1
|
Glaría E, Martínez PR, Font-Díaz J, De la Rosa JV, Castrillo A, Crawshaw DJ, Vidal Taboada JM, Saura J, Matalonga J, Nunes Chini E, Caelles C, Valledor AF. Liver X Receptors and Inflammatory-Induced C/EBPβ Selectively Cooperate to Control CD38 Transcription. J Innate Immun 2024; 17:56-77. [PMID: 39701049 PMCID: PMC11781815 DOI: 10.1159/000543274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Macrophages abundantly express liver X receptors (LXRs), which are ligand-dependent transcription factors and sensors of several cholesterol metabolites. In response to agonists, LXRs promote the expression of key lipid homeostasis regulators. Cross talk between LXRs and inflammatory signals exists in a cell type- and gene-specific manner. A common feature in the macrophage response to inflammatory mediators is the induction of CCAAT/enhancer-binding protein beta (C/EBPβ), a master transcriptional regulator and lineage-determining transcription factor in monocytes/macrophages. METHODS Quantitative real-time PCR in control and C/EBPβ-deficient macrophages was used to explore the role of C/EBPβ in the cross talk between inflammatory mediators and the macrophage response to pharmacological LXR activation. The functional interaction between C/EBPβ and LXRs on selected genomic regions was further characterized by chromatin-immunoprecipitation (ChIP) and gene reporter studies. RESULTS Whereas inflammatory signaling repressed several LXR-regulated genes involved in lipid metabolism, these effects were conserved after deletion of C/EBPβ. In contrast, inflammatory mediators and LXRs synergistically induced the expression of the multifunctional protein CD38 in a C/EBPβ-dependent manner. C/EBPβ and LXRs bound to several regions with enhancer activity upstream and within the mouse Cd38 gene and their functional cooperation in macrophages required intact binding sites for LXR and C/EBPβ. CONCLUSION This study reveals positive cross talk between C/EBPβ and LXRs during the macrophage inflammatory response, which selectively impacts CD38 expression. INTRODUCTION Macrophages abundantly express liver X receptors (LXRs), which are ligand-dependent transcription factors and sensors of several cholesterol metabolites. In response to agonists, LXRs promote the expression of key lipid homeostasis regulators. Cross talk between LXRs and inflammatory signals exists in a cell type- and gene-specific manner. A common feature in the macrophage response to inflammatory mediators is the induction of CCAAT/enhancer-binding protein beta (C/EBPβ), a master transcriptional regulator and lineage-determining transcription factor in monocytes/macrophages. METHODS Quantitative real-time PCR in control and C/EBPβ-deficient macrophages was used to explore the role of C/EBPβ in the cross talk between inflammatory mediators and the macrophage response to pharmacological LXR activation. The functional interaction between C/EBPβ and LXRs on selected genomic regions was further characterized by chromatin-immunoprecipitation (ChIP) and gene reporter studies. RESULTS Whereas inflammatory signaling repressed several LXR-regulated genes involved in lipid metabolism, these effects were conserved after deletion of C/EBPβ. In contrast, inflammatory mediators and LXRs synergistically induced the expression of the multifunctional protein CD38 in a C/EBPβ-dependent manner. C/EBPβ and LXRs bound to several regions with enhancer activity upstream and within the mouse Cd38 gene and their functional cooperation in macrophages required intact binding sites for LXR and C/EBPβ. CONCLUSION This study reveals positive cross talk between C/EBPβ and LXRs during the macrophage inflammatory response, which selectively impacts CD38 expression.
Collapse
Affiliation(s)
- Estibaliz Glaría
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Pol Rodríguez Martínez
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Joan Font-Díaz
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Juan Vladimir De la Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de investigación Farmacología Molecular y Traslacional (BIOPharma), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de investigación Farmacología Molecular y Traslacional (BIOPharma), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
- Instituto de Investigaciones Biomédicas Sols-Morreale, Centro mixto CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Dylan J. Crawshaw
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Jose Manuel Vidal Taboada
- Department of Biomedical Sciences, Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Peripheral Nervous System, Brain & Mind and Behaviour eCORE, VHIR, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Josep Saura
- Department of Biomedical Sciences, Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Jonathan Matalonga
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Kogod Center on Aging, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Carme Caelles
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Annabel F. Valledor
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
2
|
Domínguez-Luis MJ, Castro-Hernández J, Santos-Concepción S, Díaz-Martín A, Arce-Franco M, Pérez-González N, Díaz M, Castrillo A, Salido E, Machado JD, Gumá M, Corr M, Díaz-González F. Modulation of the K/BxN arthritis mouse model and the effector functions of human fibroblast-like synoviocytes by liver X receptors. Eur J Immunol 2024; 54:e2451136. [PMID: 39148175 DOI: 10.1002/eji.202451136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The role of liver X receptors (LXR) in rheumatoid arthritis (RA) remains controversial. We studied the effect of LXR agonists on fibroblast-like synoviocytes (FLS) from RA patients and the K/BxN arthritis model in LXRα and β double-deficient (Nr1h2/3-/-) mice. Two synthetic LXR agonists, GW3965 and T0901317, were used to activate LXRs and investigate their effects on cell growth, proliferation and matrix metalloproteinases, and chemokine production in cultured FLS from RA patients. The murine model K/BxN serum transfer of inflammatory arthritis in Nr1h2/3-/- animals was used to investigate the role of LXRs on joint inflammation in vivo. LXR agonists inhibited the FLS proliferative capacity in response to TNF, the chemokine-induced migration, the collagenase activity in FLS supernatant and FLS CXCL12 production. In the K/BxN mouse model, Nr1h2/3-/- animals showed aggravated arthritis, histological inflammation, and joint destruction, as well as an increase in synovial metalloproteases and expression of proinflammatory mediators such as IL-1β and CCL2 in joints compared with wild type animals. Taken together, these data underscore the importance of LXRs in modulating the joint inflammatory response and highlight them as potential therapeutic targets in RA.
Collapse
MESH Headings
- Animals
- Humans
- Liver X Receptors/metabolism
- Liver X Receptors/genetics
- Mice
- Synoviocytes/metabolism
- Synoviocytes/pathology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Fibroblasts/metabolism
- Mice, Knockout
- Disease Models, Animal
- Arthritis, Experimental/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Cells, Cultured
- Male
- Cell Proliferation
- Female
- Mice, Inbred C57BL
- Benzylamines/pharmacology
Collapse
Affiliation(s)
| | - Javier Castro-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | | | - Ana Díaz-Martín
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
| | - Mayte Arce-Franco
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
| | | | - Mercedes Díaz
- Unidad de Biomedicina IIBM CSIC-Universidad de Las Palmas de Gran Canaria (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina IIBM CSIC-Universidad de Las Palmas de Gran Canaria (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Las Palmas de Gran Canaria, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo Salido
- Departamento de Anatomía Patológica, Universidad de La Laguna, La Laguna, Spain
| | - José David Machado
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Mónica Gumá
- Department of Medicine, University of California, San Diego, California, USA
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, California, USA
| | - Federico Díaz-González
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
- Departamento de Medicina Interna, Dermatología, Universidad de La Laguna, La Laguna, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
3
|
Romero-Ramírez L, Mey J. Emerging Roles of Bile Acids and TGR5 in the Central Nervous System: Molecular Functions and Therapeutic Implications. Int J Mol Sci 2024; 25:9279. [PMID: 39273226 PMCID: PMC11395147 DOI: 10.3390/ijms25179279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Bile acids (BAs) are cholesterol derivatives synthesized in the liver and released into the digestive tract to facilitate lipid uptake during the digestion process. Most of these BAs are reabsorbed and recycled back to the liver. Some of these BAs progress to other tissues through the bloodstream. The presence of BAs in the central nervous system (CNS) has been related to their capacity to cross the blood-brain barrier (BBB) from the systemic circulation. However, the expression of enzymes and receptors involved in their synthesis and signaling, respectively, support the hypothesis that there is an endogenous source of BAs with a specific function in the CNS. Over the last decades, BAs have been tested as treatments for many CNS pathologies, with beneficial effects. Although they were initially reported as neuroprotective substances, they are also known to reduce inflammatory processes. Most of these effects have been related to the activation of the Takeda G protein-coupled receptor 5 (TGR5). This review addresses the new challenges that face BA research for neuroscience, focusing on their molecular functions. We discuss their endogenous and exogenous sources in the CNS, their signaling through the TGR5 receptor, and their mechanisms of action as potential therapeutics for neuropathologies.
Collapse
Affiliation(s)
- Lorenzo Romero-Ramírez
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| | - Jörg Mey
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
- EURON Graduate School of Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
4
|
Hoekstra M, de Jong LM, van der Geest R, de Leeuw LR, Krisnamurthi R, Geerling JJ, Van Eck M. LXR Agonist T0901317's Hepatic Impact Overrules Its Atheroprotective Action in Macrophages, Driving Early Atherogenesis in Chow-Diet-Fed Male Apolipoprotein E Knockout Mice. Biomolecules 2024; 14:429. [PMID: 38672446 PMCID: PMC11047872 DOI: 10.3390/biom14040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Preclinical studies regarding the potential of liver X receptor (LXR) agonists to inhibit macrophage foam cell formation and the development of atherosclerotic lesions are generally executed in mice fed with Western-type diets enriched in cholesterol and fat. Here, we investigated whether LXR agonism remains anti-atherogenic under dietary conditions with a low basal hepatic lipogenesis rate. Hereto, atherosclerosis-susceptible male apolipoprotein E knockout mice were fed a low-fat diet with or without 10 mg/kg/day LXR agonist T0901317 supplementation for 8 weeks. Importantly, T0901317 significantly stimulated atherosclerosis susceptibility, despite an associated increase in the macrophage gene expression levels of cholesterol efflux transporters ABCA1 and ABCG1. The pro-atherogenic effect of T0901317 coincided with exacerbated hypercholesterolemia, hypertriglyceridemia, and a significant rise in hepatic triglyceride stores and macrophage numbers. Furthermore, T0901317-treated mice exhibited elevated plasma MCP-1 levels and monocytosis. In conclusion, these findings highlight that the pro-atherogenic hepatic effects of LXR agonism are dominant over the anti-atherogenic effects in macrophages in determining the overall atherosclerosis outcome under low-fat diet feeding conditions. A low-fat diet experimental setting, as compared to the commonly used high-fat-diet-based preclinical setup, thus appears more sensitive in uncovering the potential relevance of the off-target liver effects of novel anti-atherogenic therapeutic approaches that target macrophage LXR.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (M.V.E.)
