1
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
2
|
Morando N, Rosenzvit MC, Pando MA, Allmer J. The Role of MicroRNAs in HIV Infection. Genes (Basel) 2024; 15:574. [PMID: 38790203 PMCID: PMC11120859 DOI: 10.3390/genes15050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in regulating gene expression at the post-transcriptional level. These regulatory molecules are integral to many biological processes and have been implicated in the pathogenesis of various diseases, including Human Immunodeficiency Virus (HIV) infection. This review aims to cover the current understanding of the multifaceted roles miRNAs assume in the context of HIV infection and pathogenesis. The discourse is structured around three primary focal points: (i) elucidation of the mechanisms through which miRNAs regulate HIV replication, encompassing both direct targeting of viral transcripts and indirect modulation of host factors critical for viral replication; (ii) examination of the modulation of miRNA expression by HIV, mediated through either viral proteins or the activation of cellular pathways consequent to viral infection; and (iii) assessment of the impact of miRNAs on the immune response and the progression of disease in HIV-infected individuals. Further, this review delves into the potential utility of miRNAs as biomarkers and therapeutic agents in HIV infection, underscoring the challenges and prospects inherent to this line of inquiry. The synthesis of current evidence positions miRNAs as significant modulators of the host-virus interplay, offering promising avenues for enhancing the diagnosis, treatment, and prevention of HIV infection.
Collapse
Affiliation(s)
- Nicolas Morando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina;
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Maria A. Pando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Jens Allmer
- Medical Informatics and Bioinformatics, Institute for Measurement Engineering and Sensor Technology, Hochschule Ruhr West, University of Applied Sciences, 45479 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Chen X, Li RT, Chen RY, Shi PD, Liu ZX, Lou YN, Wu M, Zhang RR, Tang W, Li XF, Qin CF. The subgenomic flaviviral RNA suppresses RNA interference through competing with siRNAs for binding RISC components. J Virol 2024; 98:e0195423. [PMID: 38289102 PMCID: PMC10878275 DOI: 10.1128/jvi.01954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 02/21/2024] Open
Abstract
During the life cycle of mosquito-borne flaviviruses, substantial subgenomic flaviviral RNA (sfRNA) is produced via incomplete degradation of viral genomic RNA by host XRN1. Zika virus (ZIKV) sfRNA has been detected in mosquito and mammalian somatic cells. Human neural progenitor cells (hNPCs) in the developing brain are the major target cells of ZIKV, and antiviral RNA interference (RNAi) plays a critical role in hNPCs. However, whether ZIKV sfRNA was produced in ZIKV-infected hNPCs as well as its function remains not known. In this study, we demonstrate that abundant sfRNA was produced in ZIKV-infected hNPCs. RNA pulldown and mass spectrum assays showed ZIKV sfRNA interacted with host proteins RHA and PACT, both of which are RNA-induced silencing complex (RISC) components. Functionally, ZIKV sfRNA can antagonize RNAi by outcompeting small interfering RNAs (siRNAs) in binding to RHA and PACT. Furthermore, the 3' stem loop (3'SL) of sfRNA was responsible for RISC components binding and RNAi inhibition, and 3'SL can enhance the replication of a viral suppressor of RNAi (VSR)-deficient virus in a RHA- and PACT-dependent manner. More importantly, the ability of binding to RISC components is conversed among multiple flaviviral 3'SLs. Together, our results identified flavivirus 3'SL as a potent VSR in RNA format, highlighting the complexity in virus-host interaction during flavivirus infection.IMPORTANCEZika virus (ZIKV) infection mainly targets human neural progenitor cells (hNPCs) and induces cell death and dysregulated cell-cycle progression, leading to microcephaly and other central nervous system abnormalities. RNA interference (RNAi) plays critical roles during ZIKV infections in hNPCs, and ZIKV has evolved to encode specific viral proteins to antagonize RNAi. Herein, we first show that abundant sfRNA was produced in ZIKV-infected hNPCs in a similar pattern to that in other cells. Importantly, ZIKV sfRNA acts as a potent viral suppressor of RNAi (VSR) by competing with siRNAs for binding RISC components, RHA and PACT. The 3'SL of sfRNA is responsible for binding RISC components, which is a conserved feature among mosquito-borne flaviviruses. As most known VSRs are viral proteins, our findings highlight the importance of viral non-coding RNAs during the antagonism of host RNAi-based antiviral innate immunity.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ru-Yi Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Pan-Deng Shi
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zi-Xin Liu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ya-Nan Lou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mei Wu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Tang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Vaidyanathan A, Taylor HE, Hope TJ, D'Aquila RT, Bartom ET, Hultquist JF, Peter ME. Analysis of the Contribution of 6-mer Seed Toxicity to HIV-1-Induced Cytopathicity. J Virol 2023; 97:e0065223. [PMID: 37310263 PMCID: PMC10373551 DOI: 10.1128/jvi.00652-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
