1
|
Kwon J, Aoki Y, Takahashi H, Nakata R, Kawarasaki S, Ni Z, Yu R, Inoue H, Inoue K, Kawada T, Goto T. Inflammation-induced nitric oxide suppresses PPARα expression and function via downregulation of Sp1 transcriptional activity in adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194987. [PMID: 37739218 DOI: 10.1016/j.bbagrm.2023.194987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The activation of peroxisome proliferator-activated receptor alpha (PPARα), a ligand-dependent transcription factor that regulates lipid oxidation-related genes, has been employed to treat hyperlipidemia. Emerging evidence indicates that Ppara gene expression decreases in adipose tissue under obese conditions; however, the underlying molecular mechanisms remain elusive. Here, we demonstrate that nitric oxide (NO) suppresses Ppara expression by regulating its promoter activity via suppression of specificity protein 1 (Sp1) transcriptional activity in adipocytes. NO derived from lipopolysaccharide (LPS) -activated macrophages or a NO donor (NOR5) treatment, suppressed Ppara mRNA expression in 10T1/2 adipocytes. In addition, Ppara transcript levels were reduced in the white adipose tissue (WAT) in both acute and chronic inflammation mouse models; however, such suppressive effects were attenuated via a nitric oxide synthase 2 (NOS2) inhibitor. Endoplasmic reticulum (ER) stress inhibitors attenuated the NO-induced repressive effects on Ppara gene expression in 10T1/2 adipocytes. Promoter mutagenesis and chromatin immunoprecipitation assays revealed that NO decreased the Sp1 occupancy in the proximal promoter regions of the Ppara gene, which might partially result from the reduced Sp1 expression levels by NO. This study delineated the molecular mechanism that modulates Ppara gene transcription upon NO stimulation in white adipocytes, suggesting a possible mechanism for the transcriptional downregulation of Ppara in WAT under obese conditions.
Collapse
Affiliation(s)
- Jungin Kwon
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Yumeko Aoki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Zheng Ni
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hiroyasu Inoue
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Muse O, Patell R, Peters CG, Yang M, El-Darzi E, Schulman S, Falanga A, Marchetti M, Russo L, Zwicker JI, Flaumenhaft R. The unfolded protein response links ER stress to cancer-associated thrombosis. JCI Insight 2023; 8:e170148. [PMID: 37651191 PMCID: PMC10629814 DOI: 10.1172/jci.insight.170148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Thrombosis is a common complication of advanced cancer, yet the cellular mechanisms linking malignancy to thrombosis are poorly understood. The unfolded protein response (UPR) is an ER stress response associated with advanced cancers. A proteomic evaluation of plasma from patients with gastric and non-small cell lung cancer who were monitored prospectively for venous thromboembolism demonstrated increased levels of UPR-related markers in plasma of patients who developed clots compared with those who did not. Release of procoagulant activity into supernatants of gastric, lung, and pancreatic cancer cells was enhanced by UPR induction and blocked by antagonists of the UPR receptors inositol-requiring enzyme 1α (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK). Release of extracellular vesicles bearing tissue factor (EVTFs) from pancreatic cancer cells was inhibited by siRNA-mediated knockdown of IRE1α/XBP1 or PERK pathways. Induction of UPR did not increase tissue factor (TF) synthesis, but rather stimulated localization of TF to the cell surface. UPR-induced TF delivery to EVTFs was inhibited by ADP-ribosylation factor 1 knockdown or GBF1 antagonism, verifying the role of vesicular trafficking. Our findings show that UPR activation resulted in increased vesicular trafficking leading to release of prothrombotic EVTFs, thus providing a mechanistic link between ER stress and cancer-associated thrombosis.
Collapse
Affiliation(s)
- Oluwatoyosi Muse
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rushad Patell
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian G. Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Emale El-Darzi
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Falanga
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Marchetti
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Russo
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Jeffrey I. Zwicker
- Hematology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Milani M, Pihán P, Hetz C. Calcium signaling in lysosome-dependent cell death. Cell Calcium 2023; 113:102751. [PMID: 37178674 DOI: 10.1016/j.ceca.2023.102751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Calcium is a crucial messenger of intracellular and extracellular signals, regulating a great variety of cellular processes such as cell death, proliferation, and metabolism. Inside the cell, calcium signaling is one of the main interorganelle communication mediators, with central functional roles at the endoplasmic reticulum (ER), mitochondria, Golgi complex, and lysosomes. Lysosomal function is highly dependent on lumenal calcium and most of the lysosomal membrane-localised ion channels regulate several lysosomal functions and properties such as lumenal pH. One of these functions configures a specific type of cell death involving lysosomes, named lysosome-dependent cell death (LDCD), which contributes to maintenance of tissue homeostasis, development and pathology when deregulated. Here, we cover the fundamental aspects of LDCD with a special focus on recent advances in calcium signaling in LDCD.
