1
|
Mora S, Adegoke OAJ. The effect of a chemotherapy drug cocktail on myotube morphology, myofibrillar protein abundance, and substrate availability. Physiol Rep 2021; 9:e14927. [PMID: 34197700 PMCID: PMC8248921 DOI: 10.14814/phy2.14927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
Cachexia, a condition prevalent in many chronically ill patients, is characterized by weight loss, fatigue, and decreases in muscle mass and function. Cachexia is associated with tumor burden and disease-related malnutrition, but other studies implicate chemotherapy as being causative. We investigated the effects of a chemotherapy drug cocktail on myofibrillar protein abundance and synthesis, anabolic signaling mechanisms, and substrate availability. On day 4 of differentiation, L6 myotubes were treated with vehicle (1.4 μl/ml DMSO) or a chemotherapy drug cocktail (a mixture of cisplatin [20 μg/ml], leucovorin [10 μg/ml], and 5-fluorouracil [5-FLU; 50 μg/ml]) for 24-72 h. Compared to myotubes treated with vehicle, those treated with the drug cocktail showed 50%-80% reductions in the abundance of myofibrillar proteins, including myosin heavy chain-1, troponin, and tropomyosin (p < 0.05). Cells treated with only a mixture of cisplatin and 5-FLU had identical reductions in myofibrillar protein abundance. Myotubes treated with the drug cocktail also showed >50% reductions in the phosphorylation of AKTSer473 and of mTORC1 substrates ribosomal protein S6Ser235/236 , its kinase S6K1Thr389 and eukaryotic translation initiation factor 4E-binding protein 1 (all p < 0.05). Drug treatment impaired peptide chain initiation in myofibrillar protein fractions and insulin-stimulated glucose uptake (p = 0.06) but increased the expression of autophagy markers beclin-1 and microtubule-associated proteins 1A/1B light chain 3B (p < 0.05), and of apoptotic marker, cleaved caspase 3 (p < 0.05). Drug treatment reduced the expression of mitochondrial markers cytochrome oxidase and succinate dehydrogenase (p < 0.05). The observed profound negative effects of this chemotherapy drug cocktail on myotubes underlie a need for approaches that can reduce the negative effects of these drugs on muscle metabolism.
Collapse
Affiliation(s)
- Stephen Mora
- School of Kinesiology and Health Science and Muscle Health Research CentreYork UniversityTorontoOntarioCanada
| | - Olasunkanmi A. J. Adegoke
- School of Kinesiology and Health Science and Muscle Health Research CentreYork UniversityTorontoOntarioCanada
| |
Collapse
|
2
|
Apolipoprotein A-I enhances insulin-dependent and insulin-independent glucose uptake by skeletal muscle. Sci Rep 2019; 9:1350. [PMID: 30718702 PMCID: PMC6362284 DOI: 10.1038/s41598-018-38014-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/04/2018] [Indexed: 01/21/2023] Open
Abstract
Therapeutic interventions that increase plasma high density lipoprotein (HDL) and apolipoprotein (apo) A-I levels have been reported to reduce plasma glucose levels and attenuate insulin resistance. The present study asks if this is a direct effect of increased glucose uptake by skeletal muscle. Incubation of primary human skeletal muscle cells (HSKMCs) with apoA-I increased insulin-dependent and insulin–independent glucose uptake in a time- and concentration-dependent manner. The increased glucose uptake was accompanied by enhanced phosphorylation of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), the serine/threonine kinase Akt and Akt substrate of 160 kDa (AS160). Cell surface levels of the glucose transporter type 4, GLUT4, were also increased. The apoA-I-mediated increase in glucose uptake by HSKMCs was dependent on phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt, the ATP binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-B1). Taken together, these results establish that apoA-I increases glucose disposal in skeletal muscle by activating the IR/IRS-1/PI3K/Akt/AS160 signal transduction pathway. The findings suggest that therapeutic agents that increase apoA-I levels may improve glycemic control in people with type 2 diabetes.
Collapse
|
3
|
Kim CH, Shin JH, Hwang SJ, Choi YH, Kim DS, Kim CM. Schisandrae fructus enhances myogenic differentiation and inhibits atrophy through protein synthesis in human myotubes. Int J Nanomedicine 2016; 11:2407-15. [PMID: 27330287 PMCID: PMC4898430 DOI: 10.2147/ijn.s101299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Schisandrae fructus (SF) has recently been reported to increase skeletal muscle mass and inhibit atrophy in mice. We investigated the effect of SF extract on human myotube differentiation and its acting pathway. Various concentrations (0.1–10 μg/mL) of SF extract were applied on human skeletal muscle cells in vitro. Myotube area and fusion index were measured to quantify myotube differentiation. The maximum effect was observed at 0.5 μg/mL of SF extract, enhancing differentiation up to 1.4-fold in fusion index and 1.6-fold in myotube area at 8 days after induction of differentiation compared to control. Phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 and 70 kDa ribosomal protein S6 kinase, which initiate translation as downstream of mammalian target of rapamycin pathway, was upregulated in early phases of differentiation after SF treatment. SF also attenuated dexamethasone-induced atrophy. In conclusion, we show that SF augments myogenic differentiation and attenuates atrophy by increasing protein synthesis through mammalian target of rapamycin/70 kDa ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1 signaling pathway in human myotubes. SF can be a useful natural dietary supplement in increasing skeletal muscle mass, especially in the aged with sarcopenia and the patients with disuse atrophy.