HIV-1 (HIV) infects CD4+ T cells, the gradual depletion of which can lead to AIDS in the absence of antiretroviral therapy (ART). Some cells, however, survive HIV infection and persist as part of the latently infected reservoir that causes recurrent viremia after ART cessation. Improved understanding of the mechanisms of HIV-mediated cell death could lead to a way to clear the latent reservoir. Death induced by survival gene elimination (DISE), an RNA interference (RNAi)-based mechanism, kills cells through short RNAs (sRNAs) with toxic 6-mer seeds (positions 2 to 7 of sRNA). These toxic seeds target the 3' untranslated region (UTR) of mRNAs, decreasing the expression of hundreds of genes critical for cell survival. In most cells under normal conditions, highly expressed cell-encoded nontoxic microRNAs (miRNAs) block access of toxic sRNAs to the RNA-induced silencing complex (RISC) that mediates RNAi, promoting cell survival. HIV has been shown to inhibit the biogenesis of host miRNAs in multiple ways. We now report that HIV infection of cells deficient in miRNA expression or function results in enhanced RISC loading of an HIV-encoded miRNA HIV-miR-TAR-3p, which can kill cells by DISE through a noncanonical (positions 3 to 8) 6-mer seed. In addition, cellular RISC-bound sRNAs shift to lower seed viability. This also occurs after latent HIV provirus reactivation in J-Lat cells, suggesting independence of permissiveness of cells to viral infection. More precise targeting of the balance between protective and cytotoxic sRNAs could provide new avenues to explore novel cell death mechanisms that could be used to kill latent HIV. IMPORTANCE Several mechanisms by which initial HIV infection is cytotoxic to infected cells have been reported and involve various forms of cell death. Characterizing the mechanisms underlying the long-term survival of certain T cells that become persistent provirus reservoirs is critical to developing a cure. We recently discovered death induced by survival gene elimination (DISE), an RNAi-based mechanism of cell death whereby toxic short RNAs (sRNAs) containing 6-mer seed sequences (exerting 6-mer seed toxicity) targeting essential survival genes are loaded into RNA-induced silencing complex (RISC) complexes, resulting in inescapable cell death. We now report that HIV infection in cells with low miRNA expression causes a shift of mostly cellular RISC-bound sRNAs to more toxic seeds. This could prime cells to DISE and is further enhanced by the viral microRNA (miRNA) HIV-miR-TAR-3p, which carries a toxic noncanonical 6-mer seed. Our data provide multiple new avenues to explore novel cell death mechanisms that could be used to kill latent HIV.
Collapse
Affiliation(s)
- Aparajitha Vaidyanathan
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Harry E. Taylor
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University, Chicago, Illinois, USA
| | - Thomas J. Hope
- Department of Cell & Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard T. D'Aquila
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University, Chicago, Illinois, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Marcus E. Peter
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Arisan ED, Dart DA, Grant GH, Dalby A, Kancagi DD, Turan RD, Yurtsever B, Karakus GS, Ovali E, Lange S, Uysal-Onganer P. microRNA 1307 Is a Potential Target for SARS-CoV-2 Infection: An in Vitro Model. ACS OMEGA 2022; 7:38003-38014. [PMID: 36275122 PMCID: PMC9578367 DOI: 10.1021/acsomega.2c05245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
microRNAs (miRs) are proposed as critical molecular targets in SARS-CoV-2 infection. Our recent in silico studies identified seven SARS-CoV-2 specific miR-like sequences, which are highly conserved with humans, including miR-1307-3p, with critical roles in COVID-19. In this current study, Vero cells were infected with SARS-CoV-2, and miR expression profiles were thereafter confirmed by qRT-PCR. miR-1307-3p was the most highly expressed miR in the infected cells; we, therefore, transiently inhibited its expression in both infected and uninfected cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) cell proliferation assay assessed cell viability following SARS-CoV-2 infection, identifying that miR-1307 expression is inversely correlated with cell viability. Lastly, changes in miR-1307-dependent pathways were analyzed through a detailed miRNOME and associated in silico analysis. In addition to our previously identified miRs, including miR-1307-3p, the upregulation of miR-193a-5p, miR-5100, and miR-23a-5p and downregulation of miR-130b-5p, miR34a-5p, miR-505-3p, miR181a-2-3p, miR-1271-5p, miR-598-3p, miR-34c-3p, and miR-129-5p were also established in Vero cells related to general lung disease-related genes following SARS-CoV-2 infection. Targeted anti-miR-1307-3p treatment rescued cell viability in infection when compared to SARS CoV-2 mediated cell cytotoxicity only. We furthermore identified by in silico analysis that miR-1307-3p is conserved in all SARS-CoV-2 sequences/strains, except in the BA.2 variant, possibly contributing to the lower disease severity of this variant, which warrants further investigation. Small RNA seq analysis was next used to evaluate alterations in the miRNOME, following miR-1307-3p manipulation, identifying critical pathobiological pathways linked to SARS-CoV-2 infection-mediated upregulation of this miR. On the basis of our findings, miRNAs like miR-1307-3p play a critical role in SARS-CoV-2 infection, including via effects on disease progression and severity.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Gebze
