1
|
Isbilir S, Catchot B, Catchot L, Musser FR, Ahn SJ. Molecular characterization and expression patterns of a ryanodine receptor in soybean looper, Chrysodeixis includens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22047. [PMID: 37602813 DOI: 10.1002/arch.22047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Diamide insecticides, such as chlorantraniliprole, have been widely used to control insect pests by targeting the insect ryanodine receptor (RyR). Due to the efficacious insecticidal activity of diamides, as well as an increasing number of resistance cases, the molecular structure of RyR has been studied in many economically important insects. However, no research has been conducted on diamide resistance and RyR in the soybean looper, Chrysodeixis includens, a significant crop pest. In this study, we found moderate resistance to chlorantraniliprole in a field population from Puerto Rico and sequenced the full-length cDNA of the C. includens RyR gene, which encodes a 5124 amino acid-long protein. Genomic analysis revealed that the CincRyR gene consists of 113 exons, one of the largest exon numbers reported for RyR. Alternative splicing sites were detected in the cytosolic region. The protein sequence showed high similarity to other noctuid RyRs. Conserved structural features included the selectivity filter motif critical for ryanodine binding and ion conduction, as well as various domains involved in ion transport. Two mutation sites associated with diamide resistance in other insects were screened but not found in the Puerto Rico field populations or in the susceptible lab strain. Gene expression analysis indicated high expression of RyR in the third instar larval stage, particularly in muscle-containing tissues. Furthermore, exposure to a sublethal dose of chlorantraniliprole reduced RyR expression levels after 96 h. This study provides a molecular basis for understanding RyR structure and sheds light on potential mechanisms of diamide resistance in C. includens.
Collapse
Affiliation(s)
- Sena Isbilir
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Beverly Catchot
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Lauren Catchot
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Fred R Musser
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| |
Collapse
|
2
|
Wei J, Guo W, Wang R, Paul Estillore J, Belke D, Chen YX, Vallmitjana A, Benitez R, Hove-Madsen L, Chen SRW. RyR2 Serine-2030 PKA Site Governs Ca 2+ Release Termination and Ca 2+ Alternans. Circ Res 2023; 132:e59-e77. [PMID: 36583384 DOI: 10.1161/circresaha.122.321177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND PKA (protein kinase A)-mediated phosphorylation of cardiac RyR2 (ryanodine receptor 2) has been extensively studied for decades, but the physiological significance of PKA phosphorylation of RyR2 remains poorly understood. Recent determination of high-resolution 3-dimensional structure of RyR2 in complex with CaM (calmodulin) reveals that the major PKA phosphorylation site in RyR2, serine-2030 (S2030), is located within a structural pathway of CaM-dependent inactivation of RyR2. This novel structural insight points to a possible role of PKA phosphorylation of RyR2 in CaM-dependent inactivation of RyR2, which underlies the termination of Ca2+ release and induction of cardiac Ca2+ alternans. METHODS We performed single-cell endoplasmic reticulum Ca2+ imaging to assess the impact of S2030 mutations on Ca2+ release termination in human embryonic kidney 293 cells. Here we determined the role of the PKA site RyR2-S2030 in a physiological setting, we generated a novel mouse model harboring the S2030L mutation and carried out confocal Ca2+ imaging. RESULTS We found that mutations, S2030D, S2030G, S2030L, S2030V, and S2030W reduced the endoplasmic reticulum luminal Ca2+ level at which Ca2+ release terminates (the termination threshold), whereas S2030P and S2030R increased the termination threshold. S2030A and S2030T had no significant impact on release termination. Furthermore, CaM-wild-type increased, whereas Ca2+ binding deficient CaM mutant (CaM-M [a loss-of-function CaM mutation with all 4 EF-hand motifs mutated]), PKA, and Ca2+/CaMKII (CaM-dependent protein kinase II) reduced the termination threshold. The S2030L mutation abolished the actions of CaM-wild-type, CaM-M, and PKA, but not CaMKII, in Ca2+ release termination. Moreover, we showed that isoproterenol and CaM-M suppressed pacing-induced Ca2+ alternans and accelerated Ca2+ transient recovery in intact working hearts, whereas CaM-wild-type exerted an opposite effect. The impact of isoproterenol was partially and fully reversed by the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide and the CaMKII inhibitor N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide individually and together, respectively. S2030L abolished the impact of CaM-wild-type, CaM-M, and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide-sensitive component, but not the N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide-sensitive component, of isoproterenol.
Collapse
Affiliation(s)
- Jinhong Wei
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.).,School of Medicine, Northwest University, Xi 'an, China (J.W.)
| | - Wenting Guo
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | - Darrell Belke
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | - Yong-Xiang Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | | | - Raul Benitez
- Department of Automatic Control, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain (A.V., R.B.)
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona IIBB-CSIC, IIB Sant Pau and CIBERCV, Hospital de Sant Pau, 08025, Barcelona, Spain (L.H.-M.)
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| |
Collapse
|
3
|
Functional Characterization of the Ryanodine Receptor Gene in Diaphorina citri. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122005. [PMID: 36556370 PMCID: PMC9785964 DOI: 10.3390/life12122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
The Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) is a major citrus pest spread around the world. It is also a vector of the bacterium 'Candidatus Liberibacter asiaticus', considered the cause of the fatal citrus disease huanglongbing (HLB). Insect ryanodine receptors (RyRs) are the primary target sites of diamide insecticides. In this study, full-length RyR cDNA from D. citri (named DcRyR) was isolated and identified. The 15,393 bp long open reading frame of DcRyR encoded a 5130 amino acid protein with a calculated molecular weight of 580,830 kDa. This protein had a high sequence identity (76-79%) with other insect homologs and a low sequence identity (43-46%) with mammals. An MIR domain, two RIH domains, three SPRY domains, four RyR repeat domains, an RIH-associated domain at the N-terminus, two consensus calcium-binding EF-hands, and six transmembrane domains were among the characteristics that DcRyR shared with insect and vertebrate RyRs. In expression analysis, the DcRyR gene displayed transcript abundance in all tissues and developmental stages as well as gene-differential and stage-specific patterns. In addition, diagnostic PCR experiments revealed that DcRyR had three potential alternative splice variants and that splicing events might have contributed to the various functions of DcRyR. However, diamide resistance-related amino acid residue mutations I4790M/K and G4946E were not found in DcRyR. These results can serve as the basis for further investigation into the target-based diamide pesticide resistance of D. citri.
Collapse
|
4
|
Ormerod JOM, Ormondroyd E, Li Y, Taylor J, Wei J, Guo W, Wang R, Sarton CNS, McGuire K, Dreau HMP, Taylor JC, Ginks MR, Rajappan K, Chen SRW, Watkins H. Provocation Testing and Therapeutic Response in a Newly Described Channelopathy: RyR2 Calcium Release Deficiency Syndrome. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003589. [PMID: 34949103 DOI: 10.1161/circgen.121.003589] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND A novel familial arrhythmia syndrome, cardiac ryanodine receptor (RyR2) calcium release deficiency syndrome (CRDS), has recently been described. We evaluated a large and well characterized family to assess provocation testing, risk factor stratification and response to therapy in CRDS. METHODS We present a family with multiple unheralded sudden cardiac deaths and aborted cardiac arrests, primarily in children and young adults, with no clear phenotype on standard clinical testing. RESULTS Genetic analysis, including whole genome sequencing, firmly established that a missense mutation in RYR2, Ala4142Thr, was the underlying cause of disease in the family. Functional study of the variant in a cell model showed RyR2 loss-of-function, indicating that the family was affected by CRDS. EPS (Electrophysiological Study) was undertaken in 9 subjects known to carry the mutation, including a survivor of aborted sudden cardiac death, and the effects of flecainide alone and in combination with metoprolol were tested. There was a clear gradation in inducibility of nonsustained and sustained ventricular arrhythmia between subjects at EPS, with the survivor of aborted sudden cardiac death being the most inducible subject. Administration of flecainide substantially reduced arrhythmia inducibility in this subject and abolished arrhythmia in all others. Finally, the effects of additional metoprolol were tested; it increased inducibility in 4/9 subjects. CONCLUSIONS The Ala4142Thr mutation of RYR2 causes the novel heritable arrhythmia syndrome CRDS, which is characterized by familial sudden death in the absence of prior symptoms or a recognizable phenotype on ambulatory monitoring or exercise stress testing. We increase the experience of a specific EPS protocol in human subjects and show that it is helpful in establishing the clinical status of gene carriers, with potential utility for risk stratification. Our data provide evidence that flecainide is protective in human subjects with CRDS, consistent with the effect previously shown in a mouse model.
Collapse
Affiliation(s)
- Julian O M Ormerod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.O.M.O., E.O., H.W.), University of Oxford, United Kingdom.,Cardiac Rhythm Management Service, Oxford Heart Centre, John Radcliffe Hospital, United Kingdom (J.O.M.O., M.R.G., K.R.)
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.O.M.O., E.O., H.W.), University of Oxford, United Kingdom
| | - Yanhui Li
- Department of Physiology and Pharmacology, The Libin Cardiovascular Institute, University of Calgary, AB, Canada (Y.L., J.W., W.G., R.W., S.R.W.C.).,Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L.)
| | - John Taylor
- Oxford Medical Genetics Laboratories, Cardiac Service, Oxford University Hospitals NHS Trust, The Churchill Hospital, United Kingdom (J.T., C.N.S.S., K.M., J.C.T.)
| | - Jinhong Wei
- Department of Physiology and Pharmacology, The Libin Cardiovascular Institute, University of Calgary, AB, Canada (Y.L., J.W., W.G., R.W., S.R.W.C.)
| | - Wenting Guo
- Department of Physiology and Pharmacology, The Libin Cardiovascular Institute, University of Calgary, AB, Canada (Y.L., J.W., W.G., R.W., S.R.W.C.)
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, The Libin Cardiovascular Institute, University of Calgary, AB, Canada (Y.L., J.W., W.G., R.W., S.R.W.C.)
| | - Caroline N S Sarton
- Oxford Medical Genetics Laboratories, Cardiac Service, Oxford University Hospitals NHS Trust, The Churchill Hospital, United Kingdom (J.T., C.N.S.S., K.M., J.C.T.)
| | - Karen McGuire
- Oxford Medical Genetics Laboratories, Cardiac Service, Oxford University Hospitals NHS Trust, The Churchill Hospital, United Kingdom (J.T., C.N.S.S., K.M., J.C.T.)
| | - Helene M P Dreau
- Molecular Diagnostic Centre, Department of Oncology (H.M.P.D.), University of Oxford, United Kingdom
| | - Jenny C Taylor
- Oxford Biomedical Research Centre and Wellcome Centre for Human Genetics (J.C.T., H.W.), University of Oxford, United Kingdom.,Oxford Medical Genetics Laboratories, Cardiac Service, Oxford University Hospitals NHS Trust, The Churchill Hospital, United Kingdom (J.T., C.N.S.S., K.M., J.C.T.)
| | - Matthew R Ginks
- Cardiac Rhythm Management Service, Oxford Heart Centre, John Radcliffe Hospital, United Kingdom (J.O.M.O., M.R.G., K.R.)
| | - Kim Rajappan
- Cardiac Rhythm Management Service, Oxford Heart Centre, John Radcliffe Hospital, United Kingdom (J.O.M.O., M.R.G., K.R.)
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, The Libin Cardiovascular Institute, University of Calgary, AB, Canada (Y.L., J.W., W.G., R.W., S.R.W.C.)
