1
|
Tian Y, Zhang P, Mou Y, Yang W, Zhang J, Li Q, Dou X. Silencing Notch4 promotes tumorigenesis and inhibits metastasis of triple-negative breast cancer via Nanog and Cdc42. Cell Death Discov 2023; 9:148. [PMID: 37149651 PMCID: PMC10164131 DOI: 10.1038/s41420-023-01450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
Elucidation of individual Notch protein biology in specific cancer is crucial to develop safe, effective, and tumor-selective Notch-targeting therapeutic reagents for clinical use [1]. Here, we explored the Notch4 function in triple-negative breast cancer (TNBC). We found that silencing Notch4 enhanced tumorigenic ability in TNBC cells via upregulating Nanog expression, a pluripotency factor of embryonic stem cells. Intriguingly, silencing Notch4 in TNBC cells suppressed metastasis via downregulating Cdc42 expression, a key molecular for cell polarity formation. Notably, downregulation of Cdc42 expression affected Vimentin distribution, but not Vimentin expression to inhibit EMT shift. Collectively, our results show that silencing Notch4 enhances tumorigenesis and inhibits metastasis in TNBC, indicating that targeting Notch4 may not be a potential strategy for drug discovery in TNBC.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Peipei Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Yajun Mou
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Wenxiu Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Junhong Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Qing Li
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Xiaowei Dou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Kreider-Letterman G, Castillo A, Mahlandt EK, Goedhart J, Rabino A, Goicoechea S, Garcia-Mata R. ARHGAP17 regulates the spatiotemporal activity of Cdc42 at invadopodia. J Cell Biol 2022; 222:213782. [PMID: 36571786 PMCID: PMC9794838 DOI: 10.1083/jcb.202207020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 11/28/2022] [Indexed: 12/27/2022] Open
Abstract
Invadopodia formation is regulated by Rho GTPases. However, the molecular mechanisms that control Rho GTPase signaling at invadopodia remain poorly understood. Here, we have identified ARHGAP17, a Cdc42-specific RhoGAP, as a key regulator of invadopodia in breast cancer cells and characterized a novel ARHGAP17-mediated signaling pathway that controls the spatiotemporal activity of Cdc42 during invadopodia turnover. Our results show that during invadopodia assembly, ARHGAP17 localizes to the invadopodia ring and restricts the activity of Cdc42 to the invadopodia core, where it promotes invadopodia growth. Invadopodia disassembly starts when ARHGAP17 translocates from the invadopodia ring to the core, in a process that is mediated by its interaction with the Cdc42 effector CIP4. Once at the core, ARHGAP17 inactivates Cdc42 to promote invadopodia disassembly. Our results in invadopodia provide new insights into the coordinated transition between the activation and inactivation of Rho GTPases.
Collapse
Affiliation(s)
| | - Abel Castillo
- https://ror.org/01pbdzh19Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Eike K. Mahlandt
- https://ror.org/04dkp9463Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Joachim Goedhart
- https://ror.org/04dkp9463Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Agustin Rabino
- https://ror.org/01pbdzh19Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Silvia Goicoechea
- https://ror.org/01pbdzh19Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Rafael Garcia-Mata
- https://ror.org/01pbdzh19Department of Biological Sciences, University of Toledo, Toledo, OH, USA,Correspondence to Rafael Garcia-Mata:
| |
Collapse
|
3
|
CIP4 targeted to recruit GTP-Cdc42 involving in invadopodia formation via NF-κB signaling pathway promotes invasion and metastasis of CRC. Mol Ther Oncolytics 2022; 24:873-886. [PMID: 35317515 PMCID: PMC8924540 DOI: 10.1016/j.omto.2022.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family, which plays an important role in regulating cell membrane and actin, has been reported to interact with Cdc42 and be closely associated with tumor invadopodia formation. In this study, we found that CIP4 expression was significantly higher in human CRC tissues and correlated with the CRC infiltrating depth and metastasis, as well as the lower survival rate in patients. In cultured CRC cells, knockdown of CIP4 inhibited cell migration and invasion ability in vitro and tumor metastasis in vivo, while the overexpression of CIP4 promoted invadopodia formation and matrix degradation ability. We then identified GTP-Cdc42 as a directly interactive protein of CIP4, which was upregulated and recruited by CIP4. Furthermore, activated NF-κB signaling pathway was found in CIP4 overexpression of CRC cells contributing to invadopodia formation, while the inhibition of either CIP4 or Cdc42 led to the suppression of the NF-κB pathway and resulted in a decreased quantity of invadopodia. Our findings suggested that CIP4 targets to recruit GTP-Cdc42 and directly combines with it to accelerate invadopodia formation and function by activating NF-κB signaling pathway, thus promoting CRC infiltration and metastasis.
Collapse
|
4
|
Rivers E, Rai R, Lötscher J, Hollinshead M, Markelj G, Thaventhiran J, Worth A, Cavazza A, Hess C, Bajaj-Elliott M, Thrasher AJ. Wiskott Aldrich syndrome protein regulates non-selective autophagy and mitochondrial homeostasis in human myeloid cells. eLife 2020; 9:55547. [PMID: 33135633 PMCID: PMC7673780 DOI: 10.7554/elife.55547] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022] Open
Abstract
The actin cytoskeletal regulator Wiskott Aldrich syndrome protein (WASp) has been implicated in maintenance of the autophagy-inflammasome axis in innate murine immune cells. Here, we show that WASp deficiency is associated with impaired rapamycin-induced autophagosome formation and trafficking to lysosomes in primary human monocyte-derived macrophages (MDMs). WASp reconstitution in vitro and in WAS patients following clinical gene therapy restores autophagic flux and is dependent on the actin-related protein complex ARP2/3. Induction of mitochondrial damage with CCCP, as a model of selective autophagy, also reveals a novel ARP2/3-dependent role for WASp in formation of sequestrating actin cages and maintenance of mitochondrial network integrity. Furthermore, mitochondrial respiration is suppressed in WAS patient MDMs and unable to achieve normal maximal activity when stressed, indicating profound intrinsic metabolic dysfunction. Taken together, we provide evidence of new and important roles of human WASp in autophagic processes and immunometabolic regulation, which may mechanistically contribute to the complex WAS immunophenotype.
Collapse
Affiliation(s)
- Elizabeth Rivers
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Rajeev Rai
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jonas Lötscher
- Department of Biomedicine, Immunobiology, University of Basel, Basel, Switzerland
| | | | - Gasper Markelj
- Department of Allergy, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - James Thaventhiran
- Medical Research Council-Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Austen Worth
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel, Basel, Switzerland
| | - Mona Bajaj-Elliott
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
5
|
Piperno GM, Naseem A, Silvestrelli G, Amadio R, Caronni N, Cervantes-Luevano KE, Liv N, Klumperman J, Colliva A, Ali H, Graziano F, Benaroch P, Haecker H, Hanna RN, Benvenuti F. Wiskott-Aldrich syndrome protein restricts cGAS/STING activation by dsDNA immune complexes. JCI Insight 2020; 5:132857. [PMID: 32721945 PMCID: PMC7526445 DOI: 10.1172/jci.insight.132857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 07/16/2020] [Indexed: 01/06/2023] Open
Abstract
Dysregulated sensing of self-nucleic acid is a leading cause of autoimmunity in multifactorial and monogenic diseases. Mutations in Wiskott-Aldrich syndrome protein (WASp), a key regulator of cytoskeletal dynamics in immune cells, cause autoimmune manifestations and increased production of type I IFNs by innate cells. Here we show that immune complexes of self-DNA and autoantibodies (DNA-ICs) contribute to elevated IFN levels via activation of the cGAS/STING pathway of cytosolic sensing. Mechanistically, lack of endosomal F-actin nucleation by WASp caused a delay in endolysosomal maturation and prolonged the transit time of ingested DNA-ICs. Stalling in maturation-defective organelles facilitated leakage of DNA-ICs into the cytosol, promoting activation of the TBK1/STING pathway. Genetic deletion of STING and STING and cGAS chemical inhibitors abolished IFN production and rescued systemic activation of IFN-stimulated genes in vivo. These data unveil the contribution of cytosolic self-nucleic acid sensing in WAS and underscore the importance of WASp-mediated endosomal actin remodeling in preventing innate activation.