Collapse
Affiliation(s)
- Mateus Milani
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Philippe Pihán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, United States of America.
| |
Collapse
|
4
|
Links between the unfolded protein response and the DNA damage response in hypoxia: a systematic review. Biochem Soc Trans 2021; 49:1251-1263. [PMID: 34003246 PMCID: PMC8286837 DOI: 10.1042/bst20200861] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Hypoxia is a feature of most solid tumours and predicts for poor prognosis. In radiobiological hypoxia (<0.1% O2) cells become up to three times more resistant to radiation. The biological response to radiobiological hypoxia is one of few physiologically relevant stresses that activates both the unfolded protein and DNA damage responses (UPR and DDR). Links between these pathways have been identified in studies carried out in normoxia. Based in part on these previous studies and recent work from our laboratory, we hypothesised that the biological response to hypoxia likely includes overlap between the DDR and UPR. While inhibition of the DDR is a recognised strategy for improving radiation response, the possibility of achieving this through targeting the UPR has not been realised. We carried out a systematic review to identify links between the DDR and UPR, in human cell lines exposed to <2% O2. Following PRISMA guidance, literature from January 2010 to October 2020 were retrieved via Ovid MEDLINE and evaluated. A total of 202 studies were included. LAMP3, ULK1, TRIB3, CHOP, NOXA, NORAD, SIAH1/2, DYRK2, HIPK2, CREB, NUPR1, JMJD2B, NRF2, GSK-3B, GADD45a, GADD45b, STAU1, C-SRC, HK2, CAV1, CypB, CLU, IGFBP-3 and SP1 were highlighted as potential links between the hypoxic DDR and UPR. Overall, we identified very few studies which demonstrate a molecular link between the DDR and UPR in hypoxia, however, it is clear that many of the molecules highlighted warrant further investigation under radiobiological hypoxia as these may include novel therapeutic targets to improve radiotherapy response.
Collapse
|
5
|
Banach A, Jiang YP, Roth E, Kuscu C, Cao J, Lin RZ. CEMIP upregulates BiP to promote breast cancer cell survival in hypoxia. Oncotarget 2019; 10:4307-4320. [PMID: 31303964 PMCID: PMC6611512 DOI: 10.18632/oncotarget.27036] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cell migration-inducing protein (CEMIP) and binding immunoglobulin protein (BiP) are upregulated in human cancers, where they drive cancer progression and metastasis. It has been shown that CEMIP resides in the endoplasmic reticulum (ER) where it interacts with BiP to induce cell migration, but the relationship between the two proteins was previously unknown. Here we show that CEMIP mediates activation of the BiP promoter and upregulates BiP transcript and protein levels in breast cancer cell lines. Moreover, CEMIP overexpression confers protective adaptations to cancer cells under hypoxic conditions, by decreasing apoptosis, activating autophagy, and increasing glucose uptake, to facilitate tumor growth. We demonstrate that BiP signals downstream of CEMIP, modulating cellular resistance to hypoxia. Reducing BiP in CEMIP-expressing cells sensitized cells to hypoxia treatment, decreased glucose uptake, and resulted in tumor regression in vivo. Our study provides insights into the link between CEMIP and BiP expression and the pro-survival role they play in hypoxia. Better understanding of the mechanisms behind cancer cell adaptations to harsh tumor environments could lead to development of improved cancer treatments.
Collapse
Affiliation(s)
- Anna Banach
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, USA
| | - Ya-Ping Jiang
- Department of Physiology and Biophysics, Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA
| | - Eric Roth
- Medical Scientist Training Program, Stony Brook University, Stony Brook, NY, USA
| | - Cem Kuscu
- Transplant Research Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jian Cao
- Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Richard Z Lin
- Department of Physiology and Biophysics, Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA.,Medical Service, Northport Veterans Affairs Medical Center, Northport, NY, USA
| |
Collapse
|
6
|
Inhibition of Sp1 prevents ER homeostasis and causes cell death by lysosomal membrane permeabilization in pancreatic cancer. Sci Rep 2017; 7:1564. [PMID: 28484232 PMCID: PMC5431512 DOI: 10.1038/s41598-017-01696-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum (ER) stress initiates an important mechanism for cell adaptation and survival, named the unfolded protein response (UPR). Severe or chronic/prolonged UPR can breach the threshold for survival and lead to cell death. There is a fundamental gap in knowledge on the molecular mechanism of how chronic ER stress is stimulated and leads to cell death in pancreatic ductal adenocarcinoma (PDAC). Our study shows that downregulating specificity protein 1 (Sp1), a transcription factor that is overexpressed in pancreatic cancer, activates UPR and results in chronic ER stress. In addition, downregulation of Sp1 results in its decreased binding to the ER stress response element present in the promoter region of Grp78, the master regulator of ER stress, thereby preventing homeostasis. We further show that inhibition of Sp1, as well as induction of ER stress, leads to lysosomal membrane permeabilization (LMP), a sustained accumulation of cytosolic calcium, and eventually cell death in pancreatic cancer.