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.O.M.O., E.O., H.W.), University of Oxford, United Kingdom.,Oxford Biomedical Research Centre and Wellcome Centre for Human Genetics (J.C.T., H.W.), University of Oxford, United Kingdom
| |
Collapse
|
5
|
Roston TM, Wei J, Guo W, Li Y, Zhong X, Wang R, Estillore JP, Peltenburg PJ, Noguer FRI, Till J, Eckhardt LL, Orland KM, Hamilton R, LaPage MJ, Krahn AD, Tadros R, Vinocur JM, Kallas D, Franciosi S, Roberts JD, Wilde AAM, Jensen HK, Sanatani S, Chen SRW. Clinical and Functional Characterization of Ryanodine Receptor 2 Variants Implicated in Calcium-Release Deficiency Syndrome. JAMA Cardiol 2021; 7:84-92. [PMID: 34730774 DOI: 10.1001/jamacardio.2021.4458] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Calcium-release deficiency syndrome (CRDS), which is caused by loss-of-function variants in cardiac ryanodine receptor 2 (RyR2), is an emerging cause of ventricular fibrillation. However, the lack of complex polymorphic/bidirectional ventricular tachyarrhythmias during exercise stress testing (EST) may distinguish it from catecholaminergic polymorphic ventricular tachycardia (CPVT). Recently, in the first clinical series describing the condition, mouse and human studies showed that the long-burst, long-pause, short-coupled ventricular extra stimulus (LBLPS) electrophysiology protocol reliably induced CRDS ventricular arrhythmias. Data from larger populations with CRDS and its associated spectrum of disease are lacking. Objective To further insight into CRDS through international collaboration. Design, Setting, and Participants In this multicenter observational cohort study, probands with unexplained life-threatening arrhythmic events and an ultrarare RyR2 variant were identified. Variants were expressed in HEK293 cells and subjected to caffeine stimulation to determine their functional impact. Data were collected from September 1, 2012, to March 6, 2021, and analyzed from August 9, 2015, to March 6, 2021. Main Outcomes and Measures The functional association of RyR2 variants found in putative cases of CRDS and the associated clinical phenotype(s). Results Of 10 RyR2 variants found in 10 probands, 6 were loss-of-function, consistent with CRDS (p.E4451del, p.F4499C, p.V4606E, p.R4608Q, p.R4608W, and p.Q2275H) (in 4 [67%] male and 2 [33%] female probands; median age at presentation, 22 [IQR, 8-34] years). In 5 probands with a documented trigger, 3 were catecholamine driven. During EST, 3 probands with CRDS had no arrhythmias, 1 had a monomorphic couplet, and 2 could not undergo EST (deceased). Relatives of the decedents carrying the RyR2 variant did not have EST results consistent with CPVT. After screening 3 families, 13 relatives were diagnosed with CRDS, including 3 with previous arrhythmic events (23%). None had complex ventricular tachyarrhythmias during EST. Among the 19 confirmed cases with CRDS, 10 had at least 1 life-threatening event at presentation and/or during a median follow-up of 7 (IQR, 6-18) years. Two of the 3 device-detected ventricular fibrillation episodes were induced by a spontaneous LBLPS-like sequence. β-Blockers were used in 16 of 17 surviving patients (94%). Three of 16 individuals who were reportedly adherent to β-blocker therapy (19%) had breakthrough events. Conclusions and Relevance The results of this study suggest that calcium-release deficiency syndrome due to RyR2 loss-of-function variants mechanistically and phenotypically differs from CPVT. Ventricular fibrillation may be precipitated by a spontaneous LBLPS-like sequence of ectopy; however, CRDS remains difficult to recognize clinically. These data highlight the need for better diagnostic tools and treatments for this emerging condition.
Collapse
Affiliation(s)
- Thomas M Roston
- Division of Cardiology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jinhong Wei
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Wenting Guo
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Yanhui Li
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Xiaowei Zhong
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - John Paul Estillore
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Puck J Peltenburg
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | | | - Jan Till
- Department of Cardiology, Royal Brompton Hospital, London, United Kingdom
| | - Lee L Eckhardt
- Division of Cardiovascular Medicine, University of Wisconsin, Madison
| | - Kate M Orland
- Division of Cardiovascular Medicine, University of Wisconsin, Madison
| | - Robert Hamilton
- Division of Cardiology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin J LaPage
- Division of Cardiology, Department of Pediatrics, University of Michigan, Ann Arbor
| | - Andrew D Krahn
- Centre for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rafik Tadros
- Division of Cardiology, Montreal Heart Institute, University of Montreal, Montreal, Québec, Canada
| | - Jeffrey M Vinocur
- Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada.,currently affiliated with Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Dania Kallas
- Children's Heart Centre, Division of Cardiology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sonia Franciosi
- Children's Heart Centre, Division of Cardiology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Western University, London, Ontario, Canada.,now affiliated with Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam University Medical Centre, Amsterdam, the Netherlands.,Member of the European Reference Network ERN GUARD-Heart
| | - Henrik K Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Medicine, Aarhus University, Aarhus, Denmark
| | - Shubhayan Sanatani
- Children's Heart Centre, Division of Cardiology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Li Y, Wei J, Guo W, Sun B, Estillore JP, Wang R, Yoruk A, Roston TM, Sanatani S, Wilde AAM, Gollob MH, Roberts JD, Tseng ZH, Jensen HK, Chen SRW. Human RyR2 (Ryanodine Receptor 2) Loss-of-Function Mutations: Clinical Phenotypes and In Vitro Characterization. Circ Arrhythm Electrophysiol 2021; 14:e010013. [PMID: 34546788 DOI: 10.1161/circep.121.010013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yanhui Li
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, AB, Canada (Y.L., J.W., W.G., B.S., J.P.E., R.W., S.R.W.C.).,Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L.)
| | - Jinhong Wei
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, AB, Canada (Y.L., J.W., W.G., B.S., J.P.E., R.W., S.R.W.C.)
| | - Wenting Guo
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, AB, Canada (Y.L., J.W., W.G., B.S., J.P.E., R.W., S.R.W.C.)
| | - Bo Sun
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, AB, Canada (Y.L., J.W., W.G., B.S., J.P.E., R.W., S.R.W.C.).,Medical School, Kunming University of Science and Technology, China (B.S.)
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, AB, Canada (Y.L., J.W., W.G., B.S., J.P.E., R.W., S.R.W.C.)
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, AB, Canada (Y.L., J.W., W.G., B.S., J.P.E., R.W., S.R.W.C.)
| | - Ayhan Yoruk
- Cardiac Electrophysiology Section, Division of Cardiology, Department of Medicine, University of California, San Francisco (A.Y., Z.H.T.)
| | - Thomas M Roston
- Division of Cardiology, Department of Medicine (T.M.R.), University of British Columbia, Vancouver, Canada
| | - Shubhayan Sanatani
- Child and Family Research Institute, Department of Pediatrics (S.S.), University of British Columbia, Vancouver, Canada
| | - Arthur A M Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centre, location AMC, the Netherlands (A.A.M.W.).,Member of the European Reference Network 'ERN GUARD-Heart' (A.A.M.W.)
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Arrhythmia Service, Division of Cardiology, Toronto General Hospital (M.H.G.), University of Toronto, ON, Canada.,Department of Physiology (M.H.G.), University of Toronto, ON, Canada
| | - Jason D Roberts
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada (J.D.R.)
| | - Zian H Tseng
- Cardiac Electrophysiology Section, Division of Cardiology, Department of Medicine, University of California, San Francisco (A.Y., Z.H.T.)
| | - Henrik K Jensen
- Department of Cardiology, Aarhus University Hospital and Department of Clinical Medicine, Health, Aarhus University, Denmark (H.K.J.)
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, AB, Canada (Y.L., J.W., W.G., B.S., J.P.E., R.W., S.R.W.C.)
| |
Collapse
|
7
|
Chami M, Checler F. Targeting Post-Translational Remodeling of Ryanodine Receptor: A New Track for Alzheimer's Disease Therapy? Curr Alzheimer Res 2021; 17:313-323. [PMID: 32096743 DOI: 10.2174/1567205017666200225102941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/08/2020] [Accepted: 02/24/2020] [Indexed: 01/20/2023]
Abstract
Pathologic calcium (Ca2+) signaling linked to Alzheimer's Disease (AD) involves the intracellular Ca2+ release channels/ryanodine receptors (RyRs). RyRs are macromolecular complexes where the protein-protein interactions between RyRs and several regulatory proteins impact the channel function. Pharmacological and genetic approaches link the destabilization of RyRs macromolecular complexes to several human pathologies including brain disorders. In this review, we discuss our recent data, which demonstrated that enhanced neuronal RyR2-mediated Ca2+ leak in AD is associated with posttranslational modifications (hyperphosphorylation, oxidation, and nitrosylation) leading to RyR2 macromolecular complex remodeling, and dissociation of the stabilizing protein Calstabin2 from the channel. We describe RyR macromolecular complex structure and discuss the molecular mechanisms and signaling cascade underlying neuronal RyR2 remodeling in AD. We provide evidence linking RyR2 dysfunction with β-adrenergic signaling cascade that is altered in AD. RyR2 remodeling in AD leads to histopathological lesions, alteration of synaptic plasticity, learning and memory deficits. Targeting RyR macromolecular complex remodeling should be considered as a new therapeutic window to treat/or prevent AD setting and/or progression.
Collapse
Affiliation(s)
- Mounia Chami
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France.,CNRS, IPMC, Sophia Antipolis, F-06560, France
| | - Frédéric Checler
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France.,CNRS, IPMC, Sophia Antipolis, F-06560, France
| |
Collapse
|
8
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
9
|
Gherardi G, De Mario A, Mammucari C. The mitochondrial calcium homeostasis orchestra plays its symphony: Skeletal muscle is the guest of honor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:209-259. [PMID: 34253296 DOI: 10.1016/bs.ircmb.2021.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Skeletal muscle mitochondria are placed in close proximity of the sarcoplasmic reticulum (SR), the main intracellular Ca2+ store. During muscle activity, excitation of sarcolemma and of T-tubule triggers the release of Ca2+ from the SR initiating myofiber contraction. The rise in cytosolic Ca2+ determines the opening of the mitochondrial calcium uniporter (MCU), the highly selective channel of the inner mitochondrial membrane (IMM), causing a robust increase in mitochondrial Ca2+ uptake. The Ca2+-dependent activation of TCA cycle enzymes increases the synthesis of ATP required for SERCA activity. Thus, Ca2+ is transported back into the SR and cytosolic [Ca2+] returns to resting levels eventually leading to muscle relaxation. In recent years, thanks to the molecular identification of MCU complex components, the role of mitochondrial Ca2+ uptake in the pathophysiology of skeletal muscle has been uncovered. In this chapter, we will introduce the reader to a general overview of mitochondrial Ca2+ accumulation. We will tackle the key molecular players and the cellular and pathophysiological consequences of mitochondrial Ca2+ dyshomeostasis. In the second part of the chapter, we will discuss novel findings on the physiological role of mitochondrial Ca2+ uptake in skeletal muscle. Finally, we will examine the involvement of mitochondrial Ca2+ signaling in muscle diseases.
Collapse
Affiliation(s)
- Gaia Gherardi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | |
Collapse
|
10
|
Identification of loss-of-function RyR2 mutations associated with idiopathic ventricular fibrillation and sudden death. Biosci Rep 2021; 41:228220. [PMID: 33825858 PMCID: PMC8062958 DOI: 10.1042/bsr20210209] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
Mutations in cardiac ryanodine receptor (RyR2) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most CPVT RyR2 mutations characterized are gain-of-function (GOF), indicating enhanced RyR2 function as a major cause of CPVT. Loss-of-function (LOF) RyR2 mutations have also been identified and are linked to a distinct entity of cardiac arrhythmia termed RyR2 Ca2+ release deficiency syndrome (CRDS). Exercise stress testing (EST) is routinely used to diagnose CPVT, but it is ineffective for CRDS. There is currently no effective diagnostic tool for CRDS in humans. An alternative strategy to assess the risk for CRDS is to directly determine the functional impact of the associated RyR2 mutations. To this end, we have functionally screened 18 RyR2 mutations that are associated with idiopathic ventricular fibrillation (IVF) or sudden death. We found two additional RyR2 LOF mutations E4146K and G4935R. The E4146K mutation markedly suppressed caffeine activation of RyR2 and abolished store overload induced Ca2+ release (SOICR) in human embryonic kidney 293 (HEK293) cells. E4146K also severely reduced cytosolic Ca2+ activation and abolished luminal Ca2+ activation of single RyR2 channels. The G4935R mutation completely abolished caffeine activation of and [3H]ryanodine binding to RyR2. Co-expression studies showed that the G4935R mutation exerted dominant negative impact on the RyR2 wildtype (WT) channel. Interestingly, the RyR2-G4935R mutant carrier had a negative EST, and the E4146K carrier had a family history of sudden death during sleep, which are different from phenotypes of typical CPVT. Thus, our data further support the link between RyR2 LOF and a new entity of cardiac arrhythmias distinct from CPVT.
Collapse
|
11
|
Perni S, Beam K. Neuronal junctophilins recruit specific Ca V and RyR isoforms to ER-PM junctions and functionally alter Ca V2.1 and Ca V2.2. eLife 2021; 10:64249. [PMID: 33769283 PMCID: PMC8046434 DOI: 10.7554/elife.64249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Junctions between the endoplasmic reticulum and plasma membrane that are induced by the neuronal junctophilins are of demonstrated importance, but their molecular architecture is still poorly understood and challenging to address in neurons. This is due to the small size of the junctions and the multiple isoforms of candidate junctional proteins in different brain areas. Using colocalization of tagged proteins expressed in tsA201 cells, and electrophysiology, we compared the interactions of JPH3 and JPH4 with different calcium channels. We found that JPH3 and JPH4 caused junctional accumulation of all the tested high-voltage-activated CaV isoforms, but not a low-voltage-activated CaV. Also, JPH3 and JPH4 noticeably modify CaV2.1 and CaV2.2 inactivation rate. RyR3 moderately colocalized at junctions with JPH4, whereas RyR1 and RyR2 did not. By contrast, RyR1 and RyR3 strongly colocalized with JPH3, and RyR2 moderately. Likely contributing to this difference, JPH3 binds to cytoplasmic domain constructs of RyR1 and RyR3, but not of RyR2.
