göteborg, Sweden.
| | | | | | | |
Collapse
|
42
|
Barbier O, Torra IP, Duguay Y, Blanquart C, Fruchart JC, Glineur C, Staels B. Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 2002; 22:717-26. [PMID: 12006382 DOI: 10.1161/01.atv.0000015598.86369.04] [Citation(s) in RCA: 295] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors activated by fatty acids and derivatives. Although PPARalpha mediates the hypolipidemic action of fibrates, PPARgamma is the receptor for the antidiabetic glitazones. PPARalpha is highly expressed in tissues such as liver, muscle, kidney, and heart, where it stimulates the beta-oxidative degradation of fatty acids. PPARgamma is predominantly expressed in adipose tissues, where it promotes adipocyte differentiation and lipid storage. PPARbeta/delta is expressed in a wide range of tissues, and recent findings indicate a role for this receptor in the control of adipogenesis. Pharmacological and gene-targeting studies have demonstrated a physiological role for PPARs in lipid and lipoprotein metabolism. PPARalpha controls plasma lipid transport by acting on triglyceride and fatty acid metabolism and by modulating bile acid synthesis and catabolism in the liver. All 3 PPARs regulate macrophage cholesterol homeostasis. By enhancing cholesterol efflux, they stimulate the critical steps of the reverse cholesterol transport pathway. As such, PPARs control plasma levels of cholesterol and triglycerides, which constitute major risk factors for coronary heart disease. Furthermore, PPARalpha and PPARgamma regulate the expression of key proteins involved in all stages of atherogenesis, such as monocyte and lymphocyte recruitment to the arterial wall, foam cell formation, vascular inflammation, and thrombosis. Thus, by regulating gene transcription, PPARs modulate the onset and evolution of metabolic disorders predisposing to atherosclerosis and exert direct antiatherogenic actions at the level of the vascular wall.
Collapse
Affiliation(s)
- O Barbier
- UR545 INSERM, Département d'Athérosclérose, Institut Pasteur de Lille, and Faculté de Pharmacie, Université de Lille II, Lille, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Yu XX, Lewin DA, Forrest W, Adams SH. Cold elicits the simultaneous induction of fatty acid synthesis and beta-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo. FASEB J 2002; 16:155-68. [PMID: 11818363 DOI: 10.1096/fj.01-0568com] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A survey of genes differentially expressed in the brown adipose tissue (BAT) of mice exposed to a range of environmental temperatures was carried out to identify novel genes and pathways associated with the transition of this tissue toward an amplified thermogenic state. The current report focuses on an analysis of the expression patterns of 50 metabolic genes in BAT under control conditions (22 degrees C), cold exposure (4 degrees C, 1 to 48 h), warm acclimation (33 degrees C, 3 wk), or food restriction/meal feeding (animals fed the same amount as warm mice). In general, expression of genes encoding proteins involving glucose uptake and catabolism was significantly elevated in the BAT of cold-exposed mice. The levels of mRNAs encoding proteins critical to de novo lipogenesis were also increased. Gene expression for enzymes associated with procurement and combustion of long chain fatty acids (LCFAs) was increased in the cold. Thus, a model was proposed in which coordinated activation of glucose uptake, fatty acid synthesis, and fatty acid combustion occurs as part of the adaptive thermogenic processes in BAT. Confirmation emerged from in vivo assessments of cold-induced changes in BAT 2-deoxyglucose uptake (increased 2.7-fold), BAT lipogenesis (2.8-fold higher), and incorporation of LCFA carboxyl-carbon into BAT water-soluble metabolites (elevated approximately twofold). It is proposed that temperature-sensitive regulation of distinct intracellular malonyl-CoA pool sizes plays an important role in driving this unique metabolic profile via maintenance of the lipogenic pool but diminution of the carnitine palmitoyltransferase 1 inhibitory pool under cold conditions.