Collapse
Affiliation(s)
| | - Asma Naseem
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giulia Silvestrelli
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Roberto Amadio
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nicoletta Caronni
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Andrea Colliva
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Hashim Ali
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Francesca Graziano
- Institute Curie Laboratoire Immunité et Cancer - INSERM U932 Transport Intracellulaire et Immunité, Paris, France
| | - Philippe Benaroch
- Institute Curie Laboratoire Immunité et Cancer - INSERM U932 Transport Intracellulaire et Immunité, Paris, France
| | - Hans Haecker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard N Hanna
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Federica Benvenuti
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
6
|
Tonucci FM, Almada E, Borini-Etichetti C, Pariani A, Hidalgo F, Rico MJ, Girardini J, Favre C, Goldenring JR, Menacho-Marquez M, Larocca MC. Identification of a CIP4 PKA phosphorylation site involved in the regulation of cancer cell invasiveness and metastasis. Cancer Lett 2019; 461:65-77. [DOI: 10.1016/j.canlet.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 01/08/2023]
|
7
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
8
|
He M, Westerberg LS. Congenital Defects in Actin Dynamics of Germinal Center B Cells. Front Immunol 2019; 10:296. [PMID: 30894852 PMCID: PMC6414452 DOI: 10.3389/fimmu.2019.00296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/05/2019] [Indexed: 01/02/2023] Open
Abstract
The germinal center (GC) is a transient anatomical structure formed during the adaptive immune response that leads to antibody affinity maturation and serological memory. Recent works using two-photon microscopy reveals that the GC is a highly dynamic structure and GC B cells are highly motile. An efficient selection of high affinity B cells clones within the GC crucially relies on the interplay of proliferation, genome editing, cell-cell interaction, and migration. All these processes require actin cytoskeleton rearrangement to be well-coordinated. Dysregulated actin dynamics may impede on multiple stages during B cell affinity maturation, which could lead to aberrant GC response and result in autoimmunity and B cell malignancy. This review mainly focuses on the recent works that investigate the role of actin regulators during the GC response.
Collapse
Affiliation(s)
- Minghui He
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Meng DF, Xie P, Peng LX, Sun R, Luo DH, Chen QY, Lv X, Wang L, Chen MY, Mai HQ, Guo L, Guo X, Zheng LS, Cao L, Yang JP, Wang MY, Mei Y, Qiang YY, Zhang ZM, Yun JP, Huang BJ, Qian CN. CDC42-interacting protein 4 promotes metastasis of nasopharyngeal carcinoma by mediating invadopodia formation and activating EGFR signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:21. [PMID: 28129778 PMCID: PMC5273811 DOI: 10.1186/s13046-016-0483-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
Background Nasopharyngeal carcinoma (NPC) is a common malignancy in Southern China and Southeast Asia. In this study, we investigated the functional and molecular mechanisms by which CDC42-interacting protein 4 (CIP4) influences NPC. Methods The expression levels of CIP4 were examined by Western blot, qRT-PCR or IHC. MTT assay was used to detect the proliferative rate of NPC cells. The invasive abilities were examined by matrigel and transwell assay. The metastatic abilities of NPC cells were revealed in BALB/c nude mice. Results We report that CIP4 is required for NPC cell motility and invasion. CIP4 promotes the activation of N-WASP that controls invadopodia formation and activates EGFR signaling, which induces downstream MMP2 (matrix metalloproteinase 2) upregulation. In addition, CIP4 could promote NPC metastasis by activating the EGFR pathway. In nude mouse models, distant metastasis was significantly inhibited in CIP4-silenced groups. High CIP4 expression is an independent adverse prognostic factor of overall survival (OS) and distant metastasis-free survival (DMFS). Conclusion We identify the critical role of CIP4 in metastasis of NPC which suggest that CIP4 may be a potential therapeutic target of NPC patients.
Collapse
Affiliation(s)
- Dong-Fang Meng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ping Xie
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Sun
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Dong-Hua Luo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Qiu-Yan Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xing Lv
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lin Wang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ming-Yuan Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ling Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li Cao
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jun-Ping Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Meng-Yao Wang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Radiotherapy Department, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yan Mei
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan-Yuan Qiang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zi-Meng Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Chen SJ, Wu X, Wadas B, Oh JH, Varshavsky A. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 2017; 355:eaal3655. [PMID: 28126757 PMCID: PMC5457285 DOI: 10.1126/science.aal3655] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/14/2016] [Indexed: 01/07/2023]
Abstract
Cells synthesize glucose if deprived of it, and destroy gluconeogenic enzymes upon return to glucose-replete conditions. We found that the Gid4 subunit of the ubiquitin ligase GID in the yeast Saccharomyces cerevisiae targeted the gluconeogenic enzymes Fbp1, Icl1, and Mdh2 for degradation. Gid4 recognized the N-terminal proline (Pro) residue and the ~5-residue-long adjacent sequence motifs. Pck1, the fourth gluconeogenic enzyme, contains Pro at position 2; Gid4 directly or indirectly recognized Pro at position 2 of Pck1, contributing to its targeting. These and related results identified Gid4 as the recognition component of the GID-based proteolytic system termed the Pro/N-end rule pathway. Substrates of this pathway include gluconeogenic enzymes that bear either the N-terminal Pro residue or a Pro at position 2, together with adjacent sequence motifs.
Collapse
Affiliation(s)
- Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xia Wu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brandon Wadas
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jang-Hyun Oh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
11
|
Tanja Mierke C. Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
12
|
Tonucci FM, Hidalgo F, Ferretti A, Almada E, Favre C, Goldenring JR, Kaverina I, Kierbel A, Larocca MC. Centrosomal AKAP350 and CIP4 act in concert to define the polarized localization of the centrosome and Golgi in migratory cells. J Cell Sci 2015. [PMID: 26208639 DOI: 10.1242/jcs.170878] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acquisition of a migratory phenotype is central in processes as diverse as embryo differentiation and tumor metastasis. An early event in this phenomenon is the generation of a nucleus-centrosome-Golgi back-to-front axis. AKAP350 (also known as AKAP9) is a Golgi and centrosome scaffold protein that is involved in microtubule nucleation. AKAP350 interacts with CIP4 (also known as TRIP10), a cdc42 effector that regulates actin dynamics. The present study aimed to characterize the participation of centrosomal AKAP350 in the acquisition of migratory polarity, and the involvement of CIP4 in the pathway. The decrease in total or in centrosomal AKAP350 led to decreased formation of the nucleus-centrosome-Golgi axis and defective cell migration. CIP4 localized at the centrosome, which was enhanced in migratory cells, but inhibited in cells with decreased centrosomal AKAP350. A decrease in the CIP4 expression or inhibition of the CIP4-AKAP350 interaction also led to defective cell polarization. Centrosome positioning, but not nuclear movement, was affected by loss of CIP4 or AKAP350 function. Our results support a model in which AKAP350 recruits CIP4 to the centrosome, providing a centrosomal scaffold to integrate microtubule and actin dynamics, thus enabling centrosome polarization and ensuring cell migration directionality.
Collapse
Affiliation(s)
- Facundo M Tonucci
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Florencia Hidalgo
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anabela Ferretti
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Evangelina Almada
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - James R Goldenring
- Department of Surgery, Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, TN 37232, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, TN 37232, USA
| | - Arlinet Kierbel
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín 1650, Buenos Aires, Argentina
| | - M Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
13
|
Gerasimcik N, Dahlberg CIM, Baptista MAP, Massaad MJ, Geha RS, Westerberg LS, Severinson E. The Rho GTPase Cdc42 Is Essential for the Activation and Function of Mature B Cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:4750-8. [PMID: 25870239 DOI: 10.4049/jimmunol.1401634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
The Rho GTPase Cdc42 coordinates regulation of the actin and the microtubule cytoskeleton by binding and activating the Wiskott-Aldrich syndrome protein. We sought to define the role of intrinsic expression of Cdc42 by mature B cells in their activation and function. Mice with inducible deletion of Cdc42 in mature B cells formed smaller germinal centers and had a reduced Ab response, mostly of low affinity to T cell-dependent Ag, compared with wild-type (WT) controls. Spreading formation of long protrusions that contain F-actin, microtubules, and Cdc42-interacting protein 4, and assumption of a dendritic cell morphology in response to anti-CD40 plus IL-4 were impaired in Cdc42-deficient B cells compared with WT B cells. Cdc42-deficient B cells had an intact migratory response to chemokine in vitro, but their homing to the B cell follicles in the spleen in vivo was significantly impaired. Cdc42-deficient B cells induced a skewed cytokine response in CD4(+) T cells, compared with WT B cells. Our results demonstrate a critical role for Cdc42 in the motility of mature B cells, their cognate interaction with T cells, and their differentiation into Ab-producing cells.