Collapse
Affiliation(s)
- Cy Hyun Kim
- Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Center for Anti-Aging Industry, Pusan National University, Busan, Republic of Korea
| | - Jin-Hong Shin
- Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Sung Jun Hwang
- Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Center for Anti-Aging Industry, Pusan National University, Busan, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| | - Dae-Seong Kim
- Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Cheol Min Kim
- Center for Anti-Aging Industry, Pusan National University, Busan, Republic of Korea; Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
4
|
Hofmann BT, Hoxha E, Mohr E, Schulz K, Jücker M. Posttranscriptional regulation of the p85α adapter subunit of phosphatidylinositol 3-kinase in human leukemia cells. Leuk Lymphoma 2010; 52:467-77. [PMID: 21077741 DOI: 10.3109/10428194.2010.530360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Constitutive activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling has been observed in up to 70% of acute myeloid leukemia. Class I(A) PI3K consists of a catalytic subunit (p110α, p110β, p110δ) and an adapter subunit (p85α, p55α, p50α, p85β, p55γ). The p85α adapter subunit stabilizes the catalytic p110 subunit and recruits p110 to the plasma membrane. In addition, p85α inhibits the basal activity of p110α and can negatively regulate signal transduction, as shown for insulin and GM-CSF receptor signaling. Here, we describe that the expression of p85α is posttranscriptionally regulated in several human and murine leukemia cell lines and in a Hodgkin lymphoma cell line (CO) by translational repression. A detailed analysis of CO cells revealed that both wild type and a mutated p85α mRNA are detectable at similar ratios in the nucleus and polysomes. However, while the mutated p85α protein is expressed in CO cells, translation of the wild type p85α mRNA is completely inhibited. Ectopic expression of wild type p85α from a retroviral vector is suppressed in CO cells and in five out of six leukemia cell lines. Our data indicate that leukemia cells can regulate the expression of p85α by posttranscriptional regulation.
Collapse
Affiliation(s)
- Bianca T Hofmann
- Center of Experimental Medicine, Institute of Biochemistry and Molecular Biology I, Cellular Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Gu J, Orr N, Park SD, Katz LM, Sulimova G, MacHugh DE, Hill EW. A genome scan for positive selection in thoroughbred horses. PLoS One 2009; 4:e5767. [PMID: 19503617 PMCID: PMC2685479 DOI: 10.1371/journal.pone.0005767] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/22/2009] [Indexed: 01/10/2023] Open
Abstract
Thoroughbred horses have been selected for exceptional racing performance resulting in system-wide structural and functional adaptations contributing to elite athletic phenotypes. Because selection has been recent and intense in a closed population that stems from a small number of founder animals Thoroughbreds represent a unique population within which to identify genomic contributions to exercise-related traits. Employing a population genetics-based hitchhiking mapping approach we performed a genome scan using 394 autosomal and X chromosome microsatellite loci and identified positively selected loci in the extreme tail-ends of the empirical distributions for (1) deviations from expected heterozygosity (Ewens-Watterson test) in Thoroughbred (n = 112) and (2) global differentiation among four geographically diverse horse populations (F(ST)). We found positively selected genomic regions in Thoroughbred enriched for phosphoinositide-mediated signalling (3.2-fold enrichment; P<0.01), insulin receptor signalling (5.0-fold enrichment; P<0.01) and lipid transport (2.2-fold enrichment; P<0.05) genes. We found a significant overrepresentation of sarcoglycan complex (11.1-fold enrichment; P<0.05) and focal adhesion pathway (1.9-fold enrichment; P<0.01) genes highlighting the role for muscle strength and integrity in the Thoroughbred athletic phenotype. We report for the first time candidate athletic-performance genes within regions targeted by selection in Thoroughbred horses that are principally responsible for fatty acid oxidation, increased insulin sensitivity and muscle strength: ACSS1 (acyl-CoA synthetase short-chain family member 1), ACTA1 (actin, alpha 1, skeletal muscle), ACTN2 (actinin, alpha 2), ADHFE1 (alcohol dehydrogenase, iron containing, 1), MTFR1 (mitochondrial fission regulator 1), PDK4 (pyruvate dehydrogenase kinase, isozyme 4) and TNC (tenascin C). Understanding the genetic basis for exercise adaptation will be crucial for the identification of genes within the complex molecular networks underlying obesity and its consequential pathologies, such as type 2 diabetes. Therefore, we propose Thoroughbred as a novel in vivo large animal model for understanding molecular protection against metabolic disease.
Collapse
Affiliation(s)
- Jingjing Gu
- Animal Genomics Laboratory, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Nick Orr
- Animal Genomics Laboratory, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
- The Breakthrough Breast Cancer Research Centre, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Stephen D. Park
- Animal Genomics Laboratory, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Lisa M. Katz
- University Veterinary Hospital, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Galina Sulimova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - David E. MacHugh
- Animal Genomics Laboratory, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Emmeline W. Hill
- Animal Genomics Laboratory, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
6
|
Broholm C, Mortensen OH, Nielsen S, Akerstrom T, Zankari A, Dahl B, Pedersen BK. Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle. J Physiol 2008; 586:2195-201. [PMID: 18292129 DOI: 10.1113/jphysiol.2007.149781] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The leukaemia inhibitory factor (LIF) belongs to the interleukin (IL)-6 cytokine superfamily and is constitutively expressed in skeletal muscle. We tested the hypothesis that LIF expression in human skeletal muscle is regulated by exercise. Fifteen healthy young male volunteers performed either 3 h of cycle ergometer exercise at approximately 60% of VO2,max(n = 8) or rested (n = 7). Muscle biopsies were obtained from the vastus lateralis prior to exercise, immediately after exercise, and at 1.5, 3, 6 and 24 h post exercise. Control subjects had biopsy samples taken at the same time points as during the exercise trial. Skeletal muscle LIF mRNA increased immediately after the exercise and declined gradually during recovery. However, LIF protein was unchanged at the investigated time points. Moreover, we tested the hypothesis that LIF mRNA and protein expressions are modulated by calcium (Ca(2+)) in primary human skeletal myocytes. Treatment of myocytes with the Ca(2+) ionophore, ionomycin, for 6 h resulted in an increase in both LIF mRNA and LIF protein levels. This finding suggests that Ca(2+) may be involved in the regulation of LIF in endurance-exercised skeletal muscle. In conclusion, primary human skeletal myocytes have the capability to produce LIF in response to ionomycin stimulation and LIF mRNA levels increase in skeletal muscle following concentric exercise. The finding that the increase in LIF mRNA levels is not followed by a similar increase in skeletal muscle LIF protein suggests that other exercise stimuli or repetitive stimuli are necessary in order to induce a detectable accumulation of LIF protein.