Collapse
Affiliation(s)
- Stefano Perni
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, United States
| | - Kurt Beam
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, United States
| |
Collapse
|
12
|
Shauer A, Shor O, Wei J, Elitzur Y, Kucherenko N, Wang R, Chen SRW, Einav Y, Luria D. Novel RyR2 Mutation (G3118R) Is Associated With Autosomal Recessive Ventricular Fibrillation and Sudden Death: Clinical, Functional, and Computational Analysis. J Am Heart Assoc 2021; 10:e017128. [PMID: 33686871 PMCID: PMC8174198 DOI: 10.1161/jaha.120.017128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The cardiac ryanodine receptor type 2 (RyR2) is a large homotetramer, located in the sarcoplasmic reticulum (SR), which releases Ca2+ from the SR during systole. The molecular mechanism underlying Ca2+ sensing and gating of the RyR2 channel in health and disease is only partially elucidated. Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT1) is the most prevalent syndrome caused by RyR2 mutations. Methods and Results This study involves investigation of a family with 4 cases of ventricular fibrillation and sudden death and physiological tests in HEK 293 cells and normal mode analysis (NMA) computation. We found 4 clinically affected members who were homozygous for a novel RyR2 mutation, G3118R, whereas their heterozygous relatives are asymptomatic. G3118R is located in the periphery of the protein, far from the mutation hotspot regions. HEK293 cells harboring G3118R mutation inhibited Ca2+ release in response to increasing doses of caffeine, but decreased the termination threshold for store‐overload‐induced Ca2+ release, thus increasing the fractional Ca2+ release in response to increasing extracellular Ca2+. NMA showed that G3118 affects RyR2 tetramer in a dose‐dependent manner, whereas in the model of homozygous mutant RyR2, the highest entropic values are assigned to the pore and the central regions of the protein. Conclusions RyR2 G3118R is related to ventricular fibrillation and sudden death in recessive mode of inheritance and has an effect of gain of function on the protein. Despite a peripheral location, it has an allosteric effect on the stability of central and pore regions in a dose‐effect manner.
Collapse
Affiliation(s)
- Ayelet Shauer
- Heart Institute Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Oded Shor
- Heart Institute Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Jinhong Wei
- Department of Physiology and Pharmacology The Libin Cardiovascular Institute of AlbertaUniversity of Calgary Alberta Canada
| | - Yair Elitzur
- Heart Institute Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Nataly Kucherenko
- Biochemistry and Molecular Biology Tel Aviv University Tel Aviv Israel
| | - Ruiwu Wang
- Department of Physiology and Pharmacology The Libin Cardiovascular Institute of AlbertaUniversity of Calgary Alberta Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology The Libin Cardiovascular Institute of AlbertaUniversity of Calgary Alberta Canada
| | - Yulia Einav
- Faculty of Engineering Holon Institute of Technology Holon Israel
| | - David Luria
- Heart Institute Hadassah-Hebrew University Medical Center Jerusalem Israel
| |
Collapse
|
13
|
Sun B, Yao J, Ni M, Wei J, Zhong X, Guo W, Zhang L, Wang R, Belke D, Chen YX, Lieve KVV, Broendberg AK, Roston TM, Blankoff I, Kammeraad JA, von Alvensleben JC, Lazarte J, Vallmitjana A, Bohne LJ, Rose RA, Benitez R, Hove-Madsen L, Napolitano C, Hegele RA, Fill M, Sanatani S, Wilde AAM, Roberts JD, Priori SG, Jensen HK, Chen SRW. Cardiac ryanodine receptor calcium release deficiency syndrome. Sci Transl Med 2021; 13:eaba7287. [PMID: 33536282 DOI: 10.1126/scitranslmed.aba7287] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 12/07/2020] [Indexed: 11/02/2022]
Abstract
Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia, a condition characterized by prominent ventricular ectopy in response to catecholamine stress, which can be reproduced on exercise stress testing (EST). However, reports of sudden cardiac death (SCD) have emerged in EST-negative individuals who have loss-of-function (LOF) RyR2 mutations. The clinical relevance of RyR2 LOF mutations including their pathogenic mechanism, diagnosis, and treatment are all unknowns. Here, we performed clinical and genetic evaluations of individuals who suffered from SCD and harbored an LOF RyR2 mutation. We carried out electrophysiological studies using a programed electrical stimulation protocol consisting of a long-burst, long-pause, and short-coupled (LBLPS) ventricular extra-stimulus. Linkage analysis of RyR2 LOF mutations in six families revealed a combined logarithm of the odds ratio for linkage score of 11.479 for a condition associated with SCD with negative EST. A RyR2 LOF mouse model exhibited no catecholamine-provoked ventricular arrhythmias as in humans but did have substantial cardiac electrophysiological remodeling and an increased propensity for early afterdepolarizations. The LBLPS pacing protocol reliably induced ventricular arrhythmias in mice and humans having RyR2 LOF mutations, whose phenotype is otherwise concealed before SCD. Furthermore, treatment with quinidine and flecainide abolished LBLPS-induced ventricular arrhythmias in model mice. Thus, RyR2 LOF mutations underlie a previously unknown disease entity characterized by SCD with normal EST that we have termed RyR2 Ca2+ release deficiency syndrome (CRDS). Our study provides insights into the mechanism of CRDS, reports a specific CRDS diagnostic test, and identifies potentially efficacious anti-CRDS therapies.
Collapse
Affiliation(s)
- Bo Sun
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Medical School, Kunming University of Science and Technology, Kunming 650504, China
| | - Jinjing Yao
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Mingke Ni
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Jinhong Wei
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Xiaowei Zhong
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Lin Zhang
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Darrell Belke
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Yong-Xiang Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Krystien V V Lieve
- Amsterdam University Medical Centre, location AMC, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam 1105AZ, Netherlands
- European Reference Network 'ERN GUARD-Heart', Amsterdam, Netherlands
| | - Anders K Broendberg
- Department of Cardiology, Aarhus University Hospital, and Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Blv 99, DK-8200 Aarhus N, Denmark
| | - Thomas M Roston
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Ivan Blankoff
- C.H.U. Charleroi, Hôpital Civil Marie Curie Chaussée de Bruxelles 140 6042 Charleroi, Belgium
| | - Janneke A Kammeraad
- Department of Pediatric Cardiology, Sophia Children's Hospital, Erasmus University Medical Centre, Doctor Molewaterplein 40, 3015 GD Rotterdam, Netherlands
| | - Johannes C von Alvensleben
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado, Aurora, CO 80045, USA
| | - Julieta Lazarte
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Alexander Vallmitjana
- Department of Automatic Control, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - Loryn J Bohne
- Departments of Cardiac Sciences and Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Robert A Rose
- Departments of Cardiac Sciences and Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Raul Benitez
- Department of Automatic Control, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona (IIBB-CSIC) and IIB Sant Pau, Hospital de Sant Pau, Barcelona 08025, Spain
| | - Carlo Napolitano
- European Reference Network 'ERN GUARD-Heart', Amsterdam, Netherlands
- Division of Cardiology and Molecular Cardiology, IRCCS Maugeri Foundation-University of Pavia, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Shubhayan Sanatani
- Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada.
| | - Arthur A M Wilde
- Amsterdam University Medical Centre, location AMC, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam 1105AZ, Netherlands.
- European Reference Network 'ERN GUARD-Heart', Amsterdam, Netherlands
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON N6A 5A5, Canada.
| | - Silvia G Priori
- European Reference Network 'ERN GUARD-Heart', Amsterdam, Netherlands.
- Division of Cardiology and Molecular Cardiology, IRCCS Maugeri Foundation-University of Pavia, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Molecular Cardiology Laboratory, Centro de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Henrik K Jensen
- Department of Cardiology, Aarhus University Hospital, and Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Blv 99, DK-8200 Aarhus N, Denmark.
| | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada.
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Ca 2+ Channels Mediate Bidirectional Signaling between Sarcolemma and Sarcoplasmic Reticulum in Muscle Cells. Cells 2019; 9:cells9010055. [PMID: 31878335 PMCID: PMC7016941 DOI: 10.3390/cells9010055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
The skeletal muscle and myocardial cells present highly specialized structures; for example, the close interaction between the sarcoplasmic reticulum (SR) and mitochondria—responsible for excitation-metabolism coupling—and the junction that connects the SR with T-tubules, critical for excitation-contraction (EC) coupling. The mechanisms that underlie EC coupling in these two cell types, however, are fundamentally distinct. They involve the differential expression of Ca2+ channel subtypes: CaV1.1 and RyR1 (skeletal), vs. CaV1.2 and RyR2 (cardiac). The CaV channels transform action potentials into elevations of cytosolic Ca2+, by activating RyRs and thus promoting SR Ca2+ release. The high levels of Ca2+, in turn, stimulate not only the contractile machinery but also the generation of mitochondrial reactive oxygen species (ROS). This forward signaling is reciprocally regulated by the following feedback mechanisms: Ca2+-dependent inactivation (of Ca2+ channels), the recruitment of Na+/Ca2+ exchanger activity, and oxidative changes in ion channels and transporters. Here, we summarize both well-established concepts and recent advances that have contributed to a better understanding of the molecular mechanisms involved in this bidirectional signaling.
Collapse
|
15
|
Søndergaard MT, Liu Y, Guo W, Wei J, Wang R, Brohus M, Overgaard MT, Chen SRW. Role of cardiac ryanodine receptor calmodulin-binding domains in mediating the action of arrhythmogenic calmodulin N-domain mutation N54I. FEBS J 2019; 287:2256-2280. [PMID: 31763755 DOI: 10.1111/febs.15147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/12/2019] [Accepted: 11/19/2019] [Indexed: 11/27/2022]
Abstract
The Ca2+ -sensing protein calmodulin (CaM) inhibits cardiac ryanodine receptor (RyR2)-mediated Ca2+ release. CaM mutations associated with arrhythmias and sudden cardiac death have been shown to diminish CaM-dependent inhibition of RyR2, but the underlying mechanisms are not well understood. Nearly all arrhythmogenic CaM mutations identified are located in the C-domain of CaM and exert marked effects on Ca2+ binding to CaM and on the CaM C-domain interaction with the CaM-binding domain 2 (CaMBD2) in RyR2. Interestingly, the arrhythmogenic N-domain mutation CaM-N54I has little or no effect on Ca2+ binding to CaM or the CaM C-domain-RyR2 CaMBD2 interaction, unlike all CaM C-domain mutations. This suggests that CaM-N54I may diminish CaM-dependent RyR2 inhibition by affecting CaM N-domain interactions with RyR2 CaMBDs other than CaMBD2. To explore this possibility, we assessed the effects of deleting each of the four known CaMBDs in RyR2 (CaMBD1a, -1b, -2, or -3) on the CaM-dependent inhibition of RyR2-mediated Ca2+ release in HEK293 cells. We found that removing CaMBD1a, CaMBD1b, or CaMBD3 did not alter the effects of CaM-N54I or CaM-WT on RyR2 inhibition. On the other hand, deleting RyR2-CaMBD2 abolished the effects of both CaM-N54I and CaM-WT. Our results support that CaM-N54I causes aberrant RyR2 regulation via an uncharacterized CaMBD or less likely CaMBD2, and that RyR2 CaMBD2 is required for the actions of both N- and C-domain CaM mutations. Moreover, our results show that CaMBD1a is central to RyR2 regulation, but CaMBD1a, CaMBD1b, and CaMBD3 are not required for CaM-dependent inhibition of RyR2 in HEK293 cells.
