1
|
Xue J, Wu S, Zhu Q, Liu X, He Z, Ye W, Wang P, Wu F. Enrichment and purification of Torreya grandis peptides by macroporous resin and its hypoglycemic mechanism revealed by transcriptome analysis. INDUSTRIAL CROPS AND PRODUCTS 2024; 213:118445. [DOI: 10.1016/j.indcrop.2024.118445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Morelli M, Madonna S, Albanesi C. SOCS1 and SOCS3 as key checkpoint molecules in the immune responses associated to skin inflammation and malignant transformation. Front Immunol 2024; 15:1393799. [PMID: 38975347 PMCID: PMC11224294 DOI: 10.3389/fimmu.2024.1393799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
SOCS are a family of negative inhibitors of the molecular cascades induced by cytokines, growth factors and hormones. At molecular level, SOCS proteins inhibit the kinase activity of specific sets of receptor-associated Janus Activated Kinases (JAKs), thereby suppressing the propagation of intracellular signals. Of the eight known members, SOCS1 and SOCS3 inhibit activity of JAKs mainly induced by cytokines and can play key roles in regulation of inflammatory and immune responses. SOCS1 and SOCS3 are the most well-characterized SOCS members in skin inflammatory diseases, where their inhibitory activity on cytokine activated JAKs and consequent anti-inflammatory action has been widely investigated in epidermal keratinocytes. Structurally, SOCS1 and SOCS3 share the presence of a N-terminal domain containing a kinase inhibitory region (KIR) motif able to act as a pseudo-substrate for JAK and to inhibit its activity. During the last decades, the design and employment of SOCS1 and SOCS3-derived peptides mimicking KIR domains in experimental models of dermatoses definitively established a strong anti-inflammatory and ameliorative impact of JAK inhibition on skin inflammatory responses. Herein, we discuss the importance of the findings collected in the past on SOCS1 and SOCS3 function in the inflammatory responses associated to skin immune-mediated diseases and malignancies, for the development of the JAK inhibitor drugs. Among them, different JAK inhibitors have been introduced in the clinical practice for treatment of atopic dermatitis and psoriasis, and others are being investigated for skin diseases like alopecia areata and vitiligo.
Collapse
Affiliation(s)
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata - Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | | |
Collapse
|
3
|
Lei D, Zhang J, Zhu T, Zhang L, Man MQ. Interplay between diabetes mellitus and atopic dermatitis. Exp Dermatol 2024; 33:e15116. [PMID: 38886904 DOI: 10.1111/exd.15116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Inflammatory dermatoses such as atopic dermatitis (AD) have long been linked to the pathogenesis of diabetes mellitus. Indeed, numerous studies show an increased risk of diabetes mellitus in individuals with AD although lower prevalence of diabetes mellitus is also observed in few studies. Though the underlying mechanisms accounting for the reciprocal influence between these two conditions are still unclear, the complex interplay between diabetes mellitus and AD is attributable, in part, to genetic and environmental factors, cytokines, epidermal dysfunction, as well as drugs used for the treatment of AD. Proper management of one condition can mitigate the other condition. In this review, we summarize the evidence of the interaction between diabetes mellitus and AD, and discuss the possible underlying mechanisms by which these two conditions influence each other.
Collapse
Affiliation(s)
- Dongyun Lei
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Jiechen Zhang
- Department of Dermatology, Tongren Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Litao Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Jaime-Sánchez E, Lara-Ramírez EE, López-Ramos JE, Ramos-González EJ, Cisneros-Méndez AL, Oropeza-Valdez JJ, Zenteno-Cuevas R, Martínez-Aguilar G, Bastian Y, Castañeda-Delgado JE, Serrano CJ, Enciso-Moreno JA. Potential molecular patterns for tuberculosis susceptibility in diabetic patients with poor glycaemic control: a pilot study. Mol Genet Genomics 2024; 299:60. [PMID: 38801463 DOI: 10.1007/s00438-024-02139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/06/2024] [Indexed: 05/29/2024]
Abstract
Type 2 diabetes (DM2) is an increasingly prevalent disease that challenges tuberculosis (TB) control strategies worldwide. It is significant that DM2 patients with poor glycemic control (PDM2) are prone to developing tuberculosis. Furthermore, elucidating the molecular mechanisms that govern this susceptibility is imperative to address this problem. Therefore, a pilot transcriptomic study was performed. Human blood samples from healthy controls (CTRL, HbA1c < 6.5%), tuberculosis (TB), comorbidity TB-DM2, DM2 (HbA1c 6.5-8.9%), and PDM2 (HbA1c > 10%) groups (n = 4 each) were analyzed by differential expression using microarrays. We use a network strategy to identify potential molecular patterns linking the differentially expressed genes (DEGs) specific for TB-DM2 and PDM2 (p-value < 0.05, fold change > 2). We define OSM, PRKCD, and SOCS3 as key regulatory genes (KRGs) that modulate the immune system and related pathways. RT-qPCR assays confirmed upregulation of OSM, PRKCD, and SOCS3 genes (p < 0.05) in TB-DM2 patients (n = 18) compared to CTRL, DM2, PDM2, or TB groups (n = 17, 19, 15, and 9, respectively). Furthermore, OSM, PRKCD, and SOCS3 were associated with PDM2 susceptibility pathways toward TB-DM2 and formed a putative protein-protein interaction confirmed in STRING. Our results reveal potential molecular patterns where OSM, PRKCD, and SOCS3 are KRGs underlying the compromised immune response and susceptibility of patients with PDM2 to develop tuberculosis. Therefore, this work paved the way for fundamental research of new molecular targets in TB-DM2. Addressing their cellular implications, and the impact on the diagnosis, treatment, and clinical management of TB-DM2 could help improve the strategy to end tuberculosis for this vulnerable population.
Collapse
Affiliation(s)
- Elena Jaime-Sánchez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
- Área de Ciencias de La Salud, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara, Zacatecas, México
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México
| | - Edgar E Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México
| | - Juan Ernesto López-Ramos
- Academia de Ciencias Químico-Biológicas, Instituto Politécnico Nacional, Centro de Estudios Científicos y Tecnológicos No. 18, Zacatecas, México
| | | | | | - Juan José Oropeza-Valdez
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | | | | | - Yadira Bastian
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Julio Enrique Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México
- Investigador por Mexico/Catedras CONAHCYT, Consejo nacional de Humanidades, Ciencias y Tecnologias, Ciudad de Mexico, México
- Consejo Nacional de Ciencia y Tecnologia, CONACYT, Ciudad de Mexico, México
| | | | - José Antonio Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México.
- Facultad de Química, Cerro de Las Campanas S/N, Universidad Autónoma de Querétaro, Colonia Las Campanas, Centro Universitario, C.P. 76010, Querétaro, México.
| |
Collapse
|
5
|
Song H, Shi H, Ji M, Ding J, Cong L, Chen S, Zhou J, Zha X, Ye J, Li R, Hou X, Mao S, Jiang X, Zhang W, Li J, Zhang Y. Burdock miR8175 in diet improves insulin resistance induced by obesity in mice through food absorption. iScience 2024; 27:109705. [PMID: 38660399 PMCID: PMC11039404 DOI: 10.1016/j.isci.2024.109705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024] Open
Abstract
The incidence of type 2 diabetes mellitus (T2DM) induced by obesity is rapidly increasing. Although there are many synthetic drugs for treating T2DM, they have various side effects. Here, we report that miR8175, a plant miRNA from burdock root, has effective antidiabetic activity. After administration of burdock decoction or synthetic miR8175 by gavage, both burdock decoction and miR8175 can significantly improve the impaired glucose metabolism of diabetic mice induced by a high-fat diet (HFD). Our results demonstrate that burdock decoction and miR8175 enhance the insulin sensitivity of the hepatic insulin signaling pathway by targeting Ptprf and Ptp1b, which may be the reason for the improvement in metabolism. This study provides a theoretical basis for the main active component and molecular mechanism of burdock to improve insulin resistance. And the study also suggests that plant miRNA may be an indispensable nutrient for maintaining human health.
Collapse
Affiliation(s)
- Huichen Song
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
- Chinese Academy of Medical Sciences, Research Unit of Extracellular RNA, Nanjing 210023, China
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University; Institute of Urology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Huanhuan Shi
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
- Chinese Academy of Medical Sciences, Research Unit of Extracellular RNA, Nanjing 210023, China
| | - Mengru Ji
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
- Chinese Academy of Medical Sciences, Research Unit of Extracellular RNA, Nanjing 210023, China
| | - Jiaqi Ding
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
- Chinese Academy of Medical Sciences, Research Unit of Extracellular RNA, Nanjing 210023, China
| | - Lin Cong
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
- Chinese Academy of Medical Sciences, Research Unit of Extracellular RNA, Nanjing 210023, China
| | - Silin Chen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
- Chinese Academy of Medical Sciences, Research Unit of Extracellular RNA, Nanjing 210023, China
| | - Jiahui Zhou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
- Chinese Academy of Medical Sciences, Research Unit of Extracellular RNA, Nanjing 210023, China
| | - Xinyan Zha
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
- Chinese Academy of Medical Sciences, Research Unit of Extracellular RNA, Nanjing 210023, China
| | - Jinyang Ye
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
| | - Runcheng Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
| | - Xiaoyu Hou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
| | - Siyu Mao
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
| | - Xiaohong Jiang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
- Chinese Academy of Medical Sciences, Research Unit of Extracellular RNA, Nanjing 210023, China
| | - Wen Zhang
- Institues of Biomedical Sciences of Inner Mongolia University, Inner Mongolia 010020, China
| | - Jing Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
- Chinese Academy of Medical Sciences, Research Unit of Extracellular RNA, Nanjing 210023, China
| | - Yujing Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
- Chinese Academy of Medical Sciences, Research Unit of Extracellular RNA, Nanjing 210023, China
| |
Collapse
|
6
|
Hollands T. The Chronically Inflamed (Obese) Horse: Understanding Adipose Biology. EVIDENCE BASED EQUINE NUTRITION 2023:355-395. [DOI: 10.1079/9781789245134.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Kanno H, Matsumoto S, Yoshizumi T, Nakahara K, Kubo A, Murata H, Shuin T, U HS. Role of SOCS and VHL Proteins in Neuronal Differentiation and Development. Int J Mol Sci 2023; 24:ijms24043880. [PMID: 36835292 PMCID: PMC9960776 DOI: 10.3390/ijms24043880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The basic helix-loop-helix factors play a central role in neuronal differentiation and nervous system development, which involve the Notch and signal transducer and activator of transcription (STAT)/small mother against decapentaplegic signaling pathways. Neural stem cells differentiate into three nervous system lineages, and the suppressor of cytokine signaling (SOCS) and von Hippel-Lindau (VHL) proteins are involved in this neuronal differentiation. The SOCS and VHL proteins both contain homologous structures comprising the BC-box motif. SOCSs recruit Elongin C, Elongin B, Cullin5(Cul5), and Rbx2, whereas VHL recruits Elongin C, Elongin B, Cul2, and Rbx1. SOCSs form SBC-Cul5/E3 complexes, and VHL forms a VBC-Cul2/E3 complex. These complexes degrade the target protein and suppress its downstream transduction pathway by acting as E3 ligases via the ubiquitin-proteasome system. The Janus kinase (JAK) is the main target protein of the E3 ligase SBC-Cul5, whereas hypoxia-inducible factor is the primary target protein of the E3 ligase VBC-Cul2; nonetheless, VBC-Cul2 also targets the JAK. SOCSs not only act on the ubiquitin-proteasome system but also act directly on JAKs to suppress the Janus kinase-signal transduction and activator of transcription (JAK-STAT) pathway. Both SOCS and VHL are expressed in the nervous system, predominantly in brain neurons in the embryonic stage. Both SOCS and VHL induce neuronal differentiation. SOCS is involved in differentiation into neurons, whereas VHL is involved in differentiation into neurons and oligodendrocytes; both proteins promote neurite outgrowth. It has also been suggested that the inactivation of these proteins may lead to the development of nervous system malignancies and that these proteins may function as tumor suppressors. The mechanism of action of SOCS and VHL involved in neuronal differentiation and nervous system development is thought to be mediated through the inhibition of downstream signaling pathways, JAK-STAT, and hypoxia-inducible factor-vascular endothelial growth factor pathways. In addition, because SOCS and VHL promote nerve regeneration, they are expected to be applied in neuronal regenerative medicine for traumatic brain injury and stroke.