Collapse
Affiliation(s)
- Christa Broholm
- Centre of Inflammation and Metabolism, Rigshospitalet - Section 7641, Tagensvej 20, DK-2100, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
7
|
Fröjdö S, Cozzone D, Vidal H, Pirola L. Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem J 2007; 406:511-8. [PMID: 17550345 PMCID: PMC2049032 DOI: 10.1042/bj20070236] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resveratrol, a polyphenol found in fruits, possesses chemopreventive and chemotherapeutic properties and has been shown to increase lifespan in yeast and metazoans, including mice. Genetic evidence and in vitro enzymatic measurements indicate that the deacetylase Sir2/SIRT1, an enzyme promoting stress resistance and aging, is the target of resveratrol. Similarly, down-regulation of insulin-like pathways, of which PI3K (phosphoinositide 3-kinase) is a key mediator, promotes longevity and is an attractive strategy to fight cancer. We show here that resveratrol inhibits, in vitro and in cultured muscle cell lines, class IA PI3K and its downstream signalling at the same concentration range at which it activates sirtuins. Our observations define class IA PI3K as a target of resveratrol that may contribute to the longevity-promoting and anticancer properties and identify resveratrol as a natural class-specific PI3K inhibitor.
Collapse
|
8
|
Moldes M, Beauregard G, Faraj M, Peretti N, Ducluzeau PH, Laville M, Rabasa-Lhoret R, Vidal H, Clément K. Adiponutrin gene is regulated by insulin and glucose in human adipose tissue. Eur J Endocrinol 2006; 155:461-8. [PMID: 16914601 DOI: 10.1530/eje.1.02229] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Adiponutrin is a new transmembrane protein specifically expressed in adipose tissue. In obese subjects, short- or long-term calorie restriction diets were associated with a reduction in adiponutrin gene expression. Adiponut.rin mRNA level was previously shown to be negatively correlated with fasting glucose plasma levels and associated with insulin sensitivity of non-diabetic obese and non-obese subjects. The purpose of the present work was to get more insight into the regulation of adiponutrin gene expression by insulin and/or glucose using clamp studies and to examine its potential dysregulation in subjects with a deterioration of glucose homeostasis. METHODS Adiponutrin gene expression was quantified by reverse transcriptase-quantitative PCR in s.c. adipose tissue of healthy lean subjects after an euglycemic hyperinsulinemic clamp (EGHI), a hyperglycemic euinsulinemic clamp, and a hyperglycemic hyperinsulinemic (HGHI) clamp. Adiponutrin gene expression was also analyzed in patients with different levels of insulin resistance. RESULTS During EGHI, insulin infusion induced adiponutrin gene expression 8.4-fold (P = 0.008). Its expression was also induced by glucose infusion, although to a lesser extend (2.2-fold, P = 0.03). Infusion of both insulin and glucose (HGHI) had an additive effect on the adiponutrin expression (tenfold, P = 0.008). In a pathological context, adiponutrin gene was highly expressed in the adipose tissue of type-1 diabetic patients with chronic hyperglycemia compared with healthy subjects. Conversely, adiponutrin gene expression was significantly reduced in type-2 diabetics (P = 0.01), but remained moderately regulated in these patients after the EGHI clamp (2.5-fold increased). CONCLUSION These results suggest a strong relationship between adiponutrin expression, insulin sensitivity, and glucose metabolism in human adipose tissue.
Collapse
Affiliation(s)
- Marthe Moldes
- Department of Endocrinology, Cancer and Metabolism, Institut Cochin, Paris F-75014, France, Inserm, U567, Paris F-75014, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rieusset J, Bouzakri K, Chevillotte E, Ricard N, Jacquet D, Bastard JP, Laville M, Vidal H. Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients. Diabetes 2004; 53:2232-41. [PMID: 15331532 DOI: 10.2337/diabetes.53.9.2232] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Interleukin-6 (IL-6) could be a possible mediator of insulin resistance. We investigated whether IL-6 could inhibit insulin signaling in human skeletal myotubes and whether suppressor of cytokine signaling 3 (SOCS-3) could be related to insulin resistance in vivo in humans. IL-6 inhibited insulin signaling and induced SOCS-3 expression in differentiated myotubes. SOCS-3 mRNA levels were significantly increased in the skeletal muscle of type 2 diabetic patients compared with control subjects and correlated with reduced insulin-stimulated glucose uptake. In contrast, SOCS-3 mRNA levels were reduced in muscle of obese nondiabetic subjects compared with type 2 diabetic patients, despite similar circulating concentrations of IL-6. Increased SOCS-3 mRNA levels in diabetes were not attributable to hyperglycemia, as type 1 diabetic patients had normal SOCS-3 mRNA expression in muscle. However, the combination of high glucose and IL-6 levels in type 2 diabetic patients may induce SOCS-3 expression, as has been seen in human muscle cells. In subcutaneous adipose tissue, SOCS-3 mRNA levels were increased in obese individuals and strongly correlated with IL-6 expression, supporting a paracrine effect of IL-6 on SOCS-3 expression in fat. Taken together, our results showed that SOCS-3 expression in human skeletal muscle in vivo is not related to insulin resistance in the presence of elevated IL-6 concentrations and suggest that cytokine action could differ in type 2 diabetic patients and nondiabetic obese subjects.