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Pharmacy Leiden, Leiden, The Netherlands
| | - Laura M. de Jong
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (M.V.E.)
| | - Rick van der Geest
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (M.V.E.)
| | - Lidewij R. de Leeuw
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (M.V.E.)
| | - Rani Krisnamurthi
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (M.V.E.)
| | - Janine J. Geerling
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (M.V.E.)
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (M.V.E.)
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Pharmacy Leiden, Leiden, The Netherlands
| |
Collapse
|
5
|
Kim H, Park C, Kim TH. Targeting Liver X Receptors for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2023; 12:cells12091292. [PMID: 37174692 PMCID: PMC10177243 DOI: 10.3390/cells12091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) refers to a range of conditions in which excess lipids accumulate in the liver, possibly leading to serious hepatic manifestations such as steatohepatitis, fibrosis/cirrhosis and cancer. Despite its increasing prevalence and significant impact on liver disease-associated mortality worldwide, no medication has been approved for the treatment of NAFLD yet. Liver X receptors α/β (LXRα and LXRβ) are lipid-activated nuclear receptors that serve as master regulators of lipid homeostasis and play pivotal roles in controlling various metabolic processes, including lipid metabolism, inflammation and immune response. Of note, NAFLD progression is characterized by increased accumulation of triglycerides and cholesterol, hepatic de novo lipogenesis, mitochondrial dysfunction and augmented inflammation, all of which are highly attributed to dysregulated LXR signaling. Thus, targeting LXRs may provide promising strategies for the treatment of NAFLD. However, emerging evidence has revealed that modulating the activity of LXRs has various metabolic consequences, as the main functions of LXRs can distinctively vary in a cell type-dependent manner. Therefore, understanding how LXRs in the liver integrate various signaling pathways and regulate metabolic homeostasis from a cellular perspective using recent advances in research may provide new insights into therapeutic strategies for NAFLD and associated metabolic diseases.
Collapse
Affiliation(s)
- Hyejin Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Chaewon Park
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Tae Hyun Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
6
|
Hegyi Z, Hegedűs T, Homolya L. The Reentry Helix Is Potentially Involved in Cholesterol Sensing of the ABCG1 Transporter Protein. Int J Mol Sci 2022; 23:ijms232213744. [PMID: 36430223 PMCID: PMC9698493 DOI: 10.3390/ijms232213744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
ABCG1 has been proposed to play a role in HDL-dependent cellular sterol regulation; however, details of the interaction between the transporter and its potential sterol substrates have not been revealed. In the present work, we explored the effect of numerous sterol compounds on the two isoforms of ABCG1 and ABCG4 and made efforts to identify the molecular motifs in ABCG1 that are involved in the interaction with cholesterol. The functional readouts used include ABCG1-mediated ATPase activity and ABCG1-induced apoptosis. We found that both ABCG1 isoforms and ABCG4 interact with several sterol compounds; however, they have selective sensitivities to sterols. Mutational analysis of potential cholesterol-interacting motifs in ABCG1 revealed altered ABCG1 functions when F571, L626, or Y586 were mutated. L430A and Y660A substitutions had no functional consequence, whereas Y655A completely abolished the ABCG1-mediated functions. Detailed structural analysis of ABCG1 demonstrated that the mutations modulating ABCG1 functions are positioned either in the so-called reentry helix (G-loop/TM5b,c) (Y586) or in its close proximity (F571 and L626). Cholesterol molecules resolved in the structure of ABCG1 are also located close to Y586. Based on the experimental observations and structural considerations, we propose an essential role for the reentry helix in cholesterol sensing in ABCG1.
Collapse
Affiliation(s)
- Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, H-1094 Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-3826608
| |
Collapse
|
7
|
Sethuraman V, Pu Y, Gingrich J, Jing J, Long R, Olomu IN, Veiga-Lopez A. Expression of ABC transporters during syncytialization in preeclampsia. Pregnancy Hypertens 2022; 27:181-188. [PMID: 35124425 PMCID: PMC9017055 DOI: 10.1016/j.preghy.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/29/2021] [Accepted: 01/23/2022] [Indexed: 01/12/2023]
Abstract
Preeclampsia complicates 2-8% of pregnancies and is associated with prematurity and intrauterine growth restriction. Cholesterol and sterol transport is a key function of the placenta and it is elicited through ATP binding cassette (ABC) transporters. ABCA1 expression changes during trophoblast cell fusion, a process required to form the placental syncytium that enables maternal-fetal nutrient transfer. ABCA1 expression is dysregulated in preeclamptic placentas. But whether ABC transporters expression during trophoblast fusion is disrupted in preeclampsia remains unknown. We investigated if cholesterol and sterol ABC transporters are altered in term and preterm preeclampsia placentas and during human cytotrophoblast syncytialization. Human placental biopsies were collected from healthy term (≥37 weeks; n = 11) and term preeclamptic (≥36 6/7 weeks; n = 8) and pre-term preeclamptic (28-35 weeks; n = 8) pregnancies. Both, protein and mRNA expression for ABCA1, ABCG1, ABCG5, and ABCG8 were evaluated. Primary cytotrophoblasts isolated from a subset of placentas were induced to syncytialize for 96 h and ABCA1, ABCG1 and ABCG8 mRNA expression evaluated at 0 h and 96 h. Protein and gene expression of ABC transporters were not altered in preeclamptic placentas. In the healthy Term group, ABCA1 expression was similar before and after syncytialization. After 96 h of syncytialization, mRNA expression of ABCA1 and ABCG1 increased significantly, while ABCG8 decreased significantly in term-preeclampsia, but not pre-term preeclampsia. While placental expression of ABCA1 and ABCG1 remained unaltered in term preeclampsia, the disruption in their dynamic expression pattern during cytotrophoblast syncytialization suggests that cholesterol transport may contribute to the pathophysiologic role of the placenta in preeclampsia.
Collapse
Affiliation(s)
- Visalakshi Sethuraman
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Yong Pu
- Department of Pathology, University of Illinois at Chicago
| | - Jeremy Gingrich
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA
| | - Jiongjie Jing
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA
| | - Robert Long
- Department of Obstetrics and Gynecology, Sparrow Health System, East Lansing, Michigan, USA
| | - Isoken Nicholas Olomu
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, USA; Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Cheng J, Cai W, Zong S, Yu Y, Wei F. Metabolite transporters as regulators of macrophage polarization. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:13-25. [PMID: 34851450 DOI: 10.1007/s00210-021-02173-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Macrophages are myeloid immune cells, present in virtually all tissues which exhibit considerable functional plasticity and diversity. Macrophages are often subdivided into two distinct subsets described as classically activated (M1) and alternatively activated (M2) macrophages. It has recently emerged that metabolites regulate the polarization and function of macrophages by altering metabolic pathways. These metabolites often cannot freely pass the cell membrane and are therefore transported by the corresponding metabolite transporters. Here, we reviewed how glucose, glutamate, lactate, fatty acid, and amino acid transporters are involved in the regulation of macrophage polarization. Understanding the interactions among metabolites, metabolite transporters, and macrophage function under physiological and pathological conditions may provide further insights for novel drug targets for the treatment of macrophage-associated diseases. In Brief Recent studies have shown that the polarization and function of macrophages are regulated by metabolites, most of which cannot pass freely through biofilms. Therefore, metabolite transporters required for the uptake of metabolites have emerged seen as important regulators of macrophage polarization and may represent novel drug targets for the treatment of macrophage-associated diseases. Here, we summarize the role of metabolite transporters as regulators of macrophage polarization.
Collapse
Affiliation(s)
- Jingwen Cheng
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Weiwei Cai
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Shiye Zong
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Yun Yu
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China. .,Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, 2600 Donghai Avenue, Bengbu, 233030, Anhui, China.
| |
Collapse
|
9
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
10
|
Stasi A, Franzin R, Fiorentino M, Squiccimarro E, Castellano G, Gesualdo L. Multifaced Roles of HDL in Sepsis and SARS-CoV-2 Infection: Renal Implications. Int J Mol Sci 2021; 22:5980. [PMID: 34205975 PMCID: PMC8197836 DOI: 10.3390/ijms22115980] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins (HDLs) are a class of blood particles, principally involved in mediating reverse cholesterol transport from peripheral tissue to liver. Omics approaches have identified crucial mediators in the HDL proteomic and lipidomic profile, which are involved in distinct pleiotropic functions. Besides their role as cholesterol transporter, HDLs display anti-inflammatory, anti-apoptotic, anti-thrombotic, and anti-infection properties. Experimental and clinical studies have unveiled significant changes in both HDL serum amount and composition that lead to dysregulated host immune response and endothelial dysfunction in the course of sepsis. Most SARS-Coronavirus-2-infected patients admitted to the intensive care unit showed common features of sepsis disease, such as the overwhelmed systemic inflammatory response and the alterations in serum lipid profile. Despite relevant advances, episodes of mild to moderate acute kidney injury (AKI), occurring during systemic inflammatory diseases, are associated with long-term complications, and high risk of mortality. The multi-faceted relationship of kidney dysfunction with dyslipidemia and inflammation encourages to deepen the clarification of the mechanisms connecting these elements. This review analyzes the multifaced roles of HDL in inflammatory diseases, the renal involvement in lipid metabolism, and the novel potential HDL-based therapies.