Collapse
Affiliation(s)
- Natalija Gerasimcik
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Carin I M Dahlberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Marisa A P Baptista
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Michel J Massaad
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115; and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115; and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Eva Severinson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| |
Collapse
|
14
|
The CDC42-Interacting Protein 4 Controls Epithelial Cell Cohesion and Tumor Dissemination. Dev Cell 2014; 30:553-68. [DOI: 10.1016/j.devcel.2014.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/17/2014] [Accepted: 08/06/2014] [Indexed: 01/14/2023]
|
15
|
CIP4 promotes lung adenocarcinoma metastasis and is associated with poor prognosis. Oncogene 2014; 34:3527-35. [PMID: 25174397 PMCID: PMC4978543 DOI: 10.1038/onc.2014.280] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/28/2022]
Abstract
Aberrant Epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer (NSCLC) is linked to tumor progression, metastasis, and poor survival rates. Here, we report the role of Cdc42-interacting protein 4 (CIP4) in the regulation of NSCLC cell invasiveness and tumor metastasis. CIP4 was highly expressed in a panel of NSCLC cell lines and normal lung epithelial cell lines. Stable knock-down (KD) of CIP4 in lung adenocarcinoma H1299 cells, expressing wild-type EGFR, led to increased EGFR levels on the cell surface, and defects in sustained activation of Erk kinase in H1299 cells treated with EGF. CIP4 localized to leading edge projections in NSCLC cells, and CIP4 KD cells displayed defects in EGF-induced cell motility and invasion through extracellular matrix. This correlated with reduced expression and activity of matrix metalloproteinase-2 (MMP-2) in CIP4 KD cells compared to control. In xenograft assays, CIP4 silencing had no effect on tumor growth, but resulted in significant defects in spontaneous metastases to the lungs from these subcutaneous tumors. This correlated with reduced expression of the Erk target gene Zeb1, and the Zeb1 target gene MMP-2 in CIP4 KD tumors compared to control. CIP4 also enhanced rates of metastasis to the liver and lungs in an intrasplenic experimental metastasis model. In human NSCLC tumor sections, CIP4 expression was elevated ≥ 2-fold in 43% of adenocarcinomas and 32% of squamous carcinomas compared to adjacent normal lung tissues. Analysis of microarray data for NSCLC patients also revealed that high CIP4 transcript levels correlated with reduced overall survival. Together, these results identify CIP4 as a positive regulator of NSCLC metastasis, and a potential poor prognostic biomarker in lung adenocarcinoma.
Collapse
|
16
|
CIP4 is required for the hypertrophic growth of neonatal cardiac myocytes. J Biomed Sci 2013; 20:56. [PMID: 23915320 PMCID: PMC3750294 DOI: 10.1186/1423-0127-20-56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CIP4 is a scaffold protein that regulates membrane deformation and tubulation, organization of the actin cytoskeleton, endocytosis of growth factor receptors, and vesicle trafficking. Although expressed in the heart, CIP4 has not been studied with regards to its potential function in cardiac myocytes. RESULTS We now show using RNA interference that CIP4 expression in neonatal rat ventricular myocytes is required for the induction of non-mitotic, hypertrophic growth by the α-adrenergic agonist phenylephrine, the IL-6 cytokine leukemia inhibitor factor, and fetal bovine serum, as assayed using morphometry, immunocytochemistry for the hypertrophic marker atrial natriuretic factor and [3H]leucine incorporation for de novo protein synthesis. This requirement was consistent with the induction of CIP4 expression by hypertrophic stimulation. The inhibition of myocyte hypertrophy by CIP4 small interfering oligonucleotides (siRNA) was rescued by expression of a recombinant CIP4 protein, but not by a mutant lacking the N-terminal FCH domain responsible for CIP4 intracellular localization. CONCLUSIONS These results imply that CIP4 plays a significant role in the intracellular hypertrophic signal transduction network that controls the growth of cardiac myocytes in heart disease.
Collapse
|
17
|
Loss of the F-BAR protein CIP4 reduces platelet production by impairing membrane-cytoskeleton remodeling. Blood 2013; 122:1695-706. [PMID: 23881916 DOI: 10.1182/blood-2013-03-484550] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Megakaryocytes generate platelets through extensive reorganization of the cytoskeleton and plasma membrane. Cdc42 interacting protein 4 (CIP4) is an F-BAR protein that localizes to membrane phospholipids through its BAR domain and interacts with Wiskott-Aldrich Syndrome Protein (WASP) via its SRC homology 3 domain. F-BAR proteins promote actin polymerization and membrane tubulation. To study its function, we generated CIP4-null mice that displayed thrombocytopenia similar to that of WAS(-) mice. The number of megakaryocytes and their progenitors was not affected. However, the number of proplatelet protrusions was reduced in CIP4-null, but not WAS(-), megakaryocytes. Electron micrographs of CIP4-null megakaryocytes showed an altered demarcation membrane system. Silencing of CIP4, not WASP, expression resulted in fewer proplatelet-like extensions. Fluorescence anisotropy studies showed that loss of CIP4 resulted in a more rigid membrane. Micropipette aspiration demonstrated decreased cortical actin tension in megakaryocytic cells with reduced CIP4 or WASP protein. These studies support a new biophysical mechanism for platelet biogenesis whereby CIP4 enhances the complex, dynamic reorganization of the plasma membrane (WASP independent) and actin cortex network (as known for WASP and cortical actin) to reduce the work required for generating proplatelets. CIP4 is a new component in the highly coordinated system of megakaryocytic membrane and cytoskeletal remodeling affecting platelet production.
Collapse
|
18
|
DeGeer J, Lamarche-Vane N. Rho GTPases in neurodegeneration diseases. Exp Cell Res 2013; 319:2384-94. [PMID: 23830879 DOI: 10.1016/j.yexcr.2013.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
Rho GTPases are molecular switches that modulate multiple intracellular signaling processes by means of various effector proteins. As a result, Rho GTPase activities are tightly spatiotemporally regulated in order to ensure homeostasis within the cell. Though the roles of Rho GTPases during neural development have been well documented, their participation during neurodegeneration has been far less characterized. Herein we discuss our current knowledge of the role and function of Rho GTPases and regulators during neurodegeneration, and highlight their potential as targets for therapeutic intervention in common neurodegenerative disorders.
Collapse
Affiliation(s)
- Jonathan DeGeer
- McGill University, Department of Anatomy and Cell Biology, Montreal, QC, Canada H3A 0C7
| | | |
Collapse
|
19
|
Malet-Engra G, Viaud J, Ysebaert L, Farcé M, Lafouresse F, Laurent G, Gaits-Iacovoni F, Scita G, Dupré L. CIP4 controls CCL19-driven cell steering and chemotaxis in chronic lymphocytic leukemia. Cancer Res 2013; 73:3412-24. [PMID: 23644527 DOI: 10.1158/0008-5472.can-12-3564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Solid tumor dissemination relies on the reprogramming of molecular pathways controlling chemotaxis. Whether the motility of nonsolid tumors such as leukemia depends on the deregulated expression of molecules decoding chemotactic signals remains an open question. We identify here the membrane remodeling F-BAR adapter protein Cdc42-interacting protein 4 (CIP4) as a key regulator of chemotaxis in chronic lymphocytic leukemia (CLL). CIP4 is expressed at abnormally high levels in CLL cells, where it is required for CCL19-induced chemotaxis. Upon CCL19 stimulation of CLL cells, CIP4 associates with GTP-bound Cdc42 and is recruited to the rear of the lamellipodium and along microspikes radiating through the lamellipodium. Consistent with its cellular distribution, CIP4 removal impairs both the assembly of the polarized lamellipodium and directional migration along a diffusible CCL19 gradient. Furthermore, CIP4 depletion results in decreased activation of WASP, but increased activation of PAK1 and p38 mitogen-activated protein kinase (MAPK). Notably, p38 MAPK inhibition results in impaired lamellipodium assembly and loss of directional migration. This suggests that CIP4 modulates both the WASP and p38 MAPK pathways to promote lamellipodium assembly and chemotaxis. Overall, our study reveals a critical role of CIP4 in mediating chemotaxis of CLL cells by controlling the dynamics of microspike-containing protrusions and cell steering.