Technical University, Institute of Biotechnology, Gebze, Kocaeli 41400, Turkiye
| | - D. Alwyn Dart
- Institute
of Medical and Biomedical Education, St
George’s University of London, Cranmer Terrace, Tooting, London SW17
0RE, United Kingdom
| | - Guy H. Grant
- School
of Life Sciences, University of Bedfordshire, Park Square, Luton LU1
3JU, United Kingdom
| | - Andrew Dalby
- School
of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | | | - Raife Dilek Turan
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
- Yeditepe
University, Institute of Biotechnology, İstanbul 34755, Turkiye
| | - Bulut Yurtsever
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
| | - Gozde Sir Karakus
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
| | - Ercument Ovali
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
| | - Sigrun Lange
- Tissue
Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Pinar Uysal-Onganer
- Cancer
Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| |
Collapse
|
6
|
Al Bitar S, Ballouz T, Doughan S, Gali-Muhtasib H, Rizk N. Potential role of micro ribonucleic acids in screening for anal cancer in human papilloma virus and human immunodeficiency virus related malignancies. World J Gastrointest Pathophysiol 2021; 12:59-83. [PMID: 34354849 PMCID: PMC8316837 DOI: 10.4291/wjgp.v12.i4.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/24/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite advances in antiretroviral treatment (ART), human immunodeficiency virus (HIV) continues to be a major global public health issue owing to the increased mortality rates related to the prevalent oncogenic viruses among people living with HIV (PLWH). Human papillomavirus (HPV) is the most common sexually transmitted viral disease in both men and women worldwide. High-risk or oncogenic HPV types are associated with the development of HPV-related malignancies, including cervical, penile, and anal cancer, in addition to oral cancers. The incidence of anal squamous cell cancers is increasing among PLWH, necessitating the need for reliable screening methods in this population at risk. In fact, the currently used screening methods, including the Pap smear, are invasive and are neither sensitive nor specific. Investigators are interested in circulatory and tissue micro ribonucleic acids (miRNAs), as these small non-coding RNAs are ideal biomarkers for early detection and prognosis of cancer. Multiple miRNAs are deregulated during HIV and HPV infection and their deregulation contributes to the pathogenesis of disease. Here, we will review the molecular basis of HIV and HPV co-infections and focus on the pathogenesis and epidemiology of anal cancer in PLWH. The limitations of screening for anal cancer and the need for a reliable screening program that involves specific miRNAs with diagnostic and therapeutic values is also discussed.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Tala Ballouz
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology and Center for Drug Discovery, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nesrine Rizk
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
7
|
Arisan ED, Dart A, Grant GH, Arisan S, Cuhadaroglu S, Lange S, Uysal-Onganer P. The Prediction of miRNAs in SARS-CoV-2 Genomes: hsa-miR Databases Identify 7 Key miRs Linked to Host Responses and Virus Pathogenicity-Related KEGG Pathways Significant for Comorbidities. Viruses 2020; 12:v12060614. [PMID: 32512929 PMCID: PMC7354481 DOI: 10.3390/v12060614] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the betacoronavirus family, which causes COVID-19 disease. SARS-CoV-2 pathogenicity in humans leads to increased mortality rates due to alterations of significant pathways, including some resulting in exacerbated inflammatory responses linked to the “cytokine storm” and extensive lung pathology, as well as being linked to a number of comorbidities. Our current study compared five SARS-CoV-2 sequences from different geographical regions to those from SARS, MERS and two cold viruses, OC43 and 229E, to identify the presence of miR-like sequences. We identified seven key miRs, which highlight considerable differences between the SARS-CoV-2 sequences, compared with the other viruses. The level of conservation between the five SARS-CoV-2 sequences was identical but poor compared with the other sequences, with SARS showing the highest degree of conservation. This decrease in similarity could result in reduced levels of transcriptional control, as well as a change in the physiological effect of the virus and associated host-pathogen responses. MERS and the milder symptom viruses showed greater