Collapse
|
7
|
Lim EJ, Heo J, Kim YH. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression. Apoptosis 2015; 20:1087-98. [DOI: 10.1007/s10495-015-1135-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Mao HZ, Ehrhardt N, Bedoya C, Gomez JA, DeZwaan-McCabe D, Mungrue IN, Kaufman RJ, Rutkowski DT, Péterfy M. Lipase maturation factor 1 (lmf1) is induced by endoplasmic reticulum stress through activating transcription factor 6α (Atf6α) signaling. J Biol Chem 2014; 289:24417-27. [PMID: 25035425 PMCID: PMC4148868 DOI: 10.1074/jbc.m114.588764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 11/06/2022] Open
Abstract
Lipase maturation factor 1 (Lmf1) is a critical determinant of plasma lipid metabolism, as demonstrated by severe hypertriglyceridemia associated with its mutations in mice and human subjects. Lmf1 is a chaperone localized to the endoplasmic reticulum (ER) and required for the post-translational maturation and activation of several vascular lipases. Despite its importance in plasma lipid homeostasis, the regulation of Lmf1 remains unexplored. We report here that Lmf1 expression is induced by ER stress in various cell lines and in tunicamycin (TM)-injected mice. Using genetic deficiencies in mouse embryonic fibroblasts and mouse liver, we identified the Atf6α arm of the unfolded protein response as being responsible for the up-regulation of Lmf1 in ER stress. Experiments with luciferase reporter constructs indicated that ER stress activates the Lmf1 promoter through a GC-rich DNA sequence 264 bp upstream of the transcriptional start site. We demonstrated that Atf6α is sufficient to induce the Lmf1 promoter in the absence of ER stress, and this effect is mediated by the TM-responsive cis-regulatory element. Conversely, Atf6α deficiency induced by genetic ablation or a dominant-negative form of Atf6α abolished TM stimulation of the Lmf1 promoter. In conclusion, our results indicate that Lmf1 is an unfolded protein response target gene, and Atf6α signaling is sufficient and necessary for activation of the Lmf1 promoter. Importantly, the induction of Lmf1 by ER stress appears to be a general phenomenon not restricted to lipase-expressing cells, which suggests a lipase-independent cellular role for this protein in ER homeostasis.
Collapse
Affiliation(s)
- Hui Z Mao
- From the Medical Genetics Research Institute and
| | | | - Candy Bedoya
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Javier A Gomez
- Department of Anatomy and Cell Biology and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Diane DeZwaan-McCabe
- Department of Anatomy and Cell Biology and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Imran N Mungrue
- the Department of Pharmacology and Experimental Therapeutics, Louisiana State University School of Medicine, New Orleans, Louisiana 70112
| | - Randal J Kaufman
- Degenerative Disease Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, and
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Miklós Péterfy
- From the Medical Genetics Research Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, the Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| |
Collapse
|
9
|
Roy AL. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later. Gene 2011; 492:32-41. [PMID: 22037610 DOI: 10.1016/j.gene.2011.10.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/08/2011] [Accepted: 10/11/2011] [Indexed: 12/12/2022]
Abstract
Exactly twenty years ago TFII-I was discovered as a biochemical entity that was able to bind to and function via a core promoter element called the Initiator (Inr). Since then several different properties of this signal-induced multifunctional factor were discovered. Here I update these ever expanding functions of TFII-I--focusing primarily on the last ten years since the first review appeared in this journal.
Collapse
Affiliation(s)
- Ananda L Roy
- Department of Pathology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
10
|
Paquet C, Mouton-Liger F, Meurs EF, Mazot P, Bouras C, Pradier L, Gray F, Hugon J. The PKR activator PACT is induced by Aβ: involvement in Alzheimer's disease. Brain Pathol 2011; 22:219-29. [PMID: 21790829 DOI: 10.1111/j.1750-3639.2011.00520.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques made of Aβ peptide, neurofibrillary tangles containing hyperphosphorylated tau protein and neuronal loss. The pro-apoptotic kinase PKR can be activated by Aβ and can phosphorylate tau protein via GSK3β kinase activation. The activated form of PKR (pPKR) accumulates in affected neurons and could participate in neuronal degeneration in AD. The mechanism of abnormal PKR activation in AD is not elucidated but could be linked to the PKR activator PACT. PACT stainings, and levels were assessed in the brains of AD patients and in APP/PS1 knock-in transgenic mice and in cell cultures exposed to stresses. We showed that PACT and pPKR colocalizations are enhanced in AD brains. Their levels are increased and correlated in AD and APP/PS1 knock-in mice brains. In human neuroblastoma cells exposed to Aβ, tunicamycin or H2O2, PACT and pPKR concentrations are increased. PACT then PKR inhibitions indicate that PACT is upstream of PKR activation. Our findings demonstrate that PACT levels are enhanced in AD brains and could partly be caused by the action of Aβ. In addition, PACT participates in PKR activation. The PACT-PKR pathway represents a potential link between Aβ accumulation, PKR activation and tau phosphorylation.
Collapse
Affiliation(s)
- Claire Paquet
- Centre Mémoire de Ressources et de Recherche Paris Nord Ile de France.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fulciniti M, Amin S, Nanjappa P, Rodig S, Prabhala R, Li C, Minvielle S, Tai YT, Tassone P, Avet-Loiseau H, Hideshima T, Anderson KC, Munshi NC. Significant biological role of sp1 transactivation in multiple myeloma. Clin Cancer Res 2011; 17:6500-9. [PMID: 21856768 DOI: 10.1158/1078-0432.ccr-11-1036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The transcription factor specificity protein 1 (Sp1) controls number of cellular processes by regulating the expression of critical cell cycle, differentiation, and apoptosis-related genes containing proximal GC/GT-rich promoter elements. We here provide experimental and clinical evidence that Sp1 plays an important regulatory role in multiple myeloma (MM) cell growth and survival. EXPERIMENTAL DESIGN We have investigated the functional Sp1 activity in MM cells using a plasmid with Firefly luciferase reporter gene driven by Sp1-responsive promoter. We have also used both siRNA- and short hairpin RNA-mediated Sp1 knockdown to investigate the growth and survival effects of Sp1 on MM cells and further investigated the anti-MM activity of terameprocol (TMP), a small molecule that specifically competes with Sp1-DNA binding in vitro and in vivo. RESULTS We have confirmed high Sp1 activity in MM cells that is further induced by adhesion to bone marrow stromal cells (BMSC). Sp1 knockdown decreases MM cell proliferation and induces apoptosis. Sp1-DNA binding inhibition by TMP inhibits MM cell growth both in vitro and in vivo, inducing caspase-9-dependent apoptosis and overcoming the protective effects of BMSCs. CONCLUSIONS Our results show Sp1 as an important transcription factor in myeloma that can be therapeutically targeted for clinical application by TMP.