Collapse
Affiliation(s)
- Hiroshi Kanno
- Department of Neurosurgery, School of Medicine, Yokohama City University, Yokohama 232-0024, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
- Correspondence: ; Tel.: +81-3-5242-5800
| | - Shutaro Matsumoto
- Department of Neurosurgery, School of Medicine, Yokohama City University, Yokohama 232-0024, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
| | - Tetsuya Yoshizumi
- Department of Neurosurgery, St. Mariannna Medical University, Kawasaki 216-8511, Japan
| | - Kimihiro Nakahara
- Department of Neurosurgery, International University of Health and Welfare, Atami 413-0012, Japan
| | | | - Hidetoshi Murata
- Department of Neurosurgery, St. Mariannna Medical University, Kawasaki 216-8511, Japan
| | - Taro Shuin
- Kochi Medical School Hospital, Nangoku 783-0043, Japan
| | - Hoi-Sang U
- Department of Electrical Engineering, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
8
|
Emamgholipour S, Esmaeili F, Shabani M, Hasanpour SZ, Pilehvari M, Zabihi-Mahmoudabadi H, Motevasseli M, Shanaki M. Alterations of SOCS1 and SOCS3 transcript levels, but not promoter methylation levels in subcutaneous adipose tissues in obese women. BMC Endocr Disord 2023; 23:7. [PMID: 36609306 PMCID: PMC9817302 DOI: 10.1186/s12902-022-01247-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Animal model studies suggest that change in the members of the suppressor of the cytokine signaling (SOCS) family (mainly SOCS1 and SOCS3) is linked to the pathogenesis of obesity-related metabolic disorders. Moreover, epigenetic modification is involved in the transcriptional regulation of the SOCS gene family. Here, we aimed to evaluate the mRNA expression as well as gene promoter methylation of SOCS1 and SOCS3 in subcutaneous adipose tissue (SAT) from obese women compared to normal-weight subjects. We also intend to identify the possible association of SOCS1 and SOCS3 transcript levels with metabolic parameters in the context of obesity. METHODS This study was conducted on women with obesity (n = 24) [body mass index (BMI) ≥ 30 kg/m 2] and women with normal-weight (n = 22) (BMI < 25 kg/m 2). Transcript levels of SOCS1 and SOCS3 were evaluated by real-time PCR in SAT from all participants. After bisulfite treatment of DNA, methylation-specific PCR was used to assess the putative methylation of 10 CpG sites in the promoter of SOCS1 and 13 CpG sites in SOCS3 in SAT from women with obesity and normal weight. RESULTS It was found that unlike SOCS3, which disclosed an elevating expression pattern, the expression level of SOCS1 was lower in the women with obesity as compared with their non-obese counterparts (P-value = 0.03 for SOCS1 transcript level and P-value = 0.011 for SOCS3 transcript level). As for the analysis of promoter methylation, it was found that SOCS1 and SOCS3 methylation were not significantly different between the individuals with obesity and normal weight (P-value = 0.45 and P-value = 0.89). Correlation analysis indicated that the transcript level of SOCS1 mRNA expression had an inverse correlation with BMI, hs-CRP levels, HOMA-IR, and insulin levels. However, the SOCS3 transcript level showed a positive correlation with BMI, waist-to-height ratio, waist circumference, hip circumference, hs-CRP, HOMA-IR, insulin, fasting blood glucose, and total cholesterol. Interestingly, HOMA-IR is the predictor of the transcript level of SOCS1 (β = - 0.448, P-value = 0.003) and SOCS3 (β = 0.465, P-value = 0.002) in SAT of all participants. CONCLUSIONS Our findings point to alterations of SOCS1 and SOCS3 transcript levels, but not promoter methylation levels in subcutaneous adipose tissues from women with obesity. Moreover, mRNA expression of SOCS1 and SOCS3 in SAT was associated with known obesity indices, insulin resistance, and hs-CRP, suggesting the contribution of SOCS1 and SOCS3 in the pathogenesis of obesity-related metabolic abnormalities. However, further studies are required to establish this concept.
Collapse
Affiliation(s)
- Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran Sciences, Tehran, Iran
| | - Seyedeh Zahra Hasanpour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Pilehvari
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Zabihi-Mahmoudabadi
- Department of Surgery, School of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Meysam Motevasseli
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shanaki
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Chen J, Meng X. Aronia melanocarpa Anthocyanin Extracts Improve Hepatic Structure and Function in High-Fat Diet-/Streptozotocin-Induced T2DM Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11531-11543. [PMID: 36084327 DOI: 10.1021/acs.jafc.2c03286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthocyanins can prevent and ameliorate type 2 diabetes mellitus (T2DM), but its mechanism of action has not been fully established. IKK/NF-κB and JAK/Stat pathways have multiple effects, triggering T2DM. Liver abnormalities in individuals with T2DM are detrimental to glycemic control. We determined whether anthocyanins could improve the liver of individuals with T2DM using IKK/NF-κB and JAK/Stat. We established a T2DM mouse model using a high-fat diet and streptozotocin and then performed Aronia melanocarpa anthocyanin extracts' (AMAEs') administration for 5 weeks. AMAEs improved blood glucose and hyperinsulinemia of T2DM mice. In the liver of AMAE-administered T2DM mice, ROS, IKKβ/NF-κB p65, and JAK2/Stat3/5B signalings were down-regulated, thereby reducing the suppressor of cytokine signaling 3 (SOCS3), iNOS, and inflammatory mediators. AMAE-improved hyperinsulinemia also down-regulated SOCS3 by decreasing p-Stat5B in hepatocytes. AMAEs enhanced glucose uptake and conversion and decreased hepatocyte enlargement and inflammatory cells in the liver of T2DM mice. These indicated that AMAEs could alleviate oxidative stress, insulin resistance, inflammation, and tissue damage in the liver of T2DM mice through inhibiting NF-κB p65 and Stat3/5B.
Collapse
Affiliation(s)
- Jing Chen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, P. R. China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, P. R. China
| |
Collapse
|
10
|
Jadhav N, Ajgaonkar S, Saha P, Gurav P, Pandey A, Basudkar V, Gada Y, Panda S, Jadhav S, Mehta D, Nair S. Molecular Pathways and Roles for Vitamin K2-7 as a Health-Beneficial Nutraceutical: Challenges and Opportunities. Front Pharmacol 2022; 13:896920. [PMID: 35774605 PMCID: PMC9237441 DOI: 10.3389/fphar.2022.896920] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022] Open
Abstract
Vitamin K2-7, also known as menaquinone-7 (MK-7) is a form of vitamin K that has health-beneficial effects in osteoporosis, cardiovascular disease, inflammation, cancer, Alzheimer's disease, diabetes and peripheral neuropathy. Compared to vitamin K1 (phylloquinone), K2-7 is absorbed more readily and is more bioavailable. Clinical studies have unequivocally demonstrated the utility of vitamin K2-7 supplementation in ameliorating peripheral neuropathy, reducing bone fracture risk and improving cardiovascular health. We examine how undercarboxylated osteocalcin (ucOC) and matrix Gla protein (ucMGP) are converted to carboxylated forms (cOC and cMGP respectively) by K2-7 acting as a cofactor, thus facilitating the deposition of calcium in bones and preventing vascular calcification. K2-7 is beneficial in managing bone loss because it upregulates osteoprotegerin which is a decoy receptor for RANK ligand (RANKL) thus inhibiting bone resorption. We also review the evidence for the health-beneficial outcomes of K2-7 in diabetes, peripheral neuropathy and Alzheimer's disease. In addition, we discuss the K2-7-mediated suppression of growth in cancer cells via cell-cycle arrest, autophagy and apoptosis. The mechanistic basis for the disease-modulating effects of K2-7 is mediated through various signal transduction pathways such as PI3K/AKT, MAP Kinase, JAK/STAT, NF-κB, etc. Interestingly, K2-7 is also responsible for suppression of proinflammatory mediators such as IL-1α, IL-1β and TNF-α. We elucidate various genes modulated by K2-7 as well as the clinical pharmacometrics of vitamin K2-7 including K2-7-mediated pharmacokinetics/pharmacodynamics (PK/PD). Further, we discuss the current status of clinical trials on K2-7 that shed light on dosing strategies for maximum health benefits. Taken together, this is a synthetic review that delineates the health-beneficial effects of K2-7 in a clinical setting, highlights the molecular basis for these effects, elucidates the clinical pharmacokinetics of K2-7, and underscores the need for K2-7 supplementation in the global diet.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yash Gada
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | | | | | - Dilip Mehta
- Synergia Life Sciences Pvt. Ltd., Mumbai, India
| | - Sujit Nair
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| |
Collapse
|
11
|
Mahmudpour M, Vahdat K, Keshavarz M, Nabipour I. The COVID-19-diabetes mellitus molecular tetrahedron. Mol Biol Rep 2022; 49:4013-4024. [PMID: 35067816 PMCID: PMC8784222 DOI: 10.1007/s11033-021-07109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023]
Abstract
Accumulating molecular evidence suggests that insulin resistance, rather than SARS-CoV-2- provoked beta-cell impairment, plays a major role in the observed rapid metabolic deterioration in diabetes, or new-onset hyperglycemia, during the COVID-19 clinical course. In order to clarify the underlying complexity of COVID-19 and diabetes mellitus interactions, we propose the imaginary diabetes-COVID-19 molecular tetrahedron with four lateral faces consisting of SARS-CoV-2 entry via ACE2 (lateral face 1), the viral hijacking and replication (lateral face 2), acute inflammatory responses (lateral face 3), and the resulting insulin resistance (lateral face 4). The entrance of SARS-CoV-2 using ACE2 receptor triggers an array of multiple molecular signaling beyond that of the angiotensin II/ACE2-Ang-(1-7) axis, such as down-regulation of PGC-1 α/irisin, increased SREBP-1c activity, upregulation of CD36 and Sirt1 inhibition leading to insulin resistance. In another arm of the molecular cascade, the SARS-CoV-2 hijacking and replication induces a series of molecular events in the host cell metabolic machinery, including upregulation of SREBP-2, decrement in Sirt1 expression, dysregulation in PPAR-ɣ, and LPI resulting in insulin resistance. The COVID-19-diabetes molecular tetrahedron may suggest novel targets for therapeutic interventions to overcome insulin resistance that underlies the pathophysiology of worsening metabolic control in patients with diabetes mellitus or the new-onset of hyperglycemia in COVID-19.