differences and even significant sequence gaps. This divergence away from the SARS-CoV-2 sequences broadly mirrors the phylogenetic relationships obtained from the whole-genome alignments. Therefore, patterns of mutation, occurring during sequence divergence from the longer established human viruses to the more recent ones, may have led to the emergence of sequence motifs that can be related directly to the pathogenicity of SARS-CoV-2. Importantly, we identified 7 key-microRNAs (miRs 8066, 5197, 3611, 3934-3p, 1307-3p, 3691-3p, 1468-5p) with significant links to KEGG pathways linked to viral pathogenicity and host responses. According to Bioproject data (PRJNA615032), SARS-CoV-2 mediated transcriptomic alterations were similar to the target pathways of the selected 7 miRs identified in our study. This mechanism could have considerable significance in determining the symptom spectrum of future potential pandemics. KEGG pathway analysis revealed a number of critical pathways linked to the seven identified miRs that may provide insight into the interplay between the virus and comorbidities. Based on our reported findings, miRNAs may constitute potential and effective therapeutic approaches in COVID-19 and its pathological consequences.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey;
| | - Alwyn Dart
- Institute of Medical and Biomedical Education, St George’s University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK;
| | - Guy H. Grant
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK;
| | - Serdar Arisan
- Department of Urology, Şişli Hamidiye Etfal Research and Training Hospital, 34360 Istanbul, Turkey;
| | - Songul Cuhadaroglu
- Thoracic Surgery Clinic, Memorial Hospital Sisli, Kaptanpasa Mah. Piyalepasa Bulvarı, 434385 Istanbul, Turkey;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5151 (ext. 64581)
| |
Collapse
|
8
|
Watson SF, Knol LI, Witteveldt J, Macias S. Crosstalk Between Mammalian Antiviral Pathways. Noncoding RNA 2019; 5:E29. [PMID: 30909383 PMCID: PMC6468734 DOI: 10.3390/ncrna5010029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
As part of their innate immune response against viral infections, mammals activate the expression of type I interferons to prevent viral replication and dissemination. An antiviral RNAi-based response can be also activated in mammals, suggesting that several mechanisms can co-occur in the same cell and that these pathways must interact to enable the best antiviral response. Here, we will review how the classical type I interferon response and the recently described antiviral RNAi pathways interact in mammalian cells. Specifically, we will uncover how the small RNA biogenesis pathway, composed by the nucleases Drosha and Dicer can act as direct antiviral factors, and how the type-I interferon response regulates the function of these. We will also describe how the factors involved in small RNA biogenesis and specific small RNAs impact the activation of the type I interferon response and antiviral activity. With this, we aim to expose the complex and intricate network of interactions between the different antiviral pathways in mammals.
Collapse
Affiliation(s)
- Samir F Watson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Lisanne I Knol
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Jeroen Witteveldt
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| |
Collapse
|
9
|
Ye J, Wang J, Zhang N, Liu Y, Tan L, Xu L. Expression of TARBP1 protein in human non-small-cell lung cancer and its prognostic significance. Oncol Lett 2018; 15:7182-7190. [PMID: 29731880 PMCID: PMC5920659 DOI: 10.3892/ol.2018.8202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/27/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate the expression of transactivation response RNA-binding protein (TARBP)1 and its clinical significance in human non-small-cell lung cancer (NSCLC). TARBP1 expression at the mRNA level was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in 10 NSCLC tissues and paired adjacent normal tissues. TARBP1 protein expression was analyzed in 90 paraffin-embedded NSCLC tissue samples and paired adjacent normal tissues by immunohistochemistry. Statistical analyses were performed to assess the clinicopathological significance of TARBP1 expression. The expression of TARBP1 mRNA was higher in the 10 NSCLC samples than in the paired adjacent non-tumor tissues (P=0.0017). In the paraffin-embedded tissue samples, the expression level of TARBP1 was higher in the cancer tissues than in the adjacent non-cancerous tissues. TARBP1 expression was detected in 76.67% (69/90) of the NSCLC samples and in 22.22% (20/90) of the adjacent normal lung tissues (P<0.001). The expression of TARBP1 was significantly associated with histological grade (P<0.001), clinical stage (P=0.024) and pathological type (P<0.001), along with a decreased overall survival (OS) rate (P<0.001). On multivariate analysis, the expression of TARBP1 was an independent prognostic factor for hazard ratio (OS, 2.729; 95% confidence interval, 1.471-5.061; P=0.003). TARBP1 is overexpressed in NSCLC, and the expression of TARBP1 is associated with pathological grade, clinical stage and pathological type. Thus, TARBP1 may be an independent prognostic marker in patients with NSCLC.