Collapse
Affiliation(s)
- Jennifer Rieusset
- INSERM U449/INRA U1235, Faculté de Médecine René Laennec, Rue G. Paradin, F-69372 Lyon, Cedex 08, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bouzakri K, Roques M, Debard C, Berbe V, Rieusset J, Laville M, Vidal H. WY-14643 and 9-cis-retinoic acid induce IRS-2/PI 3-kinase signalling pathway and increase glucose transport in human skeletal muscle cells: differential effect in myotubes from healthy subjects and Type 2 diabetic patients. Diabetologia 2004; 47:1314-1323. [PMID: 15292987 DOI: 10.1007/s00125-004-1428-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS To determine the effects of peroxisome proliferator-activated receptor α (PPARα) and retinoid X receptor (RXR) agonists on insulin action, we investigated the effects of Wy-14643 and 9-cis-retinoic acid (9-cis-RA) on insulin signalling and glucose uptake in human myotubes. METHODS Primary cultures of differentiated human skeletal muscle cells, established from healthy subjects and Type 2 diabetic patients, were used to study the effects of Wy-14643 and 9-cis-RA on the expression and activity of proteins involved in the insulin signalling cascade. Glucose transport was assessed by measuring the rate of [3H]2-deoxyglucose uptake. RESULTS Wy-14643 and 9-cis-RA increased IRS-2 and p85α phosphatidylinositol 3-kinase (PI 3-kinase) mRNA and protein expression in myotubes from non-diabetic and Type 2 diabetic subjects. This resulted in increased insulin stimulation of protein kinase B phosphorylation and increased glucose uptake in cells from control subjects. Myotubes from diabetic patients displayed marked alterations in the stimulation by insulin of the IRS-1/PI 3-kinase pathway. These alterations were associated with blunted stimulation of glucose transport. Treatment with Wy-14643 and 9-cis-RA did not restore these defects but increased the basal rate of glucose uptake. CONCLUSIONS/INTERPRETATION These results demonstrate that PPARα and RXR agonists can directly affect insulin signalling in human muscle cells. They also indicate that an increase in the IRS-2/PI 3-kinase pathway does not overcome the impaired stimulation of the IRS-1-dependent pathway and does not restore insulin-stimulated glucose uptake in myotubes from Type 2 diabetic patients.
Collapse
Affiliation(s)
- K Bouzakri
- INSERM U449/INRA U1235 and Human Nutrition Research Center of Lyon, R. Laennec Medical Faculty, Claude Bernard University of Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Gosmain Y, Lefai E, Ryser S, Roques M, Vidal H. Sterol regulatory element-binding protein-1 mediates the effect of insulin on hexokinase II gene expression in human muscle cells. Diabetes 2004; 53:321-9. [PMID: 14747281 DOI: 10.2337/diabetes.53.2.321] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin upregulates hexokinase II (HKII) expression in skeletal muscle, and this effect is altered in type 2 diabetic patients. This study was conducted to identify the transcription factors that mediate the effect of insulin on HKII gene expression in human muscle. We have cloned the promoter region of the HKII gene and investigated its regulation in a primary culture of human skeletal muscle cells. We defined a region (-369/-270) that conferred the transcriptional response to insulin. This region contains a sterol regulatory element (SRE) that interacted with the recombinant active form of SRE binding protein-1c (SREBP-1c) in electrophoretic mobility shift assays, and, using chromatin immunoprecipitation assay, we showed that endogenous SREBP-1 interacted directly with the promoter region of the HKII gene in human muscle cells. Mutation of the SRE sequence completely suppressed the response of the promoter to insulin stimulation. Finally, overexpression of the rodent mature form of SREBP-1c (adipocyte determination and differentiation factor-1 [ADD1]-403) was able to reproduce insulin action, whereas a dominant-negative form (ADD1-403R) prevented the effect of insulin on HKII promoter constructs. These results demonstrate that SREBP-1c is involved in the effect of insulin on HKII gene transcription and indicate that it is one of the mediators of insulin action on gene expression in human skeletal muscle.
Collapse
Affiliation(s)
- Yvan Gosmain
- Unité Mixte de Recherche Institut National de la Santé et de la Recherche Médicale (INSERM) Unit 449/Institut National de la Recherche Agronomique Unit 1235, Faculté de Médecine René Laennec, Université Claude Bernard Lyon, Lyon, France
| | | | | | | | | |
Collapse
|
12
|
Demozay D, Rocchi S, Mas JC, Grillo S, Pirola L, Chavey C, Van Obberghen E. Fatty aldehyde dehydrogenase: potential role in oxidative stress protection and regulation of its gene expression by insulin. J Biol Chem 2003; 279:6261-70. [PMID: 14638678 DOI: 10.1074/jbc.m312062200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Phosphatidylinositol 3-kinase signaling regulates the expression of several genes involved in lipid and glucose homeostasis; deregulation of these genes may contribute to insulin resistance and progression toward type 2 diabetes. By employing RNA arbitrarily primed-PCR to search for novel phosphatidylinositol 3-kinase-regulated genes in response to insulin in isolated rat adipocytes, we identified fatty aldehyde dehydrogenase (FALDH), a key component of the detoxification pathway of aldehydes arising from lipid peroxidation events. Among these latter events are oxidative stresses associated with insulin resistance and diabetes. Upon insulin injection, FALDH mRNA expression increased in rat liver and white adipose tissue and was impaired in two models of insulin-resistant mice, db/db and high fat diet mice. FALDH mRNA levels were 4-fold decreased in streptozotocin-treated rats, suggesting that FALDH deregulation occurs both in hyperinsulinemic insulin-resistant state and hypoinsulinemic type 1 diabetes models. Moreover, insulin treatment increases FALDH activity in hepatocytes, and expression of FALDH was augmented during adipocyte differentiation. Considering the detoxifying role of FALDH, its deregulation in insulin-resistant and type 1 diabetic models may contribute to the lipid-derived oxidative stress. To assess the role of FALDH in the detoxification of oxidized lipid species, we evaluated the production of reactive oxygen species in normal versus FALDH-overexpressing adipocytes. Ectopic expression of FALDH significantly decreased reactive oxygen species production in cells treated by 4-hydroxynonenal, the major lipid peroxidation product, suggesting that FALDH protects against oxidative stress associated with lipid peroxidation. Taken together, our observations illustrate the importance of FALDH in insulin action and its deregulation in states associated with altered insulin signaling.