Collapse
Affiliation(s)
- Gema Malet-Engra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Saengsawang W, Taylor KL, Lumbard DC, Mitok K, Price A, Pietila L, Gomez TM, Dent EW. CIP4 coordinates with phospholipids and actin-associated proteins to localize to the protruding edge and produce actin ribs and veils. J Cell Sci 2013; 126:2411-23. [PMID: 23572514 DOI: 10.1242/jcs.117473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family of proteins, plays important roles in a variety of cellular events by regulating both membrane and actin dynamics. In many cell types, CIP4 functions in vesicle formation, endocytosis and membrane tubulation. However, recent data indicate that CIP4 is also involved in protrusion in some cell types, including cancer cells (lamellipodia and invadopodia) and neurons (ribbed lamellipodia and veils). In neurons, CIP4 localizes specifically to extending protrusions and functions to limit neurite outgrowth early in development. The mechanism by which CIP4 localizes to the protruding edge membrane and induces lamellipodial/veil protrusion and actin rib formation is not known. Here, we show that CIP4 localization to the protruding edge of neurons is dependent on both the phospholipid content of the plasma membrane and the underlying organization of actin filaments. Inhibiting phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production decreases CIP4 at the membrane. CIP4 localization to the protruding edge is also dependent on Rac1/WAVE1, rather than Cdc42/N-WASP. Capping actin filaments with low concentrations of cytochalasin D or by overexpressing capping protein dramatically decreases CIP4 at the protruding edge, whereas inactivating Arp2/3 drives CIP4 to the protruding edge. We also demonstrate that CIP4 dynamically colocalizes with Ena/VASP and DAAM1, two proteins known to induce unbranched actin filament arrays and play important roles in neuronal development. Together, this is the first study to show that the localization of an F-BAR protein depends on both actin filament architecture and phospholipids at the protruding edge of developing neurons.
Collapse
Affiliation(s)
- Witchuda Saengsawang
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen Y, Aardema J, Corey SJ. Biochemical and functional significance of F-BAR domain proteins interaction with WASP/N-WASP. Semin Cell Dev Biol 2013; 24:280-6. [PMID: 23384583 DOI: 10.1016/j.semcdb.2013.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/16/2013] [Indexed: 01/17/2023]
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain family of proteins includes groups which promote positive (classical BAR, N-BAR, and F-BAR) and negative (I-BAR) membrane deformation. Of these groups, the F-BAR subfamily is the most diverse in its biochemical properties. F-BAR domain proteins dimerize to form a tight scaffold about the membrane. The F-BAR domain provides a banana-shaped, alpha-helical structure that senses membrane curvature. Different types of F-BAR domain proteins contain tyrosine kinase or GTPase activities; some interact with phosphatases and RhoGTPases. Most possess an SH3 domain that facilitates the recruitment and activation of WASP/N-WASP. Thus, F-BAR domain proteins affect remodeling of both membrane and the actin cytoskeleton. The purpose of this review is to highlight the role of F-BAR proteins in coupling WASP/N-WASP to cytoskeletal remodeling. A role for F-BAR/WASP interaction in human diseases affecting nervous, blood, and neoplastic tissues is discussed.
Collapse
Affiliation(s)
- Yolande Chen
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, United States
| | | | | |
Collapse
|
22
|
Hung FC, Cheng YC, Sun NK, Chao CCK. Identification and functional characterization of zebrafish Gas7 gene in early development. J Neurosci Res 2012; 91:51-61. [PMID: 23086717 DOI: 10.1002/jnr.23145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 08/07/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022]
Abstract
Growth arrest-specific 7 (Gas7) is preferentially expressed in the nervous system and plays an important role during neuritogenesis in mammals. However, the structure and function of Gas7 homologs have not been studied in nonmammalian vertebrates used as models. In this report, we identify a Gas7 gene in zebrafish that we termed zfGas7. The transcript of this gene was produced by canonical splicing, and its protein product contained a Fes/CIP4 homology and a coiled-coil domain. In early zebrafish embryos, RT-PCR analyses revealed that zfGas7 was initially expressed at 5.3 hr postfertilization (hpf), followed by an increase of expression at 10 hpf and further accumulation during somitogenesis at 48 hpf. Spatiotemporal analyses further showed that Gas7 mRNA was detected in the brain, somite, and posterior presomitic mesoderm regions during somitogenesis. At 36 hpf, zfGas7 mRNA was detected in the brain and somite but was later found only in neuronal clusters of the brain at 52 hpf. Gas7 knockdown with morpholino antisense oligonucleotides (Gas7MO) reduced the number of HuC-positive neurons in the trigeminal and statoacoustic ganglions and produced deformed phenotypes, such as flattening of the top of the head. Notably, the neuron reduction and deformed phenotypes observed in Gas7MO embryos were partially rescued by ectopic expression of Gas7. Because altered somitogenesis and pigmentation were also found in the morphants, the neuronal phenotypes observed likely are due to a general developmental delay of embryogenesis. These results indicate that Gas7 is expressed in neuronal cells but is not specifically required for neuronal development in vertebrates.
Collapse
Affiliation(s)
- Feng-Chun Hung
- Department of Biochemistry and Molecular Biology, Chang Gung University, Gueishan, Taiwan, Republic of China
| | | | | | | |
Collapse
|
23
|
Abstract
Cells construct a number of plasma membrane structures to meet a range of physiological demands. Driven by juxtamembrane actin machinery, these actin-based membrane protrusions are essential for the operation and maintenance of cellular life. They are required for diverse cellular functions, such as directed cell motility, cell spreading, adhesion, and substrate/matrix degradation. Circular dorsal ruffles (CDRs) are one class of such structures characterized as F-actin-rich membrane projections on the apical cell surface. CDRs commence their formation minutes after stimulation as flat, open, and immature ruffles and progressively develop into fully enclosed circular ruffles. These "rings" then mature and contract centrifugally before subsiding. Serving a critical function in receptor internalization and cell migration, CDRs are thus highly dynamic but transient formations. Here, we review the current state of knowledge concerning the regulation of circular dorsal ruffles. We focus specifically on the biochemical pathways leading to CDR formation in order to better define the roles and functions of these enigmatic structures.
Collapse
|
24
|
The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases. MEMBRANES 2012; 2:91-117. [PMID: 24957964 PMCID: PMC4021885 DOI: 10.3390/membranes2010091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells have complicated membrane systems. The outermost plasma membrane contains various substructures, such as invaginations and protrusions, which are involved in endocytosis and cell migration. Moreover, the intracellular membrane compartments, such as autophagosomes and endosomes, are essential for cellular viability. The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily proteins are important players in membrane remodeling through their structurally determined membrane binding surfaces. A variety of BAR domain superfamily proteins exist, and each family member appears to be involved in the formation of certain subcellular structures or intracellular membrane compartments. Most of the BAR domain superfamily proteins contain SH3 domains, which bind to the membrane scission molecule, dynamin, as well as the actin regulatory WASP/WAVE proteins and several signal transduction molecules, providing possible links between the membrane and the cytoskeleton or other machineries. In this review, we summarize the current information about each BAR superfamily protein with an SH3 domain(s). The involvement of BAR domain superfamily proteins in various diseases is also discussed.
Collapse
|
25
|
Impaired cell adhesion, apoptosis, and signaling in WASP gene-disrupted Nalm-6 pre-B cells and recovery of cell adhesion using a transducible form of WASp. Int J Hematol 2012; 95:299-310. [DOI: 10.1007/s12185-012-1013-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
|
26
|
Rao Y, Haucke V. Membrane shaping by the Bin/amphiphysin/Rvs (BAR) domain protein superfamily. Cell Mol Life Sci 2011; 68:3983-93. [PMID: 21769645 PMCID: PMC11114942 DOI: 10.1007/s00018-011-0768-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 01/27/2023]
Abstract
BAR domain superfamily proteins have emerged as central regulators of dynamic membrane remodeling, thereby playing important roles in a wide variety of cellular processes, such as organelle biogenesis, cell division, cell migration, secretion, and endocytosis. Here, we review the mechanistic and structural basis for the membrane curvature-sensing and deforming properties of BAR domain superfamily proteins. Moreover, we summarize the present state of knowledge with respect to their regulation by autoinhibitory mechanisms or posttranslational modifications, and their interactions with other proteins, in particular with GTPases, and with membrane lipids. We postulate that BAR superfamily proteins act as membrane-deforming scaffolds that spatiotemporally orchestrate membrane remodeling.