Collapse
Affiliation(s)
- Mads T Søndergaard
- Department of Chemistry and Bioscience, Aalborg University, Denmark.,Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Yingjie Liu
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Jinhong Wei
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Denmark
| | | | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| |
Collapse
|
16
|
Søndergaard MT, Liu Y, Brohus M, Guo W, Nani A, Carvajal C, Fill M, Overgaard MT, Chen SRW. Diminished inhibition and facilitated activation of RyR2-mediated Ca 2+ release is a common defect of arrhythmogenic calmodulin mutations. FEBS J 2019; 286:4554-4578. [PMID: 31230402 DOI: 10.1111/febs.14969] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
A number of calmodulin (CaM) mutations cause severe cardiac arrhythmias, but their arrhythmogenic mechanisms are unclear. While some of the arrhythmogenic CaM mutations have been shown to impair CaM-dependent inhibition of intracellular Ca2+ release through the ryanodine receptor type 2 (RyR2), the impact of a majority of these mutations on RyR2 function is unknown. Here, we investigated the effect of 14 arrhythmogenic CaM mutations on the CaM-dependent RyR2 inhibition. We found that all the arrhythmogenic CaM mutations tested diminished CaM-dependent inhibition of RyR2-mediated Ca2+ release and increased store-overload induced Ca2+ release (SOICR) in HEK293 cells. Moreover, all the arrhythmogenic CaM mutations tested either failed to inhibit or even promoted RyR2-mediated Ca2+ release in permeabilized HEK293 cells with elevated cytosolic Ca2+ , which was markedly different from the inhibitory action of CaM wild-type. The CaM mutations also altered the Ca2+ -dependency of CaM binding to the RyR2 CaM-binding domain. These results demonstrate that diminished inhibition, and even facilitated activation, of RyR2-mediated Ca2+ release is a common defect of arrhythmogenic CaM mutations.
Collapse
Affiliation(s)
- Mads T Søndergaard
- Department of Chemistry and Bioscience, Aalborg University, Denmark.,Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Yingjie Liu
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Denmark
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Alma Nani
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | - Catherine Carvajal
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | - Michael Fill
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | | | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada.,Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
17
|
Lieve KVV, Verhagen JMA, Wei J, Bos JM, van der Werf C, Rosés I Noguer F, Mancini GMS, Guo W, Wang R, van den Heuvel F, Frohn-Mulder IME, Shimizu W, Nogami A, Horigome H, Roberts JD, Leenhardt A, Crijns HJG, Blank AC, Aiba T, Wiesfeld ACP, Blom NA, Sumitomo N, Till J, Ackerman MJ, Chen SRW, van de Laar IMBH, Wilde AAM. Linking the heart and the brain: Neurodevelopmental disorders in patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2018; 16:220-228. [PMID: 30170228 DOI: 10.1016/j.hrthm.2018.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an uncommon inherited arrhythmia disorder characterized by adrenergically evoked ventricular arrhythmias. Mutations in the cardiac calcium release channel/ryanodine receptor gene (RYR2) are identified in the majority of patients with CPVT. RyR2 is also the major RyR isoform expressed in the brain. OBJECTIVE The purpose of this study was to estimate the prevalence of intellectual disability (ID) and other neurodevelopmental disorders (NDDs) in RYR2-associated CPVT (CPVT1) and to study the characteristics of these patients. METHODS We reviewed the medical records of all CPVT1 patients from 12 international centers and analyzed the characteristics of all CPVT1 patients with concomitant NDDs. We functionally characterized the mutations to assess their response to caffeine activation. We did not correct for potential confounders. RESULTS Among 421 CPVT1 patients, we identified 34 patients with ID (8%; 95% confidence interval 6%-11%). Median age at diagnosis was 9.3 years (interquartile range 7.0-14.5). Parents for 24 of 34 patients were available for genetic testing, and 13 of 24 (54%) had a de novo mutation. Severity of ID ranged from mild to severe and was accompanied by other NDDs in 9 patients (26%). Functionally, the ID-associated mutations showed a markedly enhanced response of RyR2 to activation by caffeine. Seventeen patients (50%) also had supraventricular arrhythmias. During median follow-up of 8.4 years (interquartile range 1.8-12.4), 15 patients (45%) experienced an arrhythmic event despite adequate therapy. CONCLUSION Our study indicates that ID is more prevalent among CPVT1 patients (8%) than in the general population (1%-3%). This subgroup of CPVT1 patients reveals a malignant cardiac phenotype with marked supraventricular and ventricular arrhythmias.
Collapse
Affiliation(s)
- Krystien V V Lieve
- AMC Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jinhong Wei
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - J Martijn Bos
- Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota, Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, and Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Christian van der Werf
- AMC Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wenting Guo
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Ruiwu Wang
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Freek van den Heuvel
- Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Ingrid M E Frohn-Mulder
- Department of Pediatric Cardiology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan; Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akihiko Nogami
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hitoshi Horigome
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Antoine Leenhardt
- CNMR Maladies Cardiaques Héréditaires Rares, Hôpital Bichat, Université Paris Diderot, Sorbonne Paris Cité, Paris, France, and AP-HP, Service de Cardiologie, Hôpital Bichat, Paris, France
| | - Harry J G Crijns
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Andreas C Blank
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Ans C P Wiesfeld
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nico A Blom
- AMC Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands; Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Naokata Sumitomo
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Jan Till
- Department of Cardiology, Royal Brompton Hospital, London, United Kingdom
| | - Michael J Ackerman
- Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota, Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, and Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - S R Wayne Chen
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Ingrid M B H van de Laar
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Arthur A M Wilde
- AMC Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands; Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
18
|
Heinz LP, Kopec W, de Groot BL, Fink RHA. In silico assessment of the conduction mechanism of the Ryanodine Receptor 1 reveals previously unknown exit pathways. Sci Rep 2018; 8:6886. [PMID: 29720700 PMCID: PMC5932038 DOI: 10.1038/s41598-018-25061-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
The ryanodine receptor 1 is a large calcium ion channel found in mammalian skeletal muscle. The ion channel gained a lot of attention recently, after multiple independent authors published near-atomic cryo electron microscopy data. Taking advantage of the unprecedented quality of structural data, we performed molecular dynamics simulations on the entire ion channel as well as on a reduced model. We calculated potentials of mean force for Ba2+, Ca2+, Mg2+, K+, Na+ and Cl- ions using umbrella sampling to identify the key residues involved in ion permeation. We found two main binding sites for the cations, whereas the channel is strongly repulsive for chloride ions. Furthermore, the data is consistent with the model that the receptor achieves its ion selectivity by over-affinity for divalent cations in a calcium-block-like fashion. We reproduced the experimental conductance for potassium ions in permeation simulations with applied voltage. The analysis of the permeation paths shows that ions exit the pore via multiple pathways, which we suggest to be related to the experimental observation of different subconducting states.
Collapse
Affiliation(s)
- Leonard P Heinz
- Medical Biophysics Unit, Medical Faculty, Institute of Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany.
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Rainer H A Fink
- Medical Biophysics Unit, Medical Faculty, Institute of Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
19
|
Wu SF, Zhao DD, Huang JM, Zhao SQ, Zhou LQ, Gao CF. Molecular characterization and expression profiling of ryanodine receptor gene in the pink stem borer, Sesamia inferens (Walker). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 146:1-6. [PMID: 29626986 DOI: 10.1016/j.pestbp.2018.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/21/2017] [Accepted: 01/10/2018] [Indexed: 06/08/2023]
Abstract
The susceptibilities of three field populations of pink stem borer (PSB), Sesamia inferens (walker) to diamide insecticides, chlorantraniliprole and flubendiamide, were evaluated in this study. The results showed that these PSB field populations were still sensitive to the two diamide insecticides after many years of exposure. To further understand PSB and diamide insecticide, the full-length ryanodine receptor (RyR) cDNA (named as SiRyR), the molecular target of diamide insecticides was cloned from PSB and characterized. The SiRyR gene contains an open reading frame of 15,420 nucleotides, encoding 5140 amino acid residues, which shares 77% to 98% sequence identity with RyR homologous of other insects. All hallmarks of RyR proteins are conserved in the SiRyR protein, including the conserved C-terminal domain with the consensus calcium-biding EF-hands (calcium-binding motif), the six transmembrane domains, as well as mannosyltransferase, IP3R and RyR (pfam02815) (MIR) domains. Real-time qPCR analysis revealed that the highest mRNA expression levels of SiRyR were observed in pupa and adults, especially in males. SiRyR was expressed at the highest level in thorax, and the lowest level in wing. The full genetic characterization of SiRyR could provide useful information for future functional expression studies and for discovery of new insecticides with selective insecticidal activity.
Collapse
Affiliation(s)
- Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Dan-Dan Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Jing-Mei Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Si-Qi Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Li-Qi Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China.
| |
Collapse
|
20
|
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol 2017; 149:1065-1089. [PMID: 29122978 PMCID: PMC5715910 DOI: 10.1085/jgp.201711878] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/12/2017] [Indexed: 01/25/2023] Open
Abstract
Large-conductance Ca2+ release channels known as ryanodine receptors (RyRs) mediate the release of Ca2+ from an intracellular membrane compartment, the endo/sarcoplasmic reticulum. There are three mammalian RyR isoforms: RyR1 is present in skeletal muscle; RyR2 is in heart muscle; and RyR3 is expressed at low levels in many tissues including brain, smooth muscle, and slow-twitch skeletal muscle. RyRs form large protein complexes comprising four 560-kD RyR subunits, four ∼12-kD FK506-binding proteins, and various accessory proteins including calmodulin, protein kinases, and protein phosphatases. RyRs share ∼70% sequence identity, with the greatest sequence similarity in the C-terminal region that forms the transmembrane, ion-conducting domain comprising ∼500 amino acids. The remaining ∼4,500 amino acids form the large regulatory cytoplasmic "foot" structure. Experimental evidence for Ca2+, ATP, phosphorylation, and redox-sensitive sites in the cytoplasmic structure have been described. Exogenous effectors include the two Ca2+ releasing agents caffeine and ryanodine. Recent work describing the near atomic structures of mammalian skeletal and cardiac muscle RyRs provides a structural basis for the regulation of the RyRs by their multiple effectors.
Collapse
Affiliation(s)
- Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
21
|
Yuan GR, Wang KY, Mou X, Luo RY, Dou W, Wang JJ. Molecular cloning, mRNA expression and alternative splicing of a ryanodine receptor gene from the citrus whitefly, Dialeurodes citri (Ashmead). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:59-66. [PMID: 29107248 DOI: 10.1016/j.pestbp.2017.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/07/2016] [Accepted: 01/04/2017] [Indexed: 06/07/2023]
Abstract
Insect ryanodine receptors are the main targets of diamide insecticides that have highly selective insecticidal activity but are less toxic to mammals. Therefore, these insecticides are ideal for pest control. Ryanodine receptors (RyRs) play a critical role in Ca2+ signaling in muscle and non-muscle cells. In this study, we cloned the complete cDNA (DcRyR) of the RyR from the citrus whitefly, Dialeurodes citri, a serious pest of citrus orchards in China. The open reading frame of RyR is 15,378bp long and encodes a protein with 5126 amino acids with a computed molecular weight of 579.523kDa. DcRyR shows a high amino acid sequence identity to RyRs from other insects (76%-95%) and low identity to those from nematodes and mammals (44%-52%). DcRyR shares many features of insect and vertebrate RyRs, including a MIR domain, two RIH domains, three SPRY domains, four copies of RyR repeat domain, RIH-associated domain at the N-terminus, two consensus calcium-binding EF-hands and six transmembrane domains at the C-terminus. The expression of DcRyR mRNA was the highest in the nymphs and lowest in eggs; DcRyR mRNA was 1.85-fold higher in the nymphs than in the eggs. Among the tissues, DcRyR mRNA expression was 4.18- and 4.02-fold higher in the adult head and thorax than in the abdomen. DcRyR had three alternative splice sites and the splice variants showed body part-specific expression and were developmentally regulated. These results may help investigate target-based resistance to diamide insecticides in D. citri.
Collapse
Affiliation(s)
- Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Ke-Yi Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xing Mou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Ruo-Yu Luo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
| |
Collapse
|
22
|
Liu Y, Wei J, Wong King Yuen SM, Sun B, Tang Y, Wang R, Van Petegem F, Chen SRW. CPVT-associated cardiac ryanodine receptor mutation G357S with reduced penetrance impairs Ca2+ release termination and diminishes protein expression. PLoS One 2017; 12:e0184177. [PMID: 28961276 PMCID: PMC5621672 DOI: 10.1371/journal.pone.0184177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/18/2017] [Indexed: 11/18/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is one of the most lethal inherited cardiac arrhythmias mostly linked to cardiac ryanodine receptor (RyR2) mutations with high disease penetrance. Interestingly, a novel RyR2 mutation G357S discovered in a large family of more than 1400 individuals has reduced penetrance. The molecular basis for the incomplete disease penetrance in this family is unknown. To gain insights into the variable disease expression in this family, we determined the impact of the G357S mutation on RyR2 function and expression. We assessed spontaneous Ca2+ release in HEK293 cells expressing RyR2 wildtype and the G357S mutant during store Ca2+ overload, also known as store overload induced Ca2+ release (SOICR). We found that the G357S mutation reduced the percentage of RyR2-expressing cells that showed SOICR. However, in cells that displayed SOICR, G357S reduced the thresholds for the activation and termination of SOICR. Furthermore, G357S decreased the thermal stability of the N-terminal domain of RyR2, and markedly reduced the protein expression of the full-length RyR2. On the other hand, the G357S mutation did not alter the Ca2+ activation of [3H]ryanodine binding or the Ca2+ induced release of Ca2+ from the intracellular stores in HEK293 cells. These data indicate that the CPVT-associated G357S mutation enhances the arrhythmogenic SOICR and reduces RyR2 protein expression, which may be attributable to the incomplete penetrance of CPVT in this family.