Collapse
Affiliation(s)
- Mehdi Mahmudpour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Katayoun Vahdat
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
12
|
Naser W, Maymand S, Rivera LR, Connor T, Liongue C, Smith CM, Aston-Mourney K, McCulloch DR, McGee SL, Ward AC. Cytokine-inducible SH2 domain containing protein contributes to regulation of adiposity, food intake, and glucose metabolism. FASEB J 2022; 36:e22320. [PMID: 35470501 DOI: 10.1096/fj.202101882r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 01/03/2023]
Abstract
The cytokine-inducible SH2 domain containing protein (CISH) is the founding member of the suppressor of cytokine signaling (SOCS) family of negative feedback regulators and has been shown to be a physiological regulator of signaling in immune cells. This study sought to investigate novel functions for CISH outside of the immune system. Mice deficient in CISH were generated and analyzed using a range of metabolic and other parameters, including in response to a high fat diet and leptin administration. CISH knockout mice possessed decreased body fat and showed resistance to diet-induced obesity. This was associated with reduced food intake, but unaltered energy expenditure and microbiota composition. CISH ablation resulted in reduced basal expression of the orexigenic Agrp gene in the arcuate nucleus (ARC) region of the brain. Cish was basally expressed in the ARC, with evidence of co-expression with the leptin receptor (Lepr) gene in Agrp-positive neurons. CISH-deficient mice also showed enhanced leptin responsiveness, although Cish expression was not itself modulated by leptin. CISH-deficient mice additionally exhibited improved insulin sensitivity on a high-fat diet, but not glucose tolerance despite reduced body weight. These data identify CISH as an important regulator of homeostasis through impacts on appetite control, mediated at least in part by negative regulation of the anorexigenic effects of leptin, and impacts on glucose metabolism.
Collapse
Affiliation(s)
- Wasan Naser
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,College of Science, University of Baghdad, Baghdad, Iraq
| | - Saeed Maymand
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Leni R Rivera
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| | - Timothy Connor
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| | - Craig M Smith
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| | - Kathryn Aston-Mourney
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| | - Daniel R McCulloch
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| | - Sean L McGee
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
13
|
Oliveira LDC, Morais GP, Ropelle ER, de Moura LP, Cintra DE, Pauli JR, de Freitas EC, Rorato R, da Silva ASR. Using Intermittent Fasting as a Non-pharmacological Strategy to Alleviate Obesity-Induced Hypothalamic Molecular Pathway Disruption. Front Nutr 2022; 9:858320. [PMID: 35445066 PMCID: PMC9014844 DOI: 10.3389/fnut.2022.858320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Intermittent fasting (IF) is a popular intervention used to fight overweight/obesity. This condition is accompanied by hypothalamic inflammation, limiting the proper signaling of molecular pathways, with consequent dysregulation of food intake and energy homeostasis. This mini-review explored the therapeutic modulation potential of IF regarding the disruption of these molecular pathways. IF seems to modulate inflammatory pathways in the brain, which may also be correlated with the brain-microbiota axis, improving hypothalamic signaling of leptin and insulin, and inducing the autophagic pathway in hypothalamic neurons, contributing to weight loss in obesity. Evidence also suggests that when an IF protocol is performed without respecting the circadian cycle, it can lead to dysregulation in the expression of circadian cycle regulatory genes, with potential health damage. In conclusion, IF may have the potential to be an adjuvant treatment to improve the reestablishment of hypothalamic responses in obesity.
Collapse
Affiliation(s)
- Luciana da Costa Oliveira
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Gustavo Paroschi Morais
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - Ellen C. de Freitas
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Rorato
- Postgraduate Program in Molecular Biology, Laboratory of Stress Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
- Rodrigo Rorato,
| | - Adelino Sanchez R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- *Correspondence: Adelino Sanchez R. da Silva,
| |
Collapse
|
14
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
15
|
Zhang Y, Lin C, Chen R, Luo L, Huang J, Liu H, Chen W, Xu J, Yu H, Ding Y. Association analysis of SOCS3, JAK2 and STAT3 gene polymorphisms and genetic susceptibility to type 2 diabetes mellitus in Chinese population. Diabetol Metab Syndr 2022; 14:4. [PMID: 34991691 PMCID: PMC8734348 DOI: 10.1186/s13098-021-00774-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
AIM The association of polymorphisms in the three genes of SOCS3, JAK2 and STAT3 with genetic susceptibility to type 2 diabetes mellitus (T2DM) was explored, and its interaction with environmental factors such as hypertension and triglycerides was analyzed. METHODS The Hardy-Weinberg balance test was used to analyze the random balance of genes in the population. The analysis of the association of SNPs with T2DM was performed using Pearson's chi-square test. Haplotype frequency distribution, SNPs-SNPs interaction and environmental factors were analyzed by chi-square test and logistic regression. RESULTS The genotype distribution of SNPs rs2280148 of the SOCS3 gene was statistically significant. The allele frequency distribution of SNPs (rs4969168/rs2280148) was statistically different. After covariate correction, the SOCS3 gene locus (rs4969168) showed an association with T2DM in additive model, while the rs2280148 locus showed an association with T2DM in all three models. The locus (rs10974914/rs10815157) allele and genotype frequency distribution of JAK2 were statistically significant. After covariate correction, two SNPs in the gene showed association with T2DM in both additive and recessive models. The distribution of genotype frequencies of SNPs rs1053005 locus in gene STAT3 was statistically significant between the two groups. In recessive genetic models, rs1053005 locus polymorphisms was associated with T2DM. Haplotype S3 (G G)/S 4 (G T) of the SOCS3 gene as well as haplotype J2 (A G)/J 3 (G C) of the JAK2 gene were closely associated with T2DM. There was an interaction between SNPs rs4969168 and SNPs rs2280148 in the SOCS3 gene. There was an interaction between the SOCS3, JAK2 and STAT3 genes and hypertension/triglycerides. CONCLUSION The SOCS3 and JAK2 genes may be associated with T2DM in the Chinese population, in which SNPs carrying the A allele (rs4969168)/G allele (rs2280148)/C allele (rs10815157) have a reduced risk of T2DM. Haplotype S3 (G G)/S 4 (G T) of the SOCS3 gene and haplotype J2 (A G)/J 3 (G C) of the JAK2 gene may be influencing factor for T2DM. The interaction between SNPs rs4969168 and SNPs rs2280148 increases the risk of T2DM. Hypertension and triglycerides may interact with SNPs of T2DM susceptibility genes.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunwen Lin
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Rong Chen
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Ling Luo
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jialu Huang
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hao Liu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Weiying Chen
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jian Xu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Haibing Yu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuanlin Ding
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
16
|
Role of Distinct Fat Depots in Metabolic Regulation and Pathological Implications. Rev Physiol Biochem Pharmacol 2022; 186:135-176. [PMID: 35915363 DOI: 10.1007/112_2022_73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
People suffering from obesity and associated metabolic disorders including diabetes are increasing exponentially around the world. Adipose tissue (AT) distribution and alteration in their biochemical properties play a major role in the pathogenesis of these diseases. Emerging evidence suggests that AT heterogeneity and depot-specific physiological changes are vital in the development of insulin resistance in peripheral tissues like muscle and liver. Classically, AT depots are classified into white adipose tissue (WAT) and brown adipose tissue (BAT); WAT is the site of fatty acid storage, while BAT is a dedicated organ of metabolic heat production. The discovery of beige adipocyte clusters in WAT depots indicates AT heterogeneity has a more central role than hither to ascribed. Therefore, we have discussed in detail the current state of understanding on cellular and molecular origin of different AT depots and their relevance toward physiological metabolic homeostasis. A major focus is to highlight the correlation between altered WAT distribution in the body and metabolic pathogenesis in animal models and humans. We have also underscored the disparity in the molecular (including signaling) changes in various WAT tissues during diabetic pathogenesis. Exercise-mediated beneficial alteration in WAT physiology/distribution that protects against metabolic disorders is evolving. Here we have discussed the depot-specific biochemical adjustments induced by different forms of exercise. A detailed understanding of the molecular details of inter-organ crosstalk via substrate utilization/storage and signaling through chemokines provide strategies to target selected WAT depots to pharmacologically mimic the benefits of exercise countering metabolic diseases including diabetes.
Collapse
|
17
|
Jyothi CCX, Bandyopadhyay D, Sahu S, Patro BK, Nayak S. Correlation of Serum Retinol and Atherogenic Indices in Type 2 Diabetes Mellitus: A Case-Control Study. Indian J Clin Biochem 2022; 37:100-106. [PMID: 35125699 PMCID: PMC8799824 DOI: 10.1007/s12291-020-00951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/17/2020] [Indexed: 01/03/2023]
Abstract
Dyslipidemia is an important risk factor for atherosclerosis and coronary heart disease, leading to mortality and morbidity in subjects with T2DM. This risk is higher in subjects with diabetes who are on retinoid therapy for some other indication, where hypercholesterolemia, hypertriglyceridemia, and low serum high-density lipoprotein cholesterol (HDL-C), and sudden cardiovascular deaths have been reported. Our study aimed to find the correlation of serum retinol and atherogenic index (AI) in subjects with T2DM and compare them with healthy controls. We found there was a significant difference in systolic and diastolic blood pressure, body mass index, waist circumference, waist hip ratio, total cholesterol (TC), Triglycerides (TG), non-high density lipoprotein cholesterol (non-HDL-C), the atherogenic ratio of cholesterol (ARC), atherogenic index of plasma (AIP) and AI between the two groups. There was a significant positive correlation of serum retinol with TC, TG, LDL-C, Non-HDL-C, ARC, AIP, and AI. In our study we found an association of serum retinol with atherogenic index and dyslipidemia in subjects with T2DM. Serum retinol can be a novel predictor of cardiovascular risk in subjects with T2DM.