Collapse
Affiliation(s)
- Xing Xian Yu
- Department of Endocrinology, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | |
Collapse
|
44
|
Panadero M, Vidal H, Herrera E, Bocos C. Nutritionally induced changes in the peroxisome proliferator-activated receptor-alpha gene expression in liver of suckling rats are dependent on insulinaemia. Arch Biochem Biophys 2001; 394:182-8. [PMID: 11594732 DOI: 10.1006/abbi.2001.2508] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It was previously found that the expression of peroxisome proliferator-activated receptor-alpha (PPARalpha) was markedly augmented in the liver of suckling rats, in comparison to the fetuses and most notably to adult rats and it paralleled similar changes in hepatic lipid concentration. To determine whether these changes could be related to the high lipid content of the maternal milk and/or to hormonal status, the role of changes in nutrient availability and in plasma insulin concentration on liver expression during the perinatal stage in vivo in the rat was studied. When suckling rats were weaned on day 17, instead of on day 20, the level of hepatic PPARalpha mRNA decreased earlier than in rats weaned later. When 10-day-old rats were force-fed with either glucose or Intralipid or a combination of both diets, it was found that, at similar low levels of plasma insulin, a high level of FFA stimulated PPARalpha expression, whereas, at similar high plasma FFA concentrations, an elevated insulin level attenuated the increase in PPARalpha expression. It is proposed that both the high lipid intake and decreased plasma insulin level are responsible for the high PPARalpha expression detected in rat neonates.
Collapse
MESH Headings
- Acyl-CoA Oxidase
- Administration, Oral
- Aging/metabolism
- Animal Nutritional Physiological Phenomena
- Animals
- Animals, Suckling
- Diet
- Fat Emulsions, Intravenous/administration & dosage
- Fat Emulsions, Intravenous/metabolism
- Fatty Acids, Nonesterified/blood
- Female
- Gene Expression Regulation
- Glucose/administration & dosage
- Glucose/metabolism
- Insulin/blood
- Lipid Metabolism
- Lipids/analysis
- Liver/chemistry
- Liver/metabolism
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Weaning
Collapse
Affiliation(s)
- M Panadero
- Facultad de Ciencias Experimentales y Técnicas, Universidad San Pablo-CEU, Madrid, Spain
| | | | | | | |
Collapse
|
45
|
Gómez-Ambrosi J, Frühbeck G, Martínez JA. Rapid in vivo PGC-1 mRNA upregulation in brown adipose tissue of Wistar rats by a beta(3)-adrenergic agonist and lack of effect of leptin. Mol Cell Endocrinol 2001; 176:85-90. [PMID: 11369446 DOI: 10.1016/s0303-7207(01)00451-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) is highly expressed in brown adipose tissue (BAT) and plays an important role in adaptive thermogenesis. The aim of this study was to assess the acute effect of a beta(3)-adrenergic agonist (Trecadrine) and leptin on the expression of PGC-1 and PPARgamma2 mRNA in BAT. Trecadrine produced a marked increase (4.5-fold) in PGC-1 mRNA compared to controls (P<0.001) without changes in PPARgamma2 mRNA, whereas leptin administration did not alter either PGC-1 or PPARgamma2 expression. These results show that selective stimulation of the beta(3)-adrenoceptor rapidly upregulates the expression of PGC-1 in brown adipocytes without a concomitant increase in PPARgamma2. Moreover, our results show that PGC-1 and PPARgamma2 expression in BAT seems not to be acutely regulated by leptin.