Collapse
Affiliation(s)
- Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Marco Fiorentino
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Enrico Squiccimarro
- Department of Emergency and Organ Transplant (DETO), University of Bari, 70124 Bari, Italy;
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), 6229HX Maastricht, The Netherlands
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy;
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| |
Collapse
|
11
|
Lamorte S, Shinde R, McGaha TL. Nuclear receptors, the aryl hydrocarbon receptor, and macrophage function. Mol Aspects Med 2021; 78:100942. [PMID: 33451803 DOI: 10.1016/j.mam.2021.100942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Nuclear receptors (NRs) are key regulators of innate immune responses and tissue homeostasis. Evidence indicates that NRs significantly impact steady-state immune regulation, uptake and processing of apoptotic cells, tolerance induction, and control of inflammatory immunity. In this review, we describe our current understanding of the NR activity for balancing inflammation and tolerance, the signaling cascade inducing the NR activation and functional responses, and different mechanisms of the NR-driven immune effects in the context of autoimmune diseases. We further describe the ligand-activated transcription factor the aryl hydrocarbon receptor (AhR) that exhibits analogous functionality. Moreover, we will discuss the putative role of NRs and AhR in immune regulation and disease pathogenesis providing a rationale for therapeutic targeting as a unique opportunities in the clinical management of autoimmune diseases.
Collapse
Affiliation(s)
- Sara Lamorte
- Tumor Immunotherapy Program, The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rahul Shinde
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute Cancer Center, Philadelphia, PA, USA
| | - Tracy L McGaha
- Tumor Immunotherapy Program, The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; The Department of Immunology, The University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Kang S, Kumanogoh A. The spectrum of macrophage activation by immunometabolism. Int Immunol 2020; 32:467-473. [PMID: 32179900 DOI: 10.1093/intimm/dxaa017] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/12/2020] [Indexed: 12/28/2022] Open
Abstract
Macrophages are heterogeneous and plastic, and play several diverse functions in immune responses. Emerging data provide evidence of multiple roles for metabolic pathways in the control of macrophage effector functions. The diverse functions of macrophages are categorized into two main subsets: classical activated macrophages (M1) and alternative activated macrophages (M2). M1 macrophages secrete pro-inflammatory cytokines and reactive oxygen species and migrate into inflamed sites as a part of host defenses. On the other hand, M2 macrophages are involved in immune homeostasis by producing anti-inflammatory cytokines and phagocytosing apoptotic cells. Metabolic reprogramming of environmental or cellular nutrients such as glucose, lipids and amino acids supports this diversity. Mechanistically, the mammalian target of rapamycin (mTOR) network plays important roles in the effector functions of macrophages by modulating cellular metabolism and regulating gene expression at the transcriptional and translational levels. In this review, we outline immunometabolism and provide insights into metabolic regulation by mTOR in macrophages.
Collapse
Affiliation(s)
- Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita City, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| |
Collapse
|
13
|
Kotlyarov SN, Kotlyarova AA. Participation of ABC-transporters in lipid metabolism and pathogenesis of atherosclerosis. GENES & CELLS 2020; 15:22-28. [DOI: 10.23868/202011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Atherosclerosis is one of the key causes of morbidity and mortality worldwide. It is known that a leading role in the development and progression of atherosclerosis is played by a violation of lipid metabolism. ABC transporters provide lipid cell homeostasis, performing a number of transport functions - moving lipids inside the cell, in the plasma membrane, and also removing lipids from the cell. In a large group of ABC transporters, about 20 take part in lipid homeostasis, playing, among other things, an important role in the pathogenesis of atherosclerosis. It was shown that cholesterol is not only a substrate for a number of ABC transporters, but also able to modulate their activity. Regulation of activity is carried out due to specific lipid-protein interactions.
Collapse
|
14
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
15
|
Leussink S, Aranda-Pardos I, A-Gonzalez N. Lipid metabolism as a mechanism of immunomodulation in macrophages: the role of liver X receptors. Curr Opin Pharmacol 2020; 53:18-26. [PMID: 32361182 DOI: 10.1016/j.coph.2020.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Macrophages are immune myeloid cells with an extreme ability to modulate their phenotype in response to insults and/or pathogens. The immunomodulatory capacity of macrophages is also patent during development as they adapt their phenotype to the host tissue environment establishing the heterogeneous populations of tissue-resident macrophages. An important mechanism of immunomodulation in macrophages occurs through the regulation of transcriptional activity. Numerous transcription factors are associated with macrophage plasticity, among them, several nuclear receptors. The nuclear receptors Liver X Receptors (LXRα and LXRβ) have also revealed as active players during macrophage adaptations in diverse scenarios. This review will address the different mechanisms by which LXRs contribute to immunomodulation in macrophages by connecting lipid metabolism and immunity through transcriptional regulation.
Collapse
Affiliation(s)
- Sophia Leussink
- Institute of Immunology, Westfälische Wilhelms Universität Münster, Germany
| | | | - Noelia A-Gonzalez
- Institute of Immunology, Westfälische Wilhelms Universität Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, Germany.
| |
Collapse
|
16
|
Zhang H, Li C, Xin Y, Cui X, Cui J, Zhou G. Suppression of NSDHL attenuates adipogenesis with a downregulation of LXR-SREBP1 pathway in 3T3-L1 cells. Biosci Biotechnol Biochem 2020; 84:980-988. [PMID: 31985358 DOI: 10.1080/09168451.2020.1719823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Previous RNA-Seq analyses revealed that NAD(P)H steroid dehydrogenase-like (NSDHL) has a different expression during 3T3-L1 differentiation; however, its roles in adipogenesis are unknown. In the present study, using quantitative real-time PCR, we confirmed that NSDHL knockdown increased the proliferation of 3T3-L1 preadipocytes, but attenuated the differentiation of 3T3-L1 preadipocytes, as evidenced by reduced lipid accumulation and down-regulation of PPARγ gene expression. Further analyses showed that the expression peak of NSDHL was at the early stage of 3T3-L1 preadipocytes differentiation and LXR-SREBP1 signaling pathway was downregulated in NSDHL-knockdown 3T3-L1 cells. Collectively, our findings indicate that NSDHL is a novel modulator of adipogenesis. Moreover, our data provide insight into the complex relationships between sterol sensing, LXR-SREBP1 signaling pathway, and PPARγ in 3T3-L1 cells.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Life Science, Liaocheng University, Liaocheng, China
| | - Chengping Li
- College of Life Science, Liaocheng University, Liaocheng, China
| | - Youzhi Xin
- College of Life Science, Liaocheng University, Liaocheng, China.,Chinese Academy of Geological Sciences, Beijing, China
| | - Xiao Cui
- College of Life Science, Liaocheng University, Liaocheng, China
| | - Jianwei Cui
- College of Life Science, Liaocheng University, Liaocheng, China
| | - Guoli Zhou
- College of Life Science, Liaocheng University, Liaocheng, China
| |
Collapse
|
17
|
Daemen S, Schilling JD. The Interplay Between Tissue Niche and Macrophage Cellular Metabolism in Obesity. Front Immunol 2020; 10:3133. [PMID: 32038642 PMCID: PMC6987434 DOI: 10.3389/fimmu.2019.03133] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is associated with the development of metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. The presence of chronic, low-grade inflammation appears to be an important mechanistic link between excess nutrients and clinical disease. The onset of these metabolic disorders coincides with changes in the number and phenotype of macrophages in peripheral organs, particularly in the liver and adipose tissue. Macrophage accumulation in these tissues has been implicated in tissue inflammation and fibrosis, contributing to metabolic disease progression. Recently, the concept has emerged that changes in macrophage metabolism affects their functional phenotype, possibly triggered by distinct environmental metabolic cues. This may be of particular importance in the setting of obesity, where both liver and adipose tissue are faced with a high metabolic burden. In the first part of this review we will discuss current knowledge regarding macrophage dynamics in both adipose tissue and liver in obesity. Then in the second part, we will highlight data linking macrophage metabolism to functional phenotype with an emphasis on macrophage activation in metabolic disease. The importance of understanding how tissue niche influences macrophage function in obesity will be highlighted. In addition, we will identify important knowledge gaps and outstanding questions that are relevant for future research in this area and will facilitate the identification of novel targets for therapeutic intervention in associated metabolic diseases.
Collapse
Affiliation(s)
- Sabine Daemen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Joel D Schilling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
19
|
Takata K, Honda S, Sidharta SL, Duong M, Shishikura D, Kim SW, Andrews J, Di Bartolo BA, Psaltis PJ, Bursill CA, Worthley MI, Nicholls SJ. Associations of ABCG1-mediated cholesterol efflux capacity with coronary artery lipid content assessed by near-infrared spectroscopy. Cardiovasc Diagn Ther 2019; 9:310-318. [PMID: 31555535 DOI: 10.21037/cdt.2018.11.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Although high-density lipoprotein (HDL) has atheroprotective properties, the association of HDL functionality with coronary plaques remains unclear. Methods We investigated the association between HDL-mediated cholesterol efflux capacity (CEC) and coronary lipid burden in 74 patients who underwent near-infrared spectroscopy (NIRS) imaging for acute coronary syndrome (ACS) or stable ischemic symptoms. We measured baseline HDL-mediated CEC, distinguishing the specific pathways, and stratified patients according to their median CEC values. Coronary lipid burden was assessed as lipid core burden index (LCBI) using NIRS at baseline (n=74) and on serial imaging (n=47). Results Patients with baseline ATP-binding cassette transporter G1 (ABCG1)-mediated CEC > median had a greater baseline LCBI {74 [20, 128] vs. 32 [5, 66]; P=0.04} or change in LCBI {-30 [-89, 0] vs. -3 [-16, 0]; P=0.048}. In addition to a negative association between baseline LCBI and change in LCBI (standardized β=-0.31; P=0.02), multivariable analysis demonstrated a significant interaction effect between clinical presentation of coronary artery disease (CAD) and baseline ABCG1-mediated CEC on change in LCBI (P=0.003), indicating that baseline ABCG1-mediated CEC was inversely associated with change in LCBI in patients with ACS (standardized β=-0.79, P=0.003), but not in those with stable ischemic symptoms (P=0.52). Conclusions In this study, ABCG1-mediated CEC, but not ATP-binding cassette transporter A1 and scavenger receptor B type I, was associated with regression of coronary artery lipid content, especially in patients with high-risk phenotype. Further studies are required to determine the roles of ABCG1 pathway in the development coronary plaques.