Collapse
Affiliation(s)
| | | | - Suchanda Sahu
- Department of Biochemistry, AIIMS, Bhubaneswar, India
| | - Binod Kumar Patro
- Department of Community Medicine and Family Medicine, AIIMS, Bhubaneswar, India
| | - Saurav Nayak
- Department of Biochemistry, AIIMS, Bhubaneswar, India
| |
Collapse
|
18
|
Ghafouri-Fard S, Honarmand Tamizkar K, Sayad A, Taheri M, Samadian M. Expression Analysis of SOCS Genes in Migraine. Front Mol Neurosci 2021; 14:725048. [PMID: 34646121 PMCID: PMC8502924 DOI: 10.3389/fnmol.2021.725048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Migraine is a complex neurological condition affecting a large proportion of persons. Dysregulation of several immune-related transcripts has been noted in migraineurs suggesting an immune-based background for this condition. We measured expression levels suppressor of cytokine signaling (SOCS) genes in the venous blood of migraineurs compared with controls. SOCS1 was down-regulated in patients without aura compared with controls [Ratio of mean expression (RME) = 0.08, P value < 0.001]. This pattern was also detected among female subgroups (RME = 0.06, P value = 0.010), but not among male subgroups (RME = 0.22, P value = 0.114). Expression of SOCS1 was significantly higher in patients with aura compared with those without aura (RME = 5.89, P value = 0.037). Meanwhile, expression of SOCS2 was lower in migraineurs with aura compared with controls (RME = 0.03, P value < 0.001). In addition, this gene was under-expressed in patients without aura compared with controls and in both sex-based subgroups of this group of patients (RME = 0.01, P value < 0.001 for all comparisons). However, its expression was higher in male patients with aura compared with those without aura (P value < 0.001). For SOCS3, we detected a lower level of expression in patients without aura compared with controls (RME = 0.07, P value < 0.001). However, the expression of SOCS3 was higher in patients with aura compared with those without aura (RME = 7.46, P value = 0.001). SOCS5 was down-regulated in patients without aura compared with controls (RME = 0.10, P value < 0.001). Expression of this gene was also lower in patients with aura compared with controls (RME = 0.03, P value < 0.001), and in male patients of this group compared with controls (RME = 0.03, P value = 0.004). On the other hand, expression of SOCS5 was higher in male patients with aura compared with sex-matched patients without aura (RME = 6.67, P value = 0.001). SOCS2 levels could appropriately differentiate migraineurs from healthy subjects. The current study suggests the role of SOCS genes in the pathoetiology of migraine.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand Tamizkar
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Nair S, Guanzon D, Jayabalan N, Lai A, Scholz-Romero K, Kalita de Croft P, Ormazabal V, Palma C, Diaz E, McCarthy EA, Shub A, Miranda J, Gratacós E, Crispi F, Duncombe G, Lappas M, McIntyre HD, Rice G, Salomon C. Extracellular vesicle-associated miRNAs are an adaptive response to gestational diabetes mellitus. J Transl Med 2021; 19:360. [PMID: 34416903 PMCID: PMC8377872 DOI: 10.1186/s12967-021-02999-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a serious public health issue affecting 9-15% of all pregnancies worldwide. Recently, it has been suggested that extracellular vesicles (EVs) play a role throughout gestation, including mediating a placental response to hyperglycaemia. Here, we investigated the EV-associated miRNA profile across gestation in GDM, assessed their utility in developing accurate, multivariate classification models, and determined the signaling pathways in skeletal muscle proteome associated with the changes in the EV miRNA profile. METHODS Discovery: A retrospective, case-control study design was used to identify EV-associated miRNAs that vary across pregnancy and clinical status (i.e. GDM or Normal Glucose Tolerance, NGT). EVs were isolated from maternal plasma obtained at early, mid and late gestation (n = 29) and small RNA sequencing was performed. Validation: A longitudinal study design was used to quantify expression of selected miRNAs. EV miRNAs were quantified by real-time PCR (cases = 8, control = 14, samples at three times during pregnancy) and their individual and combined classification efficiencies were evaluated. Quantitative, data-independent acquisition mass spectrometry was use to establish the protein profile in skeletal muscle biopsies from normal and GDM. RESULTS A total of 2822 miRNAs were analyzed using a small RNA library, and a total of 563 miRNAs that significantly changed (p < 0.05) across gestation and 101 miRNAs were significantly changed between NGT and GDM. Analysis of the miRNA changes in NGT and GDM separately identified a total of 256 (NGT-group), and 302 (GDM-group) miRNAs that change across gestation. A multivariate classification model was developed, based on the quantitative expression of EV-associated miRNAs, and the accuracy to correctly assign samples was > 90%. We identified a set of proteins in skeletal muscle biopsies from women with GDM associated with JAK-STAT signaling which could be targeted by the miRNA-92a-3p within circulating EVs. Interestingly, overexpression of miRNA-92a-3p in primary skeletal muscle cells increase insulin-stimulated glucose uptake. CONCLUSIONS During early pregnancy, differently-expressed, EV-associated miRNAs may be of clinical utility in identifying presymptomatic women who will subsequently develop GDM later in gestation. We suggest that miRNA-92a-3p within EVs might be a protected mechanism to increase skeletal muscle insulin sensitivity in GDM.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia
| | - Nanthini Jayabalan
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia
| | - Katherin Scholz-Romero
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia
- Faculty of Biological Sciences, Pharmacology Department, University of Concepcion, Concepción, Chile
| | - Priyakshi Kalita de Croft
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia
| | - Valeska Ormazabal
- Faculty of Biological Sciences, Pharmacology Department, University of Concepcion, Concepción, Chile
| | - Carlos Palma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia
| | - Emilio Diaz
- Faculty of Medicine, Department of Obstetrics and Gynaecology, University of Concepcion, Concepción, Chile
| | - Elizabeth A McCarthy
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
- Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Alexis Shub
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
- Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Jezid Miranda
- Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut Clínic de Ginecologia Obstetricia i Neonatologia, Universitat de Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Eduard Gratacós
- Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut Clínic de Ginecologia Obstetricia i Neonatologia, Universitat de Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Fátima Crispi
- Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut Clínic de Ginecologia Obstetricia i Neonatologia, Universitat de Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Gregory Duncombe
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia
| | - Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
- Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia
| | - H David McIntyre
- Mater Research, Faculty of Medicine, University of Queensland, Mater Health, South Brisbane, Australia
| | - Gregory Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia.
- Faculty of Biological Sciences, Pharmacology Department, University of Concepcion, Concepción, Chile.
| |
Collapse
|
20
|
Zampieri M, Bacalini MG, Barchetta I, Scalea S, Cimini FA, Bertoccini L, Tagliatesta S, De Matteis G, Zardo G, Cavallo MG, Reale A. Increased PARylation impacts the DNA methylation process in type 2 diabetes mellitus. Clin Epigenetics 2021; 13:114. [PMID: 34001206 PMCID: PMC8130175 DOI: 10.1186/s13148-021-01099-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
Background Epigenetic modifications, such as DNA methylation, can influence the genetic susceptibility to type 2 diabetes mellitus (T2DM) and the progression of the disease. Our previous studies demonstrated that the regulation of the DNA methylation pattern involves the poly(ADP-ribosyl)ation (PARylation) process, a post-translational modification of proteins catalysed by the poly(ADP-ribose) polymerase (PARP) enzymes. Experimental data showed that the hyperactivation of PARylation is associated with impaired glucose metabolism and the development of T2DM. Aims of this case–control study were to investigate the association between PARylation and global and site-specific DNA methylation in T2DM and to evaluate metabolic correlates. Results Data were collected from 61 subjects affected by T2DM and 48 healthy individuals, recruited as controls. Global levels of poly(ADP-ribose) (PAR, a surrogate of PARP activity), cytosine methylation (5-methylcytosine, 5mC) and de-methylation intermediates 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) were determined in peripheral blood cells by ELISA-based methodologies. Site-specific DNA methylation profiling of SOCS3, SREBF1 and TXNIP candidate genes was performed by mass spectrometry-based bisulfite sequencing, methyl-sensitive endonucleases digestion and by DNA immuno-precipitation. T2DM subjects presented higher PAR levels than controls. In T2DM individuals, increased PAR levels were significantly associated with higher HbA1c levels and the accumulation of the de-methylation intermediates 5hmC and 5fC in the genome. In addition, T2DM patients with higher PAR levels showed reduced methylation with increased 5hmC and 5fC levels in specific SOCS3 sites, up-regulated SOCS3 expression compared to both T2DM subjects with low PAR levels and controls. Conclusions This study demonstrates the activation of PARylation processes in patients with T2DM, particularly in those with poor glycaemic control. PARylation is linked to dysregulation of DNA methylation pattern via activation of the DNA de-methylation cascade and may be at the basis of the differential gene expression observed in presence of diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01099-1.
Collapse
Affiliation(s)
- Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | | | - Ilaria Barchetta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Stefania Scalea
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Stefano Tagliatesta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Consiglio Per La Ricerca in Agricoltura E L'Analisi Dell'Economia Agraria (CREA), 00015, Monterotondo, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
21
|
Aronia melanocarpa anthocyanin extracts are an effective regulator of suppressor of cytokine signaling 3-dependent insulin resistance in HepG2 and C2C12 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
22
|
Petersen KS, Bowen KJ, Tindall AM, Sullivan VK, Johnston EA, Fleming JA, Kris-Etherton PM. The Effect of Inflammation and Insulin Resistance on Lipid and Lipoprotein Responsiveness to Dietary Intervention. Curr Dev Nutr 2020; 4:nzaa160. [PMID: 33447695 PMCID: PMC7792751 DOI: 10.1093/cdn/nzaa160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Lipids and lipoproteins are major targets for cardiovascular disease (CVD) prevention. Findings from a limited number of clinical trials suggest diet-induced atherogenic lipoprotein lowering can be altered in the presence of chronic low-grade inflammation or insulin resistance. This review summarizes results from randomized controlled trials that have examined diet-induced changes in lipids/lipoproteins by inflammatory or insulin sensitivity status. In addition, mechanisms to explain these clinical observations are explored. Post hoc analyses of data from a limited number of randomized controlled trials suggest attenuation of diet-induced lipid/lipoprotein lowering in individuals with inflammation and/or insulin resistance. These findings are supported by experimental studies showing that inflammatory stimuli and hyperinsulinemia alter genes involved in endogenous cholesterol synthesis and cholesterol uptake, reduce cholesterol efflux, and increase fatty acid biosynthesis. Further a priori defined research is required to better characterize how chronic low-grade inflammation and insulin resistance modulate lipid and lipoprotein responsiveness to guide CVD risk reduction in individuals presenting with these phenotypes.
Collapse
Affiliation(s)
- Kristina S Petersen
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kate J Bowen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Alyssa M Tindall
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Valerie K Sullivan
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Emily A Johnston
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jennifer A Fleming
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, Herrema H. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front Immunol 2020; 11:571731. [PMID: 33178196 PMCID: PMC7596417 DOI: 10.3389/fimmu.2020.571731] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota has been linked to the development of obesity and type 2 diabetes (T2D). The underlying mechanisms as to how intestinal microbiota may contribute to T2D are only partly understood. It becomes progressively clear that T2D is characterized by a chronic state of low-grade inflammation, which has been linked to the development of insulin resistance. Here, we review the current evidence that intestinal microbiota, and the metabolites they produce, could drive the development of insulin resistance in obesity and T2D, possibly by initiating an inflammatory response. First, we will summarize major findings about immunological and gut microbial changes in these metabolic diseases. Next, we will give a detailed view on how gut microbial changes have been implicated in low-grade inflammation. Lastly, we will critically discuss clinical studies that focus on the interaction between gut microbiota and the immune system in metabolic disease. Overall, there is strong evidence that the tripartite interaction between gut microbiota, host immune system and metabolism is a critical partaker in the pathophysiology of obesity and T2D.