Collapse
Affiliation(s)
- Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kosuge Y, Taniguchi Y, Imai T, Ishige K, Ito Y. Neuroprotective effect of mithramycin against endoplasmic reticulum stress-induced neurotoxicity in organotypic hippocampal slice cultures. Neuropharmacology 2011; 61:252-61. [PMID: 21527262 DOI: 10.1016/j.neuropharm.2011.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/25/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of various neurodegenerative diseases. Although the underlying mechanisms of these diseases have been suggested by many studies, therapeutic drugs have yet to be found. In this study, experiments were performed to examine the effect of mithramycin (MTM), a clinically approved guanosine-cytosine (GC)-rich DNA sequence-binding antitumor antibiotic, on ER stress-induced neurotoxicity in organotypic hippocampal slice cultures (OHCs). Time-dependent induction of the ER chaperones, glucose-regulated protein (GRP) 78 and GRP94, was observed after treatment with tunicamycin (TM) (80 μg/mL). Western blot analysis showed that treatment of OHCs with TM increased the expression of CHOP and the cleaved forms of caspase-12. Simultaneous application of MTM suppressed TM-induced cell death in all areas of OHCs with a concomitant decrease in the level of CHOP. In contrast, MTM had no effect on excitotoxic cell death induced by ibotenic acid, a potent N-methyl-d-aspartate (NMDA) agonist in OHCs. Moreover, RNA interference to CHOP or simultaneous treatment with MTM attenuated TM-induced cell death in primary cultured hippocampal neurons. These results suggest that CHOP plays a critical role in the mechanisms underlying ER-stress-induced neurotoxicity in the hippocampus, and that MTM could be a protective agent against ER stress-induced hippocampal neuronal death through attenuation of ER stress-associated signal proteins.
Collapse
Affiliation(s)
- Yasuhiro Kosuge
- Laboratory of Pharmacology, Department of Pharmacy, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | | | | | | | | |
Collapse
|
13
|
Shi-Chen Ou D, Lee SB, Chu CS, Chang LH, Chung BC, Juan LJ. Transcriptional activation of endoplasmic reticulum chaperone GRP78 by HCMV IE1-72 protein. Cell Res 2011; 21:642-53. [PMID: 21221131 PMCID: PMC3203653 DOI: 10.1038/cr.2011.10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucose-regulated protein 78 (GRP78), a key regulator of endoplasmic reticulum (ER) stress, facilitates cancer cell growth and viral replication. The mechanism leading to grp78 gene activation during viral infection is largely unknown. In this study, we show that the immediate-early 1 (IE1-72) protein of the human cytomegalovirus (HCMV) is essential for HCMV-mediated GRP78 activation. IE1-72 upregulated grp78 gene expression depending on the ATP-binding site, the zinc-finger domain and the putative leucine-zipper motif of IE1-72, as well as the ER stress response elements (ERSEs) on the grp78 promoter. The purified IE1-72 protein bound to the CCAAT box within ERSE in vitro, whereas deletion mutants of IE1-72 deficient in grp78 promoter stimulation failed to do so. Moreover, IE1-72 binding to the grp78 promoter in infected cells accompanied the recruitment of TATA box-binding protein-associated factor 1 (TAF1), a histone acetyltransferase, and the increased level of acetylated histone H4, an indicator of active-state chromatin. These results provide evidence that HCMV IE1-72 activates grp78 gene expression through direct promoter binding and modulation of the local chromatin structure, indicating an active viral mechanism of cellular chaperone induction for viral growth.