Collapse
Affiliation(s)
- Jingmei Ye
- Department of Blood Transfusion, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China
| | - Jiani Wang
- Breast Cancer Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Nana Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yu Liu
- Breast Cancer Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Li Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China
| | - Lihua Xu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China.,Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China
| |
Collapse
|
10
|
Noncoding RNAs in Retrovirus Replication. RETROVIRUS-CELL INTERACTIONS 2018. [PMCID: PMC7173536 DOI: 10.1016/b978-0-12-811185-7.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although a limited percentage of the genome produces proteins, approximately 90% is transcribed, indicating important roles for noncoding RNA (ncRNA). It is now known that these ncRNAs have a multitude of cellular functions ranging from the regulation of gene expression to roles as structural elements in ribonucleoprotein complexes. ncRNA is also represented at nearly every step of viral life cycles. This chapter will focus on ncRNAs of both host and viral origin and their roles in retroviral life cycles. Cellular ncRNA represents a significant portion of material packaged into retroviral virions and includes transfer RNAs, 7SL RNA, U RNA, and vault RNA. Initially thought to be random packaging events, these host RNAs are now proposed to contribute to viral assembly and infectivity. Within the cell, long ncRNA and endogenous retroviruses have been found to regulate aspects of the retroviral life cycle in diverse ways. Additionally, the HIV-1 transactivating response element RNA is thought to impact viral infection beyond the well-characterized role as a transcription activator. RNA interference, thought to be an early version of the innate immune response to viral infection, can still be observed in plants and invertebrates today. The ability of retroviral infection to manipulate the host RNAi pathway is described here. Finally, RNA-based therapies, including gene editing approaches, are being explored as antiretroviral treatments and are discussed.
Collapse
|
11
|
Eilebrecht S, Benecke BJ, Benecke AG. Latent HIV-1 TAR Regulates 7SK-responsive P-TEFb Target Genes and Targets Cellular Immune Responses in the Absence of Tat. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:313-323. [PMID: 29037489 PMCID: PMC5673678 DOI: 10.1016/j.gpb.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/10/2017] [Accepted: 05/24/2017] [Indexed: 01/04/2023]
Abstract
The transactivating response element (TAR) structure of the nascent HIV-1 transcript is critically involved in the recruitment of inactive positive transcription elongation factor b (P-TEFb) to the promoter proximal paused RNA polymerase II. The viral transactivator Tat is responsible for subsequent P-TEFb activation in order to start efficient viral transcription elongation. In the absence of the viral transactivator of transcription (Tat), e.g., during latency or in early stages of HIV transcription, TAR mediates an interaction of P-TEFb with its inhibitor hexamethylene bis-acetamide-inducible protein 1 (HEXIM1), keeping P-TEFb in its inactive form. In this study, we address the function of HIV-1 TAR in the absence of Tat by analyzing consequences of HIV-1 TAR overexpression on host cellular gene expression. An RNA chimera consisting of Epstein-Barr virus-expressed RNA 2 (EBER2) and HIV-1 TAR was developed to assure robust overexpression of TAR in HEK293 cells. The overexpression results in differential expression of more than 800 human genes. A significant proportion of these genes is involved in the suppression of cellular immune responses, including a significant set of 7SK-responsive P-TEFb target genes. Our findings identify a novel role for HIV-1 TAR in the absence of Tat, involving the interference with host cellular immune responses by targeting 7SK RNA-mediated gene expression and P-TEFb inactivation.