Collapse
Affiliation(s)
- Torsten P M Scheithauer
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, BC, Canada
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
24
|
Escalona-Garrido C, Vázquez P, Mera P, Zagmutt S, García-Casarrubios E, Montero-Pedrazuela A, Rey-Stolle F, Guadaño-Ferraz A, Rupérez FJ, Serra D, Herrero L, Obregon MJ, Valverde ÁM. Moderate SIRT1 overexpression protects against brown adipose tissue inflammation. Mol Metab 2020; 42:101097. [PMID: 33049408 PMCID: PMC7600394 DOI: 10.1016/j.molmet.2020.101097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Metainflammation is a chronic low-grade inflammatory state induced by obesity and associated comorbidities, including peripheral insulin resistance. Brown adipose tissue (BAT), a therapeutic target against obesity, is an insulin target tissue sensitive to inflammation. Therefore, it is necessary to find strategies to protect BAT against the effects of inflammation in energy balance. In this study, we explored the impact of moderate sirtuin 1 (SIRT1) overexpression on insulin sensitivity and β-adrenergic responses in BAT and brown adipocytes (BA) under pro-inflammatory conditions. METHODS The effect of inflammation on BAT functionality was studied in obese db/db mice and lean wild-type (WT) mice or mice with moderate overexpression of SIRT1 (SIRT1Tg+) injected with a low dose of bacterial lipopolysaccharide (LPS) to mimic endotoxemia. We also conducted studies on differentiated BA (BA-WT and BA-SIRT1Tg+) exposed to a macrophage-derived pro-inflammatory conditioned medium (CM) to evaluate the protection of SIRT1 overexpression in insulin signaling and glucose uptake, mitochondrial respiration, fatty acid oxidation (FAO), and norepinephrine (NE)-mediated-modulation of uncoupling protein-1 (UCP-1) expression. RESULTS BAT from the db/db mice was susceptible to metabolic inflammation manifested by the activation of pro-inflammatory signaling cascades, increased pro-inflammatory gene expression, tissue-specific insulin resistance, and reduced UCP-1 expression. Impairment of insulin and noradrenergic responses were also found in the lean WT mice upon LPS injection. In contrast, BAT from the mice with moderate overexpression of SIRT1 (SIRT1Tg+) was protected against LPS-induced activation of pro-inflammatory signaling, insulin resistance, and defective thermogenic-related responses upon cold exposure. Importantly, the decline in triiodothyronine (T3) levels in the circulation and intra-BAT after exposure of the WT mice to LPS and cold was markedly attenuated in the SIRT1Tg+ mice. In vitro BA experiments in the two genotypes revealed that upon differentiation with a T3-enriched medium and subsequent exposure to a macrophage-derived pro-inflammatory CM, only BA-SIRT1Tg+ fully recovered insulin and noradrenergic responses. CONCLUSIONS This study has ascertained the benefit of the moderate overexpression of SIRT1 to confer protection against defective insulin and β-adrenergic responses caused by BAT inflammation. Our results have potential therapeutic value in combinatorial therapies for BAT-specific thyromimetics and SIRT1 activators to combat metainflammation in this tissue.
Collapse
Affiliation(s)
- Carmen Escalona-Garrido
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain
| | - Patricia Vázquez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain.
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Ester García-Casarrubios
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain
| | - Ana Montero-Pedrazuela
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universitiy, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Francisco J Rupérez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universitiy, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Maria Jesus Obregon
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain.
| |
Collapse
|
25
|
Huang S, Liu K, Cheng A, Wang M, Cui M, Huang J, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Yang Q, Zhang S, Ou X, Mao S, Gao Q, Yu Y, Tian B, Liu Y, Zhang L, Yin Z, Jing B, Chen X, Jia R. SOCS Proteins Participate in the Regulation of Innate Immune Response Caused by Viruses. Front Immunol 2020; 11:558341. [PMID: 33072096 PMCID: PMC7544739 DOI: 10.3389/fimmu.2020.558341] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
The host immune system has multiple innate immune receptors that can identify, distinguish and react to viral infections. In innate immune response, the host recognizes pathogen-associated molecular patterns (PAMP) in nucleic acids or viral proteins through pathogen recognition receptors (PRRs), especially toll-like receptors (TLRs) and induces immune cells or infected cells to produce type I Interferons (IFN-I) and pro-inflammatory cytokines, thus when the virus invades the host, innate immunity is the earliest immune mechanism. Besides, cytokine-mediated cell communication is necessary for the proper regulation of immune responses. Therefore, the appropriate activation of innate immunity is necessary for the normal life activities of cells. The suppressor of the cytokine signaling proteins (SOCS) family is one of the main regulators of the innate immune response induced by microbial pathogens. They mainly participate in the negative feedback regulation of cytokine signal transduction through Janus kinase signal transducer and transcriptional activator (JAK/STAT) and other signal pathways. Taken together, this paper reviews the SOCS proteins structures and the function of each domain, as well as the latest knowledge of the role of SOCS proteins in innate immune caused by viral infections and the mechanisms by which SOCS proteins assist viruses to escape host innate immunity. Finally, we discuss potential values of these proteins in future targeted therapies.
Collapse
Affiliation(s)
- Shanzhi Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ke Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
26
|
Bae-Gartz I, Kasper P, Großmann N, Breuer S, Janoschek R, Kretschmer T, Appel S, Schmitz L, Vohlen C, Quaas A, Schweiger MR, Grimm C, Fischer A, Ferrari N, Graf C, Frese CK, Lang S, Demir M, Schramm C, Fink G, Goeser T, Dötsch J, Hucklenbruch-Rother E. Maternal exercise conveys protection against NAFLD in the offspring via hepatic metabolic programming. Sci Rep 2020; 10:15424. [PMID: 32963289 PMCID: PMC7508970 DOI: 10.1038/s41598-020-72022-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Maternal exercise (ME) during pregnancy has been shown to improve metabolic health in offspring and confers protection against the development of non-alcoholic fatty liver disease (NAFLD). However, its underlying mechanism are still poorly understood, and it remains unclear whether protective effects on hepatic metabolism are already seen in the offspring early life. This study aimed at determining the effects of ME during pregnancy on offspring body composition and development of NAFLD while focusing on proteomic-based analysis of the hepatic energy metabolism during developmental organ programming in early life. Under an obesogenic high-fat diet (HFD), male offspring of exercised C57BL/6J-mouse dams were protected from body weight gain and NAFLD in adulthood (postnatal day (P) 112). This was associated with a significant activation of hepatic AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor alpha (PPARα) and PPAR coactivator-1 alpha (PGC1α) signaling with reduced hepatic lipogenesis and increased hepatic β-oxidation at organ programming peak in early life (P21). Concomitant proteomic analysis revealed a characteristic hepatic expression pattern in offspring as a result of ME with the most prominent impact on Cholesterol 7 alpha-hydroxylase (CYP7A1). Thus, ME may offer protection against offspring HFD-induced NAFLD by shaping hepatic proteomics signature and metabolism in early life. The results highlight the potential of exercise during pregnancy for preventing the early origins of NAFLD.
Collapse
Affiliation(s)
- Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany.
| | - Philipp Kasper
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nora Großmann
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Saida Breuer
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Tobias Kretschmer
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Lisa Schmitz
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Alexander Quaas
- Department of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Michal R Schweiger
- Translational Epigenetics and Tumor Genetic, University Hospital of Cologne, Cologne, Germany
| | - Christina Grimm
- Translational Epigenetics and Tumor Genetic, University Hospital of Cologne, Cologne, Germany
| | | | - Nina Ferrari
- Cologne Center for Prevention in Childhood and Youth / Heart Center Cologne, University Hospital of Cologne, Cologne, Germany.,Institute of Movement and Neuroscience, Department of Movement and Health Promotion, German Sport University, Cologne, Germany
| | - Christine Graf
- Institute of Movement and Neuroscience, Department of Movement and Health Promotion, German Sport University, Cologne, Germany
| | - Christian K Frese
- Proteomics Core Facility, CECAD Research Center, University Hospital of Cologne, Cologne, Germany.,Max-Planck-Unit for the Science of Pathogens, Charité University Medicine Berlin, Berlin, Germany
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité Campus Mitte and Campus Virchow Clinic, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Schramm
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| |
Collapse
|
27
|
Physalis alkekengi L. Extract Reduces the Oxidative Stress, Inflammation and Apoptosis in Endothelial Vascular Cells Exposed to Hyperglycemia. Molecules 2020; 25:molecules25163747. [PMID: 32824505 PMCID: PMC7465244 DOI: 10.3390/molecules25163747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
To find new natural remedies in diabetes, this study investigated the biological activity of two extracts obtained from the fruits (PhyF) and herba (PhyH) of Physalis alkekengi var. franchetii L. on human umbilical vein endothelial cells (HUVECs) exposed to normo- and hyperglycemic conditions. The biological effect was quantified by malondialdehyde, IL-31 and IL-33 levels in correlation with physico-chemical characterization and antioxidant activity. Additionally, from PhyP extract, the caspase-3, IL-6, IL-10, tumor necrosis factor (TNF)-α and nuclear transcription factor NFkB expressions were evaluated. HPLC analysis revealed a significant number of phenolic compounds, especially in PhyF extract, with a good antioxidant activity as highlighted by TEAC, CUPRAC or DPPH methods. On HUVECS cells, the extracts were not toxic even at high concentrations. Particularly PhyF extract, diminished lipid peroxidation and inhibited the IL-31 and IL-33 secretions induced by hyperglycemia. The inhibitory effect on proinflammatory cytokines was noticed after both doses of PhyF extract in parallel with the upregulation of anti-inflammatory cytokine IL-10. Moreover, PhyF, especially in a low dose, reduced caspase-3 active form. These experimental findings suggest that Physalis fruits extract exerted beneficial effects in hyperglycemia by inhibition of oxidative stress, inflammation and apoptosis being a good adjuvant option in diabetes.
Collapse
|
28
|
Fruit and vegetable intake modifies the associations between suppressor of cytokine signaling 3 genetic variants and type 2 diabetes. Eur J Nutr 2020; 59:3441-3449. [PMID: 31927672 DOI: 10.1007/s00394-020-02178-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Type 2 diabetes is a complex disease determined by variable genes and environmental factors. The study was designed to investigate the effect of interactions of four polymorphisms of suppressor of cytokine signaling 3 (SOCS3) with fruit and vegetable (F&V) intake on type 2 diabetes in a rural population of China. METHODS A total of 4411 participants from the rural areas of Henan, China were included in the study. Multivariate logistic regression and restricted cubic splines were used to estimate the associations between polymorphisms and risk allele score of SOCS3 and type 2 diabetes in different groups. Haplotype analysis was conducted to examine the effects of linkage inheritance at these four loci on type 2 diabetes. RESULTS Three of the four polymorphisms showed significant associations with type 2 diabetes in the less F&V intake group after adjusting the covariates, the odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs) were 1.24 (1.08-1.41) for rs4969168, 1.16 (1.02-1.32) for rs9892622, and 1.21 (1.06-1.39) for rs9914220. No significant association was detected in the more F&V intake group. The obvious dose-response relationship between the risk allele score and type 2 diabetes was also noted only in the less F&V intake group. CONCLUSIONS Variants of SOCS3 gene were associated with type 2 diabetes and the associations could be modified by the F&V intake.