Collapse
Affiliation(s)
- Kohei Takata
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Satoshi Honda
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Samuel L Sidharta
- Cardiovascular Investigation Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - MyNgan Duong
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Daisuke Shishikura
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Susan W Kim
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Jordan Andrews
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | | | - Peter J Psaltis
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Cardiovascular Investigation Unit, Royal Adelaide Hospital, Adelaide, Australia.,University of Adelaide, Adelaide, Australia
| | - Christina A Bursill
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Cardiovascular Investigation Unit, Royal Adelaide Hospital, Adelaide, Australia.,University of Adelaide, Adelaide, Australia
| | - Matthew I Worthley
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Cardiovascular Investigation Unit, Royal Adelaide Hospital, Adelaide, Australia.,University of Adelaide, Adelaide, Australia
| | - Stephen J Nicholls
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Cardiovascular Investigation Unit, Royal Adelaide Hospital, Adelaide, Australia.,University of Adelaide, Adelaide, Australia
| |
Collapse
|
20
|
Wang Q, Lin C, Zhang C, Wang H, Lu Y, Yao J, Wei Q, Xing G, Cao X. 25-hydroxycholesterol down-regulates oxysterol binding protein like 2 (OSBPL2) via the p53/SREBF2/NFYA signaling pathway. J Steroid Biochem Mol Biol 2019; 187:17-26. [PMID: 30391516 DOI: 10.1016/j.jsbmb.2018.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022]
Abstract
Oxysterol Binding Protein Like 2 (OSBPL2) is a lipid-binding protein implicated in various cellular processes. Previous studies have shown that depression of OSBPL2 significantly increases the level of cellular 25-hydroxycholesterol (25-OHC) which regulates the expression of lipid-metabolism-related genes. However, whether 25-OHC can regulate the expression of OSBPL2 remains unanswered. This study aimed to explore the molecular mechanism of 25-OHC regulating the expression of OSBPL2. Using dual-luciferase reporter assay, we found a decrease of nuclear transcription factor Y subunit alpha (NFYA) bound with OSBPL2 promoter when HeLa cells were treated with 25-OHC. Furthermore, transcriptome sequencing and RNA interference results revealed that the p53/sterol regulatory element binding transcription factor 2 (SREBF2) signaling pathway was involved in the NFYA-dependent transcription of OSBPL2 induced by 25-OHC. Based on these results, we concluded that pleomorphic adenoma gene 1 (PLAG1) and NFYA participated in the basal transcription of OSBPL2 and that 25-OHC decreased the transcription of OSBPL2 via the p53/SREBF2/NFYA signaling pathway. 25-OHC will accumulate over time in OSBPL2 knockdown cells. These results may provide a new insight into the deafness caused by OSBPL2 mutation.
Collapse
Affiliation(s)
- Quan Wang
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Cui Zhang
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; The Laboratory Center for Basic Medical Sciences, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; The Laboratory Center for Basic Medical Sciences, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
21
|
Theiler-Schwetz V, Zaufel A, Schlager H, Obermayer-Pietsch B, Fickert P, Zollner G. Bile acids and glucocorticoid metabolism in health and disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:243-251. [DOI: 10.1016/j.bbadis.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
|
22
|
Anastasius M, Luquain-Costaz C, Kockx M, Jessup W, Kritharides L. A critical appraisal of the measurement of serum 'cholesterol efflux capacity' and its use as surrogate marker of risk of cardiovascular disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1257-1273. [PMID: 30305243 DOI: 10.1016/j.bbalip.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
The 'cholesterol efflux capacity (CEC)' assay is a simple in vitro measure of the capacities of individual sera to promote the first step of the reverse cholesterol transport pathway, the delivery of cellular cholesterol to plasma HDL. This review describes the cell biology of this model and critically assesses its application as a marker of cardiovascular risk. We describe the pathways for cell cholesterol export, current cell models used in the CEC assay with their limitations and consider the contribution that measurement of serum CEC provides to our understanding of HDL function in vivo.
Collapse
Affiliation(s)
- Malcolm Anastasius
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | | | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Wendy Jessup
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Leonard Kritharides
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia; Cardiology Department, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Beyond the Foam Cell: The Role of LXRs in Preventing Atherogenesis. Int J Mol Sci 2018; 19:ijms19082307. [PMID: 30087224 PMCID: PMC6121590 DOI: 10.3390/ijms19082307] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic condition associated with cardiovascular disease. While largely identified by the accumulation of lipid-laden foam cells within the aorta later on in life, atherosclerosis develops over several stages and decades. During atherogenesis, various cell types of the aorta acquire a pro-inflammatory phenotype that initiates the cascade of signaling events facilitating the formation of these foam cells. The liver X receptors (LXRs) are nuclear receptors that upon activation induce the expression of transporters responsible for promoting cholesterol efflux. In addition to promoting cholesterol removal from the arterial wall, LXRs have potent anti-inflammatory actions via the transcriptional repression of key pro-inflammatory cytokines. These beneficial functions sparked an interest in the potential to target LXRs and the development of agonists as anti-atherogenic agents. These early studies focused on mediating the contributions of macrophages to the underlying pathogenesis. However, further evidence has since demonstrated that LXRs reduce atherosclerosis through their actions in multiple cell types apart from those monocytes/macrophages that infiltrate the lesion. LXRs and their target genes have profound effects on multiple other cells types of the hematopoietic system. Furthermore, LXRs can also mediate dysfunction within vascular cell types of the aorta including endothelial and smooth muscle cells. Taken together, these studies demonstrate the whole-body benefits of LXR activation with respect to anti-atherogenesis, and that LXRs remain a viable target for the treatment of atherosclerosis, with a reach which extends beyond plaque macrophages.
Collapse
|
24
|
Li YW, Wang CH, Chen CJ, Wang CCN, Lin CL, Cheng WK, Shen HY, Lim YP. Effects of antiepileptic drugs on lipogenic gene regulation and hyperlipidemia risk in Taiwan: a nationwide population-based cohort study and supporting in vitro studies. Arch Toxicol 2018; 92:2829-2844. [DOI: 10.1007/s00204-018-2263-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 04/25/2018] [Indexed: 11/30/2022]
|
25
|
Cheng Y, Zhao W, Zhang X, Sun L, Yang H, Wang Y, Cao Y, Chu Y, Liu G. Downregulation of microRNA-1 attenuates glucose-induced apoptosis by regulating the liver X receptor α in cardiomyocytes. Exp Ther Med 2018; 16:1814-1824. [PMID: 30186406 PMCID: PMC6122156 DOI: 10.3892/etm.2018.6388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by abnormal myocardial structure or performance. It has been suggested that microRNA-1 (miR-1) may be abnormally expressed in the hearts of patients with diabetes. In the present study, the role of miR-1 in glucose-induced apoptosis and its underlying mechanism of action was investigated in rat cardiomyocyte H9C2 cells. Cells were transfected with anti-miR-1 or miR-1-overexpression plasmids and the expression of miR-1 and liver X receptor α (LXRα) were determined by reverse transcription-quantitative polymerase chain reaction analysis. The proportion of apoptotic cells was determined using an Annexin-V-FITC apoptosis detection kit and the mitochondrial membrane potential (ΔΨ) was measured following staining with rhodamine 123. In addition, the expression of apoptosis-associated proteins was measured by western blot analysis. The results demonstrated that expression of miR-1 was significantly increased, whereas the expression of LXRα was significantly decreased in H9C2 cells following treatment with glucose. miR-1 knockdown significantly inhibited apoptosis, increased the ΔΨ and suppressed the cleavage of poly (adenosine diphosphate-ribose) polymerase, caspase-3 and caspase-9. It also significantly downregulated the expression of Bcl-2 and upregulated the expression of Bax. In addition, it was demonstrated that miR-1 regulates LXRα; transfection with anti-miR-1 significantly increased the expression of LXRα. Furthermore, treatment of cells with the LXR agonist GW3965 inhibited apoptosis in glucose-induced anti-miR-1 cells. These results suggest a novel function of miR-1: The regulation of cardiomyocyte apoptosis via LXRα, and provide novel insights into regarding the complex mechanisms involved in DCM.
Collapse
Affiliation(s)
- Yongxia Cheng
- Department of Pathology, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Wei Zhao
- Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xiaodong Zhang
- Department of Infectious Disease, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Lixin Sun
- School of Adult Education, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Heran Yang
- Department of Laboratory Medicine, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Ying Wang
- Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yong Cao
- Department of Pathology, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanhui Chu
- Medical Pharmacology Research Center, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Guibo Liu
- Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
26
|
Abstract
The transcriptional signature of Kupffer cells & Alveolar macrophages are enriched for lipid metabolism genes. Lipid metabolism may control macrophage phenotype. Dysregulated lipid metabolism in macrophages contributes to disease pathology.