Collapse
Affiliation(s)
- Yijian Rao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Present Address: Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Volker Haucke
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| |
Collapse
|
27
|
Crea F. Transfection of a methylated promoter drives mesenchymal stem cell differentiation. Epigenomics 2011; 3:11-2. [PMID: 22126148 DOI: 10.2217/epi.10.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Francesco Crea
- Department of Internal Medicine, Division of Pharmocology, University of Pisa, Italy.
| |
Collapse
|
28
|
Ahmed S, Bu W, Lee RTC, Maurer-Stroh S, Goh WI. F-BAR domain proteins: Families and function. Commun Integr Biol 2011; 3:116-21. [PMID: 20585502 DOI: 10.4161/cib.3.2.10808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 12/13/2022] Open
Abstract
The F-BAR domain is emerging as an important player in membrane remodeling pathways. F-BAR domain proteins couple membrane remodeling with actin dynamics associated with endocytic pathways and filopodium formation. Here, we provide a comprehensive analysis of F-BAR domain proteins in terms of their evolutionary relationships and protein function. F-BAR domain containing proteins can be categorized into five subfamilies based on their phylogeny which is consistent with the additional protein domains they possess, for example, RhoGAP domains, Cdc42 binding sites, SH3 domains and tyrosine kinase domains. We derive a protein-protein interaction network suggesting that dynamin1/2, N-WASP, Huntingtin, intersectin and Cdc42 are central nodes influencing F-BAR domain protein function.
Collapse
|
29
|
Sit ST, Manser E. Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci 2011; 124:679-83. [PMID: 21321325 DOI: 10.1242/jcs.064964] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Soon-Tuck Sit
- sGSK Group, A-Star Neuroscience Research Partnership, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | | |
Collapse
|
30
|
Hu J, Mukhopadhyay A, Truesdell P, Chander H, Mukhopadhyay UK, Mak AS, Craig AWB. Cdc42-interacting protein 4 is a Src substrate that regulates invadopodia and invasiveness of breast tumors by promoting MT1-MMP endocytosis. J Cell Sci 2011; 124:1739-51. [PMID: 21525036 DOI: 10.1242/jcs.078014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invadopodia are actin-rich membrane protrusions that promote extracellular matrix degradation and invasiveness of tumor cells. Src protein-tyrosine kinase is a potent inducer of invadopodia and tumor metastases. Cdc42-interacting protein 4 (CIP4) adaptor protein interacts with actin regulatory proteins and regulates endocytosis. Here, we show that CIP4 is a Src substrate that localizes to invadopodia in MDA-MB-231 breast tumor cells expressing activated Src (MDA-SrcYF). To probe the function of CIP4 in invadopodia, we established stable CIP4 knockdown in MDA-SrcYF cell lines by RNA interference. Compared with control cells, CIP4 knockdown cells degrade more extracellular matrix (ECM), have increased numbers of mature invadopodia and are more invasive through matrigel. Similar results are observed with knockdown of CIP4 in EGF-treated MDA-MB-231 cells. This inhibitory role of CIP4 is explained by our finding that CIP4 limits surface expression of transmembrane type I matrix metalloprotease (MT1-MMP), by promoting MT1-MMP internalization. Ectopic expression of CIP4 reduces ECM digestion by MDA-SrcYF cells, and this activity is enhanced by mutation of the major Src phosphorylation site in CIP4 (Y471). Overall, our results identify CIP4 as a suppressor of Src-induced invadopodia and invasion in breast tumor cells by promoting endocytosis of MT1-MMP.
Collapse
Affiliation(s)
- Jinghui Hu
- Department of Biochemistry, Queen's University, Kingston, ON K7L 3N6 Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Hsu CC, Leu YW, Tseng MJ, Lee KD, Kuo TY, Yen JY, Lai YL, Hung YC, Sun WS, Chen CM, Chu PY, Yeh KT, Yan PS, Chang YS, Huang THM, Hsiao SH. Functional characterization of Trip10 in cancer cell growth and survival. J Biomed Sci 2011; 18:12. [PMID: 21299869 PMCID: PMC3044094 DOI: 10.1186/1423-0127-18-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 02/07/2011] [Indexed: 01/10/2023] Open
Abstract
Background The Cdc42-interacting protein-4, Trip10 (also known as CIP4), is a multi-domain adaptor protein involved in diverse cellular processes, which functions in a tissue-specific and cell lineage-specific manner. We previously found that Trip10 is highly expressed in estrogen receptor-expressing (ER+) breast cancer cells. Estrogen receptor depletion reduced Trip10 expression by progressively increasing DNA methylation. We hypothesized that Trip10 functions as a tumor suppressor and may be involved in the malignancy of ER-negative (ER-) breast cancer. To test this hypothesis and evaluate whether Trip10 is epigenetically regulated by DNA methylation in other cancers, we evaluated DNA methylation of Trip10 in liver cancer, brain tumor, ovarian cancer, and breast cancer. Methods We applied methylation-specific polymerase chain reaction and bisulfite sequencing to determine the DNA methylation of Trip10 in various cancer cell lines and tumor specimens. We also overexpressed Trip10 to observe its effect on colony formation and in vivo tumorigenesis. Results We found that Trip10 is hypermethylated in brain tumor and breast cancer, but hypomethylated in liver cancer. Overexpressed Trip10 was associated with endogenous Cdc42 and huntingtin in IMR-32 brain tumor cells and CP70 ovarian cancer cells. However, overexpression of Trip10 promoted colony formation in IMR-32 cells and tumorigenesis in mice inoculated with IMR-32 cells, whereas overexpressed Trip10 substantially suppressed colony formation in CP70 cells and tumorigenesis in mice inoculated with CP70 cells. Conclusions Trip10 regulates cancer cell growth and death in a cancer type-specific manner. Differential DNA methylation of Trip10 can either promote cell survival or cell death in a cell type-dependent manner.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Human Epigenomics Center, Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chia-Yi, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rosas C, Gabler F, Vantman D, Romero C, Vega M. Levels of Rabs and WAVE family proteins associated with translocation of GLUT4 to the cell surface in endometria from hyperinsulinemic PCOS women. Hum Reprod 2010; 25:2870-7. [DOI: 10.1093/humrep/deq232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
33
|
Cdc42 interacting protein 4 (CIP4) is essential for integrin-dependent T-cell trafficking. Proc Natl Acad Sci U S A 2010; 107:16252-6. [PMID: 20805498 DOI: 10.1073/pnas.1002747107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The F-BAR domain containing protein CIP4 (Cdc42 interacting protein 4) interacts with Cdc42 and WASP/N-WASP and is thought to participate in the assembly of filamentous actin. CIP4(-/-) mice had normal T- and B-lymphocyte development but impaired T cell-dependent antibody production, IgG antibody affinity maturation, and germinal center (GC) formation, despite an intact CD40L-CD40 axis. CIP4(-/-) mice also had impaired contact hypersensitivity (CHS) to haptens, and their T cells failed to adoptively transfer CHS. Ovalbumin-activated CD4(+) effector T cells from CIP4(-/-)/OT-II mice migrated poorly to antigen-challenged skin. Activated CIP4(-/-) T cells exhibited impaired adhesion and polarization on immobilized VCAM-1 and ICAM-1 and defective arrest and transmigration across murine endothelial cell monolayers under shear flow conditions. These results demonstrate an important role for CIP4 in integrin-dependent T cell-dependent antibody responses and GC formation and in integrin-mediated recruitment of effector T cells to cutaneous sites of antigen-driven immune reactions.
Collapse
|
34
|
Hsiao SH, Lee KD, Hsu CC, Tseng MJ, Jin VX, Sun WS, Hung YC, Yeh KT, Yan PS, Lai YY, Sun HS, Lu YJ, Chang YS, Tsai SJ, Huang THM, Leu YW. DNA methylation of the Trip10 promoter accelerates mesenchymal stem cell lineage determination. Biochem Biophys Res Commun 2010; 400:305-12. [PMID: 20727853 DOI: 10.1016/j.bbrc.2010.08.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/14/2010] [Indexed: 02/04/2023]
Abstract
Epigenetic regulation of gene expression by DNA methylation and histone modification controls cell fate during development and homeostasis in adulthood. Aberrant epigenetic modifications may lead to abnormal development, even diseases. We have found that Trip10 (thyroid hormone receptor interactor 10), an adaptor protein involved in diverse functions, is epigenetically regulated during lineage-specific induction of human bone marrow-derived mesenchymal stem cells (MSCs). To determine whether DNA methylation-induced gene silencing is sufficient to restrict cell fate changes, we applied an invitro method to specifically methylate the promoter of Trip10. Our hypothesis was that the methylation status of the Trip10 promoter in MSCs alters the differentiation preference of MSCs. Transfection of in vitro-methylated Trip10 promoter DNA into MSCs resulted in progressive accumulation of cytosine methylation at the endogenous Trip10 promoter, reduced Trip10 expression, and accelerated MSC-to-neuron and MSC-to-osteocyte differentiation. A two-component EGFP reporter gene system was established to confirm the level of transcriptional silencing and visualize the targeted DNA methylation. EGFP expression induced in the reporter system by targeted Trip10 methylation was reversed by adding 5-aza-2'-deoxycytidine, a DNA methyltransferase inhibitor, confirming that the suppressed Trip10 expression and disrupted MSC differentiation resulted from the in vitro-introduced methylations in the Trip10 promoter. With this targeted DNA methylation and reporter system, we are able to monitor the progression of locus-specific DNA methylation in vivo and correlate such changes with potential functional changes. Using this approach, we have established a new role for Trip10, showing that the level of Trip10 expression is associated with the maintenance and differentiation of MSCs.