Collapse
|
29
|
Role of c-Jun N-Terminal Kinases (JNKs) in Epilepsy and Metabolic Cognitive Impairment. Int J Mol Sci 2019; 21:ijms21010255. [PMID: 31905931 PMCID: PMC6981493 DOI: 10.3390/ijms21010255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023] Open
Abstract
Previous studies have reported that the regulatory function of the different c-Jun N-terminal kinases isoforms (JNK1, JNK2, and JNK3) play an essential role in neurological disorders, such as epilepsy and metabolic-cognitive alterations. Accordingly, JNKs have emerged as suitable therapeutic strategies. In fact, it has been demonstrated that some unspecific JNK inhibitors exert antidiabetic and neuroprotective effects, albeit they usually show high toxicity or lack therapeutic value. In this sense, natural specific JNK inhibitors, such as Licochalcone A, are promising candidates. Nonetheless, research on the understanding of the role of each of the JNKs remains mandatory in order to progress on the identification of new selective JNK isoform inhibitors. In the present review, a summary on the current gathered data on the role of JNKs in pathology is presented, as well as a discussion on their potential role in pathologies like epilepsy and metabolic-cognitive injury. Moreover, data on the effects of synthetic small molecule inhibitors that modulate JNK-dependent pathways in the brain and peripheral tissues is reviewed.
Collapse
|
30
|
Patel BM, Goyal RK. Liver and insulin resistance: New wine in old bottle!!! Eur J Pharmacol 2019; 862:172657. [DOI: 10.1016/j.ejphar.2019.172657] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
31
|
Morris G, Puri BK, Walker AJ, Maes M, Carvalho AF, Bortolasci CC, Walder K, Berk M. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci Biobehav Rev 2019; 107:862-882. [PMID: 31545987 DOI: 10.1016/j.neubiorev.2019.09.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Activated immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways and consequent mitochondrial aberrations are involved in the pathophysiology of psychiatric disorders including major depression, bipolar disorder and schizophrenia. They offer independent and shared contributions to pathways underpinning medical comorbidities including insulin resistance, metabolic syndrome, obesity and cardiovascular disease - herein conceptualized as somatoprogression. This narrative review of human studies aims to summarize relationships between IO&NS pathways, neuroprogression and somatoprogression. Activated IO&NS pathways, implicated in the neuroprogression of psychiatric disorders, affect the pathogenesis of comorbidities including insulin resistance, dyslipidaemia, obesity and hypertension, and by inference, metabolic syndrome. These conditions activate IO&NS pathways, exacerbating neuroprogression in psychiatric disorders. The processes whereby proinflammatory cytokines, nitrosative and endoplasmic reticulum stress, NADPH oxidase isoforms, PPARγ inactivation, SIRT1 deficiency and intracellular signalling pathways impact lipid metabolism and storage are considered. Through associations between body mass index, chronic neuroinflammation and FTO expression, activation of IO&NS pathways arising from somatoprogression may contribute to neuroprogression. Early evidence highlights the potential of adjuvants targeting IO&NS pathways for treating somatoprogression and neuroprogression.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Chiara C Bortolasci
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Ken Walder
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
32
|
Curcumin exerts beneficial role on insulin resistance through modulation of SOCS3 and Rac-1 pathways in type 2 diabetic rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Pedroso JAB, Ramos-Lobo AM, Donato J. SOCS3 as a future target to treat metabolic disorders. Hormones (Athens) 2019; 18:127-136. [PMID: 30414080 DOI: 10.1007/s42000-018-0078-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
The suppressors of cytokine signaling (SOCS) are a group of eight proteins responsible for preventing excessive cytokine signaling. Among this protein family, SOCS3 has received special attention. SOCS3 expression is important to control certain allergy autoimmune diseases. Furthermore, SOCS3 expression is elevated in obesity and it is involved in the inhibition of leptin and insulin signaling, two important hormones involved in the control of energy metabolism. Therefore, increased SOCS3 expression in obese individuals is associated with several metabolic disorders, including reduced energy expenditure, increased food intake and adiposity, and insulin and leptin resistance. In addition, recent studies found that SOCS3 expression regulates energy and glucose homeostasis in several metabolic conditions, such as pregnancy, caloric restriction, and refeeding. Importantly, attenuation of SOCS3 expression in most cases improves leptin and insulin sensitivity, leading to beneficial metabolic effects. This review aims to discuss the role of SOCS3 in the control of blood glucose levels as well as in energy homeostasis. The development of pharmacological compounds to inhibit SOCS3 activity and/or expression may represent a promising therapeutic approach to treat type 2 diabetes mellitus, obesity, and other metabolic imbalances.
Collapse
Affiliation(s)
- João A B Pedroso
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, 05508-000, Brazil.
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, 05508-000, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, 05508-000, Brazil
| |
Collapse
|
34
|
Ye HM, Zhao T, Wu LX, Cheng J, Tan XY. Molecular characterization of nine suppressors of cytokine signaling (SOCS) genes from yellow catfish Pelteobagrus fulvidraco and their changes in mRNA expression to dietary carbohydrate levels. FISH & SHELLFISH IMMUNOLOGY 2019; 86:906-912. [PMID: 30580042 DOI: 10.1016/j.fsi.2018.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Suppressors of cytokine signaling (SOCS) are important molecules that mediates the regulation of glucose homeostasis. Here, we cloned and characterized the full-length cDNA sequences of nine genes of the SOCS family (SOCS1, 2, 3, 3b, 5, 5b, 6, 7 and CISH) from yellow catfish P. fulvidraco, explored their mRNA abundance across the tissues and their mRNA changes to dietary carbohydrate levels. Structural analysis indicated that the nine members shared conserved functional domains to the orthologues of the mammalian SOCS members, such as SRC homology 2 and the SOCS domains. Their mRNAs were constitutively expressed in various tissues but changed among the tissues. Their mRNA expression in response to dietary carbohydrate levels were explored in the liver, muscle, intestine, testis and ovary. Dietary carbohydrate addition showed significant effects on the mRNA levels of the nine SOCS members. Moreover, their mRNA expressions in response to dietary carbohydrate levels were also tissue-dependent. These indicated that SOCS members potentially mediated the utilization of dietary carbohydrate in yellow catfish.
Collapse
Affiliation(s)
- Han-Mei Ye
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Xiang Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Cheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Ying Tan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Flier JS. Starvation in the Midst of Plenty: Reflections on the History and Biology of Insulin and Leptin. Endocr Rev 2019; 40:1-16. [PMID: 30357355 PMCID: PMC6270967 DOI: 10.1210/er.2018-00179] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023]
Abstract
Insulin and leptin are critical metabolic hormones that play essential but distinct roles in regulating the physiologic switch between the fed and starved states. The discoveries of insulin and leptin, in 1922 and 1994, respectively, arose out of radically different scientific environments. Despite the dearth of scientific tools available in 1922, insulin's discovery rapidly launched a life-saving therapy for what we now know to be type I diabetes, and continually enhanced insulin therapeutics are now effectively applied to both major forms of this increasingly prevalent disease. In contrast, although the discovery of leptin provided deep insights into the regulation of central nervous system energy balance circuits, as well as an effective therapy for an extremely rare form of obesity, its therapeutic impact beyond that has been surprisingly limited. Despite an enormous accumulated body of information, many important questions remain unanswered about the mechanisms of action and role in disease of both hormones. Additionally, although many decades apart, both discoveries reveal the complexities inherent to scientific collaboration and the assignment of credit, even when the efforts are spectacularly successful.
Collapse
Affiliation(s)
- Jeffrey S Flier
- Department of Medicine and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci 2019; 76:99-128. [PMID: 30343320 PMCID: PMC11105781 DOI: 10.1007/s00018-018-2947-0] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a main hepatic manifestation of metabolic syndrome. It represents a wide spectrum of histopathological abnormalities ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) with or without fibrosis and, eventually, cirrhosis and hepatocellular carcinoma. While hepatic simple steatosis seems to be a rather benign manifestation of hepatic triglyceride accumulation, the buildup of highly toxic free fatty acids associated with insulin resistance-induced massive free fatty acid mobilization from adipose tissue and the increased de novo hepatic fatty acid synthesis from glucose acts as the "first hit" for NAFLD development. NAFLD progression seems to involve the occurrence of "parallel, multiple-hit" injuries, such as oxidative stress-induced mitochondrial dysfunction, endoplasmic reticulum stress, endotoxin-induced, TLR4-dependent release of inflammatory cytokines, and iron overload, among many others. These deleterious factors are responsible for the triggering of a number of signaling cascades leading to inflammation, cell death, and fibrosis, the hallmarks of NASH. This review is aimed at integrating the overwhelming progress made in the characterization of the physiopathological mechanisms of NAFLD at a molecular level, to better understand the factor influencing the initiation and progression of the disease.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Valeria Razori
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000, Rosario, Argentina.
| |
Collapse
|
37
|
Intrauterine Growth Restriction Modifies the Accumbal Dopaminergic Response to Palatable Food Intake. Neuroscience 2018; 400:184-195. [PMID: 30599270 DOI: 10.1016/j.neuroscience.2018.12.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 11/23/2022]
Abstract
Intrauterine growth restriction (IUGR) associates with increased preference for palatable foods and altered insulin sensitivity. Insulin modulates the central dopaminergic response and changes behavioral responses to reward. We measured the release of dopamine in the accumbens during palatable food intake in IUGR rats both at baseline and in response to insulin. From pregnancy day 10 until birth, gestating Sprague-Dawley rats received either an ad libitum (Control), or a 50% food restricted (FR) diet. In adulthood, palatable food consumption and feeding behavior entropy was assessed using an electronic food intake monitor (BioDAQ®), and dopamine response to palatable food was measured by chronoamperometry recordings in the nucleus accumbens (NAcc). FR rats eat more palatable foods during the dark phase, and their eating pattern has a higher entropy compared to control rats. There was a delayed dopamine release in the FR group in response to palatable food and insulin administration reverted this delayed effect. Western blot showed a decrease in suppressor of cytokine signaling 3 protein (SOCS3) in the ventral tegmental area (VTA) and an increase in the ratio of phospho-tyrosine hydroxylase to tyrosine hydroxylase (pTH/TH) in the NAcc of FR rats. Administration of insulin also abolished this latter effect in FR rats. FR rats showed metabolic alterations and a delay in the dopaminergic response to palatable foods. This could explain the increased palatable food intake and behavioral entropy found in FR rats. IUGR may lead to binge eating, obesity and its metabolic consequences by modifying the central dopaminergic response to sweet food.
Collapse
|
38
|
Lin CJ, Lee SW, Liu CW, Chuu CP, Kao YH, Wu LSH. Polymorphisms of suppressor of cytokine signaling-3 associated with susceptibility to tuberculosis among Han Taiwanese. Cytokine 2018; 114:11-17. [PMID: 30580155 DOI: 10.1016/j.cyto.2018.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Suppressors of cytokine signaling (SOCS), particularly SOCS-3, allow discrimination of patients with active tuberculosis (TB) from healthy subjects in a gender- and age-dependent manner. However, no information is available on whether single nucleotide polymorphisms (SNPs) in the SOCS-3 gene occur in patients with TB. This study was designed to investigate SOCS-3 SNPs in association with susceptibility to TB in the Taiwanese population. METHODS Four SNPs in the SOCS-3 gene located at rs8064821, rs4969168, rs2280148, and rs35037722 were studied by the TaqMan SNP Genotyping assay in 200 healthy and 210 TB patients enrolled in 2015-2018. RESULTS Significant differences were not detected in genotype frequencies or odds ratios (ORs) between healthy and TB patients for any of the four polymorphisms. The lack of significant differences was also found when the patients were stratified by sex. However, males exhibited GG homozygous at rs35037722 in association with susceptibility to TB after the OR analysis was adjusted for age. For rs8064821, AA and AC genotypes were associated with TB susceptibility in patients ≤ 65 years old compared to CC genotype, whereas older subjects had no such association. CONCLUSIONS The results suggest that particular SOCS-3 SNPs are dependent on gender or age to influence TB susceptibility in the Han Taiwanese.