Collapse
Affiliation(s)
- Sebastian Eilebrecht
- CNRS UMR8246, Université Pierre et Marie Curie, Paris 75005, France; ACSIOMA GmbH, Technologiezentrum Ruhr, Bochum 44799, Germany.
| | | | - Arndt G Benecke
- CNRS UMR8246, Université Pierre et Marie Curie, Paris 75005, France; Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
12
|
|
13
|
Piedade D, Azevedo-Pereira JM. MicroRNAs as Important Players in Host-Adenovirus Interactions. Front Microbiol 2017; 8:1324. [PMID: 28769895 PMCID: PMC5511817 DOI: 10.3389/fmicb.2017.01324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are powerful regulators of gene expression and fine-tuning genes in all tissues. Cellular miRNAs can control 100s of biologic processes (e.g., morphogenesis of embryonic structures, differentiation of tissue-specific cells, and metabolic control in specific cell types) and have been involved in the regulation of nearly all cellular pathways. Inherently to their involvement in different physiologic processes, miRNAs deregulation has been associated with several diseases. Moreover, several viruses have been described as either, avoid and block cellular miRNAs or synthesize their own miRNA to facilitate infection and pathogenesis. Adenoviruses genome encodes two non-coding RNAs, known as viral-associated (VA) RNAI and VA RNAII, which seem to play an important role either by blocking important proteins from miRNA pathway, such as Exportin-5 and Dicer, or by targeting relevant cellular factors. Drastic changes in cellular miRNA expression profile are also noticeable and several cellular functions are affected by these changes. This review focuses on the mechanisms underlying the biogenesis and molecular interactions of miRNAs providing basic concepts of their functions as well as in the interplay between miRNAs and human adenoviruses.
Collapse
Affiliation(s)
- Diogo Piedade
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de LisboaLisboa, Portugal
| | - José M Azevedo-Pereira
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
14
|
MicroRNA miR-126-5p Enhances the Inflammatory Responses of Monocytes to Lipopolysaccharide Stimulation by Suppressing Cylindromatosis in Chronic HIV-1 Infection. J Virol 2017; 91:JVI.02048-16. [PMID: 28250134 DOI: 10.1128/jvi.02048-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/24/2017] [Indexed: 02/02/2023] Open
Abstract
Persistent immune activation during chronic human immunodeficiency virus type 1 (HIV-1) infection facilitates immune dysfunction and thereby fuels disease progression. The translocation of bacterial derivatives into blood and the hyperinflammatory responsiveness of monocytes have been considered important causative factors for persistent immune activation. Whether microRNAs (miRNAs) are involved in regulating monocyte-mediated inflammatory responses during chronic HIV-1 infection remains elusive. In this study, we show that miR-126-5p functions as a positive regulator of monocyte-mediated inflammatory responses. Significantly increased miRNA miR-126-5p and decreased cylindromatosis (CYLD) were observed in primary monocytes from chronic HIV-1 patients. Inhibition of miR-126-5p in monocytes from chronic HIV-1 patients attenuated the responsiveness of these cells to lipopolysaccharide (LPS) stimulation. Gain-of-function assays confirmed that miR-126-5p could downregulate CYLD, which in turn caused an upregulation of phosphorylation of JNK protein (pJNK) and enhanced inflammatory responses of monocytes to LPS stimulation. Overall, miR-126-5p upregulates the responsiveness of monocytes to LPS stimulation in chronic HIV-1 infection, and the suppression of miR-126-5p and the promotion of CYLD expression in primary monocytes may represent a practical immune intervention strategy to contain persistent inflammation in chronic HIV-1 infection.IMPORTANCE Monocyte-mediated hyperinflammatory responses during chronic HIV-1 infection are important causative factors driving AIDS progression; however, the underlying mechanism has not been fully addressed. We demonstrated that miR-126-5p, one of the most upregulated miRNAs during chronic HIV-1 infection, could enhance the inflammatory responses of monocytes to LPS by suppressing the inhibitory protein CYLD and thereby unleashing the expression of pJNK in the LPS/Toll-like receptor 4/mitogen-activated protein kinase pathway. This observation reveals a new mechanism for HIV-1 pathogenesis, which could be targeted by immune intervention.
Collapse
|
15
|
Fruci D, Rota R, Gallo A. The Role of HCMV and HIV-1 MicroRNAs: Processing, and Mechanisms of Action during Viral Infection. Front Microbiol 2017; 8:689. [PMID: 28484438 PMCID: PMC5399795 DOI: 10.3389/fmicb.2017.00689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/04/2017] [Indexed: 11/23/2022] Open
Abstract
Viruses infect host cells releasing their genome (DNA or RNA) containing all information needed to replicate themselves. The viral genome takes control of the cells and helps the virus to evade the host immune system. Some viruses alter the functions of infected cells without killing them. In some cases infected cells lose control over normal cell proliferation and becomes cancerous. Viruses, such as HCMV and HIV-1, may leave their viral genome in the host cells for a certain period (latency) and begin to replicate when the cells are stressed causing diseases. HCMV and HIV-1 have developed multiple strategies to avoid recognition and elimination by the host’s immune system. These strategies rely on viral products that mimic specific components of the host cells to prevent immune recognition of virally infected cells. In addition to viral proteins, viruses encode short non-coding RNAs (vmiRNAs) that regulate both viral and host cellular transcripts to favor viral infection and actively curtail the host’s antiviral immune response. In this review, we will give an overview of the general functions of microRNAs generated by HCMV and HIV-1, their processing and interaction with the host’s immune system.