Collapse
Affiliation(s)
- J Gómez-Ambrosi
- Department of Physiology and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | | | | |
Collapse
|
46
|
Hsueh WC, Cole SA, Shuldiner AR, Beamer BA, Blangero J, Hixson JE, MacCluer JW, Mitchell BD. Interactions between variants in the beta3-adrenergic receptor and peroxisome proliferator-activated receptor-gamma2 genes and obesity. Diabetes Care 2001; 24:672-7. [PMID: 11315829 DOI: 10.2337/diacare.24.4.672] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Previous studies have reported modest associations between measures of obesity and the Trp64-Arg variant of the beta3-adrenergic receptor (ADRbeta3) and the Pro12Ala variant of the peronisome proliferator-activated receptor (PPAR)-gamma2. We hypothesized that these single gene variants may mark mutations that act through convergent pathways to produce synergistic effects on obesity. RESEARCH DESIGN AND METHODS The sample included 453 subjects from 10 large Mexican-American families participating in the population-based San Antonio Family Heart Study. The effects of each gene variant singly and jointly were estimated as fixed effects using the measured genotype approach framework. Analyses were conditioned on the pedigree structures to account for the correlations among family members. Statistical significance was evaluated by the likelihood ratio test with adjustment for age, sex and diabetes status. RESULTS The allele frequencies for the ADRbeta3 Trp64Arg and PPARgamma2 Pro12Ala variants were 18 and 12%, respectively. The ADRbeta3 variant was not significantly associated with any of the obesity-related traits, but subjects with the PPAR-gamma2 variant (n = 98) had significantly higher levels of lasting insulin (P = 0.03), leptin (P = 0.009), and waist circumference (P = 0.03) than those without. Subjects with the gene variants (n = 32) had significantly higher BMI, insulin, and leprtin levels than those with only the PPARgamma2 variant (n = 66) (P for interaction: 0.04, 0.02, and 0.01 for BMI, fasting insulin, and leptin, respectively). CONCLUSIONS Our results suggest that epistatic models with genes that have modest individual effects may be useful in understanding the genetic underpinnings of typical obesity in humans.
Collapse
Affiliation(s)
- W C Hsueh
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Asano A, Irie Y, Saito M. Isoform-specific regulation of vascular endothelial growth factor (VEGF) family mRNA expression in cultured mouse brown adipocytes. Mol Cell Endocrinol 2001; 174:71-6. [PMID: 11306173 DOI: 10.1016/s0303-7207(00)00450-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have shown that brown adipose tissue (BAT), a thermogenic organ in mammals, expresses high levels of vascular endothelial growth factor (VEGF) mRNA in response to exposure to cold, which may contribute to angiogenesis associated with cold-induced hyperplasia of this tissue. In the present study, we examined mRNA expression of not only VEGF, but also VEGF-B and VEGF-C, recently cloned VEGF isoforms, in vitro using immortal brown adipocytes (HB2) isolated from mouse BAT. HB2 preadipocytes expressed detectable levels of VEGF, VEGF-B and VEGF-C mRNA, but a low level of VEGF. After HB2 cells differentiated into adipocytes, the VEGF mRNA level increased without a noticeable change in the VEGF-B and VEGF-C mRNA levels. When HB2 cells were stimulated by norepinephrine, the VEGF mRNA level increased without a change in that of VEGF-B, while the VEGF-C mRNA level decreased. A marked reduction of VEGF-C mRNA expression was also found when HB2 cells were treated with agonists of peroxisome proliferator-activated receptor gamma (PPARgamma, troglitazone), retinoic acid receptor (RAR, all-trans retinoic acid) and retinoid X receptor (RXR, 9-cis retinoic acid). These results suggest a specific adrenergic mechanism for up-regulation of VEGF expression different from those for other VEGF isoforms, and thereby the major contribution of VEGF to the cold-induced angiogenesis in BAT. In addition, the agonists of PPARgamma, RAR and RXR are suggested to be inhibitory to angiogenesis through the reduction of VEGF-C production.
Collapse
Affiliation(s)
- A Asano
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Japan.
| | | | | |
Collapse
|
48
|
Margareto J, Marti A, Martínez JA. Changes in UCP mRNA expression levels in brown adipose tissue and skeletal muscle after feeding a high-energy diet and relationships with leptin, glucose and PPARgamma. J Nutr Biochem 2001; 12:130-137. [PMID: 11257461 DOI: 10.1016/s0955-2863(00)00131-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Brown adipose tissue and skeletal muscle are known to be important sites for nonshivering thermogenesis. In this context, it is accepted that uncoupling proteins (UCPs) are involved in such process, but little is known about the physiological regulation of these proteins as affected by the intake of a high-energy (cafeteria) diet inducing fat deposition. In this study, the UCP messenger RNA (mRNA) expression in interscapular brown adipose tissue (iBAT) and skeletal muscle was assessed to evaluate the influence of a dietary manipulation on energy homeostasis regulation. We report a statistically significant increase in mRNA levels of iBAT UCP1 and UCP3 and a statistical marginal rise in skeletal muscle UCP3 mRNA expression after feeding a high-energy diet, whereas no changes in UCP2 expression were found in either tissue. Furthermore, significant positive associations between iBAT UCP1 and UCP3 mRNA levels with serum leptin were found. Although the expression of the beta(3) adrenoceptor (beta(3)AR) was about 50% in the lean controls compared with the obese group in iBAT, no statistically significant changes were observed concerning peroxisome proliferator-activated receptor gamma2 (PPARgamma2) mRNA levels in muscle or iBAT. We conclude that feeding a diet inducing weight and fat gain produces different outcomes on iBAT and skeletal muscle UCP mRNA expression, revealing a tissue-dependent response for the three UCPs. Results suggest that the regulation of UCP expression in both tissues under these specific dietary conditions may be related to leptin circulating levels.