Distinct macrophage populations throughout the body display highly heterogeneous transcriptional and epigenetic programs. Recent research has highlighted that these profiles enable the different macrophage populations to perform distinct functions as required in their tissue of residence, in addition to the prototypical macrophage functions such as in innate immunity. These ‘extra’ tissue-specific functions have been termed accessory functions. One such putative accessory function is lipid metabolism, with macrophages in the lung and liver in particular being associated with this function. As it is now appreciated that cell metabolism not only provides energy but also greatly influences the phenotype and function of the cell, here we review how lipid metabolism affects macrophage phenotype and function and the specific roles played by macrophages in the pathogenesis of lipid-related diseases. In addition, we highlight the current questions limiting our understanding of the role of macrophages in lipid metabolism.
Collapse
Affiliation(s)
- Anneleen Remmerie
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
27
|
Chimento A, Casaburi I, Avena P, Trotta F, De Luca A, Rago V, Pezzi V, Sirianni R. Cholesterol and Its Metabolites in Tumor Growth: Therapeutic Potential of Statins in Cancer Treatment. Front Endocrinol (Lausanne) 2018; 9:807. [PMID: 30719023 PMCID: PMC6348274 DOI: 10.3389/fendo.2018.00807] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Cholesterol is essential for cell function and viability. It is a component of the plasma membrane and lipid rafts and is a precursor for bile acids, steroid hormones, and Vitamin D. As a ligand for estrogen-related receptor alpha (ESRRA), cholesterol becomes a signaling molecule. Furthermore, cholesterol-derived oxysterols activate liver X receptors (LXRs) or estrogen receptors (ERs). Several studies performed in cancer cells reveal that cholesterol synthesis is enhanced compared to normal cells. Additionally, high serum cholesterol levels are associated with increased risk for many cancers, but thus far, clinical trials with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have had mixed results. Statins inhibit cholesterol synthesis within cells through the inhibition of HMG-CoA reductase, the rate-limiting enzyme in the mevalonate and cholesterol synthetic pathway. Many downstream products of mevalonate have a role in cell proliferation, since they are required for maintenance of membrane integrity; signaling, as some proteins to be active must undergo prenylation; protein synthesis, as isopentenyladenine is an essential substrate for the modification of certain tRNAs; and cell-cycle progression. In this review starting from recent acquired findings on the role that cholesterol and its metabolites fulfill in the contest of cancer cells, we discuss the results of studies focused to investigate the use of statins in order to prevent cancer growth and metastasis.
Collapse
|
28
|
Ranjan A, Ansari SA. Therapeutic potential of Mediator complex subunits in metabolic diseases. Biochimie 2017; 144:41-49. [PMID: 29061530 DOI: 10.1016/j.biochi.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023]
Abstract
The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases.
Collapse
Affiliation(s)
- Amol Ranjan
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, MO, 64110, USA
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, AlAin, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
29
|
Critical Role of the Human ATP-Binding Cassette G1 Transporter in Cardiometabolic Diseases. Int J Mol Sci 2017; 18:ijms18091892. [PMID: 28869506 PMCID: PMC5618541 DOI: 10.3390/ijms18091892] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
ATP-binding cassette G1 (ABCG1) is a member of the large family of ABC transporters which are involved in the active transport of many amphiphilic and lipophilic molecules including lipids, drugs or endogenous metabolites. It is now well established that ABCG1 promotes the export of lipids, including cholesterol, phospholipids, sphingomyelin and oxysterols, and plays a key role in the maintenance of tissue lipid homeostasis. Although ABCG1 was initially proposed to mediate cholesterol efflux from macrophages and then to protect against atherosclerosis and cardiovascular diseases (CVD), it becomes now clear that ABCG1 exerts a larger spectrum of actions which are of major importance in cardiometabolic diseases (CMD). Beyond a role in cellular lipid homeostasis, ABCG1 equally participates to glucose and lipid metabolism by controlling the secretion and activity of insulin and lipoprotein lipase. Moreover, there is now a growing body of evidence suggesting that modulation of ABCG1 expression might contribute to the development of diabetes and obesity, which are major risk factors of CVD. In order to provide the current understanding of the action of ABCG1 in CMD, we here reviewed major findings obtained from studies in mice together with data from the genetic and epigenetic analysis of ABCG1 in the context of CMD.
Collapse
|
30
|
Wang CW, Huang CC, Chou PH, Chang YP, Wei S, Guengerich FP, Chou YC, Wang SF, Lai PS, Souček P, Ueng YF. 7-ketocholesterol and 27-hydroxycholesterol decreased doxorubicin sensitivity in breast cancer cells: estrogenic activity and mTOR pathway. Oncotarget 2017; 8:66033-66050. [PMID: 29029490 PMCID: PMC5630390 DOI: 10.18632/oncotarget.19789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/27/2017] [Indexed: 11/30/2022] Open
Abstract
Hypercholesterolemia is one of the risk factors for poor outcome in breast cancer therapy. To elucidate the influence of the main circulating oxysterols, cholesterol oxidation products, on the cell-killing effect of doxorubicin, cells were exposed to oxysterols at a subtoxic concentration. When cells were exposed to oxysterols in fetal bovine serum-supplemented medium, 7-ketocholesterol (7-KC), but not 27-hydroxycholesterol (27-HC), decreased the cytotoxicity of doxorubicin in MCF-7 (high estrogen receptor (ER)α/ERβ ratio) cells and the decreased cytotoxicity was restored by the P-glycoprotein inhibitor verapamil. 7-KC stimulated the efflux function of P-glycoprotein and reduced intracellular doxorubicin accumulation in MCF-7 but not in ERα(-) MDA-MB-231 and the resistant MCF-7/ADR cells. In MCF-7 cells, 7-KC increased the mRNA and protein levels of P-glycoprotein. The 7-KC-suppressed doxorubicin accumulation was restored by the fluvestrant and ERα knockdown. In a yeast reporter assay, the ERα activation by 7-KC was more potent than 27-HC. 7-KC, but not 27-HC, stimulated the expression of an ER target, Trefoil factor 1 in MCF-7 cells. When charcoal-stripped fetal bovine serum was used, both 7-KC and 27-HC induced Trefoil factor 1 expression and reduced doxorubicin accumulation in MCF-7 cells. 7-KC-reduced doxorubicin accumulation could be reversed by inhibitors of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin (mTOR). These findings demonstrate that 7-KC decreases the cytotoxicity of doxorubicin through the up-regulation of P-glycoprotein in an ERα- and mTOR-dependent pathway. The 7-KC- and 27-HC-elicited estrogenic effects are crucial in the P-glycoprotein induction in breast cancer cells.
Collapse
Affiliation(s)
- Chun-Wei Wang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.,Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Chiung-Chiao Huang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Pei-Hsin Chou
- Department of Environmental Engineering, National Chung-Kung University, Tainan, Taiwan, R.O.C
| | - Yu-Ping Chang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Shouzuo Wei
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Yueh-Ching Chou
- Department of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C.,Department of Pharmacy, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Sheng-Fan Wang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.,Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C
| | - Ping-Shan Lai
- Department of Chemistry, College of Science, National Chung-Hsin University, Taichung, Taiwan, R.O.C
| | - Pavel Souček
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
| | - Yune-Fang Ueng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.,Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Department of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, R.O.C
| |
Collapse
|
31
|
Kober AC, Manavalan APC, Tam-Amersdorfer C, Holmér A, Saeed A, Fanaee-Danesh E, Zandl M, Albrecher NM, Björkhem I, Kostner GM, Dahlbäck B, Panzenboeck U. Implications of cerebrovascular ATP-binding cassette transporter G1 (ABCG1) and apolipoprotein M in cholesterol transport at the blood-brain barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:573-588. [PMID: 28315462 DOI: 10.1016/j.bbalip.2017.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/07/2017] [Accepted: 03/12/2017] [Indexed: 02/03/2023]
Abstract
Impaired cholesterol/lipoprotein metabolism is linked to neurodegenerative diseases such as Alzheimer's disease (AD). Cerebral cholesterol homeostasis is maintained by the highly efficient blood-brain barrier (BBB) and flux of the oxysterols 24(S)-hydroxycholesterol and 27-hydroxycholesterol, potent liver-X-receptor (LXR) activators. HDL and their apolipoproteins are crucial for cerebral lipid transfer, and loss of ATP binding cassette transporters (ABC)G1 and G4 results in toxic accumulation of oxysterols in the brain. The HDL-associated apolipoprotein (apo)M is positively correlated with pre-β HDL formation in plasma; its presence and function in the brain was thus far unknown. Using an in vitro model of the BBB, we examined expression, regulation, and functions of ABCG1, ABCG4, and apoM in primary porcine brain capillary endothelial cells (pBCEC). RT Q-PCR analyses and immunoblotting revealed that in addition to ABCA1 and scavenger receptor, class B, type I (SR-BI), pBCEC express high levels of ABCG1, which was up-regulated by LXR activation. Immunofluorescent staining, site-specific biotinylation and immunoprecipitation revealed that ABCG1 is localized both to early and late endosomes and on apical and basolateral plasma membranes. Using siRNA interference to silence ABCG1 (by 50%) reduced HDL-mediated [3H]-cholesterol efflux (by 50%) but did not reduce [3H]-24(S)-hydroxycholesterol efflux. In addition to apoA-I, pBCEC express and secrete apoM mainly to the basolateral (brain) compartment. HDL enhanced expression and secretion of apoM by pBCEC, apoM-enriched HDL promoted cellular cholesterol efflux more efficiently than apoM-free HDL, while apoM-silencing diminished cellular cholesterol release. We suggest that ABCG1 and apoM are centrally involved in regulation of cholesterol metabolism/turnover at the BBB.