Collapse
Affiliation(s)
- Damien Demozay
- INSERM U145, IFR 50, Faculté de Médecine, Avenue de Valombrose, 06107 Nice Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Bouzakri K, Roques M, Gual P, Espinosa S, Guebre-Egziabher F, Riou JP, Laville M, Le Marchand-Brustel Y, Tanti JF, Vidal H. Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 2003; 52:1319-25. [PMID: 12765939 DOI: 10.2337/diabetes.52.6.1319] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To understand better the defects in the proximal steps of insulin signaling during type 2 diabetes, we used differentiated human skeletal muscle cells in primary culture. When compared with cells from control subjects, myotubes established from patients with type 2 diabetes presented the same defects as those previously evidenced in vivo in muscle biopsies, including defective stimulation of phosphatidylinositol (PI) 3-kinase activity, decreased association of PI 3-kinase with insulin receptor substrate (IRS)-1 and reduced IRS-1 tyrosine phosphorylation during insulin stimulation. In contrast to IRS-1, the signaling through IRS-2 was not altered. Investigating the causes of the reduced tyrosine phosphorylation of IRS-1, we found a more than twofold increase in the basal phosphorylation of IRS-1 on serine 636 in myotubes from patients with diabetes. Concomitantly, there was a higher basal mitogen-activated protein kinase (MAPK) activity in these cells, and inhibition of the MAPKs with PD98059 strongly reduced the level of serine 636 phosphorylation. These results suggest that IRS-1 phosphorylation on serine 636 might be involved in the reduced phosphorylation of IRS-1 on tyrosine and in the subsequent alteration of insulin-induced PI 3-kinase activation. Moreover, increased MAPK activity seems to play a role in the phosphorylation of IRS-1 on serine residue in human muscle cells.
Collapse
Affiliation(s)
- Karim Bouzakri
- INSERM U449 and CRNHL, IFR 62, R. Laennec Medical Faculty, F-69370 Lyon Cedex 08, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Patel S, Lochhead PA, Rena G, Fumagalli S, Pende M, Kozma SC, Thomas G, Sutherland C. Insulin regulation of insulin-like growth factor-binding protein-1 gene expression is dependent on the mammalian target of rapamycin, but independent of ribosomal S6 kinase activity. J Biol Chem 2002; 277:9889-95. [PMID: 11784721 DOI: 10.1074/jbc.m109870200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin inhibits the expression of the hepatic insulin-like growth factor-binding protein-1 (IGFBP-1) and glucose-6-phosphatase (G6Pase) genes. The signaling pathway that mediates these events requires the activation of phosphatidylinositol 3-kinase, whereas transfection studies have suggested an involvement of Akt (protein kinase B) and FKHR, a transcription factor regulated by Akt. We now demonstrate that insulin repression of endogenous IGFBP-1 gene transcription was blocked by rapamycin or by amino acid starvation. Rapamycin inhibited the mammalian target of rapamycin (mTOR) and the subsequent activation of p70/p85 S6 protein kinase-1 (S6K1) by insulin, whereas amino acid depletion prevented insulin induction of these signaling molecules. Importantly, we demonstrate that insulin regulation of the thymine-rich insulin response element of the IGFBP-1 promoter was also inhibited by rapamycin. However, sustained activation of S6K1 did not repress this promoter. In addition, rapamycin did not affect insulin regulation of G6Pase expression or Akt activation. We propose that these observations indicate that an mTOR-dependent, but S6K-independent mechanism regulates the suppression of IGFBP-1 (but not G6Pase) gene expression by insulin. Therefore, although the insulin-responsive sequence of the G6Pase gene promoter is related to that of the IGFBP-1 promoter, the signaling pathways that mediate suppression of these genes are distinct.
Collapse
Affiliation(s)
- Satish Patel
- Division of Cellular Signalling, School of Life Sciences, Wellcome Trust Biocentre/Medical Sciences Institute Complex, Dow Street, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Miakotina OL, Goss KL, Snyder JM. Insulin utilizes the PI 3-kinase pathway to inhibit SP-A gene expression in lung epithelial cells. Respir Res 2002; 3:27. [PMID: 12537604 PMCID: PMC150512 DOI: 10.1186/rr191] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2002] [Revised: 06/06/2002] [Accepted: 07/17/2002] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND It has been proposed that high insulin levels may cause delayed lung development in the fetuses of diabetic mothers. A key event in lung development is the production of adequate amounts of pulmonary surfactant. Insulin inhibits the expression of surfactant protein A (SP-A), the major surfactant-associated protein, in lung epithelial cells. In the present study, we investigated the signal transduction pathways involved in insulin inhibition of SP-A gene expression. METHODS H441 cells, a human lung adenocarcinoma cell line, or human fetal lung explants were incubated with or without insulin. Transcription run-on assays were used to determine SP-A gene transcription rates. Northern blot analysis was used to examine the effect of various signal transduction inhibitors on SP-A gene expression. Immunoblot analysis was used to evaluate the levels and phosphorylation states of signal transduction protein kinases. RESULTS Insulin decreased SP-A gene transcription in human lung epithelial cells within 1 hour. Insulin did not affect p44/42 mitogen-activated protein kinase (MAPK) phosphorylation and the insulin inhibition of SP-A mRNA levels was not affected by PD98059, an inhibitor of the p44/42 MAPK pathway. In contrast, insulin increased p70 S6 kinase Thr389 phosphorylation within 15 minutes. Wortmannin or LY294002, both inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase), or rapamycin, an inhibitor of the activation of p70 S6 kinase, a downstream effector in the PI 3-kinase pathway, abolished or attenuated the insulin-induced inhibition of SP-A mRNA levels. CONCLUSION Insulin inhibition of SP-A gene expression in lung epithelial cells probably occurs via the rapamycin-sensitive PI 3-kinase signaling pathway.