Collapse
Affiliation(s)
- Derick Shi-Chen Ou
- Institute of Molecular and Cellular Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
| | - Sung-Bau Lee
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
| | - Chi-Shuen Chu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
| | - Liang-Hao Chang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
| | - Bon-chu Chung
- Institute of Molecular and Cellular Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
- Tel: +886-2-2789-9215; Fax: +886-2-27826085
E-mail:
| | - Li-Jung Juan
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
- Institute of Molecular Medicine, National Taiwan University, No.7, Chung San South Road, Taipei 100
- Tel: +886-2-27871234; Fax: +886-2-27898811
E-mail:
| |
Collapse
|
14
|
|
15
|
Browne SM, Al-Rubeai M. Analysis of an artificially selected GS-NS0 variant with increased resistance to apoptosis. Biotechnol Bioeng 2010; 108:880-92. [DOI: 10.1002/bit.22994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 10/25/2010] [Indexed: 11/11/2022]
|
16
|
Kassimatis TI, Nomikos A, Giannopoulou I, Lymperopoulos A, Moutzouris DA, Varakis I, Nakopoulou L. Transcription factor Sp1 expression is upregulated in human glomerulonephritis: correlation with pSmad2/3 and p300 expression and renal injury. Ren Fail 2010; 32:243-53. [PMID: 20199187 DOI: 10.3109/08860220903411164] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sp1 is a ubiquitous transcription factor that mediates the fibrogenic factor transforming growth factor beta (TGF-beta) signals through cooperation with Smad proteins. The transcriptional coactivator p300 is also suggested to play a role in Smad signal transduction. METHODS We investigated the immunohistochemical expression of Sp1 as well as the expression of pSmad2/3 and the coactivator p300 in 157 renal biopsy specimens from patients with various types of glomerulonephritis (GN). Correlations between immunohistochemical, clinical, and histologic parameters were performed. RESULTS Sp1 exhibited an increased glomerular and proximal tubular expression in all forms of GN compared to controls. The proximal tubular expression of Sp1 was significantly increased in proliferative GNs (p = 0.025), whereas in secondary GNs, there was a significant increase in the molecule's glomerular expression (p = 0.008). Sp1 correlated positively with pSmad2/3 and p300 expression in proximal tubules (r = 0.241, p = 0.018 and r = 0.244, p = 0.014, respectively), while in proliferative GNs, its expression correlated positively with pSmad2/3 expression in glomeruli (r = 0.32, p = 0.028). Sp1 glomerular and proximal tubular immunostaining correlated positively with serum creatinine levels (r = 0.265, p = 0.02 and r = 0.306, p = 0.006, respectively), while its proximal tubular expression showed a similar correlation with interstitial fibrosis (r = 0.213, p = 0.025). Sp1 was constantly detected in hyperplastic lesions and cellular crescents (each 100%), and very often in micro adhesions (94%) and segmentally or globally sclerotic areas (each 83%). CONCLUSIONS This study documents the upregulation of Sp1 expression in glomeruli and proximal tubules of GN specimens. Our findings suggest a possible cooperation of Sp1 with pSmad2/3 and p300 in mediating renal injury as well as a possible role for this molecule in the pathogenesis and the progression of human GN.
Collapse
|
17
|
Dally S, Corvazier E, Bredoux R, Bobe R, Enouf J. Multiple and diverse coexpression, location, and regulation of additional SERCA2 and SERCA3 isoforms in nonfailing and failing human heart. J Mol Cell Cardiol 2010; 48:633-44. [DOI: 10.1016/j.yjmcc.2009.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/02/2009] [Accepted: 11/22/2009] [Indexed: 11/27/2022]
|
18
|
Colon J, Basha MR, Madero-Visbal R, Konduri S, Baker CH, Herrera LJ, Safe S, Sheikh-Hamad D, Abudayyeh A, Alvarado B, Abdelrahim M. Tolfenamic acid decreases c-Met expression through Sp proteins degradation and inhibits lung cancer cells growth and tumor formation in orthotopic mice. Invest New Drugs 2009; 29:41-51. [PMID: 19851711 DOI: 10.1007/s10637-009-9331-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
The nonsteroidal anti-inflammatory drug (NSAID), tolfenamic acid (TA) is emerging as a new anti-cancer agent. TA induces the degradation of specific Specificity protein (Sp) transcription factors, Sp1, Sp3 and Sp4 which are associated with tumor growth and metastasis. In this study we have evaluated the effect of TA on lung cancer using both in vitro and in vivo models. TA in a dose dependent manner inhibited proliferation and cell viability of two different lung cancer cells, A549 and CRL5803. TA treatment for 48 h significantly decreased the expression of Sp1, Sp3 and Sp4. The hepatocyte growth factor receptor, c-Met is overexpressed in a variety of cancers including lung cancer and Sp proteins mediate the regulation of c-Met. TA diminished the expression of c-Met protein and modulates its downstream signaling pathway. Furthermore, TA treatment significantly increased the number of apoptotic cells and pro-apoptotic markers c-PARP and Bax confirming the activation of apoptotic pathways. In vivo studies using the orthotopic mice model for lung cancer showed that TA (25 mg/kg/2 days and 50 mg/kg/2 days) resulted in a dose dependent decrease in tumor formation. The immunohistochemical staining of lung tissue showed high expression of Sp1, Sp3, Sp4, c-Met and phospho Met in control group and a dose dependent decrease in TA treated groups. The crucial findings of this study support that targeting c-Met with a potent inhibitor of Sp proteins is a robust strategy for the implications in lung cancer treatment and TA can serve as a therapeutic agent for this devastating disease.
Collapse
Affiliation(s)
- Jimmie Colon
- Cancer Research Institute, M. D. Anderson Cancer Center Orlando, Orlando, FL 32806, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Modulation of Mrps12/Sarsm promoter activity in response to mitochondrial stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2352-62. [DOI: 10.1016/j.bbamcr.2008.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 08/01/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
|
20
|
Racek T, Buhlmann S, Rüst F, Knoll S, Alla V, Pützer BM. Transcriptional repression of the prosurvival endoplasmic reticulum chaperone GRP78/BIP by E2F1. J Biol Chem 2008; 283:34305-14. [PMID: 18840615 DOI: 10.1074/jbc.m803925200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum chaperone GRP78/BIP plays a central role in the prosurvival machinery, and its enhanced expression has been implicated in drug resistance, carcinogenesis, and metastasis. E2F1, as part of an antitumor safeguard mechanism, promotes apoptosis regardless of functional p53. Using cells that are defective in p53, we show that E2F1 represses GRP78/BIP at the transcriptional level, and this requires its DNA binding domain. Analysis of human GRP78/BIP promoter reporter constructs revealed that the region between -371 and -109 of the proximal promoter contains major E2F1-responsive elements. Toward understanding the underlying mechanism of this regulation, we performed chromatin immunoprecipitation and gel shift assays, demonstrating that E2F1 directly binds to GC-rich regions in the distal GC-box and endoplasmic reticulum stress response element -126 by interfering with the binding of positive regulatory proteins Sp1 and TFII-I of the ER stress response element-binding factor complex. We further show that TFII-I, which is required for optimal stress induction of GRP78/BIP, is suppressed by E2F1 on the protein level. Finally, our studies suggest a molecular link between the inhibition of GRP78/BIP and E2F1-mediated chemosensitization of tumor cells, underscoring its relevance for cancer treatment. Together, the data provide a new mechanism for the incompletely understood tumor suppressor function of E2F1.