Collapse
Affiliation(s)
| | | | | | - Andreas Holmér
- Department of Translational Medicine, University Hospital SUS, Malmö, Lund University, Sweden
| | - Ahmed Saeed
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute Huddinge, Huddinge, Sweden
| | - Elham Fanaee-Danesh
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Martina Zandl
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | | | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute Huddinge, Huddinge, Sweden
| | - Gerhard M Kostner
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Björn Dahlbäck
- Department of Translational Medicine, University Hospital SUS, Malmö, Lund University, Sweden
| | - Ute Panzenboeck
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
32
|
Downing LE, Edgar D, Ellison PA, Ricketts ML. Mechanistic insight into nuclear receptor-mediated regulation of bile acid metabolism and lipid homeostasis by grape seed procyanidin extract (GSPE). Cell Biochem Funct 2017; 35:12-32. [DOI: 10.1002/cbf.3247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Laura E. Downing
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| | - Daniel Edgar
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Patricia A. Ellison
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Marie-Louise Ricketts
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| |
Collapse
|
33
|
Kick EK, Busch BB, Martin R, Stevens WC, Bollu V, Xie Y, Boren BC, Nyman MC, Nanao MH, Nguyen L, Plonowski A, Schulman IG, Yan G, Zhang H, Hou X, Valente MN, Narayanan R, Behnia K, Rodrigues AD, Brock B, Smalley J, Cantor GH, Lupisella J, Sleph P, Grimm D, Ostrowski J, Wexler RR, Kirchgessner T, Mohan R. Discovery of Highly Potent Liver X Receptor β Agonists. ACS Med Chem Lett 2016; 7:1207-1212. [PMID: 27994765 PMCID: PMC5150697 DOI: 10.1021/acsmedchemlett.6b00234] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022] Open
Abstract
![]()
Introducing a uniquely substituted
phenyl sulfone into a series
of biphenyl imidazole liver X receptor (LXR) agonists afforded a dramatic
potency improvement for induction of ATP binding cassette transporters,
ABCA1 and ABCG1, in human whole blood. The agonist series demonstrated
robust LXRβ activity (>70%) with low partial LXRα agonist
activity (<25%) in cell assays, providing a window between desired
blood cell ABCG1 gene induction in cynomolgus monkeys and modest elevation
of plasma triglycerides for agonist 15. The addition
of polarity to the phenyl sulfone also reduced binding to the plasma
protein, human α-1-acid glycoprotein. Agonist 15 was selected for clinical development based on the favorable combination
of in vitro properties, excellent pharmacokinetic
parameters, and a favorable lipid profile.
Collapse
Affiliation(s)
| | - Brett B. Busch
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Richard Martin
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - William C. Stevens
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Venkataiah Bollu
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Yinong Xie
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Brant C. Boren
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Michael C. Nyman
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Max H. Nanao
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Lam Nguyen
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Artur Plonowski
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Ira G. Schulman
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Grace Yan
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Raju Mohan
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| |
Collapse
|
34
|
Hoekstra M, Van Berkel TJ. Functionality of High-Density Lipoprotein as Antiatherosclerotic Therapeutic Target. Arterioscler Thromb Vasc Biol 2016; 36:e87-e94. [DOI: 10.1161/atvbaha.116.308262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Menno Hoekstra
- From the Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, The Netherlands
| | - Theo J.C. Van Berkel
- From the Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, The Netherlands
| |
Collapse
|
35
|
Kirchgessner TG, Sleph P, Ostrowski J, Lupisella J, Ryan CS, Liu X, Fernando G, Grimm D, Shipkova P, Zhang R, Garcia R, Zhu J, He A, Malone H, Martin R, Behnia K, Wang Z, Barrett YC, Garmise RJ, Yuan L, Zhang J, Gandhi MD, Wastall P, Li T, Du S, Salvador L, Mohan R, Cantor GH, Kick E, Lee J, Frost RJA. Beneficial and Adverse Effects of an LXR Agonist on Human Lipid and Lipoprotein Metabolism and Circulating Neutrophils. Cell Metab 2016; 24:223-33. [PMID: 27508871 DOI: 10.1016/j.cmet.2016.07.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/21/2016] [Accepted: 07/21/2016] [Indexed: 01/20/2023]
Abstract
The development of LXR agonists for the treatment of coronary artery disease has been challenged by undesirable properties in animal models. Here we show the effects of an LXR agonist on lipid and lipoprotein metabolism and neutrophils in human subjects. BMS-852927, a novel LXRβ-selective compound, had favorable profiles in animal models with a wide therapeutic index in cynomolgus monkeys and mice. In healthy subjects and hypercholesterolemic patients, reverse cholesterol transport pathways were induced similarly to that in animal models. However, increased plasma and hepatic TG, plasma LDL-C, apoB, apoE, and CETP and decreased circulating neutrophils were also evident. Furthermore, similar increases in LDL-C were observed in normocholesterolemic subjects and statin-treated patients. The primate model markedly underestimated human lipogenic responses and did not predict human neutrophil effects. These studies demonstrate both beneficial and adverse LXR agonist clinical responses and emphasize the importance of further translational research in this area.
Collapse
Affiliation(s)
| | - Paul Sleph
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Jacek Ostrowski
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - John Lupisella
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Carol S Ryan
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Xiaoqin Liu
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Gayani Fernando
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Denise Grimm
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Petia Shipkova
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Rongan Zhang
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Ricardo Garcia
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Jun Zhu
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Aiqing He
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Harold Malone
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | | | - Kamelia Behnia
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Zhaoqing Wang
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Yu Chen Barrett
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Robert J Garmise
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Long Yuan
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Jane Zhang
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Mohit D Gandhi
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Philip Wastall
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Tong Li
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Shuyan Du
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Lisa Salvador
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Raju Mohan
- Exelixis, Inc., South San Francisco, CA 94080, USA
| | - Glenn H Cantor
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Ellen Kick
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - John Lee
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Robert J A Frost
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| |
Collapse
|
36
|
Bi X, Song J, Gao J, Zhao J, Wang M, Scipione CA, Koschinsky ML, Wang ZV, Xu S, Fu G. Activation of liver X receptor attenuates lysophosphatidylcholine-induced IL-8 expression in endothelial cells via the NF-κB pathway and SUMOylation. J Cell Mol Med 2016; 20:2249-2258. [PMID: 27489081 PMCID: PMC5134410 DOI: 10.1111/jcmm.12903] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/11/2016] [Indexed: 12/31/2022] Open
Abstract
The liver X receptor (LXR) is a cholesterol‐sensing nuclear receptor that has an established function in lipid metabolism; however, its role in inflammation is elusive. In this study, we showed that the LXR agonist GW3965 exhibited potent anti‐inflammatory activity by suppressing the firm adhesion of monocytes to endothelial cells. To further address the mechanisms underlying the inhibition of inflammatory cell infiltration, we evaluated the effects of LXR agonist on interleukin‐8 (IL‐8) secretion and nuclear factor‐kappa B (NF‐κB) activation in human umbilical vein endothelial cells (HUVECs). The LXR agonist significantly inhibited lysophosphatidylcholine (LPC)‐induced IL‐8 production in a dose‐dependent manner without appreciable cytotoxicity. Western blotting and the NF‐κB transcription activity assay showed that the LXR agonist inhibited p65 binding to the IL‐8 promoter in LPC‐stimulated HUVECs. Interestingly, knockdown of the indispensable small ubiquitin‐like modifier (SUMO) ligases Ubc9 and Histone deacetylase 4 (HDAC4) reversed the increase in IL‐8 induced by LPC. Furthermore, the LPC‐induced degradation of inhibitory κBα was delayed under the conditions of deficient SUMOylation or the treatment of LXR agonist. After enhancing SUMOylation by knockdown SUMO‐specific protease Sentrin‐specific protease 1 (SENP1), the inhibition of GW3965 was rescued on LPC‐mediated IL‐8 expression. These findings indicate that LXR‐mediated inflammatory gene repression correlates to the suppression of NF‐κB pathway and SUMOylation. Our results suggest that LXR agonist exerts the anti‐atherosclerotic role by attenuation of the NF‐κB pathway in endothelial cells.
Collapse
Affiliation(s)
- Xukun Bi
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiale Song
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jing Gao
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Juanjuan Zhao
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Meihui Wang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Corey A Scipione
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Marlys L Koschinsky
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiming Xu
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Guosheng Fu
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
37
|
9-cis β-Carotene Increased Cholesterol Efflux to HDL in Macrophages. Nutrients 2016; 8:nu8070435. [PMID: 27447665 PMCID: PMC4963911 DOI: 10.3390/nu8070435] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/29/2016] [Accepted: 07/14/2016] [Indexed: 12/15/2022] Open
Abstract
Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-β-carotene (9-cis-βc) is a precursor for 9-cis-retinoic-acid (9-cis-RA), which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-βc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with βc from the alga Dunaliella led to βc accumulation in peritoneal macrophages. 9-cis-βc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from βc in RAW264.7 macrophages. Furthermore, 9-cis-βc, as well as all-trans-βc, significantly increased cholesterol efflux to high-density lipoprotein (HDL) by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-βc augmented cholesterol efflux from macrophages ex vivo. 9-cis-βc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE) and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-βc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of βc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages.
Collapse
|
38
|
Lin CY, Vedin LL, Steffensen KR. The emerging roles of liver X receptors and their ligands in cancer. Expert Opin Ther Targets 2015; 20:61-71. [PMID: 26788589 DOI: 10.1517/14728222.2015.1081169] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Liver X receptors (LXRs) are nuclear receptors with well-known functions in cholesterol transport, fatty acid and glucose metabolism, and modulation of immune responses. Natural and synthetic ligands have been identified and are under development for the treatment of metabolic and inflammatory conditions and diseases. There is mounting evidence pointing to functional roles for LXRs in a variety of malignancies and the potential therapeutic efficacy of their ligands. AREAS COVERED This review summarizes the discovery and characterization of LXRs and their ligands, surveys their effects and mechanisms of action in cell-based and animal models of cancer, and proposes the future direction of basic and translational studies of LXRs and their ligands in cancer research and therapeutics. EXPERT OPINION Targeting LXRs is a promising strategy for cancer treatment, particularly for those cancers which do not have effective treatment options. Key questions remain, however, regarding the specific mechanisms of action, effects on other target cells within the tumor microenvironment, and receptor status in patient populations. Moreover, LXR ligands optimized for disease-specific functions and cancer-related endpoints are currently not available. These issues represent both challenges and significant opportunities for future research and development efforts.