Collapse
Affiliation(s)
- Yingjie Liu
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jinhong Wei
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Siobhan M Wong King Yuen
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada
| | - Bo Sun
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Yijun Tang
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Ryanodine receptors are part of the myospryn complex in cardiac muscle. Sci Rep 2017; 7:6312. [PMID: 28740084 PMCID: PMC5524797 DOI: 10.1038/s41598-017-06395-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/12/2017] [Indexed: 01/28/2023] Open
Abstract
The Cardiomyopathy-associated gene 5 (Cmya5) encodes myospryn, a large tripartite motif (TRIM)-related protein found predominantly in cardiac and skeletal muscle. Cmya5 is an expression biomarker for a number of diseases affecting striated muscle and may also be a schizophrenia risk gene. To further understand the function of myospryn in striated muscle, we searched for additional myospryn paralogs. Here we identify a novel muscle-expressed TRIM-related protein minispryn, encoded by Fsd2, that has extensive sequence similarity with the C-terminus of myospryn. Cmya5 and Fsd2 appear to have originated by a chromosomal duplication and are found within evolutionarily-conserved gene clusters on different chromosomes. Using immunoaffinity purification and mass spectrometry we show that minispryn co-purifies with myospryn and the major cardiac ryanodine receptor (RyR2) from heart. Accordingly, myospryn, minispryn and RyR2 co-localise at the junctional sarcoplasmic reticulum of isolated cardiomyocytes. Myospryn redistributes RyR2 into clusters when co-expressed in heterologous cells whereas minispryn lacks this activity. Together these data suggest a novel role for the myospryn complex in the assembly of ryanodine receptor clusters in striated muscle.
Collapse
|
24
|
Sun B, Guo W, Tian X, Yao J, Zhang L, Wang R, Chen SRW. The Cytoplasmic Region of Inner Helix S6 Is an Important Determinant of Cardiac Ryanodine Receptor Channel Gating. J Biol Chem 2016; 291:26024-26034. [PMID: 27789712 DOI: 10.1074/jbc.m116.758821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/18/2016] [Indexed: 11/06/2022] Open
Abstract
The ryanodine receptor (RyR) channel pore is formed by four S6 inner helices, with its intracellular gate located at the S6 helix bundle crossing region. The cytoplasmic region of the extended S6 helix is held by the U motif of the central domain and is thought to control the opening and closing of the S6 helix bundle. However, the functional significance of the S6 cytoplasmic region in channel gating is unknown. Here we assessed the role of the S6 cytoplasmic region in the function of cardiac RyR (RyR2) via structure-guided site-directed mutagenesis. We mutated each residue in the S6 cytoplasmic region of the mouse RyR2 (4876QQEQVKEDM4884) and characterized their functional impact. We found that mutations Q4876A, V4880A, K4881A, and M4884A, located mainly on one side of the S6 helix that faces the U motif, enhanced basal channel activity and the sensitivity to Ca2+ or caffeine activation, whereas mutations Q4877A, E4878A, Q4879A, and D4883A, located largely on the opposite side of S6, suppressed channel activity. Furthermore, V4880A, a cardiac arrhythmia-associated mutation, markedly enhanced the frequency of spontaneous openings and the sensitivity to cytosolic and luminal Ca2+ activation of single RyR2 channels. V4880A also increased the propensity and reduced the threshold for arrhythmogenic spontaneous Ca2+ release in HEK293 cells. Collectively, our data suggest that interactions between the cytoplasmic region of S6 and the U motif of RyR2 are important for stabilizing the closed state of the channel. Mutations in the S6/U motif domain interface likely destabilize the closed state of RyR2, resulting in enhanced basal channel activity and sensitivity to activation and increased propensity for spontaneous Ca2+ release and cardiac arrhythmias.
Collapse
Affiliation(s)
- Bo Sun
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wenting Guo
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xixi Tian
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jinjing Yao
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Lin Zhang
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - S R Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
25
|
Xiao Z, Guo W, Sun B, Hunt DJ, Wei J, Liu Y, Wang Y, Wang R, Jones PP, Back TG, Chen SRW. Enhanced Cytosolic Ca2+ Activation Underlies a Common Defect of Central Domain Cardiac Ryanodine Receptor Mutations Linked to Arrhythmias. J Biol Chem 2016; 291:24528-24537. [PMID: 27733687 DOI: 10.1074/jbc.m116.756528] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/02/2016] [Indexed: 01/21/2023] Open
Abstract
Recent three-dimensional structural studies reveal that the central domain of ryanodine receptor (RyR) serves as a transducer that converts long-range conformational changes into the gating of the channel pore. Interestingly, the central domain encompasses one of the mutation hotspots (corresponding to amino acid residues 3778-4201) that contains a number of cardiac RyR (RyR2) mutations associated with catecholaminergic polymorphic ventricular tachycardia (CPVT) and atrial fibrillation (AF). However, the functional consequences of these central domain RyR2 mutations are not well understood. To gain insights into the impact of the mutation and the role of the central domain in channel function, we generated and characterized eight disease-associated RyR2 mutations in the central domain. We found that all eight central domain RyR2 mutations enhanced the Ca2+-dependent activation of [3H]ryanodine binding, increased cytosolic Ca2+-induced fractional Ca2+ release, and reduced the activation and termination thresholds for spontaneous Ca2+ release in HEK293 cells. We also showed that racemic carvedilol and the non-beta-blocking carvedilol enantiomer, (R)-carvedilol, suppressed spontaneous Ca2+ oscillations in HEK293 cells expressing the central domain RyR2 mutations associated with CPVT and AF. These data indicate that the central domain is an important determinant of cytosolic Ca2+ activation of RyR2. These results also suggest that altered cytosolic Ca2+ activation of RyR2 represents a common defect of RyR2 mutations associated with CPVT and AF, which could potentially be suppressed by carvedilol or (R)-carvedilol.
Collapse
Affiliation(s)
- Zhichao Xiao
- From the the Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wenting Guo
- From the the Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Bo Sun
- From the the Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Donald J Hunt
- From the the Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jinhong Wei
- From the the Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yingjie Liu
- From the the Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yundi Wang
- From the the Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ruiwu Wang
- From the the Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Peter P Jones
- the Department of Physiology, Otago School of Medical Sciences and HeartOtago, University of Otago, Dunedin 9054, New Zealand, and
| | - Thomas G Back
- the Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - S R Wayne Chen
- From the the Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta T2N 4N1, Canada,.
| |
Collapse
|
26
|
Sun LN, Zhang HJ, Quan LF, Yan WT, Yue Q, Li YY, Qiu GS. Characterization of the Ryanodine Receptor Gene With a Unique 3'-UTR and Alternative Splice Site From the Oriental Fruit Moth. JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iev148. [PMID: 28076278 PMCID: PMC5778984 DOI: 10.1093/jisesa/iev148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/27/2015] [Indexed: 06/06/2023]
Abstract
The ryanodine receptor (RyR), the largest calcium channel protein, has been studied because of its key roles in calcium signaling in cells. Insect RyRs are molecular targets for novel diamide insecticides. The target has been focused widely because of the diamides with high activity against lepidopterous pests and safety for nontarget organisms. To study our understanding of effects of diamides on RyR, we cloned the RyR gene from the oriental fruit moth, Grapholita molesta, which is the most serious pest of stone and pome tree fruits throughout the world, to investigate the modulation of diamide insecticides on RyR mRNA expression in G. molesta (GmRyR). The full-length cDNAs of GmRyR contain a unique 3'-UTR with 625 bp and an open reading frame of 15,402 bp with a predicted protein consisting of 5,133 amino acids. GmRyR possessed a high level of overall amino acid homology with insect and vertebrate isoforms, with 77-92% and 45-47% identity, respectively. Furthermore, five alternative splice sites were identified in GmRyR. Diagnostic PCR showed that the inclusion frequency of one optional exon (f) differed between developmental stages, a finding only found in GmRyR. The lowest expression level of GmRyR mRNA was in larvae, the highest was in male pupae, and the relative expression level in male pupae was 25.67 times higher than that of in larvae. The expression level of GmRyR in the male pupae was 8.70 times higher than in female pupae, and that in male adults was 5.70 times higher than female adults.
Collapse
Affiliation(s)
| | | | | | | | - Q. Yue
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, People’s Republic of China (; ; ; ; ; lyy4455@163. com) and
| | | | | |
Collapse
|
27
|
Schilling R, Fink RHA, Fischer WB. Interaction of ions with the luminal sides of wild-type and mutated skeletal muscle ryanodine receptors. J Mol Model 2016; 22:37. [PMID: 26781665 DOI: 10.1007/s00894-015-2906-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 12/28/2015] [Indexed: 12/22/2022]
Abstract
Ryanodine receptors (RyRs) are the largest known ion channels, and are of central importance for the release of Ca(2+) from the sarco/endoplasmic reticulum (SR/ER) in a variety of cells. In cardiac and skeletal muscle cells, contraction is triggered by the release of Ca(2+) into the cytoplasm and thus depends crucially on correct RyR function. In this work, in silico mutants of the RyR pore were generated and MD simulations were conducted to examine the impact of the mutations on the Ca(2+) distribution. The Ca(2+) distribution pattern on the luminal side of the RyR was most affected by G4898R, D4899Q, E4900Q, R4913E, and D4917A mutations. MD simulations with our wild-type model and various ion species showed a preference for Ca(2+) over other cations at the luminal pore entrance. This Ca(2+)-accumulating characteristic of the luminal RyR side may be essential to the conductance properties of the channel.
Collapse
Affiliation(s)
- Roman Schilling
- Medical Biophysics Group, Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Rainer H A Fink
- Medical Biophysics Group, Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, 155, Li-Non St., Sec. 2, Taipei, 112, Taiwan.
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
28
|
Guo W, Sun B, Xiao Z, Liu Y, Wang Y, Zhang L, Wang R, Chen SRW. The EF-hand Ca2+ Binding Domain Is Not Required for Cytosolic Ca2+ Activation of the Cardiac Ryanodine Receptor. J Biol Chem 2015; 291:2150-60. [PMID: 26663082 DOI: 10.1074/jbc.m115.693325] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 11/06/2022] Open
Abstract
Activation of the cardiac ryanodine receptor (RyR2) by elevating cytosolic Ca(2+) is a central step in the process of Ca(2+)-induced Ca(2+) release, but the molecular basis of RyR2 activation by cytosolic Ca(2+) is poorly defined. It has been proposed recently that the putative Ca(2+) binding domain encompassing a pair of EF-hand motifs (EF1 and EF2) in the skeletal muscle ryanodine receptor (RyR1) functions as a Ca(2+) sensor that regulates the gating of RyR1. Although the role of the EF-hand domain in RyR1 function has been studied extensively, little is known about the functional significance of the corresponding EF-hand domain in RyR2. Here we investigate the effect of mutations in the EF-hand motifs on the Ca(2+) activation of RyR2. We found that mutations in the EF-hand motifs or deletion of the entire EF-hand domain did not affect the Ca(2+)-dependent activation of [(3)H]ryanodine binding or the cytosolic Ca(2+) activation of RyR2. On the other hand, deletion of the EF-hand domain markedly suppressed the luminal Ca(2+) activation of RyR2 and spontaneous Ca(2+) release in HEK293 cells during store Ca(2+) overload or store overload-induced Ca(2+) release (SOICR). Furthermore, mutations in the EF2 motif, but not EF1 motif, of RyR2 raised the threshold for SOICR termination, whereas deletion of the EF-hand domain of RyR2 increased both the activation and termination thresholds for SOICR. These results indicate that, although the EF-hand domain is not required for RyR2 activation by cytosolic Ca(2+), it plays an important role in luminal Ca(2+) activation and SOICR.