Collapse
Affiliation(s)
- Shu-Huei Hsiao
- Human Epigenomics Center, Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chia-Yi, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
dCIP4 (Drosophila Cdc42-interacting protein 4) restrains synaptic growth by inhibiting the secretion of the retrograde Glass bottom boat signal. J Neurosci 2010; 30:8138-50. [PMID: 20554864 DOI: 10.1523/jneurosci.0256-10.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The bone morphogenetic protein (BMP) ligand Glass bottom boat (Gbb) acts as a retrograde growth signal at the Drosophila neuromuscular junction (NMJ). Endocytic regulation of presynaptic BMP receptors has been proposed to attenuate retrograde BMP signaling. However, it remains unknown whether the Gbb signal is also regulated by postsynaptic mechanisms. Here, we provide evidence that Drosophila Cdc42-interacting protein 4 (dCIP4) functions postsynaptically to inhibit synaptic growth. dCIP4 is localized postsynaptically at NMJs. dcip4 mutations lead to synaptic overgrowth and increased presynaptic phosphorylated mothers against decapentaplegic (Mad) levels, and these defects are rescued by muscle-specific expression of dCIP4. Biochemical and genetic analyses demonstrate that dCIP4 acts downstream of Cdc42 to activate the postsynaptic Wsp-Arp2/3 pathway. We also show that BMP signaling is necessary for synaptic overgrowth in larvae lacking postsynaptic dcip4 or wsp. Finally, dCIP4 and Wsp inhibit Gbb secretion. Thus, we propose that dCIP4 restrains synaptic growth by inhibiting postsynaptic Gbb secretion through the Wsp-Arp2/3 pathway.
Collapse
|
36
|
Feng Y, Hartig SM, Bechill JE, Blanchard EG, Caudell E, Corey SJ. The Cdc42-interacting protein-4 (CIP4) gene knock-out mouse reveals delayed and decreased endocytosis. J Biol Chem 2010; 285:4348-54. [PMID: 19920150 PMCID: PMC2836039 DOI: 10.1074/jbc.m109.041038] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 11/06/2009] [Indexed: 12/22/2022] Open
Abstract
The newly described F-BAR (Fer/CIP4 and Bin, amphiphysin, Rvs) family of proteins includes Cdc42-interacting protein-4 (CIP4), formin-binding protein-17 (FBP-17) and transactivator of cytoskeletal assembly-1 (Toca-1), and drives membrane deformation and invagination. Membrane remodeling affects endocytosis, vesicle budding, and cargo selection. The F-BAR family presents a novel family of proteins, which little is known about their in vivo function. We investigated the physiological role of CIP4, by creating Cip4-null mice through homologous recombination. Compared with their wild-type littermates, the Cip4-null mice displayed lower early post-prandial glucose levels. Adipocytes isolated from Cip4-null mice exhibited increased [(14)C]2-deoxyglucose uptake compared with cells from wild-type mice. The enhanced insulin sensitivity was not due to higher levels of insulin or phospho-Akt, a critical player in insulin signaling. However, higher glucose transporter 4 (GLUT4) levels were detected in muscle membrane fractions in Cip4-null mice under insulin stimulation. Mouse embryonic fibroblasts from Cip4-null mice demonstrated decreased transferrin uptake, fluorescein isothiocyanate-dextran, and horseradish peroxidase uptake, indicating that CIP4 affects multiple modes of endocytosis. These studies demonstrate a physiological role for CIP4 in endocytosis leading to a whole animal phenotype.
Collapse
Affiliation(s)
- Yanming Feng
- From the Division of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
- the Departments of Pediatrics and Cellular and Molecular Biology and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, and
| | - Sean M. Hartig
- From the Division of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
- the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - John E. Bechill
- the Departments of Pediatrics and Cellular and Molecular Biology and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, and
| | - Elisabeth G. Blanchard
- From the Division of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Eva Caudell
- From the Division of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Seth J. Corey
- From the Division of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
- the Departments of Pediatrics and Cellular and Molecular Biology and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, and
| |
Collapse
|
37
|
Members of the CIP4 family of proteins participate in the regulation of platelet-derived growth factor receptor-beta-dependent actin reorganization and migration. Biol Cell 2010; 102:215-30. [PMID: 19909236 DOI: 10.1042/bc20090033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION The F-BAR {Fes/CIP4 [Cdc42 (cell division cycle 42)-interacting protein 4] homology and BAR (Bin/amphiphysin/Rvs)} proteins have emerged as important co-ordinators of signalling pathways that regulate actin assembly and membrane dynamics. The presence of the F-BAR domain is the hallmark of this family of proteins and the CIP4 (Cdc42-interacting protein 4) was one of the first identified vertebrate F-BAR proteins. There are three human CIP4 paralogues, namely CIP4, FBP17 (formin-binding protein 17) and Toca-1 (transducer of Cdc42-dependent actin assembly 1). The CIP4-like proteins have been implicated in Cdc42-dependent actin reorganization and in regulation of membrane deformation events visible as tubulation of lipid bilayers. RESULTS We performed side-by-side analyses of the three CIP4 paralogues. We found that the three CIP4-like proteins vary in their effectiveness to catalyse membrane tubulation and actin reorganization. Moreover, we show that the CIP4-dependent membrane tubulation is enhanced in the presence of activated Cdc42. Some F-BAR members have been shown to have a role in the endocytosis of the EGF (epidermal growth factor) receptor and this prompted us to study the involvement of the CIP4-like proteins in signalling of the PDGFRbeta [PDGF (platelet-derived growth factor) beta-receptor]. We found that knock-down of CIP4-like proteins resulted in a prolonged formation of PDGF-induced dorsal ruffles, as well as an increased PDGF-dependent cell migration. This was most likely a consequence of a sustained PDGFRbeta activation caused by delayed internalization of the receptor in the cells treated with siRNA (small interfering RNA) specific for the CIP4-like proteins. CONCLUSIONS Our findings show that CIP4-like proteins induced membrane tubulation downstream of Cdc42 and that they have important roles in PDGF-dependent actin reorganization and cell migration by regulating internalization and activity of the PDGFRbeta. Moreover, the results suggest an important role for the CIP4-like proteins in the regulation of the activity of the PDGFRbeta.
Collapse
|
38
|
Zhang J, Dong B, Siminovitch KA. Contributions of Wiskott-Aldrich syndrome family cytoskeletal regulatory adapters to immune regulation. Immunol Rev 2009; 232:175-94. [PMID: 19909364 DOI: 10.1111/j.1600-065x.2009.00846.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytoskeletal structure and dynamic rearrangement are integrally involved in coupling external stimuli to the orchestrated network of molecular interactions and cellular responses required for T-cell effector function. Members of the Wiskott-Aldrich syndrome protein (WASp) family are now widely recognized as cytoskeletal scaffolding adapters that coordinate the transmission of stimulatory signals to downstream induction of actin remodeling and cytoskeletal-dependent T-cell responses. In this review, we discuss the structural and functional properties of the WASp family members, with an emphasis on the roles of these proteins in the molecular pathways underpinning T-cell activation. The contributions of WASp family proteins and the cytoskeletal reorganization they evoke to expression of specific T-cell effector functions and the implications of such activity to normal immune responses and to the immunologic deficits manifested by Wiskott-Aldrich syndrome patients are also described.