Collapse
Affiliation(s)
- Olga L Miakotina
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109, USA
| | - Kelli L Goss
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109, USA
| | - Jeanne M Snyder
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109, USA
| |
Collapse
|
16
|
Eto K, Yamashita T, Tsubamoto Y, Terauchi Y, Hirose K, Kubota N, Yamashita S, Taka J, Satoh S, Sekihara H, Tobe K, Iino M, Noda M, Kimura S, Kadowaki T. Phosphatidylinositol 3-kinase suppresses glucose-stimulated insulin secretion by affecting post-cytosolic [Ca(2+)] elevation signals. Diabetes 2002; 51:87-97. [PMID: 11756327 DOI: 10.2337/diabetes.51.1.87] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The role of phosphatidylinositol (PI) 3-kinase in the regulation of pancreatic beta-cell function was investigated. PI 3-kinase activity in p85 alpha regulatory subunit-deficient (p85 alpha(-/-)) islets was decreased to approximately 20% of that in wild-type controls. Insulin content and mass of rough endoplasmic reticula were decreased in beta-cells from p85 alpha(-/-) mice with increased insulin sensitivity. However, p85 alpha(-/-) beta-cells exhibited a marked increase in the insulin secretory response to higher concentrations of glucose. When PI 3-kinase in wild-type islets was suppressed by wortmannin or LY294002, the secretion was also substantially potentiated. Wortmannin's potentiating effect was not due to augmentation in glucose metabolism or cytosolic [Ca(2+)] elevation. Results of p85 alpha(-/-) islets and wortmannin-treated wild-type islets stimulated with diazoxide and KCl showed that inhibition of PI 3-kinase activity exerted its effect on secretion, at least in part, distal to a cytosolic [Ca(2+)] elevation. These results suggest that PI 3-kinase activity normally plays a crucial role in the suppression of glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Kazuhiro Eto
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lefai E, Roques M, Vega N, Laville M, Vidal H. Expression of the splice variants of the p85alpha regulatory subunit of phosphoinositide 3-kinase in muscle and adipose tissue of healthy subjects and type 2 diabetic patients. Biochem J 2001; 360:117-26. [PMID: 11695998 PMCID: PMC1222208 DOI: 10.1042/0264-6021:3600117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The regulation by insulin of the expression of the p85alpha regulatory subunit of phosphoinositide 3-kinase (PI 3-kinase) is impaired in skeletal muscle and adipose tissue of type 2 diabetic patients. The gene encoding p85alpha (named grb-1) can generate several variants by alternative splicing, all being able to activate the p110 catalytic subunits of PI 3-kinase. Our aims were (i) to determine the mRNA expression profiles of these variants in human skeletal muscle and adipose tissue; (ii) to investigate the effect of insulin on their expression in vivo and in vitro in muscle and (iii) to verify whether this regulation is defective in type 2 diabetes. We determined the human genomic organization of grb-1 and set up reverse transcriptase competitive PCR assays for the quantification of each mRNA variant. In muscle, p85alpha and p50alpha mRNAs were the most abundant, and p55alpha represented less than 20% of all grb-1-derived mRNAs. In adipose tissue, p85alpha was expressed predominantly and p55alpha mRNA was not detectable. These expression profiles were not different in type 2 diabetics. During a 3 h hyperinsulinaemic clamp, insulin increased the mRNA expression of the three variants in muscle of control subjects. In diabetic patients, the effect of insulin on p85alpha and p50alpha mRNAs was blunted, and largely reduced on p55alpha transcripts. In cultured human myotubes, up-regulation of p85alpha, p55alpha and p50alpha mRNAs by insulin was abolished by LY294002 (10 microM) and by rapamycin (50 nM), suggesting that the PI 3-kinase/protein kinase B/p70 S6 kinase pathway could be involved in the stimulation of grb-1 gene expression by insulin in human muscle cells.
Collapse
Affiliation(s)
- E Lefai
- INSERM U.449 and Lyon Human Nutrition Research Centre, Faculty of Medicine R. Laennec, F-69372 Lyon Cedex 08, France.
| | | | | | | | | |
Collapse
|
18
|
Rieusset J, Roques M, Bouzakri K, Chevillotte E, Vidal H. Regulation of p85alpha phosphatidylinositol-3-kinase expression by peroxisome proliferator-activated receptors (PPARs) in human muscle cells. FEBS Lett 2001; 502:98-102. [PMID: 11583119 DOI: 10.1016/s0014-5793(01)02674-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Regulation of p85a phosphatidylinositol-3-kinase (p85alphaPI-3K) expression by peroxisome proliferator-activated receptor (PPAR) activators was studied in human skeletal muscle cells. Activation of PPARgamma or PPARbeta did not modify the expression of p85alphaPI-3K. In contrast, activation of PPARalpha increased p85alphaPI-3K mRNA. This effect was potentiated by 9-cis-retinoic acid, an activator of RXR. Up-regulation of p85alphaPI-3K gene expression resulted in a rise in p85alphaPI-3K protein level and in an increase in insulin-induced PI3-kinase activity. According to the role of p85alphaPI-3K in insulin action, these results suggest that drugs with dual action on both PPARgamma and PPARalpha can be of interest for the treatment of insulin resistance.
Collapse
Affiliation(s)
- J Rieusset
- INSERM U449, Faculté de Médecine René Laennec, Université Claude Bernard Lyon-1, France
| | | | | | | | | |
Collapse
|
19
|
Konu Ö, Kane JK, Barrett T, Vawter MP, Chang R, Ma JZ, Donovan DM, Sharp B, Becker KG, Li MD. Region-specific transcriptional response to chronic nicotine in rat brain. Brain Res 2001; 909:194-203. [PMID: 11478936 PMCID: PMC3098570 DOI: 10.1016/s0006-8993(01)02685-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Even though nicotine has been shown to modulate mRNA expression of a variety of genes, a comprehensive high-throughput study of the effects of nicotine on the tissue-specific gene expression profiles has been lacking in the literature. In this study, cDNA microarrays containing 1117 genes and ESTs were used to assess the transcriptional response to chronic nicotine treatment in rat, based on four brain regions, i.e. prefrontal cortex (PFC), nucleus accumbens (NAs), ventral tegmental area (VTA), and amygdala (AMYG). On the basis of a non-parametric resampling method, an index (called jackknifed reliability index, JRI) was proposed, and employed to determine the inherent measurement error across multiple arrays used in this study. Upon removal of the outliers, the mean correlation coefficient between duplicate measurements increased to 0.978+/-0.0035 from 0.941+/-0.045. Results from principal component analysis and pairwise correlations suggested that brain regions studied were highly similar in terms of their absolute expression levels, but exhibited divergent transcriptional responses to chronic nicotine administration. For example, PFC and NAs were significantly more similar to each other (r=0.7; P<10(-14)) than to either VTA or AMYG. Furthermore, we confirmed our microarray results for two representative genes, i.e. the weak inward rectifier K(+) channel (TWIK-1), and phosphate and tensin homolog (PTEN) by using real-time quantitative RT-PCR technique. Finally, a number of genes, involved in MAPK, phosphatidylinositol, and EGFR signaling pathways, were identified and proposed as possible targets in response to nicotine administration.