Collapse
Affiliation(s)
- Wenting Guo
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Bo Sun
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Zhichao Xiao
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yingjie Liu
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yundi Wang
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Lin Zhang
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - S R Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
29
|
Xiao Z, Guo W, Yuen SMWK, Wang R, Zhang L, Van Petegem F, Chen SRW. The H29D Mutation Does Not Enhance Cytosolic Ca2+ Activation of the Cardiac Ryanodine Receptor. PLoS One 2015; 10:e0139058. [PMID: 26405799 PMCID: PMC4583508 DOI: 10.1371/journal.pone.0139058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
The N-terminal domain of the cardiac ryanodine receptor (RyR2) harbors a large number of naturally occurring mutations that are associated with stress-induced ventricular tachyarrhythmia and sudden death. Nearly all these disease-associated N-terminal mutations are located at domain interfaces or buried within domains. Mutations at these locations would alter domain-domain interactions or the stability/folding of domains. Recently, a novel RyR2 mutation H29D associated with ventricular arrhythmia at rest was found to enhance the activation of single RyR2 channels by diastolic levels of cytosolic Ca2+. Unlike other N-terminal disease-associated mutations, the H29D mutation is located on the surface of the N-terminal domain. It is unclear how this surface-exposed H29D mutation that does not appear to interact with other parts of the RyR2 structure could alter the intrinsic properties of the channel. Here we carried out detailed functional characterization of the RyR2-H29D mutant at the molecular and cellular levels. We found that the H29D mutation has no effect on the basal level or the Ca2+ dependent activation of [3H]ryanodine binding to RyR2, the cytosolic Ca2+ activation of single RyR2 channels, or the cytosolic Ca2+- or caffeine-induced Ca2+ release in HEK293 cells. In addition, the H29D mutation does not alter the propensity for spontaneous Ca2+ release or the thresholds for Ca2+ release activation or termination. Furthermore, the H29D mutation does not have significant impact on the thermal stability of the N-terminal region (residues 1–547) of RyR2. Collectively, our data show that the H29D mutation exerts little or no effect on the function of RyR2 or on the folding stability of the N-terminal region. Thus, our results provide no evidence that the H29D mutation enhances the cytosolic Ca2+ activation of RyR2.
Collapse
Affiliation(s)
- Zhichao Xiao
- Libin Cardiovascular Institute of Alberta, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Siobhan M. Wong King Yuen
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Ruiwu Wang
- Libin Cardiovascular Institute of Alberta, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Lin Zhang
- Libin Cardiovascular Institute of Alberta, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - S. R. Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- * E-mail:
| |
Collapse
|
30
|
Sun L, Qiu G, Cui L, Ma C, Yuan H. Molecular characterization of a ryanodine receptor gene from Spodoptera exigua and its upregulation by chlorantraniliprole. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 123:56-63. [PMID: 26267053 DOI: 10.1016/j.pestbp.2015.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/29/2015] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
Chlorantraniliprole is a novel diamide insecticide that targets the insect ryanodine receptor, a Ca(2+) release channel. Spodoptera exigua is a significant insect pest, and chlorantraniliprole is the most popular diamide insecticide used against this pest. To better understand the effects of diamides on RyR expression and [Ca(2+)], we isolated the SeRyR cDNA and investigated changes in SeRyR expression as a result of the application of chlorantraniliprole. The full-length cDNAs of SeRyR contain an open reading frame (ORF) of 15,357 bp with a predicted protein consisting of 5118 amino acids. SeRyR shares 77-92% identity with other insect RyR isoforms and 45-47% identity with vertebrate RyR isoforms. Furthermore, the relative expression abundances of RyR mRNA extracted from S. exigua fat body cells after 24 h of culture in 0.1, 1, 10, 100 nM, 1 µM and 100 µM of chlorantraniliprole changed 1.04-, 0.89-, 1.83-, 2.58-, 4.03- and 3.12-fold compared to blank control, respectively. The regression equation for the relative expression levels of SeRyR after 24 h as a function of the chlorantraniliprole concentration was Y = 0.6455 + 0.8188LgX, R(2) = 0.97093 for the cell line IOZCAS-Spex-II. These results outline the effects of chlorantraniliprole on the expression of SeRyR and provide a basis for the discovery of a compound that may exhibit selective insect activity.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193, China; Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Guisheng Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193, China; Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Li Cui
- Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunsen Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193, China; Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huizhu Yuan
- Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
31
|
Molecular Characterization, mRNA Expression and Alternative Splicing of Ryanodine Receptor Gene in the Brown Citrus Aphid, Toxoptera citricida (Kirkaldy). Int J Mol Sci 2015; 16:15220-34. [PMID: 26154764 PMCID: PMC4519896 DOI: 10.3390/ijms160715220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/11/2015] [Accepted: 06/29/2015] [Indexed: 12/24/2022] Open
Abstract
Ryanodine receptors (RyRs) play a critical role in regulating the release of intracellular calcium, which enables them to be effectively targeted by the two novel classes of insecticides, phthalic acid diamides and anthranilic diamides. However, less information is available about this target site in insects, although the sequence and structure information of target molecules are essential for designing new control agents of high selectivity and efficiency, as well as low non-target toxicity. Here, we provided sufficient information about the coding sequence and molecular structures of RyR in T. citricida (TciRyR), an economically important pest. The full-length TciRyR cDNA was characterized with an open reading frame of 15,306 nucleotides, encoding 5101 amino acid residues. TciRyR was predicted to embrace all the hallmarks of ryanodine receptor, typically as the conserved C-terminal domain with consensus calcium-biding EF-hands (calcium-binding motif) and six transmembrane domains, as well as a large N-terminal domain. qPCR analysis revealed that the highest mRNA expression levels of TciRyR were observed in the adults, especially in the heads. Alternative splicing in TciRyR was evidenced by an alternatively spliced exon, resulting from intron retention, which was different from the case of RyR in Myzus persicae characterized with no alternative splicing events. Diagnostic PCR analysis indicated that the splicing of this exon was not only regulated in a body-specific manner but also in a stage-dependent manner. Taken together, these results provide useful information for new insecticide design and further insights into the molecular basis of insecticide action.
Collapse
|
32
|
Abstract
The cardiac Ca²⁺ release channel [ryanodine receptor type 2 (RyR2)] is modulated by thiol reactive agents, but the molecular basis of RyR2 modulation by thiol reagents is poorly understood. Cys³⁶³⁵ in the skeletal muscle RyR1 is one of the most hyper-reactive thiols and is important for the redox and calmodulin (CaM) regulation of the RyR1 channel. However, little is known about the role of the corresponding cysteine residue in RyR2 (Cys³⁶⁰²) in the function and regulation of the RyR2 channel. In the present study, we assessed the impact of mutating Cys³⁶⁰² (C³⁶⁰²A) on store overload-induced Ca²⁺ release (SOICR) and the regulation of RyR2 by thiol reagents and CaM. We found that the C³⁶⁰²A mutation suppressed SOICR by raising the activation threshold and delayed the termination of Ca²⁺ release by reducing the termination threshold. As a result, C³⁶⁰²A markedly increased the fractional Ca²⁺ release. Furthermore, the C³⁶⁰²A mutation diminished the inhibitory effect of N-ethylmaleimide on Ca²⁺ release, but it had no effect on the stimulatory action of 4,4'-dithiodipyridine (DTDP) on Ca²⁺ release. In addition, Cys³⁶⁰² mutations (C³⁶⁰²A or C³⁶⁰²R) did not abolish the effect of CaM on Ca²⁺-release termination. Therefore, RyR2-Cys³⁶⁰² is a major site mediating the action of thiol alkylating agent N-ethylmaleimide, but not the action of the oxidant DTDP. Our data also indicate that residue Cys³⁶⁰² plays an important role in the activation and termination of Ca²⁺ release, but it is not essential for CaM regulation of RyR2.
Collapse
|
33
|
Mei Y, Xu L, Mowrey DD, Mendez Giraldez R, Wang Y, Pasek DA, Dokholyan NV, Meissner G. Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor. J Biol Chem 2015; 290:17535-45. [PMID: 25998124 DOI: 10.1074/jbc.m115.659672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 02/04/2023] Open
Abstract
Type 1 ryanodine receptors (RyR1s) release Ca(2+) from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca(2+) release response in HEK293 cells and bound the RyR-specific ligand [(3)H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K(+) conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca(2+) release in HEK293 cells, low [(3)H]ryanodine binding levels, and channels that were not regulated by Ca(2+) and did not conduct Ca(2+) in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes.
Collapse
Affiliation(s)
- Yingwu Mei
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Le Xu
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David D Mowrey
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Raul Mendez Giraldez
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ying Wang
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel A Pasek
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nikolay V Dokholyan
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gerhard Meissner
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
34
|
Liu Y, Sun B, Xiao Z, Wang R, Guo W, Zhang JZ, Mi T, Wang Y, Jones PP, Van Petegem F, Chen SRW. Roles of the NH2-terminal domains of cardiac ryanodine receptor in Ca2+ release activation and termination. J Biol Chem 2015; 290:7736-46. [PMID: 25627681 DOI: 10.1074/jbc.m114.618827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NH2-terminal region (residues 1-543) of the cardiac ryanodine receptor (RyR2) harbors a large number of mutations associated with cardiac arrhythmias and cardiomyopathies. Functional studies have revealed that the NH2-terminal region is involved in the activation and termination of Ca(2+) release. The three-dimensional structure of the NH2-terminal region has recently been solved. It is composed of three domains (A, B, and C). However, the roles of these individual domains in Ca(2+) release activation and termination are largely unknown. To understand the functional significance of each of these NH2-terminal domains, we systematically deleted these domains and assessed their impact on caffeine- or Ca(2+)-induced Ca(2+) release and store overload-induced Ca(2+) release (SOICR) in HEK293 cells. We found that all deletion mutants were capable of forming caffeine- and ryanodine-sensitive functional channels, indicating that the NH2-terminal region is not essential for channel gating. Ca(2+) release measurements revealed that deleting domain A markedly reduced the threshold for SOICR termination but had no effect on caffeine or Ca(2+) activation or the threshold for SOICR activation, whereas deleting domain B substantially enhanced caffeine and Ca(2+) activation and lowered the threshold for SOICR activation and termination. Conversely, deleting domain C suppressed caffeine activation, abolished Ca(2+) activation and SOICR, and diminished protein expression. These results suggest that domain A is involved in channel termination, domain B is involved in channel suppression, and domain C is critical for channel activation and expression. Our data shed new insights into the structure-function relationship of the NH2-terminal domains of RyR2 and the action of NH2-terminal disease mutations.
Collapse
Affiliation(s)
- Yingjie Liu
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Bo Sun
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Zhichao Xiao
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wenting Guo
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Joe Z Zhang
- Department of Physiology and HeartOtago, University of Otago, Dunedin 9054, New Zealand, and
| | - Tao Mi
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yundi Wang
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Peter P Jones
- Department of Physiology and HeartOtago, University of Otago, Dunedin 9054, New Zealand, and
| | - Filip Van Petegem
- Cardiovascular Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - S R Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada,
| |
Collapse
|
35
|
Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 2014; 517:50-55. [PMID: 25517095 PMCID: PMC4338550 DOI: 10.1038/nature14063] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/12/2014] [Indexed: 12/12/2022]
Abstract
The ryanodine receptors (RyRs) are high-conductance intracellular Ca2+ channels that play a pivotal role in the excitation-contraction coupling of skeletal and cardiac muscles. RyRs are the largest known ion channels, with a homotetrameric organization and approximately 5000 residues in each protomer. Here we report the structure of the rabbit RyR1 in complex with its modulator FKBP12 at an overall resolution of 3.8 Å, determined by single-particle electron cryo-microscopy. Three previously uncharacterized domains, named Central, Handle, and Helical domains, display the armadillo repeat fold. These domains, together with the amino-terminal domain, constitute a network of superhelical scaffold for binding and propagation of conformational changes. The channel domain exhibits the voltage-gated ion channel superfamily fold with distinct features. A negative charge-enriched hairpin loop connecting S5 and the pore helix is positioned above the entrance to the selectivity filter vestibule. The four elongated S6 segments form a right-handed helical bundle that closes the pore at the cytoplasmic border of the membrane. Allosteric regulation of the pore by the cytoplasmic domains is mediated through extensive interactions between the Central domains and the channel domain. These structural features explain high ion conductance by RyRs and the long-range allosteric regulation of channel activities.