Collapse
Affiliation(s)
- Jinyi Zhang
- Department of Medicine, University of Toronto, Mount Sinai Hospital Samuel Lunenfeld Research Institute, Toronto, ON, Canada
| | | | | |
Collapse
|
39
|
Requirements for F-BAR proteins TOCA-1 and TOCA-2 in actin dynamics and membrane trafficking during Caenorhabditis elegans oocyte growth and embryonic epidermal morphogenesis. PLoS Genet 2009; 5:e1000675. [PMID: 19798448 PMCID: PMC2744924 DOI: 10.1371/journal.pgen.1000675] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 09/02/2009] [Indexed: 01/03/2023] Open
Abstract
The TOCA family of F-BAR–containing proteins bind to and remodel lipid bilayers via their conserved F-BAR domains, and regulate actin dynamics via their N-Wasp binding SH3 domains. Thus, these proteins are predicted to play a pivotal role in coordinating membrane traffic with actin dynamics during cell migration and tissue morphogenesis. By combining genetic analysis in Caenorhabditis elegans with cellular biochemical experiments in mammalian cells, we showed that: i) loss of CeTOCA proteins reduced the efficiency of Clathrin-mediated endocytosis (CME) in oocytes. Genetic interference with CeTOCAs interacting proteins WSP-1 and WVE-1, and other components of the WVE-1 complex, produced a similar effect. Oocyte endocytosis defects correlated well with reduced egg production in these mutants. ii) CeTOCA proteins localize to cell–cell junctions and are required for proper embryonic morphogenesis, to position hypodermal cells and to organize junctional actin and the junction-associated protein AJM-1. iii) Double mutant analysis indicated that the toca genes act in the same pathway as the nematode homologue of N-WASP/WASP, wsp-1. Furthermore, mammalian TOCA-1 and C. elegans CeTOCAs physically associated with N-WASP and WSP-1 directly, or WAVE2 indirectly via ABI-1. Thus, we propose that TOCA proteins control tissues morphogenesis by coordinating Clathrin-dependent membrane trafficking with WAVE and N-WASP–dependent actin-dynamics. Cells continuously remodel their shape especially during cell migration, differentiation, and tissues morphogenesis. This occurs through the dynamic reorganization of their plasma membrane and actin cytoskeleton: two processes that must therefore be intimately linked and coordinated. Molecules that sit at the crossroads of membrane remodeling and actin dynamics are predicted to play a pivotal role in coordinating these processes. The TOCA family of proteins represents a case in point. These proteins bind to and deform membranes during processes such as membrane trafficking. They also control actin dynamics through their interactions with actin remodeling factors, such as WASP and WAVEs. Here, we characterize the functional role of TOCA proteins in a model organism, the nematode Caenorhabditis elegans. We established that toca genes regulate Clathrin-mediated membrane trafficking during oocyte growth. We further discovered that these proteins play an important role in epithelial morphogenesis in developing embryos, and in egg production in adult nematodes. Moreover, the TOCA interacting proteins WASP/WSP-1 and WAVE/WVE-1, as well as other components of the WVE-1 complex, appear to be involved in TOCA-dependent processes. Thus, we propose that TOCA proteins control tissue morphogenesis by coordinating Clathrin-dependent membrane trafficking with WAVE and N-WASP–dependent actin-dynamics.
Collapse
|
40
|
Hu J, Troglio F, Mukhopadhyay A, Everingham S, Kwok E, Scita G, Craig AWB. F-BAR-containing adaptor CIP4 localizes to early endosomes and regulates Epidermal Growth Factor Receptor trafficking and downregulation. Cell Signal 2009; 21:1686-97. [PMID: 19632321 DOI: 10.1016/j.cellsig.2009.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/08/2009] [Accepted: 07/16/2009] [Indexed: 12/12/2022]
Abstract
Cdc42-Interacting Protein-4 (CIP4) family adaptors have been implicated in promoting Epidermal Growth Factor Receptor (EGFR) internalization, however, their unique or overlapping functions remain unclear. Here, we show that although CIP4 was not required for early events in clathrin-mediated endocytosis of EGFR, CIP4 localizes to vesicles containing EGFR and Rab5. Furthermore, expression of constitutively active Rab5 led to accumulation of CIP4 and the related adaptor Toca-1 in giant endosomes. Using a mutagenesis approach, we show that localization of CIP4 to endosomes is mediated in part via the curved phosphoinositide-binding face of the CIP4 F-BAR domain. Downregulation of CIP4 in A431 epidermoid carcinoma cells by RNA interference led to elevated EGFR levels, compared to control cells. Although surface expression of EGFR was not affected by CIP4 silencing, EGF-induced transit of EGFR from EEA1-positive endosomes to lysosomes was reduced compared to control cells. This correlated with more robust activation of ERK kinase and entry to S phase in CIP4-depleted A431 cells, compared to control cells. The combined silencing of CIP4 and Toca-1 was more effective in driving cells into S phase, suggesting a partial redundancy in their functions. Overall, our results implicate CIP4 and Toca-1 in regulating late events in EGFR trafficking from endosomes that serves to limit sustained ERK activation within the endosomal compartment.
Collapse
Affiliation(s)
- Jinghui Hu
- Queen's University Cancer Research Institute, Division of Cancer Biology & Genetics and Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Roignot J, Taïeb D, Suliman M, Dusetti NJ, Iovanna JL, Soubeyran P. CIP4 is a new ArgBP2 interacting protein that modulates the ArgBP2 mediated control of WAVE1 phosphorylation and cancer cell migration. Cancer Lett 2009; 288:116-23. [PMID: 19631450 DOI: 10.1016/j.canlet.2009.06.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 01/23/2023]
Abstract
ArgBP2 is a multi-adapter protein involved in signal transduction associated to the cytoskeleton and was shown to regulate the migration and adhesion of pancreatic cancer cells thereby modulating their tumorigenicity. Here we describe the interaction of ArgBP2 with CIP4, a new associated protein identified by yeast two-hybrid. We found that both proteins modulated their reciprocal tyrosine phosphorylation catalyzed by the non-receptor tyrosine kinase c-Abl. We observed that, like ArgBP2, CIP4 directly interacted with WAVE1 and could enhance its phosphorylation by c-Abl. ArgBP2 and CIP4 acted synergistically to increase WAVE1 tyrosine phosphorylation. Finally, we could show that CIP4 was dispensable for the ArgBP2 induced blockade of cell migration whereas its overexpression was deleterious for this important function of ArgBP2.
Collapse
Affiliation(s)
- J Roignot
- INSERM, U.624, Parc Scientifique de Luminy, Marseille, France
| | | | | | | | | | | |
Collapse
|
42
|
Waite AL, Schaner P, Richards N, Balci-Peynircioglu B, Masters SL, Brydges SD, Fox M, Hong A, Yilmaz E, Kastner DL, Reinherz EL, Gumucio DL. Pyrin Modulates the Intracellular Distribution of PSTPIP1. PLoS One 2009; 4:e6147. [PMID: 19584923 PMCID: PMC2702820 DOI: 10.1371/journal.pone.0006147] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/03/2009] [Indexed: 01/23/2023] Open
Abstract
PSTPIP1 is a cytoskeleton-associated adaptor protein that links PEST-type phosphatases to their substrates. Mutations in PSTPIP1 cause PAPA syndrome (Pyogenic sterile Arthritis, Pyoderma gangrenosum, and Acne), an autoinflammatory disease. PSTPIP1 binds to pyrin and mutations in pyrin result in familial Mediterranean fever (FMF), a related autoinflammatory disorder. Since disease-associated mutations in PSTPIP1 enhance pyrin binding, PAPA syndrome and FMF are thought to share a common pathoetiology. The studies outlined here describe several new aspects of PSTPIP1 and pyrin biology. We document that PSTPIP1, which has homology to membrane-deforming BAR proteins, forms homodimers and generates membrane-associated filaments in native and transfected cells. An extended FCH (Fes-Cip4 homology) domain in PSTPIP1 is necessary and sufficient for its self-aggregation. We further show that the PSTPIP1 filament network is dependent upon an intact tubulin cytoskeleton and that the distribution of this network can be modulated by pyrin, indicating that this is a dynamic structure. Finally, we demonstrate that pyrin can recruit PSTPIP1 into aggregations (specks) of ASC, another pyrin binding protein. ASC specks are associated with inflammasome activity. PSTPIP1 molecules with PAPA-associated mutations are recruited by pyrin to ASC specks with particularly high efficiency, suggesting a unique mechanism underlying the robust inflammatory phenotype of PAPA syndrome.