Collapse
Affiliation(s)
- Özlen Konu
- Department of Pharmacology, University of Tennessee College of Medicine, 874 Union Avenue, Memphis, TN 38163, USA
| | - Justin K. Kane
- Department of Pharmacology, University of Tennessee College of Medicine, 874 Union Avenue, Memphis, TN 38163, USA
| | - Tanya Barrett
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Marquis P. Vawter
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ruying Chang
- Department of Pharmacology, University of Tennessee College of Medicine, 874 Union Avenue, Memphis, TN 38163, USA
| | - Jennie Z. Ma
- Division of Biostatistics, Department of Preventive Medicine, University of Tennessee College of Medicine, Memphis, TN 38163, USA
| | - David M. Donovan
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Burt Sharp
- Department of Pharmacology, University of Tennessee College of Medicine, 874 Union Avenue, Memphis, TN 38163, USA
| | - Kevin G. Becker
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ming D. Li
- Department of Pharmacology, University of Tennessee College of Medicine, 874 Union Avenue, Memphis, TN 38163, USA
- Corresponding author. Tel.: +1-901-448-6019; fax: +1-901-448-7206. (M.D. Li)
| |
Collapse
|
20
|
Bogan JS, McKee AE, Lodish HF. Insulin-responsive compartments containing GLUT4 in 3T3-L1 and CHO cells: regulation by amino acid concentrations. Mol Cell Biol 2001; 21:4785-806. [PMID: 11416153 PMCID: PMC87167 DOI: 10.1128/mcb.21.14.4785-4806.2001] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2000] [Accepted: 04/17/2001] [Indexed: 01/14/2023] Open
Abstract
In fat and muscle, insulin stimulates glucose uptake by rapidly mobilizing the GLUT4 glucose transporter from a specialized intracellular compartment to the plasma membrane. We describe a method to quantify the relative proportion of GLUT4 at the plasma membrane, using flow cytometry to measure a ratio of fluorescence intensities corresponding to the cell surface and total amounts of a tagged GLUT4 reporter in individual living cells. Using this assay, we demonstrate that both 3T3-L1 and CHO cells contain intracellular compartments from which GLUT4 is rapidly mobilized by insulin and that the initial magnitude and kinetics of redistribution to the plasma membrane are similar in these two cell types when they are cultured identically. Targeting of GLUT4 to a highly insulin-responsive compartment in CHO cells is modulated by culture conditions. In particular, we find that amino acids regulate distribution of GLUT4 to this kinetically defined compartment through a rapamycin-sensitive pathway. Amino acids also modulate the magnitude of insulin-stimulated translocation in 3T3-L1 adipocytes. Our results indicate a novel link between glucose and amino acid metabolism.
Collapse
Affiliation(s)
- J S Bogan
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
21
|
Ducluzeau PH, Perretti N, Laville M, Andreelli F, Vega N, Riou JP, Vidal H. Regulation by insulin of gene expression in human skeletal muscle and adipose tissue. Evidence for specific defects in type 2 diabetes. Diabetes 2001; 50:1134-42. [PMID: 11334418 DOI: 10.2337/diabetes.50.5.1134] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Defective regulation of gene expression may be involved in the pathogenesis of type 2 diabetes. We have characterized the concerted regulation by insulin (3-h hyperinsulinemic clamp) of the expression of 10 genes related to insulin action in skeletal muscle and in subcutaneous adipose tissue, and we have verified whether a defective regulation of some of them could be specifically encountered in tissues of type 2 diabetic patients. Basal mRNA levels (determined by reverse transcriptase-competitive polymerase chain reaction) of insulin receptor, insulin receptor substrate-1, p85alpha phosphatidylinositol 3-kinase (PI3K), p110alphaPI3K, p110betaPI3K, GLUT4, glycogen synthase, and sterol regulatory-element-binding protein-1c (SREBP-1c) were similar in muscle of control (n = 17), type 2 diabetic (n = 9), type 1 diabetic (n = 9), and nondiabetic obese (n = 9) subjects. In muscle, the expression of hexokinase II was decreased in type 2 diabetic patients (P < 0.01). In adipose tissue, SREBP-1c (P < 0.01) mRNA expression was reduced in obese (nondiabetic and type 2 diabetic) subjects and was negatively correlated with the BMI of the subjects (r = -0.63, P = 0.02). Insulin (+/-1,000 pmol/l) induced a two- to threefold increase (P < 0.05) in hexokinase II, p85alphaPI3K, and SREBP-1c mRNA levels in muscle and in adipose tissue in control subjects, in insulin-resistant nondiabetic obese patients, and in hyperglycemic type 1 diabetic subjects. Upregulation of these genes was completely blunted in type 2 diabetic patients. This study thus provides evidence for a specific defect in the regulation of a group of important genes in response to insulin in peripheral tissues of type 2 diabetic patients.