Collapse
Affiliation(s)
- J Margareto
- Department of Physiology and Nutrition, University of Navarra, 31008, Pamplona, Navarra, Spain
| | | | | |
Collapse
|
49
|
Barbera MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F, Giralt M. Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem 2001; 276:1486-93. [PMID: 11050084 DOI: 10.1074/jbc.m006246200] [Citation(s) in RCA: 277] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
High expression of the peroxisome proliferator-activated receptor alpha (PPARalpha) differentiates brown fat from white, and is related to its high capacity of lipid oxidation. We analyzed the effects of PPARalpha activation on expression of the brown fat-specific uncoupling protein-1 (ucp-1) gene. Activators of PPARalpha increased UCP-1 mRNA levels severalfold both in primary brown adipocytes and in brown fat in vivo. Transient transfection assays indicated that the (-4551)UCP1-CAT construct, containing the 5'-regulatory region of the rat ucp-1 gene, was activated by PPARalpha co-transfection in a dose-dependent manner and this activation was potentiated by Wy 14,643 and retinoid X receptor alpha. The coactivators CBP and PPARgamma-coactivator-1 (PGC-1), which is highly expressed in brown fat, also enhanced the PPARalpha-dependent regulation of the ucp-1 gene. Deletion and point-mutation mapping analysis indicated that the PPARalpha-responsive element was located in the upstream enhancer region of the ucp-1 gene. This -2485/-2458 element bound PPARalpha and PPARgamma from brown fat nuclei. Moreover, this element behaved as a promiscuous responsive site to either PPARalpha or PPARgamma activation, and we propose that it mediates ucp-1 gene up-regulation associated with adipogenic differentiation (via PPARgamma) or in coordination with gene expression for the fatty acid oxidation machinery required for active thermogenesis (via PPARalpha).
Collapse
Affiliation(s)
- M J Barbera
- Departament de Bioquimica i Biologia Molecular, Universitat de Barcelona, Avda Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Peters JM, Lee SS, Li W, Ward JM, Gavrilova O, Everett C, Reitman ML, Hudson LD, Gonzalez FJ. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Mol Cell Biol 2000; 20:5119-28. [PMID: 10866668 PMCID: PMC85961 DOI: 10.1128/mcb.20.14.5119-5128.2000] [Citation(s) in RCA: 540] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine the physiological roles of peroxisome proliferator-activated receptor beta (PPARbeta), null mice were constructed by targeted disruption of the ligand binding domain of the murine PPARbeta gene. Homozygous PPARbeta-null term fetuses were smaller than controls, and this phenotype persisted postnatally. Gonadal adipose stores were smaller, and constitutive mRNA levels of CD36 were higher, in PPARbeta-null mice than in controls. In the brain, myelination of the corpus callosum was altered in PPARbeta-null mice. PPARbeta was not required for induction of mRNAs involved in epidermal differentiation induced by O-tetradecanoylphorbol-13-acetate (TPA). The hyperplastic response observed in the epidermis after TPA application was significantly greater in the PPARbeta-null mice than in controls. Inflammation induced by TPA in the skin was lower in wild-type mice fed sulindac than in similarly treated PPARbeta-null mice. These results are the first to provide in vivo evidence of significant roles for PPARbeta in development, myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.
Collapse
Affiliation(s)
- J M Peters
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|