Collapse
Affiliation(s)
- Andrea L. Waite
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Philip Schaner
- Division of Radiology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Neil Richards
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Seth L. Masters
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Susannah D. Brydges
- Genetics and Genomics Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michelle Fox
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Arthur Hong
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Engin Yilmaz
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Daniel L. Kastner
- Genetics and Genomics Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Ellis L. Reinherz
- Harvard Medical School, Laboratory of Immunology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Deborah L. Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
43
|
Hartig SM, Ishikura S, Hicklen RS, Feng Y, Blanchard EG, Voelker KA, Pichot CS, Grange RW, Raphael RM, Klip A, Corey SJ. The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and Dynamin-2. J Cell Sci 2009; 122:2283-91. [PMID: 19509061 DOI: 10.1242/jcs.041343] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
F-BAR proteins are a newly described family of proteins with unknown physiological significance. Because F-BAR proteins, including Cdc42 interacting protein-4 (CIP4), drive membrane deformation and affect endocytosis, we investigated the role of CIP4 in GLUT4 traffic by flow cytometry in GLUT4myc-expressing L6 myoblasts (L6 GLUT4myc). L6 GLUT4myc cells express CIP4a as the predominant F-BAR protein. siRNA knockdown of CIP4 increased insulin-stimulated (14)C-deoxyglucose uptake by elevating cell-surface GLUT4. Enhanced surface GLUT4 was due to decreased endocytosis, which correlated with lower transferrin internalization. Immunoprecipitation of endogenous CIP4 revealed that CIP4 interacted with N-WASp and Dynamin-2 in an insulin-dependent manner. FRET confirmed the insulin-dependent, subcellular properties of these interactions. Insulin exposure stimulated specific interactions in plasma membrane and cytosolic compartments, followed by a steady-state response that underlies the coordination of proteins needed for GLUT4 traffic. Our findings reveal a physiological function for F-BAR proteins, supporting a previously unrecognized role for the F-BAR protein CIP4 in GLUT4 endocytosis, and show that interactions between CIP4 and Dynamin-2 and between CIP4 and NWASp are spatially coordinated to promote function.
Collapse
Affiliation(s)
- Sean M Hartig
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kobashigawa Y, Kumeta H, Kanoh D, Inagaki F. The NMR structure of the TC10- and Cdc42-interacting domain of CIP4. JOURNAL OF BIOMOLECULAR NMR 2009; 44:113-8. [PMID: 19387844 DOI: 10.1007/s10858-009-9317-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 04/06/2009] [Indexed: 05/22/2023]
Affiliation(s)
- Yoshihiro Kobashigawa
- Laboratory of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | | | | | | |
Collapse
|
45
|
Abstract
Among an increasing number of lipid-binding domains, a group that not only binds to membrane lipids but also changes the shape of the membrane has been found. These domains are characterized by their strong ability to transform globular liposomes as well as flat plasma membranes into elongated membrane tubules both in vitro and in vivo. Biochemical studies on the structures of these proteins have revealed the importance of the amphipathic helix, which potentially intercalates into the lipid bilayer to induce and/or sense membrane curvature. Among such membrane-deforming domains, BAR and F-BAR/EFC domains form crescent-shaped dimers, suggesting a preference for a curved membrane, which is important for curvature sensing. Bioinformatics in combination with structural analyses has been identifying an increasing number of novel families of lipid-binding domains. This review attempts to summarize the evidence obtained by recent studies in order to gain general insights into the roles of membrane-deforming domains in a variety of biological events.
Collapse
Affiliation(s)
- Toshiki Itoh
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Japan.
| | | |
Collapse
|
46
|
Lee S, Han JW, Leeper L, Gruver JS, Chung CY. Regulation of the formation and trafficking of vesicles from Golgi by PCH family proteins during chemotaxis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1199-209. [PMID: 19409937 DOI: 10.1016/j.bbamcr.2009.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 12/14/2022]
Abstract
Previous study demonstrated that WASP localizes on vesicles during Dictyostelium chemotaxis and these vesicles appear to be preferentially distributed at the leading and trailing edge of migrating cells. In this study, we have examined the role of PCH family proteins, Nwk/Bzz1p-like protein (NLP) and Syndapin-like protein (SLP), in the regulation of the formation and trafficking of WASP-vesicles during chemotaxis. NLP and SLP appear to be functionally redundant and deletion of both nlp and slp genes causes the loss of polarized F-actin organization and significant defects in chemotaxis. WASP and NLP are colocalized on vesicles and interactions between two molecules via the SH3 domain of NLP/SLP and the proline-rich repeats of WASP are required for vesicle formation from Golgi. Microtubules are required for polarized trafficking of these vesicles as vesicles showing high directed mobility are absent in cells treated with nocodazole. Our results suggest that interaction of WASP with NLP/SLP is required for the formation and trafficking of vesicles from Golgi to the membrane, which might play a central role in the establishment of cell polarity during chemotaxis.
Collapse
Affiliation(s)
- S Lee
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | | | | | | | |
Collapse
|
47
|
IRSp53 Links the Enterohemorrhagic E. coli Effectors Tir and EspFU for Actin Pedestal Formation. Cell Host Microbe 2009; 5:244-58. [DOI: 10.1016/j.chom.2009.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 12/30/2008] [Accepted: 02/11/2009] [Indexed: 12/20/2022]
|
48
|
Drosophila Cip4 and WASp define a branch of the Cdc42-Par6-aPKC pathway regulating E-cadherin endocytosis. Curr Biol 2008; 18:1639-48. [PMID: 18976911 DOI: 10.1016/j.cub.2008.09.063] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND Integral to the function and morphology of the epithelium is the lattice of cell-cell junctions known as adherens junctions (AJs). AJ stability and plasticity relies on E-Cadherin exocytosis and endocytosis. A mechanism regulating E-Cadherin (E-Cad) exocytosis to the AJs has implicated proteins of the exocyst complex, but mechanisms regulating E-Cad endocytosis from the AJs remain less well understood. RESULTS Here we show that Cdc42, Par6, or aPKC loss of function is accompanied by the accumulation of apical E-Cad intracellular punctate structures and the disruption of AJs in Drosophila epithelial cells. These punctate structures derive from large and malformed endocytic vesicles that emanate from the AJs; a phenotype that is also observed upon blocking vesicle scission in dynamin mutant cells. We demonstrate that the Drosophila Cdc42-interacting protein 4 (Cip4) is a Cdc42 effector that interacts with Dynamin and the Arp2/3 activator WASp in Drosophila. Accordingly, Cip4, WASp, or Arp2/3 loss of function also results in defective E-Cadherin endocytosis. CONCLUSION Altogether our results show that Cdc42 functions with Par6 and aPKC to regulate E-Cad endocytosis and define Cip4 and WASp as regulators of the early E-Cad endocytic events in epithelial tissue.
Collapse
|
49
|
CALLE Y, ANTÓN I, THRASHER A, JONES G. WASP and WIP regulate podosomes in migrating leukocytes. J Microsc 2008; 231:494-505. [DOI: 10.1111/j.1365-2818.2008.02062.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Grimm-Günter EMS, Milbrandt M, Merkl B, Paulsson M, Plomann M. PACSIN proteins bind tubulin and promote microtubule assembly. Exp Cell Res 2008; 314:1991-2003. [PMID: 18456257 DOI: 10.1016/j.yexcr.2008.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 03/08/2008] [Accepted: 03/12/2008] [Indexed: 11/28/2022]
Abstract
PACSINs are intracellular adapter proteins involved in vesicle transport, membrane dynamics and actin reorganisation. In this study, we report a novel role for PACSIN proteins as components of the centrosome involved in microtubule dynamics. Glutathione S-transferase (GST)-tagged PACSIN proteins interacted with protein complexes containing alpha- and gamma-tubulin in brain homogenate. Analysis of cell lysates showed that all three endogenous PACSINs co-immunoprecipitated dynamin, alpha-tubulin and gamma-tubulin. Furthermore, PACSINs bound only to unpolymerised tubulin, not to microtubules purified from brain. In agreement, the cellular localisation of endogenous PACSIN 2 was not affected by the microtubule depolymerising reagent nocodazole. By light microscopy, endogenous PACSIN 2 localised next to gamma-tubulin at purified centrosomes from NIH 3T3 cells. Finally, reduction of PACSIN 2 protein levels with small-interfering RNA (siRNA) resulted in impaired microtubule nucleation from centrosomes, whereas microtubule centrosome splitting was not affected, suggesting a role for PACSIN 2 in the regulation of tubulin polymerisation. These findings suggest a novel function for PACSIN proteins in dynamic microtubuli nucleation.
Collapse
Affiliation(s)
- Eva-Maria S Grimm-Günter
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | | | | | | | | |
Collapse
|