Collapse
|
36
|
Troczka BJ, Williams AJ, Bass C, Williamson MS, Field LM, Davies TGE. Molecular cloning, characterisation and mRNA expression of the ryanodine receptor from the peach-potato aphid, Myzus persicae. Gene 2014; 556:106-12. [PMID: 25447916 PMCID: PMC4309888 DOI: 10.1016/j.gene.2014.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/03/2014] [Accepted: 11/14/2014] [Indexed: 02/04/2023]
Abstract
The peach potato aphid, Myzus persicae, is one of the most important agricultural pests of temperate climates. It is mainly controlled through the judicious application of insecticides; however, over time, aphids have developed resistance to many insecticidal classes. The recent introduction of synthetic diamide insecticides, with a novel mode of action, potentially offers new tools to control aphid populations. These diamides act on the ryanodine receptor (RyR), a large endoplasmic calcium release channel. In this study we have cloned cDNAs encoding the complete open reading frame of the RyR from M. persicae. The open reading frame is 15,306 base pairs long and encodes a protein of 5101 amino acids. The aphid RyR shares many of the features of other insect and vertebrate RyRs, including a highly conserved transmembrane region. However, unlike the other RyRs characterised to date, the M. persicae channel does not display alternative splicing at any stage of its developmental cycle, so it cannot generate functional variants of the channel.
Collapse
Affiliation(s)
- B J Troczka
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - A J Williams
- Institute of Molecular & Experimental Medicine, Cardiff University School of Medicine, Wales Heart Research Institute, Heath Park, Cardiff CF14 4XN, UK
| | - C Bass
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - M S Williamson
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - L M Field
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - T G E Davies
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| |
Collapse
|
37
|
Liu Y, Li C, Gao J, Wang W, Huang L, Guo X, Li B, Wang J. Comparative characterization of two intracellular Ca²⁺-release channels from the red flour beetle, Tribolium castaneum. Sci Rep 2014; 4:6702. [PMID: 25330781 PMCID: PMC4204029 DOI: 10.1038/srep06702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022] Open
Abstract
Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) are members of a family of tetrameric intracellular Ca2+-release channels (CRCs). While it is well known in mammals that RyRs and IP3Rs modulate multiple physiological processes, the roles of these two CRCs in the development and physiology of insects remain poorly understood. In this study, we cloned and functionally characterized RyR and IP3R cDNAs (named TcRyR and TcIP3R) from the red flour beetle, Tribolium castaneum. The composite TcRyR gene contains an ORF of 15,285 bp encoding a protein of 5,094 amino acid residues. The TcIP3R contains an 8,175 bp ORF encoding a protein of 2,724 amino acids. Expression analysis of TcRyR and TcIP3R revealed significant differences in mRNA expression levels among T. castaneum during different developmental stages. When the transcript levels of TcRyR were suppressed by RNA interference (RNAi), an abnormal folding of the adult hind wings was observed, while the RNAi-mediated knockdown of TcIP3R resulted in defective larval–pupal and pupal–adult metamorphosis. These results suggested that TcRyR is required for muscle excitation-contraction (E-C) coupling in T. castaneum, and that calcium release via IP3R might play an important role in regulating ecdysone synthesis and release during molting and metamorphosis in insects.
Collapse
Affiliation(s)
- Yaping Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingkun Gao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Wenlong Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Li Huang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuezhu Guo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
38
|
Mandikian D, Bocksteins E, Parajuli LK, Bishop HI, Cerda O, Shigemoto R, Trimmer JS. Cell type-specific spatial and functional coupling between mammalian brain Kv2.1 K+ channels and ryanodine receptors. J Comp Neurol 2014; 522:3555-74. [PMID: 24962901 DOI: 10.1002/cne.23641] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 11/08/2022]
Abstract
The Kv2.1 voltage-gated K+ channel is widely expressed throughout mammalian brain, where it contributes to dynamic activity-dependent regulation of intrinsic neuronal excitability. Here we show that somatic plasma membrane Kv2.1 clusters are juxtaposed to clusters of intracellular ryanodine receptor (RyR) Ca2+ -release channels in mouse brain neurons, most prominently in medium spiny neurons (MSNs) of the striatum. Electron microscopy-immunogold labeling shows that in MSNs, plasma membrane Kv2.1 clusters are adjacent to subsurface cisternae, placing Kv2.1 in close proximity to sites of RyR-mediated Ca2+ release. Immunofluorescence labeling in transgenic mice expressing green fluorescent protein in specific MSN populations reveals the most prominent juxtaposed Kv2.1:RyR clusters in indirect pathway MSNs. Kv2.1 in both direct and indirect pathway MSNs exhibits markedly lower levels of labeling with phosphospecific antibodies directed against the S453, S563, and S603 phosphorylation site compared with levels observed in neocortical neurons, although labeling for Kv2.1 phosphorylation at S563 was significantly lower in indirect pathway MSNs compared with those in the direct pathway. Finally, acute stimulation of RyRs in heterologous cells causes a rapid hyperpolarizing shift in the voltage dependence of activation of Kv2.1, typical of Ca2+ /calcineurin-dependent Kv2.1 dephosphorylation. Together, these studies reveal that striatal MSNs are distinct in their expression of clustered Kv2.1 at plasma membrane sites juxtaposed to intracellular RyRs, as well as in Kv2.1 phosphorylation state. Differences in Kv2.1 expression and phosphorylation between MSNs in direct and indirect pathways provide a cell- and circuit-specific mechanism for coupling intracellular Ca2+ release to phosphorylation-dependent regulation of Kv2.1 to dynamically impact intrinsic excitability.
Collapse
Affiliation(s)
- Danielle Mandikian
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, 95616
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang J, Xie Z, Gao J, Liu Y, Wang W, Huang L, Wang J. Molecular cloning and characterization of a ryanodine receptor gene in brown planthopper (BPH), Nilaparvata lugens (Stål). PEST MANAGEMENT SCIENCE 2014; 70:790-797. [PMID: 23893901 DOI: 10.1002/ps.3616] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Ryanodine receptors (RyRs) are a distinct class of intracellular calcium (Ca(2+)) release channel. The recent discovery of diamide insecticides has prompted studies on insect RyRs. However, information about the structure and function of insect RyRs is still limited. In this study, we isolated and characterized a full-length RyR cDNA (named NlRyR) from the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae), a serious rice pest throughout Asia. RESULTS The composite NlRyR gene contains an open reading frame of 15 423 bp encoding a protein of 5140 amino acid residues, which shares high sequence identity (78-81%) with other insect homologues, except for two regions (IDR1: 4379-4732; IDR2: 1307-1529) with markedly low identity (44-48 and 38-41%, respectively). All hallmarks of the RyR proteins are conserved in the NlRyR protein, including the RyR domain as well as mannosyltransferase, IP3 R and RyR (pfam02815) (MIR) and RyR and IP3 R homology (pfam01365) (RIH) domains. Expression analysis of NlRyR revealed significant differences in mRNA expression levels among N. lugens developmental stages. Furthermore, three alternative splicing sites were identified in NlRyR, one of which forms the mutually exclusive exons A/B and is conserved in various insect species. Diagnostic PCR assays showed that the splice variant containing exon A was predominantly detected in all developmental stages. CONCLUSION NlRyR may play an important role in the control of developmental processes of N. lugens. Alternative splicing may generate the functional diversity of NlRyR. The results provided the basis for further structural and functional characterization of NlRyR.
Collapse
Affiliation(s)
- Jian Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Yuan GR, Shi WZ, Yang WJ, Jiang XZ, Dou W, Wang JJ. Molecular characteristics, mRNA expression, and alternative splicing of a ryanodine receptor gene in the oriental fruit fly, Bactrocera dorsalis (Hendel). PLoS One 2014; 9:e95199. [PMID: 24740254 PMCID: PMC3989282 DOI: 10.1371/journal.pone.0095199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/24/2014] [Indexed: 01/13/2023] Open
Abstract
Ryanodine receptors (RyRs) are a distinct class of ligand-gated channels controlling the release of calcium from intracellular stores. The emergence of diamide insecticides, which selectively target insect RyRs, has promoted the study of insect RyRs. In the present study, the full-length RyR cDNA (BdRyR) was cloned and characterized from the oriental fruit fly, Bactrocera dorsalis (Hendel), a serious pest of fruits and vegetables throughout East Asia and the Pacific Rim. The cDNA of BdRyR contains a 15,420-bp open reading frame encoding 5,140 amino acids with a predicted molecular weight of 582.4 kDa and an isoelectric point of 5.38. BdRyR shows a high level of amino acid sequence identity (78 to 97%) to other insect RyR isoforms. All common structural features of the RyRs are present in the BdRyR, including a well-conserved C-terminal domain containing consensus calcium-binding EF-hands and six transmembrane domains, and a large N-terminal domain. Quantitative real-time PCR analyses revealed that BdRyR was expressed at the lowest and highest levels in egg and adult, respectively, and that the BdRyR expression levels in the third instar larva, pupa and adult were 166.99-, 157.56- and 808.56-fold higher, respectively, than that in the egg. Among different adult body parts, the highest expression level was observed in the thorax compared with the head and abdomen. In addition, four alternative splice sites were identified in the BdRyR gene, with the first, ASI, being located in the central part of the predicted second spore lysis A/RyR domain. Diagnostic PCR analyses revealed that alternative splice variants were generated not only in a tissue-specific manner but also in a developmentally regulated manner. These results lay the foundation for further understanding the structural and functional properties of BdRyR, and the molecular mechanisms for target site resistance in B. dorsalis.
Collapse
Affiliation(s)
- Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wen-Zhi Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wen-Jia Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Xuan-Zhao Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
41
|
Wan PJ, Guo WY, Yang Y, Lü FG, Lu WP, Li GQ. RNAi suppression of the ryanodine receptor gene results in decreased susceptibility to chlorantraniliprole in Colorado potato beetle Leptinotarsa decemlineata. JOURNAL OF INSECT PHYSIOLOGY 2014; 63:48-55. [PMID: 24607641 DOI: 10.1016/j.jinsphys.2014.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Leptinotarsadecemlineata is the most important pest in potato and causes serious yield loss each year. Chlorantraniliprole acts on insect ryanodine receptors (RyRs) and is among the most active compounds against L. decemlineata. Here we cloned and characterized a 15,792-bp full-length LdRyR cDNA that encoded a 5128-amino acid protein. LdRyR shares 85-92% amino acid similarities with other insect RyR homologues, and 59-61% similarities with those from Caenorhabditis elegans and Homo sapiens. All hallmarks of the RyR proteins are conserved in LdRyR. LdRyR has a MIR domain, two RIH domains, three SPRY domains, four copies of RyR domain and a RIH-associated domain in the N-terminus, and it possesses two consensus calcium ion-binding EF-hand motifs and six predicted transmembrane helices in the C-terminus. Temporal, spatial and tissue-specific expression patterns of LdRyR were evaluated. LdRyR expression level was increased constantly from egg to wandering stages, dropped in pupal stage and was increased again in the adult stage. It was widely expressed in the head, thorax and abdomen of day 3 fourth-instar larvae. Moreover, it was ubiquitously expressed in all inspected tissues including epidermis, foregut, midgut, ileum, rectum, fat body, ventral ganglia and Malpighian tubules in day 3 fourth-instar larvae. Dietary introduction of double-stranded RNA of LdRyR significantly reduced the mRNA levels of the target gene in the larvae and adults, respectively, and significantly decreased chlorantraniliprole-induced mortalities. Thus, our results suggested that LdRyR encoded a functional ryanodine receptor in L. decemlineata.
Collapse
Affiliation(s)
- Pin-Jun Wan
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei-Yan Guo
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yao Yang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei-Ping Lu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
42
|
Calmodulin modulates the termination threshold for cardiac ryanodine receptor-mediated Ca2+ release. Biochem J 2014; 455:367-75. [PMID: 23992453 DOI: 10.1042/bj20130805] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RyR2 (cardiac ryanodine receptor)-mediated Ca2+ release in cardiomyocytes terminates when the sarcoplasmic reticulum Ca2+ content depletes to a threshold level, known as the termination threshold. Despite its importance, little is known about the mechanism that regulates the termination threshold. CaM (calmodulin), by inhibiting RyR2, has been implicated in Ca2+-release termination, but whether CaM modulates the termination threshold is unknown. To this end, we monitored the endoplasmic reticulum Ca2+ dynamics in RyR2-expressing HEK (human embryonic kidney)-293 cells transfected with WT (wild-type) CaM or mutants. We found that WT CaM or CaM mutations which abolish Ca2+ binding to the N-lobe (N-terminal lobe) of CaM increased the termination threshold (i.e. facilitated termination), but had no effect on the activation threshold at which spontaneous Ca2+ release occurs. On the other hand, CaM mutations that diminish Ca2+ binding to both the N-lobe and C-lobe (C-terminal lobe), or the C-lobe only, decreased the termination threshold (i.e. delayed termination) with a similar activation threshold. Furthermore, deletion of residues 3583-3603 or point mutations (W3587A/L3591D/F3603A, W3587A, or L3591D) in the CaM-binding domain of RyR2 that are known to abolish or retain CaM binding all reduced the termination threshold without having a significant impact on the activation threshold. Interestingly, the RyR2-F3603A mutation affected both the activation and termination threshold. Collectively, these data indicate that CaM facilitates the termination of Ca2+ release by increasing the termination threshold, and that this action of CaM depends on Ca2+ binding to the C-lobe, but not to the N-lobe, of CaM. The results of the present study also suggest that the CaM-binding domain of RyR2 is an important determinant of Ca2+-release termination and activation.