Collapse
Affiliation(s)
- Chin-Yo Lin
- a 1 University of Houston, Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry , Houston, TX, USA
| | - Lise-Lotte Vedin
- b 2 Karolinska University Hospital Huddinge, Karolinska Institutet, Division of Clinical Chemistry, Department of Laboratory Medicine , SE-141 86 Stockholm, Sweden
| | - Knut R Steffensen
- b 2 Karolinska University Hospital Huddinge, Karolinska Institutet, Division of Clinical Chemistry, Department of Laboratory Medicine , SE-141 86 Stockholm, Sweden
| |
Collapse
|
39
|
Aleidi SM, Howe V, Sharpe LJ, Yang A, Rao G, Brown AJ, Gelissen IC. The E3 ubiquitin ligases, HUWE1 and NEDD4-1, are involved in the post-translational regulation of the ABCG1 and ABCG4 lipid transporters. J Biol Chem 2015; 290:24604-13. [PMID: 26296893 DOI: 10.1074/jbc.m115.675579] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette transporter ABCG1 has an essential role in cellular cholesterol homeostasis, and dysregulation has been associated with a number of high burden diseases. Previous studies reported that ABCG1 is ubiquitinated and degraded via the ubiquitin proteasome system. However, so far the molecular mechanism, including the identity of any of the rate-limiting ubiquitination enzymes, or E3 ligases, is unknown. Using liquid chromatography mass spectrometry, we identified two HECT domain E3 ligases associated with ABCG1, named HUWE1 (HECT, UBA, and WWE domain containing 1, E3 ubiquitin protein ligase) and NEDD4-1 (Neural precursor cell-expressed developmentally down regulated gene 4), of which the latter is the founding member of the NEDD4 family of ubiquitin ligases. Silencing both HUWE1 and NEDD4-1 in cells overexpressing human ABCG1 significantly increased levels of the ABCG1 monomeric and dimeric protein forms, however ABCA1 protein expression was unaffected. In addition, ligase silencing increased ABCG1-mediated cholesterol export to HDL in cells overexpressing the transporter as well as in THP-1 macrophages. Reciprocally, overexpression of both ligases resulted in a significant reduction in protein levels of both the ABCG1 monomeric and dimeric forms. Like ABCG1, ABCG4 protein levels and cholesterol export activity were significantly increased after silencing both HUWE1 and NEDD4-1 in cells overexpressing this closely related ABC half-transporter. In summary, we have identified for the first time two E3 ligases that are fundamental enzymes in the post-translational regulation of ABCG1 and ABCG4 protein levels and cellular cholesterol export activity.
Collapse
Affiliation(s)
- Shereen M Aleidi
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and
| | - Vicky Howe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney NSW 2052 Australia
| | - Laura J Sharpe
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney NSW 2052 Australia
| | - Alryel Yang
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and
| | - Geetha Rao
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney NSW 2052 Australia
| | - Ingrid C Gelissen
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and
| |
Collapse
|
40
|
Gillespie MA, Gold ES, Ramsey SA, Podolsky I, Aderem A, Ranish JA. An LXR-NCOA5 gene regulatory complex directs inflammatory crosstalk-dependent repression of macrophage cholesterol efflux. EMBO J 2015; 34:1244-58. [PMID: 25755249 DOI: 10.15252/embj.201489819] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/13/2015] [Indexed: 02/04/2023] Open
Abstract
LXR-cofactor complexes activate the gene expression program responsible for cholesterol efflux in macrophages. Inflammation antagonizes this program, resulting in foam cell formation and atherosclerosis; however, the molecular mechanisms underlying this antagonism remain to be fully elucidated. We use promoter enrichment-quantitative mass spectrometry (PE-QMS) to characterize the composition of gene regulatory complexes assembled at the promoter of the lipid transporter Abca1 following downregulation of its expression. We identify a subset of proteins that show LXR ligand- and binding-dependent association with the Abca1 promoter and demonstrate they differentially control Abca1 expression. We determine that NCOA5 is linked to inflammatory Toll-like receptor (TLR) signaling and establish that NCOA5 functions as an LXR corepressor to attenuate Abca1 expression. Importantly, TLR3-LXR signal crosstalk promotes recruitment of NCOA5 to the Abca1 promoter together with loss of RNA polymerase II and reduced cholesterol efflux. Together, these data significantly expand our knowledge of regulatory inputs impinging on the Abca1 promoter and indicate a central role for NCOA5 in mediating crosstalk between pro-inflammatory and anti-inflammatory pathways that results in repression of macrophage cholesterol efflux.
Collapse
Affiliation(s)
| | | | - Stephen A Ramsey
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Alan Aderem
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | |
Collapse
|
41
|
Choi JY, Seo JY, Yoon YS, Lee YJ, Kim HS, Kang JL. Mer signaling increases the abundance of the transcription factor LXR to promote the resolution of acute sterile inflammation. Sci Signal 2015; 8:ra21. [PMID: 25714463 DOI: 10.1126/scisignal.2005864] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The receptor tyrosine kinase Mer plays a central role in inhibiting the inflammatory response of immune cells to pathogens. We aimed to understand the function of Mer signaling in the resolution of sterile inflammation in experiments with a Mer-neutralizing antibody or with Mer-deficient (Mer-/-) mice in a model of sterile, zymosan-induced acute inflammation. We found that inhibition or deficiency of Mer enhanced local and systemic inflammatory responses. The exacerbated inflammatory responses induced by the lack of Mer signaling were associated with reduced abundance of the transcription factors liver X receptor α (LXRα) and LXRβ and decreased expression of their target genes in peritoneal macrophages, spleens, and lungs. Similarly, treatment of mice with a Mer/Fc fusion protein, which prevents the Mer ligand Gas6 (growth arrest-specific protein 6) from binding to Mer, exacerbated the inflammatory response and decreased the abundance of LXR. Coadministration of the LXR agonist T0901317 with the Mer-neutralizing antibody inhibited the aggravating effects of the antibody on inflammation in mice. In vitro exposure of RAW264.7 cells or primary peritoneal macrophages to Gas6 increased LXR abundance in an Akt-dependent manner. Thus, we have elucidated a previously uncharacterized pathway involved in the resolution of acute sterile inflammation: Enhanced Mer signaling during the recovery phase increases the abundance and activity of LXR to inactivate the inflammatory response in macrophages.
Collapse
Affiliation(s)
- Ji-Yeon Choi
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Jeong Yeon Seo
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Young-So Yoon
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Ye-Ji Lee
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Jihee Lee Kang
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea.
| |
Collapse
|
42
|
Selvarajan K, Narasimhulu CA, Bapputty R, Parthasarathy S. Anti-inflammatory and antioxidant activities of the nonlipid (aqueous) components of sesame oil: potential use in atherosclerosis. J Med Food 2015; 18:393-402. [PMID: 25692333 DOI: 10.1089/jmf.2014.0139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dietary intervention to prevent inflammation and atherosclerosis has been a major focus in recent years. We previously reported that sesame oil (SO) was effective in inhibiting atherosclerosis in low-density lipoprotein-receptor negative mice. We also noted that the levels of many proinflammatory markers were lower in the SO-treated animals. In this study we tested whether the non-lipid, aqueous components associated with SO would have anti-inflammatory and antioxidant effects. Polymerase chain reaction array data indicated that sesame oil aqueous extract (SOAE) was effective in reducing lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. Expression of inflammatory cytokines such as interleukin (IL)-1α, IL-6, and tumor necrosis factor α (TNF-α) was also analyzed independently in cells pretreated with SOAE followed by inflammatory assault. Effect of SOAE on TNF-α-induced MCP-1 and VCAM1 expression was also tested in human umbilical vein endothelial cells. We observed that SOAE significantly reduced inflammatory markers in both macrophages and endothelial cells in a concentration-dependent manner. SOAE was also effective in inhibiting LPS-induced TNF-α and IL-6 levels in vivo at different concentrations. We also noted that in the presence of SOAE, transcription and translocation of NF-kappaB was suppressed. SOAE was also effective in inhibiting oxidation of lipoproteins in vitro. These results suggest the presence of potent anti-inflammatory and antioxidant compounds in SOAE. Furthermore, SOAE differentially regulated expression of scavenger receptors and increased ATP-binding cassette A1 (ABCA1) mRNA expression by activating liver X receptors (LXRs), suggesting additional effects on lipid metabolism. Thus, SOAE appears multipotent and may serve as a valuable nonpharmacological agent in atherosclerosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Krithika Selvarajan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida
| | | | | | | |
Collapse
|
43
|
Zannis VI, Fotakis P, Koukos G, Kardassis D, Ehnholm C, Jauhiainen M, Chroni A. HDL biogenesis, remodeling, and catabolism. Handb Exp Pharmacol 2015; 224:53-111. [PMID: 25522986 DOI: 10.1007/978-3-319-09665-0_2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA,
| | | | | | | | | | | | | |
Collapse
|
44
|
Kirchgessner TG, Martin R, Sleph P, Grimm D, Liu X, Lupisella J, Smalley J, Narayanan R, Xie Y, Ostrowski J, Cantor GH, Mohan R, Kick E. Pharmacological characterization of a novel liver X receptor agonist with partial LXRα activity and a favorable window in nonhuman primates. J Pharmacol Exp Ther 2014; 352:305-14. [PMID: 25467132 DOI: 10.1124/jpet.114.219923] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Liver X Receptors (LXRs) α and β are nuclear hormone receptors that regulate multiple genes involved in reverse cholesterol transport (RCT) and are potential drug targets for atherosclerosis. However, full pan agonists also activate lipogenic genes, resulting in elevated plasma and hepatic lipids. We report the pharmacology of BMS-779788 [2-(2-(1-(2-chlorophenyl)-1-methylethyl)-1-(3'-(methylsulfonyl)-4-biphenylyl)-1H-imidazol-4-yl)-2-propanol], a potent partial LXR agonist with LXRβ selectivity, which has an improved therapeutic window in the cynomolgus monkey compared with a full pan agonist. BMS-779788 induced LXR target genes in blood in vivo with an EC50 = 610 nM, a value similar to its in vitro blood gene induction potency. BMS-779788 was 29- and 12-fold less potent than the full agonist T0901317 in elevating plasma triglyceride and LDL cholesterol, respectively, with similar results for plasma cholesteryl ester transfer protein and apolipoprotein B. However, ABCA1 and ABCG1 mRNA inductions in blood, which are critical for RCT, were comparable. Increased liver triglyceride was observed after 7-day treatment with BMS-779788 at the highest dose tested and was nearly identical to the dose response for plasma triglyceride, consistent with the central role of liver LXR in these lipogenic effects. Dose-dependent increases in biliary cholesterol and decreases in phospholipid and bile acid occurred in BMS-779788-treated animals, similar to LXR agonist effects reported in mouse. In summary, BMS-779788, a partial LXRβ selective agonist, has decreased lipogenic potential compared with a full pan agonist in cynomolgus monkeys, with similar potency in the induction of genes known to stimulate RCT. This provides support in nonhuman primates for improving LXR agonist therapeutic windows by limiting LXRα activity.