Collapse
Affiliation(s)
- P H Ducluzeau
- Institut National de la Santé et de la Recherche Médicale INSERM U.449, Faculty of Medicine R. Laennec, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Chevillotte E, Rieusset J, Roques M, Desage M, Vidal H. The regulation of uncoupling protein-2 gene expression by omega-6 polyunsaturated fatty acids in human skeletal muscle cells involves multiple pathways, including the nuclear receptor peroxisome proliferator-activated receptor beta. J Biol Chem 2001; 276:10853-60. [PMID: 11278377 DOI: 10.1074/jbc.m008010200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acids have been postulated to regulate uncoupling protein (UCP) gene expression in skeletal muscle in vivo. We have identified, at least in part, the mechanism by which polyunsaturated fatty acids increase UCP-2 expression in primary culture of human muscle cells. omega-6 fatty acids and arachidonic acid induced a 3-fold rise in UCP-2 mRNA levels possibly through transcriptional activation. This effect was prevented by indomethacin and mimicked by prostaglandin (PG) E(2) and carbaprostacyclin PGI(2), consistent with a cyclooxygenase-mediated process. Incubation of myotubes for 6 h with 100 micrometer arachidonic acid resulted in a 150-fold increase in PGE(2) and a 15-fold increase in PGI(2) in the culture medium. Consistent with a role of cAMP and protein kinase A, both prostaglandins induced a marked accumulation of cAMP in human myotubes, and forskolin reproduced the effect of arachidonic acid on UCP-2 mRNA expression. Inhibition of protein kinase A with H-89 suppressed the effect of PGE(2), whereas cPGI(2) and arachidonic acid were still able to increase ucp-2 gene expression, suggesting additional mechanisms. We found, however, that the MAP kinase pathway was not involved. Prostaglandins, particularly PGI(2), are potent activators of the peroxisome proliferator-activated receptors. A specific agonist of peroxisome proliferator-activated receptor (PPAR) beta (L165041) increased UCP-2 mRNA levels in myotubes, whereas activation of PPARalpha or PPARgamma was ineffective. These results suggest thus that ucp-2 gene expression is regulated by omega-6 fatty acids in human muscle cells through mechanisms involving at least protein kinase A and the nuclear receptor PPARbeta.
Collapse
Affiliation(s)
- E Chevillotte
- INSERM U449, Faculté de Médecine René Laennec, Université Claude Bernard Lyon-1, and CRNHL Faculté de Médecine René Laennec, Université Claude Bernard Lyon-1, 69372 Lyon, France
| | | | | | | | | |
Collapse
|
23
|
Kausch C, Krützfeldt J, Witke A, Rettig A, Bachmann O, Rett K, Matthaei S, Machicao F, Häring HU, Stumvoll M. Effects of troglitazone on cellular differentiation, insulin signaling, and glucose metabolism in cultured human skeletal muscle cells. Biochem Biophys Res Commun 2001; 280:664-74. [PMID: 11162573 DOI: 10.1006/bbrc.2000.4216] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the immediate effect of thiazolidinediones on human skeletal muscle, differentiated human myotubes were acutely (1 day) and myoblasts chronically (during the differentiation process) treated with troglitazone (TGZ). Chronic TGZ treatment resulted in loss of the typical multinucleated phenotype. The increase of muscle markers typically observed during differentiation was suppressed, while adipocyte markers increased markedly. Chronic TGZ treatment increased insulin-stimulated phosphatidylinositol (PI) 3-kinase activity and membranous protein kinase B/Akt (PKB/Akt) Ser-473 phosphorylation more than 4-fold. Phosphorylation of p42/44 mitogen-activated protein kinase (42/44 MAPK/ERK) was unaltered. Basal glucose uptake as well as both basal and insulin-stimulated glycogen synthesis increased approximately 1.6- and approximately 2.5-fold after chronic TGZ treatment, respectively. A 2-fold stimulation of PI 3-kinase but no other significant TGZ effect was found after acute TGZ treatment. In conclusion, chronic TGZ treatment inhibited myogenic differentiation of that human muscle while inducing adipocyte-specific gene expression. The effects of chronic TGZ treatment on basal glucose transport may in part be secondary to this transdifferentiation. The enhancing effect on PI 3-kinase and PKB/Akt involved in both differentiation and glycogen synthesis appears to be pivotal in the cellular action of TGZ.
Collapse
MESH Headings
- Adipocytes/cytology
- Adipocytes/drug effects
- Adipocytes/metabolism
- Base Sequence
- Biomarkers
- Cell Differentiation/drug effects
- Cells, Cultured
- Chromans/pharmacology
- DNA Primers/genetics
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Gene Expression/drug effects
- Glucose/metabolism
- Glucose Transporter Type 1
- Glucose Transporter Type 4
- Glycogen/biosynthesis
- Humans
- Hypoglycemic Agents/pharmacology
- Insulin/metabolism
- Insulin Resistance
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Monosaccharide Transport Proteins/genetics
- Monosaccharide Transport Proteins/metabolism
- Muscle Proteins
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Thiazoles/pharmacology
- Thiazolidinediones
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Troglitazone
Collapse
Affiliation(s)
- C Kausch
- Department of Endocrinology, Metabolism, and Pathobiochemistry, Eberhard-Karls-Universität, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Barbe P, Larrouy D, Boulanger C, Chevillotte E, Viguerie N, Thalamas C, Oliva Trastoy M, Roques M, Vidal H, Langin D. Triiodothyronine-mediated up-regulation of UCP2 and UCP3 mRNA expression in human skeletal muscle without coordinated induction of mitochondrial respiratory chain genes. FASEB J 2001; 15:13-15. [PMID: 11099489 DOI: 10.1096/fj.00-0502fje] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Triiodothyronine (T3) increases mitochondrial respiration and promotes the uncoupling between oxygen consumption and ATP synthesis. T3 effect is mediated partly through transcriptional control of genes encoding mitochondrial proteins. We determined the effect of T3 on mRNA levels of uncoupling proteins (UCP) and proteins involved in the biogenesis of the respiratory chain in human skeletal muscle and on UCP2 mRNA expression in adipose tissue. Ten young, healthy males received 75 to 100 5g of T3 per day for 14 days. The increase in plasma-free T3 levels was associated with an increase of resting metabolic rate and a decrease of respiratory quotient. In skeletal muscle, treatment with T3 induced a twofold increase of both UCP2 and UCP3 mRNA levels (p c oxidase subunits 2 and 4, nuclear respiratory factor 1, mitochondrial transcription factor A, and the co-activator PGC1 did not change during the treatment. In adipose tissue, UCP2 mRNA levels increased threefold. The direct effect of T3 on skeletal muscle an d adipose tissue UCP2 and UCP3 mRNA expression was demonstrated in vitro in human primary cultures. Our data show that T3 induces UCP2 and UCP3 mRNA expression in humans. In skeletal muscle, UCP regulation by T3 is not associated with the transcriptional regulation of respiratory chain proteins.
Collapse
Affiliation(s)
- P Barbe
- INSERM Unit 317, Institut Louis Bugnard, Université Paul Sabatier, Hôpital Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|