Collapse
Affiliation(s)
- Tomás Racek
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock, 18055 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Renna M, Caporaso MG, Bonatti S, Kaufman RJ, Remondelli P. Regulation of ERGIC-53 gene transcription in response to endoplasmic reticulum stress. J Biol Chem 2007; 282:22499-512. [PMID: 17535801 DOI: 10.1074/jbc.m703778200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulation of unfolded proteins within the endoplasmic reticulum (ER) activates the unfolded protein response, also known as the ER stress response. We previously demonstrated that ER stress induces transcription of the ER Golgi intermediate compartment protein ERGIC-53. To investigate the molecular events that regulate unfolded protein response-mediated induction of the gene, we have analyzed the transcriptional regulation of ERGIC-53. We found that the ERGIC-53 promoter contains a single cis-acting element that mediates induction of the gene by thapsigargin and other ER stress-causing agents. This ER stress response element proved to retain a novel structure and to be highly conserved in mammalian ERGIC-53 genes. The ER stress response element identified contains a 5'-end CCAAT sequence that constitutively binds NFY/CBF and, 9 nucleotides away, a 3'-end region (5'-CCCTGTTGGCCATC-3') that is equally important for ER stress-mediated induction of the gene. This sequence is the binding site for endogenous YY1 at the 5'-CCCTGTTGG-3' part and for undefined factors at the CCATC 3'-end. ATF6 alpha-YY1, but not XBP1, interacted with the ERGIC-53 regulatory region and activated ERGIC-53 ER stress response element-dependent transcription. A molecular model for the transcriptional regulation of the ERGIC-53 gene is proposed.
Collapse
Affiliation(s)
- Maurizio Renna
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Fisciano-Salerno I-84034, Italy
| | | | | | | | | |
Collapse
|
22
|
Gal-Yam EN, Jeong S, Tanay A, Egger G, Lee AS, Jones PA. Constitutive nucleosome depletion and ordered factor assembly at the GRP78 promoter revealed by single molecule footprinting. PLoS Genet 2006; 2:e160. [PMID: 17002502 PMCID: PMC1574359 DOI: 10.1371/journal.pgen.0020160] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 08/09/2006] [Indexed: 11/24/2022] Open
Abstract
Chromatin organization and transcriptional regulation are interrelated processes. A shortcoming of current experimental approaches to these complex events is the lack of methods that can capture the activation process on single promoters. We have recently described a method that combines methyltransferase M.SssI treatment of intact nuclei and bisulfite sequencing allowing the representation of replicas of single promoters in terms of protected and unprotected footprint modules. Here we combine this method with computational analysis to study single molecule dynamics of transcriptional activation in the stress inducible GRP78 promoter. We show that a 350–base pair region upstream of the transcription initiation site is constitutively depleted of nucleosomes, regardless of the induction state of the promoter, providing one of the first examples for such a promoter in mammals. The 350–base pair nucleosome-free region can be dissected into modules, identifying transcription factor binding sites and their combinatorial organization during endoplasmic reticulum stress. The interaction of the transcriptional machinery with the GRP78 core promoter is highly organized, represented by six major combinatorial states. We show that the TATA box is frequently occupied in the noninduced state, that stress induction results in sequential loading of the endoplasmic reticulum stress response elements, and that a substantial portion of these elements is no longer occupied following recruitment of factors to the transcription initiation site. Studying the positioning of nucleosomes and transcription factors at the single promoter level provides a powerful tool to gain novel insights into the transcriptional process in eukaryotes. Control of gene expression and transcription are complex and well-coordinated processes. Most current experimental approaches to understanding the underlying mechanisms, which include binding of transcription factors to regulatory regions of genes, and changes in the structure and composition of chromatin, rely on studies of populations of cells and cannot capture the transcription activation process on single promoters. The authors describe the use of a footprinting method which enables analysis of chromatin structure and binding of factors on single DNA molecules. This is applied to study the activation process of GRP78, a protein which is important for the induction of a response to endoplasmic reticulum stress. By combining the footprinting method and computational analyses, the authors define functional modules on the GRP78 promoter and show that it exists in few major combinatorial states, reflecting its high level of organization. These results provide novel insights into the activation of GRP78 which could not be gleaned using conventional methods. They also demonstrate the use of the method as a unique and powerful tool to study the transcriptional process in eukaryotes, which remains a major source of interest and challenge for the scientific community.