Collapse
Affiliation(s)
- Doriana Fruci
- Immuno-Oncology Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| | - Rossella Rota
- Angiogenesis Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| | - Angela Gallo
- RNA Editing Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| |
Collapse
|
16
|
Nizyaeva NV, Kulikova GV, Shchyogolev AI, Zemskov VM. The role of microRNA in regulation of the body’s immune responses. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079086416060050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Sharma N, Singh SK. Implications of non-coding RNAs in viral infections. Rev Med Virol 2016; 26:356-68. [PMID: 27401792 DOI: 10.1002/rmv.1893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023]
Abstract
The advances in RNA sequencing have unveiled various non-coding RNAs (ncRNAs), which modulate the gene expression. ncRNAs do not get translated into proteins. These include transfer RNAs, ribosomal RNAs, microRNA (miRNA), short interfering RNA, long non-coding RNA, piwi-interacting RNA and small nuclear RNA. ncRNAs regulate gene expression at various levels and control cellular machinery. miRNAs have been reported in plants, animals, several invertebrates and viruses. The miRNAs regulate the gene expression post-transcriptionally. Viral infection strongly influences the abundance and the distribution of miRNAs and other ncRNAs within the host cells. Viruses may encode their own miRNA, which help in the viral life cycle and other aspects of pathogenesis. Viruses are known to successfully modulate the expression pattern of ncRNAs. The ncRNA-based strategies adopted by viruses for their survival present a complex picture of host-virus interactions. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nikhil Sharma
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sunit K Singh
- Laboratory of Human Molecular Virology and Immunology, Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, India.
| |
Collapse
|
18
|
Piedade D, Azevedo-Pereira JM. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection. Viruses 2016; 8:v8060156. [PMID: 27271654 PMCID: PMC4926176 DOI: 10.3390/v8060156] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein–Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.
Collapse
Affiliation(s)
- Diogo Piedade
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
19
|
Piedade D, Azevedo-Pereira JM. MicroRNAs, HIV and HCV: a complex relation towards pathology. Rev Med Virol 2016; 26:197-215. [PMID: 27059433 DOI: 10.1002/rmv.1881] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs are small non-coding RNAs that modulate protein production by post-transcriptional gene regulation. They impose gene expression control by interfering with mRNA translation and stability in cell cytoplasm through a mechanism involving specific binding to mRNA based on base pair complementarity. Because of their intracellular replication cycle it is no surprise that viruses evolved in a way that allows them to use microRNAs to infect, replicate and persist in host cells. Several ways of interference between virus and host-cell microRNA machinery have been described. Most of the time, viruses drastically alter host-cell microRNA expression or synthesize their own microRNA to facilitate infection and pathogenesis. HIV and HCV are two prominent examples of this complex interplay revealing how fine-tuning of microRNA expression is crucial for controlling key host pathways that allow viral infection and replication, immune escape and persistence. In this review we delve into the mechanisms underlying cellular and viral-encoded microRNA functions in the context of HIV and HCV infections. We focus on which microRNAs are differently expressed and deregulated upon viral infection and how these alterations dictate the fate of virus and cell. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Diogo Piedade
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
20
|
Daniels SM, Sinck L, Ward NJ, Melendez-Peña CE, Scarborough RJ, Azar I, Rance E, Daher A, Pang KM, Rossi JJ, Gatignol A. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs. RNA Biol 2015; 12:123-35. [PMID: 25668122 DOI: 10.1080/15476286.2015.1014759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses.