Collapse
Affiliation(s)
- Chou-Jui Lin
- Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Shih-Wei Lee
- Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan; Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chi-Wei Liu
- Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
39
|
Qin S, Sun D, Mu J, Ma D, Tang R, Zheng Y. Purple sweet potato color improves hippocampal insulin resistance via down-regulating SOCS3 and galectin-3 in high-fat diet mice. Behav Brain Res 2018; 359:370-377. [PMID: 30465813 DOI: 10.1016/j.bbr.2018.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
Hippocampal insulin resistance is the key factor in cognitive deficits. The obesity induces chronic inflammation and the inflammation molecules suppressors of cytokine signaling3 (SOCS3) and galectin-3 directly impair the insulin signaling. The anti-inflammation properties of purple sweet potato color (PSPC) prompted us to investigate the effect of PSPC on cognitive impairment associated with obesity. 60 C57BL/6 mice were randomly divided into four groups: normal, high fat diets (HFD), HFD+PSPC and PSPC. The mice were fed with the HFD or normal diet for 32 weeks. The PSPC (500 mg/kg/day) was administered via oral gavage from 21 to 32 weeks. The results showed the PSPC rectified the abnormal metabolism indexes induced by HFD, including ameliorated obesity, decreased the concentration of fasting blood glucose and improved the glucose tolerance. The Morris water maze test showed the PSPC alleviated the cognitive impairment in HFD mice. The PSPC decreased the expression of Iba1, tumor necrosis factor-α, interleukin-1β, SOCS3 and galectin-3 in hippocampus of HFD mice. The insulin signaling molecules including the p-IRS1 (Tyr608), PI3K p110α and p-AKT (Ser473) were detected and the PSPC treatment improved the insulin resistance in hippocampus of HFD mice. Furthermore, the PSPC increased Bcl-2, diminished the Bak and the cleaved-caspase3 in HFD mice hippocampus. These findings indicated that PSPC could be a potential treatment to improve the cognitive impairment associated with obesity.
Collapse
Affiliation(s)
- Suping Qin
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Dexu Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingjing Mu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Daifu Ma
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Yuanlin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
40
|
Liu J, Zhang HR, Hou YB, Jing XL, Song XY, Shen XP. Global gene expression analysis in liver of db/db mice treated with catalpol. Chin J Nat Med 2018; 16:590-598. [PMID: 30197124 DOI: 10.1016/s1875-5364(18)30096-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Indexed: 10/28/2022]
Abstract
Catalpol, a major bioactive component from Rehmannia glutinosa, which has been used to treat diabetes. The present study was designed to elucidate the anti-diabetic effect and mechanism of action for catalpol in db/db mice. The db/db mice were randomly divided into six groups (10/group) according to their blood glucose levels: db/db control, metformin (positive control), and four dose levels of catalpol treatment (25, 50, 100, and 200 mg·kg-1), and 10 db/m mice were used as the normal control. All the groups were administered orally for 8 weeks. The levels of fasting blood glucose (FBG), random blood glucose (RBG), glucose tolerance, insulin tolerance, and glycated serum protein (GSP) and the globe gene expression in liver tissues were analyzed. Our results showed that catalpol treatment obviously reduced water intake and food intake in a dose-dependent manner. Catalpol treatment also remarkably reduce fasting blood glucose (FBG) and random blood glucose (RBG) in a dose-dependent manner. The RBG-lowering effect of catalpol was better than that of metformin. Furthermore, catalpol significantly improved glucose tolerance and insulin tolerance via increasing insulin sensitivity. Catalpol treatment significantly decreased GSP level. The comparisons of gene expression in liver tissues among normal control mice, db/db mice and catalpol treated mice (200 and 100 mg·kg-1) indicated that there were significant increases in the expressions of 287 genes, whichwere mainly involved in lipid metabolism, response to stress, energy metabolism, and cellular processes, and significant decreases in the expressions of 520 genes, which were mainly involved in cell growth, death, immune system, and response to stress. Four genes expressed differentially were linked to glucose metabolism or insulin signaling pathways, including Irs1 (insulin receptor substrate 1), Idh2 (isocitrate dehydrogenase 2 (NADP+), mitochondrial), G6pd2 (glucose-6-phosphate dehydrogenase 2), and SOCS3 (suppressor of cytokine signaling 3). In conclusion, catalpol ecerted significant hypoglycemic effect and remarkable therapeutic effect in db/db mice via modulating various gene expressions.
Collapse
Affiliation(s)
- Jing Liu
- Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin 300301, China; Tianjin Institute of Pharmaceutical Research Drug Safety Assessment Co., Ltd., Tianjin 300301, China
| | - He-Ran Zhang
- Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin 300301, China
| | - Yan-Bao Hou
- Tianjin Institute of Pharmaceutical Research Drug Safety Assessment Co., Ltd., Tianjin 300301, China
| | - Xiao-Long Jing
- Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin 300301, China; Tianjin Institute of Pharmaceutical Research Drug Safety Assessment Co., Ltd., Tianjin 300301, China
| | - Xin-Yi Song
- Qinghai Yangzong Pharmaceutical Co., Ltd., Xining 810003, China
| | - Xiu-Ping Shen
- Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin 300301, China; Tianjin Institute of Pharmaceutical Research Drug Safety Assessment Co., Ltd., Tianjin 300301, China.
| |
Collapse
|
41
|
Modulation of Glucose Metabolism in Hippocampal Neurons by Adiponectin and Resistin. Mol Neurobiol 2018; 56:3024-3037. [PMID: 30076527 DOI: 10.1007/s12035-018-1271-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
Obese individuals exhibit altered circulating levels of adipokines, the proteins secreted by adipose tissue to mediate tissue cross-talk and regulate appetite and energy expenditure. The effect of adipokines on neuronal glucose metabolism, however, remains largely unknown. Two adipokines produced in adipose tissue, adiponectin and resistin, can gain access to the central nervous system (CNS), and their levels in the cerebrospinal fluid (CSF) are altered in obesity. We hypothesized that dysregulated adipokines in the CNS may underlie the reported link between obesity and higher risk of neurological disorders like Alzheimer's disease (AD), by affecting glucose metabolism in hippocampal neurons. Using cultured primary rat hippocampal neurons and mouse hippocampus slices, we show that recombinant adiponectin and resistin, at a concentration found in the CSF, have opposing effects on glucose metabolism. Adiponectin enhanced glucose uptake, glycolytic rate, and ATP production through an AMP-activated protein kinase (AMPK)-dependent mechanism; inhibiting AMPK abrogated the effects of adiponectin on glucose uptake and utilization. In contrast, resistin reduced glucose uptake, glycolytic rate, and ATP production, in part, by inhibiting hexokinase (HK) activity in hippocampal neurons. These data suggest that altered CNS levels of adipokines in the context of obesity may impact glucose metabolism in hippocampal neurons, brain region involved in learning and memory functions.
Collapse
|
42
|
Cao L, Wang Z, Wan W. Suppressor of Cytokine Signaling 3: Emerging Role Linking Central Insulin Resistance and Alzheimer's Disease. Front Neurosci 2018; 12:417. [PMID: 29973864 PMCID: PMC6020761 DOI: 10.3389/fnins.2018.00417] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
Currently, the etiology of Alzheimer’s disease (AD) is still elusive. Central insulin resistance has been determined to play an important role in the progress of AD. However, the mechanism underlying the development of disrupted insulin signaling pathways in AD is unclear. Suppressor of cytokine signaling 3 (SOCS3) is a member of the SOCS protein family that acts as a negative modulator of insulin signaling in sensitive tissues, such as hepatocytes and adipocytes. However, little is known about its role in neurological diseases. Recent evidence indicates that the level of SOCS3 is increased in the brains of individuals with AD, especially in areas with amyloid beta deposition, suggesting that SOCS3 may regulate the central insulin signaling pathways in AD. Here, we discuss the potential role of SOCS3 in AD and speculate that SOCS3 may be a promising therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Lan Cao
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zigao Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenbin Wan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Qu W, Han C, Li M, Zhang J, Jiang Z. Anti-TNF-α antibody alleviates insulin resistance in rats with sepsis-induced stress hyperglycemia. J Endocrinol Invest 2018; 41:455-463. [PMID: 29030784 DOI: 10.1007/s40618-017-0742-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/07/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE To explore the effects and mechanisms of anti-tumor necrosis factor-α (TNF-α) antibody on insulin resistance (IR) in rats with sepsis-induced stress hyperglycemia. METHODS The sepsis-induced stress hyperglycemic rat model was constructed by cecal ligation and puncture combined with the intraperitoneal injection of lipopolysaccharide. The rats were randomly divided into six groups: normal control (NC) group, surgical rats (Cntl) group, high-dose anti-TNF-α antibody therapy (TNF, 6 mg/kg) group, low-dose anti-TNF-α antibody therapy (Tnf, 3 mg/kg) group, insulin therapy (INS) group, and INS + Tnf group. The blood glucose and serum insulin concentrations were detected, followed by analysis of intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic-euglycemic clamp. Finally, the expression levels of phospho-Akt (p-Akt), Akt, p-mTOR, mTOR, nuclear factor-κB (NFκB), I kappa beta kinase (IKKβ), and suppressor of cytokine signaling (SOCS-3) were detected by western blotting. RESULTS There was no significant difference in blood glucose concentrations among these groups, while the serum insulin concentration in TNF and Tnf groups was lower than that in the Cntl group at postoperative 6 h (P < 0.05). IPGTT analysis revealed that blood glucose level was lower in the TNF group than that in the Cntl group (P < 0.05). The glucose infusion rate in the Cntl group was lower than that in the Tnf and TNF groups (P < 0.05). The p-Akt/Akt, p-mTOR/mTOR ratio, and expression levels of NFκB, IKKβ and SOCS-3 were lower in the drug intervention than that in the Cntl group (P < 0.05). CONCLUSIONS Anti-TNF-α antibody could reduce IR by inhibiting AKt/mTOR signaling pathway and the expression levels of NFκB, IKKβ, and SOCS-3 in rats with sepsis-induced stress hyperglycemia.