Collapse
Affiliation(s)
- Einav Nili Gal-Yam
- Department of Urology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shinwu Jeong
- Department of Urology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amos Tanay
- Center for Studies in Physics and Biology, Rockefeller University, New York, New York, United States of America
| | - Gerda Egger
- Department of Urology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amy S Lee
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Peter A Jones
- Department of Urology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Zhang J, Jiang Y, Jia Z, Li Q, Gong W, Wang L, Wei D, Yao J, Fang S, Xie K. Association of elevated GRP78 expression with increased lymph node metastasis and poor prognosis in patients with gastric cancer. Clin Exp Metastasis 2006; 23:401-10. [PMID: 17187227 DOI: 10.1007/s10585-006-9051-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 11/18/2006] [Indexed: 11/28/2022]
Abstract
Glucose-regulated protein 78 (GRP78) has been implicated in the protection of tumor cells from cytotoxic damage and apoptosis and thus assists cells in survival under oxygen-deprivation and nutrient-stress conditions. However, its expression and potential role in gastric cancer development and progression have not been reported. In the present study, we determined the level of GRP78 expression in the primary tumor in 86 cases of resected gastric cancer by using immunohistochemistry and analyzed the relationships between GRP78 and clinicopathological characteristics. We found that GRP78 was overexpressed in the tumor specimens when compared with the expression in adjacent tumor-free gastric mucosa. Furthermore, the level of GRP78 expression in both primary tumors and metastatic lymph nodes was inversely correlated with patient survival. Overexpression of GRP78 was directly correlated with Sp1 expression and increased lymph node metastasis. Knocking down GRP78 expression inhibited tumor cell invasion in vitro and growth and metastasis in a xenograft nude mouse model. Therefore, our data imply that dysregulated expression of GRP78 may contribute to the development and progression of gastric cancer.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Gastrointestinal Medical Oncology, Unit 426, M. D. Anderson Cancer Center, The University of Texas, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lei P, Abdelrahim M, Safe S. 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes inhibit ovarian cancer cell growth through peroxisome proliferator-activated receptor-dependent and independent pathways. Mol Cancer Ther 2006; 5:2324-36. [PMID: 16985067 DOI: 10.1158/1535-7163.mct-06-0184] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
1,1-Bis(3'-indolyl)-1-(p-t-butylphenyl)methane (DIM-C-pPhtBu) is a peroxisome proliferator-activated receptor gamma (PPARgamma) agonist, and treatment of SKOV3 ovarian cancer cells with this compound (5 micromol/L) inhibits cell proliferation, whereas up to 15 micromol/L rosiglitazone had no effect on cell growth. DIM-C-pPhtBu also inhibits G0-G1 to S phase cell cycle progression and this is linked, in part, to PPARgamma-dependent induction of the cyclin-dependent kinase inhibitor p21. DIM-C-pPhtBu induces PPARgamma-independent down-regulation of cyclin D1 and we therefore further investigated activation of receptor-independent pathways. DIM-C-pPhtBu also induced apoptosis in SKOV3 cells and this was related to induction of glucose-related protein 78, which is typically up-regulated as part of the unfolded protein response during endoplasmic reticulum (ER) stress. Activation of ER stress was also observed in other ovarian cancer cell lines treated with DIM-C-pPhtBu. In addition, DIM-C-pPhtBu induced CCAAT/enhancer binding protein homologous protein through both ER stress and c-jun NH2-terminal kinase-dependent pathways, and CCAAT/enhancer binding protein homologous protein activated death receptor 5 and the extrinsic pathway of apoptosis. These results show that DIM-C-pPhtBu inhibits growth and induces apoptosis in ovarian cancer cells through both PPARgamma-dependent and PPARgamma-independent pathways, and this complex mechanism of action will be advantageous for future clinical development of these compounds for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ping Lei
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843-4466, USA
| | | | | |
Collapse
|
25
|
Donati G, Imbriano C, Mantovani R. Dynamic recruitment of transcription factors and epigenetic changes on the ER stress response gene promoters. Nucleic Acids Res 2006; 34:3116-27. [PMID: 16757577 PMCID: PMC1475745 DOI: 10.1093/nar/gkl304] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Response to stresses that alter the function of the endoplasmic reticulum is an important cellular function, which relies on the activation of specific genes. Several transcription factors (TFs) are known to affect this pathway. Using RT-PCR and ChIP assays, we studied the recruitment of promoter-specific TFs, general TFs and epigenetic marks in activated promoters. H3-K4 di- and tri-methylation and H3-K79 di-methylation are present before induction. H3 acetylation is generally high before induction, and H4 acetylation shows a promoter-specific increase. Interestingly, there is a depletion of histone H3 under maximal induction, explaining an apparent decrease of H3-K4 tri-methylation and H3-K79 di-methylation. Pol II is found enriched on some promoters under basal conditions, unlike TBP and p300, which are recruited selectively. Most genes are bound by XBP-1 after induction, some before induction, presumably by the inactive isoform. ATF6 and CHOP associate to largely different set of genes. C/EBPbeta is selective and binding to the CHOP promoter precedes that of XBP-1, ATF6 and CHOP. Finally, one of the ER-stress inducible genes analyzed, HRD1, is not bound by any of these factors. Among the constitutive TFs, NF-Y, but not Sp1, is found on all genes before induction. Intriguingly, siRNA interference of the NF-YB subunit indicates transcriptional impairment of some, but not all genes. These data highlight a previously unappreciated complexity of TFs binding and epigenetic changes, pointing to different TFs-specific pathways within this broad response.