Collapse
|
43
|
The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias. Nat Med 2014; 20:184-92. [PMID: 24441828 DOI: 10.1038/nm.3440] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
Spontaneous Ca(2+) release from intracellular stores is important for various physiological and pathological processes. In cardiac muscle cells, spontaneous store overload-induced Ca(2+) release (SOICR) can result in Ca(2+) waves, a major cause of ventricular tachyarrhythmias (VTs) and sudden death. The molecular mechanism underlying SOICR has been a mystery for decades. Here we show that a point mutation, E4872A, in the helix bundle crossing region (the proposed gate) of the cardiac ryanodine receptor (RyR2) completely abolishes luminal, but not cytosolic, Ca(2+) activation of RyR2. The introduction of metal-binding histidines at this site converts RyR2 into a luminal Ni(2+)-gated channel. Mouse hearts harboring a heterozygous RyR2 mutation at this site (E4872Q) are resistant to SOICR and are completely protected against Ca(2+)-triggered VTs. These data show that the RyR2 gate directly senses luminal (store) Ca(2+), explaining the regulation of RyR2 by luminal Ca(2+), the initiation of Ca(2+) waves and Ca(2+)-triggered arrhythmias. This newly identified store-sensing gate structure is conserved in all RyR and inositol 1,4,5-trisphosphate receptor isoforms.
Collapse
|
44
|
Yang Y, Wan PJ, Hu XX, Li GQ. RNAi mediated knockdown of the ryanodine receptor gene decreases chlorantraniliprole susceptibility in Sogatella furcifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 108:58-65. [PMID: 24485316 DOI: 10.1016/j.pestbp.2013.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/24/2013] [Accepted: 12/26/2013] [Indexed: 06/03/2023]
Abstract
The diamide insecticides activate ryanodine receptors (RyRs) to release and deplete intracellular calcium stores from the sarcoplasmic reticulum of muscles and the endoplasmic reticulum of many types of cells. They rapidly interrupt feeding of the target pest and eventually kill the pest due to starvation. However, information about the structure and function of insect RyRs is still limited. In this study, we isolated a 15,985bp full-length cDNA (named SfRyR) from Sogatella furcifera, a serious rice planthopper pest throughout Asia. SfRyR encodes a 5140-amino acid protein, which shares 78-97% sequence identities with other insect homologues, and less than 50% identities with Homo sapiens RyR1-3. All hallmarks of the RyR proteins are conserved in SfRyR. In the N-terminus, SfRyR has a MIR domain, two RIH domains, three SPRY domains, four copies of RyR repeated domain and a RIH-associated domain. In the C-terminus, SfRyR possesses two consensus calcium ion-binding EF-hand motifs, and six transmembrane helices. Temporal and spatial expression analysis showed that SfRyR was widely found in all development stages including egg, first through fifth instar nymphs, macropterous adult females and males. On day 2 fifth-instar nymphs, SfRyR was ubiquitously expressed in the head, thorax and abdomen. Dietary ingestion of dsSfRyR1 and dsSfRyR2 significantly reduced the mRNA level of SfRyR in the treated nymphs by 77.9% and 81.8% respectively, and greatly decreased chlorantraniliprole-induced mortality. Thus, our results suggested that SfRyR gene encoded a functional RyR that mediates chlorantraniliprole toxicity to S. furcifera.
Collapse
Affiliation(s)
- Yao Yang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Pin-Jun Wan
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing-Xing Hu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ion channels. Br J Pharmacol 2013; 170:1607-51. [PMID: 24528239 PMCID: PMC3892289 DOI: 10.1111/bph.12447] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
- *
Author for correspondence;
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - William A Catterall
- University of Washington, School of Medicine, Department of PharmacologyBox 357280, Seattle, WA 98195-7280, USA
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
46
|
Wang J, Liu Y, Gao J, Xie Z, Huang L, Wang W, Wang J. Molecular cloning and mRNA expression of a ryanodine receptor gene in the cotton bollworm, Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 107:327-333. [PMID: 24267694 DOI: 10.1016/j.pestbp.2013.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Ryanodine receptors (RyRs) are the targets of novel diamide insecticides. The cotton bollworm, Helicoverpa armigera, is one of the most important cotton pests in the world. In this study, we report the full-length RyR cDNA sequence (named as HaRyR) of H. armigera. The 16,083-bp contiguous sequence encoded 5, 142 amino acid residues, which shares 80% and 78% overall identities with its homologues in Nilaparvata lugens (NlRyR) and Drosophila melanogaster (DmRyR), respectively. All hallmarks of RyR proteins are conserved in the HaRyR, including the GXRXGGGXGD motif conserved in the Ca(2+) release channels and four copies of RyR domain unique to RyR channels. The previously identified seven lepidopteran-specific RyR residues were also found in HaRyR (N(4977), N(4979), N(4990), L(5005), L(5036), N(5068) and T(5119)). An amino acid sequence alignment showed that the N-terminal region of HaRyR (residues 188-295) shared high sequence identity with NlRyR (94%) and DmRyR (92%), and moderate sequence identity (47-50%) with three rabbit RyR isoforms, while the short segment of the C-terminal transmembrane region of HaRyR (residues 4632-4676) exhibited moderate sequence identity with NlRyR (69%) and DmRyR (67%), and low sequence identity (19-28%) with three rabbit RyR isoforms. In addition, expression analysis of HaRyR revealed that the mRNA expression level in eggs was significantly lower than in third instar larvae, pupae and adults, and anatomical regulation of HaRyR expression was also observed with the highest expression level in head compared with thorax and abdomen. Our results lay a foundation for comprehensive structural and functional characterization of HaRyR and for understanding of the molecular mechanisms of toxicity selectivity of diamide insecticides among different species.
Collapse
Affiliation(s)
- Jian Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhong X, Liu Y, Zhu L, Meng X, Wang R, Van Petegem F, Wagenknecht T, Chen SRW, Liu Z. Conformational dynamics inside amino-terminal disease hotspot of ryanodine receptor. Structure 2013; 21:2051-60. [PMID: 24139989 DOI: 10.1016/j.str.2013.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/22/2013] [Accepted: 09/11/2013] [Indexed: 11/15/2022]
Abstract
The N-terminal region of both skeletal and cardiac ryanodine receptor is a disease mutation hotspot. Recently, a crystal structure of the RyR1 fragment (residues 1-559) was solved. This N-terminal structure contains three separate domains, A, B, and C, and was docked into a central vestibule in a full-length RyR1 cryo-EM map. Here, we reconstructed three-dimensional cryo-EM structures of two GFP-tagged RyR2s with GFP inserted after residue Glu-310 and Ser-437, respectively. The structures of RyR2E310-GFP and RyR2S437-GFP displayed an extra mass on domain B and C, directly validating the predicted docking model. Next, we revealed domain movements in molecular dynamics flexible fitting models in both the closed and open state cryo-EM maps. To further probe the conformational changes, we generated FRET pairs by inserting CFP or YFP in two selected domains, FRET studies of three dual-insertion pairs and three co-expressed single-insertion pairs showed the dynamic structural changes within the N-terminal domains.
Collapse
Affiliation(s)
- Xiaowei Zhong
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu Y, Shahzad MF, Zhang L, Li F, Lin K. Amplifying long transcripts of ryanodine receptors of five agricultural pests by transcriptome analysis and gap filling. Genome 2013; 56:651-8. [PMID: 24299104 DOI: 10.1139/gen-2013-0127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ryanodine receptor (RyR) is an intracellular calcium release channel that plays a key role in excitation contraction coupling. Insect RyR is the target of diamide insecticides. Better understanding of insect RyR is necessary for studying the molecular mode of action and potential resistance mechanism of diamide insecticides. However, molecular manipulation of the full RyR gene is difficult because of its length (approximately 15 kb). At present, RyR genes have been reported only in a limited number of insects. Here, we developed an efficient strategy to amplify full-length transcripts of insect RyR genes. First, we searched the transcriptomes of five insects, Bemisia tabaci, Cnaphalocrocis medinalis, Chilo suppressalis, Laodelphgax striatellus, and Plutella xylostella, yielding 85 RyR contigs in total. Second, the relative positions of these contigs in RyR transcripts were determined by aligning them with 12 well-annotated RyRs. Third, we designed primers to fill gaps between contigs and used rapid amplification of cDNA ends (RACE) to amplify both 5'- and 3'-ends. Last, we assembled all fragments into long transcripts. As a result, full-length transcripts of three insects, C. suppressalis, L. striatellus, and P. xylostella, were obtained. The RyR transcript of B. tabaci was near full length, containing an intact ORF. Northern blot analysis indicated that RyR genes were expressed in all five insects. Sequence analyses showed that the amplified insect segments contained typical RyRs characteristics, such as EF-hand, motif GVRAGGGIGD, and six transmembrane domains. Seven lepidopteran-specific amino acid residues were found to be located in the C-terminal region of RyR proteins, which might be associated with the specificity of RyRs to diamide insecticides.
Collapse
Affiliation(s)
- Yonglei Liu
- a Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
49
|
Wu S, Wang F, Huang J, Fang Q, Shen Z, Ye G. Molecular and cellular analyses of a ryanodine receptor from hemocytes of Pieris rapae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:1-10. [PMID: 23603125 DOI: 10.1016/j.dci.2013.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/01/2013] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are a distinct class of ligand-gated calcium channels controlling the release of calcium from intracellular stores. Intracellular calcium level has a definite role in innate and adaptive immune signaling. However, very few information are accessible about calcium transients of invertebrate immunocytes, especially of insect hemocytes, the effector cells of insect immunity. In this study, we show that the RyR-stimulating agent flubendiamide inhibit hemocyte spreading and phagocytosis in the cabbage white butterfly, Pieris rapae. Furthermore, we cloned a cDNA encoding a ryanodine receptor (PrRyR) from the hemocytes of P. rapae. It encodes 5107 amino acids with a predicted molecular weight of 578.2 kDa. PrRyR shares a common feature with known RyRs: a well-conserved COOH-terminal domain with two consensus calcium-binding EF-hands and six transmembrane domains, and a large hydrophilic NH2-terminal domain. In the larval stage, PrRyR was highly expressed in epidermis tissue and also expressed in hemocytes at a moderate level. In the adult stage, PrRyR was expressed at high levels in thoraces and legs, while low levels in abdomens and antennae. Quantitative real-time PCR analysis showed that its expression did not display any significant change in response to bacterial challenge. Western blot analysis and immunohistochemistry assay displayed that PrRyR was detected and presented on hemocytes. We also showed that flubendiamide, a RyR-activating insecticide, induced Ca(2+) release and thereby confirmed functional expression of the PrRyR in the hemocytes of P. rapae.
Collapse
Affiliation(s)
- Shunfan Wu
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
50
|
Mak DOD, Vais H, Cheung KH, Foskett JK. Patch-clamp electrophysiology of intracellular Ca2+ channels. Cold Spring Harb Protoc 2013; 2013:787-97. [PMID: 24003191 DOI: 10.1101/pdb.top066217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The modulation of cytoplasmic free Ca(2+) concentration ([Ca(2+)]i) is a universal intracellular signaling pathway that regulates numerous cellular physiological processes. Ubiquitous intracellular Ca(2+)-release channels localized to the endoplasmic/sarcoplasmic reticulum-inositol 1,4,5-trisphosphate receptor (InsP3R) and ryanodine receptor (RyR) channels-play a central role in [Ca(2+)]i signaling in all animal cells. Despite their intracellular localization, electrophysiological studies of the single-channel permeation and gating properties of these Ca(2+)-release channels using the powerful patch-clamp approach have been possible by application of this technique to isolated nuclei because the channels are present in membranes of the nuclear envelope. Here we provide a concise description of how nuclear patch-clamp experiments have been used to study single-channel properties of different InsP3R channels in the outer nuclear membrane. We compare this with other methods for studying intracellular Ca(2+) release. We also briefly describe application of the technique to InsP3R channels in the inner nuclear membrane and to channels in the outer nuclear membrane of HEK293 cells expressing recombinant RyR.
Collapse
Affiliation(s)
- Don-On Daniel Mak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|