Collapse
Affiliation(s)
- W Qu
- Department of Endocrinology, Jinan Military General Hospital, No. 25 Shifan Road, Jinan, 250031, Shandong, China
| | - C Han
- Department of Endocrinology, Jinan Military General Hospital, No. 25 Shifan Road, Jinan, 250031, Shandong, China
| | - M Li
- Department of Endocrinology, Jinan Military General Hospital, No. 25 Shifan Road, Jinan, 250031, Shandong, China
| | - J Zhang
- Department of Cadres Healthcare, Jinan Military General Hospital, Jinan, 250031, Shandong, China.
| | - Z Jiang
- Department of Endocrinology, Jinan Military General Hospital, No. 25 Shifan Road, Jinan, 250031, Shandong, China.
| |
Collapse
|
44
|
Bi J, Sun K, Wu H, Chen X, Tang H, Mao J. PPARγ alleviated hepatocyte steatosis through reducing SOCS3 by inhibiting JAK2/STAT3 pathway. Biochem Biophys Res Commun 2018; 498:1037-1044. [PMID: 29550470 DOI: 10.1016/j.bbrc.2018.03.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 01/22/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) participates in the process of insulin resistance (IR), a crucial pathophysiology in non-alcoholic fatty liver disease (NAFLD). Meanwhile, suppressor of cytokine signaling3 (SOCS3) also regulates IR in NAFLD. Both PPARγ and SOCS3 play a role in NAFLD through regulating IR, while it is unclear whether these two proteins interact to regulate hepatic steatosis. PPARγ, SOCS3 and its associated JAK2/STAT3 pathway were analyzed using Kuppfer cells (KCs) treatment with LPS and BRL-3A cells treatment with palmitic acid, KC-conditioned medium (KCCM), PPARγ agonist rosiglitazone (ROZ) or JAK2 inhibitor AG490 to demonstrate the role of PPARγ and SOCS3 in hepatocytes steatosis. As LPS concentration increasing, phagocytosis activity of KCs decreased; but releasing of TNF-α and IL-6 increased. After treatment with KCCM, mRNA level of SOCS3, JAK2 and STAT3 as well as protein expression of SOCS3, p-JAK2 and p-STAT3 in steatosis BRL-3A cells increased significantly, which were inhibited by AG490 or ROZ treatment. Taken together, these results indicated that KCCM attributed to KCs dysfunction facilitated hepatocyte steatosis through promoting expressing SOCS3; but PPARγ agonist ROZ alleviated steatosis through reducing SOCS3 expression by inhibiting JAK2/STAT3 in hepatocytes.
Collapse
Affiliation(s)
- Jian Bi
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Kang Sun
- Department of GI Endoscopy, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiuli Chen
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Haiying Tang
- Department of Respiratory and Critical Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Jingwei Mao
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
45
|
Li Y, Chen JP, Duan L, Li S. Effect of vitamin K2 on type 2 diabetes mellitus: A review. Diabetes Res Clin Pract 2018; 136:39-51. [PMID: 29196151 DOI: 10.1016/j.diabres.2017.11.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) continue to be a major public health problem around the world that frequently presents with microvascular and macrovascular complications. Individuals with T2DM are not only suffering from significant emotional and physical misery, but also at increased risk of dying from severe complications. In recent years, evidence from prospective observational studies and clinical trials has shown T2DM risk reduction with vitamin K2 supplementation. We thus did an overview of currently available studies to assess the effect of vitamin K2 supplementation on insulin sensitivity, glycaemic control and reviewed the underlying mechanisms. We proposed that vitamin K2 improved insulin sensitivity through involvement of vitamin K-dependent-protein osteocalcin, anti-inflammatory properties, and lipid-lowering effects. Vitamin K2 had a better effect than vitamin K1 on T2DM. The interpretation of this review will increase comprehension of the development of a therapeutic strategy to prevent and treat T2DM.
Collapse
Affiliation(s)
- Yan Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, PR China.
| | - Jie Peng Chen
- Sungen Bioscience Co., Ltd, Shantou, Guangdong, PR China.
| | - Lili Duan
- Sungen Bioscience Co., Ltd, Shantou, Guangdong, PR China
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, PR China.
| |
Collapse
|
46
|
Oztay F, Sancar-Bas S, Gezginci-Oktayoglu S, Ercin M, Bolkent S. Exendin-4 partly ameliorates - hyperglycemia-mediated tissue damage in lungs of streptozotocin-induced diabetic mice. Peptides 2018; 99:99-107. [PMID: 29225158 DOI: 10.1016/j.peptides.2017.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion, - plays anti-inflammatory role in atherosclerosis, and has surfactant-releasing effects in lungs. GLP-1 analogues are used in diabetes therapy. This is the first study to investigate the effects of exendin-4, a GLP-1 receptor agonist, on lung injury in diabetic mice. BALB/c male mice were divided into four groups. The first group was given only citrate buffer, the second group was given only exendin-4, the third group was given only streptozotocin (STZ), and the fourth group was given both exendin-4 and STZ. Exendin-4 (3μg/kg) was administered daily by subcutaneous injection for 30days after mice were rendered diabetic with a single dose of STZ (200mg/kg). Structural alterations, oxidative stress, apoptosis, insulin signaling and expressions of prosurfactant-C, alpha-smooth muscle actin, collagen-I and fibronectin were evaluated in lung tissue. Diabetic mice lungs were characterized by induced oxidative stress, apoptosis, edema, and cell proliferation. They had honeycomb-like alveoli, thicker alveolar walls, and hypertrophic pneumocytes. Although exendin-4 treatment improved pulmonary edema, apoptosis, oxidative stress, and lung injury, it led to the disrupted insulin signaling and interstitial collagen accumulation in the lungs of diabetic mice. Exendin-4 ameliorates hyperglycemia-mediated lung damage by reducing glucose, -oxidative stress and stimulating cell proliferation. However, exendin-4 led to increased lung injury partly by reducing insulin signaling - and collagen accumulation around pulmonary vasculature in diabetic mice.
Collapse
Affiliation(s)
- Fusun Oztay
- Istanbul University, Faculty of Science, Biology Department, Molecular Biology Section, Vezneciler, 34134, Istanbul, Turkey.
| | - Serap Sancar-Bas
- Istanbul University, Faculty of Science, Biology Department, Molecular Biology Section, Vezneciler, 34134, Istanbul, Turkey.
| | - Selda Gezginci-Oktayoglu
- Istanbul University, Faculty of Science, Biology Department, Molecular Biology Section, Vezneciler, 34134, Istanbul, Turkey.
| | - Merve Ercin
- Istanbul University, Faculty of Science, Biology Department, Molecular Biology Section, Vezneciler, 34134, Istanbul, Turkey.
| | - Sehnaz Bolkent
- Istanbul University, Faculty of Science, Biology Department, Molecular Biology Section, Vezneciler, 34134, Istanbul, Turkey.
| |
Collapse
|
47
|
Saad MJ. Obesity, Diabetes, and Endothelium: Molecular Interactions. ENDOTHELIUM AND CARDIOVASCULAR DISEASES 2018:639-652. [DOI: 10.1016/b978-0-12-812348-5.00044-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
48
|
Oladipo GO, Nlekerem CM, Ibukun EO, Kolawole AO. Quail (Coturnix japonica) egg yolk bioactive components attenuate streptozotocin-induced testicular damage and oxidative stress in diabetic rats. Eur J Nutr 2017; 57:2857-2867. [PMID: 29052001 DOI: 10.1007/s00394-017-1554-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The testicular milieu is the machinery for the metabolism of testosterone in the male reproductive system. PURPOSE The dysfunction of this highly regenerating system is inevitable in the condition of glucose imbalance as a result of insulin machinery impairment. Therefore, it is imperative to recommend dietary intervention for attenuating the testicular dysfunction and oxidative stress resulting from STZ-induction of diabetes. METHODS STZ-induced diabetes (65 mg/kg, ip) was treated with QEYEM (50, 100 and 200 mg/kg/day) and quercetin (50 mg/kg/day) for 7weeks. In serum, glucose, testosterone, IL-6 and TNF-α levels were estimated, and in testis, tissues TBARS, sulfhydryl groups, nucleic acids and total protein (TP) levels were estimated. SOD, CAT and GST activities were also determined in testicular cells. Histopathological changes were evaluated in a cross-section of testis. RESULTS Testosterone concentration was decreased while pro-inflammatory markers were increased in STZ-assaulted rats. Treatment using QEYEM of diabetic rats corrected assaults and reverse significantly the diabetic conditions. QEYEM-treated groups showed significant inhibition of TBARS levels and elevation of testicular GSH, NP-SH, total protein (TP) and nucleic acids-DNA and RNA levels. The QEYEM administration reversed the inhibited activities of SOD, CAT and GST in testicular cells in diabetic rats. The characterization of the extract carried out through HPLC analytical techniques revealed vitamins A, D and E concentrations of 0.645, 0.012 and 6.3 mg/100 g, respectively. CONCLUSION QEYEM supplementation to STZ-induced diabetic rats for seven (7) consecutive weeks is a potential intervention against testicular damage in adult diabetic rats, probably by decreasing oxidative stress.
Collapse
Affiliation(s)
- Gideon Oludare Oladipo
- Lipidomics Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, Nigeria.
| | - Chidinma Martha Nlekerem
- Lipidomics Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Emmanuel Oluwafemi Ibukun
- Lipidomics Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Ayodele Oluseyi Kolawole
- Biophysics Research Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| |
Collapse
|
49
|
Sun W, Sun J, Zhang B, Xing Y, Yu X, Li X, Xiu Z, Dong Y. Baicalein improves insulin resistance via regulating SOCS3 and enhances the effect of acarbose on diabetes prevention. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
50
|
Shlomai G, Zelenko Z, Antoniou IM, Stasinopoulos M, Tobin-Hess A, Vitek MP, LeRoith D, Gallagher EJ. OP449 inhibits breast cancer growth without adverse metabolic effects. Endocr Relat Cancer 2017; 24:519-529. [PMID: 28830934 PMCID: PMC5678946 DOI: 10.1530/erc-17-0077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/23/2022]
Abstract
Hyperinsulinemia is associated with a decrease in breast cancer recurrence-free survival and overall survival. Inhibition of insulin receptor signaling is associated with glycemic dysregulation. SET is a direct modulator of PP2A, which negatively regulates the PI3K/AKT/mTOR pathway. OP449, a SET inhibitor, decreases AKT/mTOR activation. The effects of OP449 treatment on breast cancer growth in the setting of pre-diabetes, and its metabolic implications are currently unknown. We found that the volumes and weights of human MDA-MB-231 breast cancer xenografts were greater in hyperinsulinemic mice compared with controls (P < 0.05), and IR phosphorylation was 4.5-fold higher in these mice (P < 0.05). Human and murine breast cancer tumors treated with OP449 were 47% and 39% smaller than controls (P < 0.05, for both, respectively). AKT and S6RP phosphorylation were 82% and 34% lower in OP449-treated tumors compared with controls (P < 0.05, P = 0.06, respectively). AKT and S6RP phosphorylation in response to insulin was 30% and 12% lower in cells, pre-treated with OP449, compared with control cells (P < 0.01, P < 0.05, respectively). However, even with decreased AKT/mTOR activation, body weights and composition, blood glucose and plasma insulin, glucose tolerance, serum triglyceride and cholesterol levels were similar between OP449-treated mice and controls. Xenografts and liver tissue from OP449-treated mice showed a 64% and 70% reduction in STAT5 activation, compared with controls (P < 0.01 and P = 0.06, respectively). Our data support an anti-neoplastic effect of OP449 on human breast cancer cells in vitro and in xenografts in the setting of hyperinsulinemia. OP449 led to the inhibition of AKT/mTOR signaling, albeit, not leading to metabolic derangements.
Collapse
Affiliation(s)
- Gadi Shlomai
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- The Dr Pinchas Borenstein Talpiot Medical Leadership Program 2013Tel-Hashomer, Israel
| | - Zara Zelenko
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Irini Markella Antoniou
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Marilyn Stasinopoulos
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Aviva Tobin-Hess
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael P Vitek
- CognosciInc., Durham, North Carolina, USA
- Department of NeurologyDuke University Medical Center, Research Drive, Durham, North Carolina, USA
| | - Derek LeRoith
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Emily Jane Gallagher
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|