Collapse
Affiliation(s)
| | - Carol Imbriano
- Dipartimento di Biologia Animale, Università di Modena e ReggioVia Campi 287/d, 41100 Modena, Italy
| | - Roberto Mantovani
- To whom correspondence should be addressed. Tel: +39 02 50315005; Fax: +39 02 50315044;
| |
Collapse
|
26
|
Higgins KJ, Abdelrahim M, Liu S, Yoon K, Safe S. Regulation of vascular endothelial growth factor receptor-2 expression in pancreatic cancer cells by Sp proteins. Biochem Biophys Res Commun 2006; 345:292-301. [PMID: 16678129 DOI: 10.1016/j.bbrc.2006.04.111] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 04/18/2006] [Indexed: 11/19/2022]
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR2/KDR) is an important mediator of angiogenesis, and VEGFR2 mRNA is expressed in several pancreatic cancer cell lines. Deletion analysis of the VEGFR2 promoter in Panc-1, AsPC-1, and MiaPaCa-2 pancreatic cancer cells shows that the proximal region of the promoter is primarily responsible for VEGFR2 expression, and two GC-rich sites at -58 and -44 are critical elements in all three cell lines. Panc-1, AsPC-1, and MiaPaCa-2 cells also express Sp1, Sp3, and Sp4 proteins which bind to the GC-rich region of the VEGFR2 promoter in electrophoretic mobility shift and chromatin immunoprecipitation assays. RNA interference with small inhibitory RNAs for Sp1, Sp3, and Sp4 decreases VEGFR2 mRNA and reporter gene activity in transfection assays, confirming that VEGFR2 expression in pancreatic cancer cells is regulated by Sp proteins. These results suggest that VEGFR2 cannot only be targeted by receptor tyrosine kinase inhibitors but also by drugs that downregulate Sp proteins or block Sp-dependent transactivation.
Collapse
Affiliation(s)
- Kelly J Higgins
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | | | | | | | |
Collapse
|
27
|
Mao C, Tai WC, Bai Y, Poizat C, Lee AS. In Vivo Regulation of Grp78/BiP Transcription in the Embryonic Heart. J Biol Chem 2006; 281:8877-87. [PMID: 16452489 DOI: 10.1074/jbc.m505784200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional activation of GRP78, which controls multiple signaling pathways of the unfolded protein response, has been used extensively as an indicator for the onset of endoplasmic reticulum stress in tissue culture systems. Here we investigate the mechanism of Grp78 induction during mouse embryonic development. Our results reveal that in transgenic mouse models, reporter gene activity driven by the Grp78 promoter is strongly activated during early embryonic heart development but subsides in later stages. This activation is strictly dependent on a 100-base pair region of the Grp78 promoter containing the endoplasmic reticulum stress response elements (ERSEs). Previous studies establish that endoplasmic reticulum stress induces in vivo binding of YY1 and the nuclear form of ATF6 to the ERSE. Since the expression of YY1 as well as ATF6 is ubiquitous in the mouse embryo, activation of the Grp78 promoter in the early embryonic heart may involve a specific mechanism. Here we report that GATA-4, a transcription factor essential for heart development, binds to the Grp78 promoter in vivo and activates the ERSE, which does not contain a consensus GATA binding site. GATA-4 cooperatively activates the Grp78 promoter with YY1, and the DNA binding domain of YY1 is necessary and sufficient for this cooperation. In addition, GATA-4 activation of the Grp78 promoter is enhanced by the nuclear form of ATF6, and this synergy is further potentiated by YY1. These results suggest that during early heart organogenesis, Grp78 can be activated through cooperation between the cell type-specific transcription factors and ERSE-binding factors.
Collapse
Affiliation(s)
- Changhui Mao
- Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA 90089-9176, USA
| | | | | | | | | |
Collapse
|
28
|
Abdelrahim M, Newman K, Vanderlaag K, Samudio I, Safe S. 3,3'-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis 2005; 27:717-28. [PMID: 16332727 DOI: 10.1093/carcin/bgi270] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
3,3'-Diindolylmethane (DIM), ring-substituted DIMs and 1,1-bis(3'-indolyl)-1-(p-substitutedphenyl)methanes (C-DIMs) inhibit growth of Panc-1 and Panc-28 pancreatic cancer cells. Although DIMs (diarylmethanes) and selected C-DIMs (triarylmethanes), such as the p-t-butyl derivative (DIM-C-pPhtBu), activate the aryl hydrocarbon receptor and peroxisome proliferator-activated receptor gamma, respectively, this study shows that both DIM and DIM-C-pPhtBu induce common receptor-independent pathways. Both DIM and DIM-C-pPhtBu increased endoplasmic reticulum (ER) staining and ER calcium release in Panc-1 cells, and this was accompanied by increased expression of glucose related protein 78 and C/EBP homologous transcription factor (CHOP/GADD153) proteins. Similar results were observed after treatment with thapsigargin (Tg), a prototypical inducer of ER stress. The subsequent downstream effects of DIM/DIM-C-pPhtBu- and Tg-induced ER stress included CHOP-dependent induction of death receptor DR5 and subsequent cleavage of caspase 8, caspase 3, Bid and PARP. Activation of both receptor-dependent and receptor-independent (ER stress) pathways by DIM and DIM-C-pPhtBu in pancreatic cancer cells enhances the efficacy and potential clinical importance of these compounds for cancer chemotherapeutic applications.
Collapse
Affiliation(s)
- Maen Abdelrahim
- Institute of Biosciences and Technology, The Texas A&M University System Health Science Center, 2121 W. Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|