Collapse
Affiliation(s)
- Todd G Kirchgessner
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Richard Martin
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Paul Sleph
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Denise Grimm
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Xiaoqin Liu
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - John Lupisella
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - James Smalley
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Rangaraj Narayanan
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Yinong Xie
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Jacek Ostrowski
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Glenn H Cantor
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Raju Mohan
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Ellen Kick
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| |
Collapse
|
45
|
Miranda ER, Nam EA, Kuspa A, Shaulsky G. The ABC transporter, AbcB3, mediates cAMP export in D. discoideum development. Dev Biol 2014; 397:203-11. [PMID: 25448698 DOI: 10.1016/j.ydbio.2014.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/15/2014] [Accepted: 11/11/2014] [Indexed: 11/24/2022]
Abstract
Extracellular cAMP functions as a primary ligand for cell surface cAMP receptors throughout Dictyostelium discoideum development, controlling chemotaxis and morphogenesis. The developmental consequences of cAMP signaling and the metabolism of cAMP have been studied in great detail, but it has been unclear how cells export cAMP across the plasma membrane. Here we show pharmacologically and genetically that ABC transporters mediate cAMP export. Using an evolutionary-developmental biology approach, we identified several candidate abc genes and characterized one of them, abcB3, in more detail. Genetic and biochemical evidence suggest that AbcB3 is a component of the cAMP export mechanism in D. discoideum development.
Collapse
Affiliation(s)
- Edward Roshan Miranda
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Edward A Nam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam Kuspa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Tran-Dinh A, Diallo D, Delbosc S, Varela-Perez LM, Dang QB, Lapergue B, Burillo E, Michel JB, Levoye A, Martin-Ventura JL, Meilhac O. HDL and endothelial protection. Br J Pharmacol 2014; 169:493-511. [PMID: 23488589 DOI: 10.1111/bph.12174] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/07/2013] [Accepted: 02/24/2013] [Indexed: 12/23/2022] Open
Abstract
High-density lipoproteins (HDLs) represent a family of particles characterized by the presence of apolipoprotein A-I (apoA-I) and by their ability to transport cholesterol from peripheral tissues back to the liver. In addition to this function, HDLs display pleiotropic effects including antioxidant, anti-apoptotic, anti-inflammatory, anti-thrombotic or anti-proteolytic properties that account for their protective action on endothelial cells. Vasodilatation via production of nitric oxide is also a hallmark of HDL action on endothelial cells. Endothelial cells express receptors for apoA-I and HDLs that mediate intracellular signalling and potentially participate in the internalization of these particles. In this review, we will detail the different effects of HDLs on the endothelium in normal and pathological conditions with a particular focus on the potential use of HDL therapy to restore endothelial function and integrity.
Collapse
|
47
|
Umetani M, Ghosh P, Ishikawa T, Umetani J, Ahmed M, Mineo C, Shaul PW. The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor alpha. Cell Metab 2014; 20:172-82. [PMID: 24954418 PMCID: PMC4098728 DOI: 10.1016/j.cmet.2014.05.013] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 02/11/2014] [Accepted: 05/05/2014] [Indexed: 01/25/2023]
Abstract
Oxysterols are cholesterol metabolites that serve multiple functions in lipid metabolism, including as liver X receptor (LXR) ligands. 27-hydroxycholesterol (27HC) is an abundant oxysterol metabolized by CYP7B1. How 27HC impacts vascular health is unknown. We show that elevations in 27HC via cyp7b1 deletion promote atherosclerosis in apoe(-/-) mice without altering lipid status; furthermore, estrogen-related atheroprotection is attenuated. In wild-type mice, leukocyte-endothelial cell adhesion is increased by 27HC via estrogen receptor (ER)-dependent processes. In monocytes/macrophages, 27HC upregulates proinflammatory genes and increases adhesion via ERα. In endothelial cells, 27HC is also proadhesive via ERα, and in contrast to estrogen, which blunts NF-κB activation, 27HC stimulates NF-κB activation via Erk1,2 and JNK-dependent IκBα degradation. Whereas 27HC administration to apoe(-/-) mice increases atherosclerosis, apoe(-/-);erα(-/-) are unaffected. Thus, 27HC promotes atherosclerosis via proinflammatory processes mediated by ERα, and it attenuates estrogen-related atheroprotection. Strategies to lower 27HC may complement approaches targeting cholesterol to prevent vascular disease.
Collapse
Affiliation(s)
- Michihisa Umetani
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pritam Ghosh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tomonori Ishikawa
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junko Umetani
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mohamed Ahmed
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
48
|
Liu F, Wang W, Xu Y, Wang Y, Chen LF, Fang Q, Yan XW. ABCG1 rs57137919G>a polymorphism is functionally associated with varying gene expression and apoptosis of macrophages. PLoS One 2014; 9:e97044. [PMID: 24972087 PMCID: PMC4074052 DOI: 10.1371/journal.pone.0097044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/14/2014] [Indexed: 01/16/2023] Open
Abstract
ATP-binding cassette transporter G1 (ABCG1) is a transmembrane cholesterol transporter involved in macrophage sterol homeostasis, reverse cholesterol transport (RCT), and atherosclerosis. The role of ABCG1 in atherosclerosis remains controversial, especially in animal models. Our previous study showed that single nucleotide polymorphism rs57137919 (-367G>A) in the ABCG1 promoter region was associated with reduced risk for atherosclerotic coronary artery disease (CAD). This study was designed to provide functional evidence for the role of rs57137919G>A in atherosclerosis in humans. We combined in vitro and ex vivo studies using cell lines and human monocyte-derived macrophages to investigate the functional consequences of the promoter polymorphism by observing the effects of the rs57137919A allele on promoter activity, transcription factor binding, gene expression, cholesterol efflux, and apoptosis levels. The results showed that the rs57137919A allele was significantly associated with decreased ABCG1 gene expression possibly due to the impaired ability of protein-DNA binding. ABCG1-mediated cholesterol efflux decreased by 23% with rs57137919 A/A versus the G/G genotype. Cholesterol-loaded macrophage apoptosis was induced 2-fold with the A/A genotype compared with the G/G genotype. Proapoptotic genes Bok and Bid mRNA levels were significantly increased in macrophages from the A/A genotype compared with those from the G/G genotype. These findings demonstrated that the ABCG1 promoter rs57137919G>A variant had an allele-specific effect on ABCG1 expression and was associated with an increased apoptosis in cholesterol-loaded macrophages, providing functional evidence to explain the reduced risk for atherosclerosis in subjects with the ABCG1 promoter rs57137919A allele as reported in our previous study.
Collapse
Affiliation(s)
- Fang Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian-Feng Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Fang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Wei Yan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
49
|
Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov 2014; 13:433-44. [DOI: 10.1038/nrd4280] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Sene A, Apte RS. Eyeballing cholesterol efflux and macrophage function in disease pathogenesis. Trends Endocrinol Metab 2014; 25:107-14. [PMID: 24252662 PMCID: PMC3943676 DOI: 10.1016/j.tem.2013.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/22/2022]
Abstract
Disorders of lipid metabolism are strongly associated with cardiovascular disease. Recently, there has been significant focus on how tissues process lipid deposits. Impaired cholesterol efflux has been shown to be crucial in mediating lipid deposition in atherosclerosis. The inability of macrophages to effectively efflux cholesterol from tissues initiates inflammation, plaque neovascularization, and subsequent rupture. Recent studies suggest that inability to effectively efflux cholesterol from tissues may have global implications far beyond atherosclerosis, extending to the pathophysiology of unrelated diseases. We examine the unifying mechanisms by which impaired cholesterol efflux facilitates tissue-specific inflammation and disease progression in age-related macular degeneration (AMD), a blinding eye disease, and in atherosclerosis, a disease associated with significant cardiovascular morbidity.
Collapse
Affiliation(s)
- Abdoulaye Sene
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA; Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA.
| |
Collapse
|