Collapse
Key Words
- Ago2, Argonaute-2
- EGFP, enhanced green fluorescent protein
- EMSA, electrophoresis mobility shift assay
- FL, firefly luciferase
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- HIV, human immunodeficiency virus
- HIV-1
- IP, immunoprecipitation
- NC, nucleocapsid
- PAGE, polyacrylamide gel electrophoresis
- RISC, RNA-Induced Silencing Complex
- RL, Renilla luciferase
- RNA interference
- RNA silencing suppressor
- RNAi, RNA interference
- RRE, Rev Response Element
- RSS, RNA silencing suppressor
- RT, reverse transcription
- Rev-Response Element RNA
- TAR RNA Binding Protein (TRBP)
- TAR, trans-activation responsive element
- TRBP, TAR RNA Binding Protein
- Trans-Activation Response Element
- UTR, untranslated region
- VA, virus-associated
- WT, wild-type
- adenovirus
- ds, double-stranded
- lentiviral vectors
- miRNA, micro RNA
- pre-miRNA, precursor miRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Sylvanne M Daniels
- a Virus-Cell Interactions Laboratory ; Lady Davis Institute for Medical Research ; Montréal , Québec , Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Human T-cell leukemia virus (HTLV)-1 is a human retrovirus and the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a fatal malignancy of CD4/CD25+ T lymphocytes. In recent years, cellular as well as virus-encoded microRNA (miRNA) have been shown to deregulate signaling pathways to favor virus life cycle. HTLV-1 does not encode miRNA, but several studies have demonstrated that cellular miRNA expression is affected in infected cells. Distinct mechanisms such as transcriptional, epigenetic or interference with miRNA processing machinery have been involved. This article reviews the current knowledge of the role of cellular microRNAs in virus infection, replication, immune escape and pathogenesis of HTLV-1.
Collapse
|
22
|
Heyam A, Lagos D, Plevin M. Dissecting the roles of TRBP and PACT in double-stranded RNA recognition and processing of noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2015; 6:271-89. [PMID: 25630541 PMCID: PMC7169789 DOI: 10.1002/wrna.1272] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 12/27/2022]
Abstract
HIV TAR RNA-binding protein (TRBP) and Protein Activator of PKR (PACT) are double-stranded (ds) RNA-binding proteins that participate in both small regulatory RNA biogenesis and the response to viral dsRNA. Despite considerable progress toward understanding the structure-function relationship of TRBP and PACT, their specific roles in these seemingly distinct cellular pathways remain unclear. Both proteins are composed of three copies of the double-stranded RNA-binding domain, two of which interact with dsRNA, while the C-terminal copy mediates protein-protein interactions. PACT and TRBP are found in a complex with the endonuclease Dicer and facilitate processing of immature microRNAs. Their precise contribution to the Dicing step has not yet been defined: possibilities include precursor recruitment, rearrangement of dsRNA within the complex, loading the processed microRNA into the RNA-induced silencing complex, and distinguishing different classes of small dsRNA. TRBP and PACT also interact with the viral dsRNA sensors retinoic acid-inducible gene I (RIG-I) and double-stranded RNA-activated protein kinase (PKR). Current models suggest that PACT enables RIG-I to detect a wider range of viral dsRNAs, while TRBP and PACT exert opposing regulatory effects on PKR. Here, the evidence that implicates TRBP and PACT in regulatory RNA processing and viral dsRNA sensing is reviewed and discussed in the context of their molecular structure. The broader implications of a link between microRNA biogenesis and the innate antiviral response pathway are also considered.
Collapse
MESH Headings
- Amino Acid Sequence
- Carboxypeptidases/chemistry
- Carboxypeptidases/metabolism
- Carboxypeptidases/physiology
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Tertiary
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/immunology
- RNA, Double-Stranded/metabolism
- RNA, Untranslated/metabolism
- RNA, Viral/chemistry
- RNA, Viral/immunology
- RNA, Viral/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Ribonuclease III/chemistry
- Ribonuclease III/metabolism
- Ribonuclease III/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Alex Heyam
- Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
23
|
Kurzynska-Kokorniak A, Koralewska N, Pokornowska M, Urbanowicz A, Tworak A, Mickiewicz A, Figlerowicz M. The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities. Nucleic Acids Res 2015; 43:4365-80. [PMID: 25883138 PMCID: PMC4482082 DOI: 10.1093/nar/gkv328] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/31/2015] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence indicating that the production of small regulatory RNAs is not the only process in which ribonuclease Dicer can participate. For example, it has been demonstrated that this enzyme is also involved in chromatin structure remodelling, inflammation and apoptotic DNA degradation. Moreover, it has become increasingly clear that cellular transcript and protein levels of Dicer must be strictly controlled because even small changes in their accumulation can initiate various pathological processes, including carcinogenesis. Accordingly, in recent years, a number of studies have been performed to identify the factors regulating Dicer gene expression and protein activity. As a result, a large amount of complex and often contradictory data has been generated. None of these data have been subjected to an exhaustive review or critical discussion. This review attempts to fill this gap by summarizing the current knowledge of factors that regulate Dicer gene transcription, primary transcript processing, mRNA translation and enzyme activity. Because of the high complexity of this topic, this review mainly concentrates on human Dicer. This review also focuses on an additional regulatory layer of Dicer activity involving the interactions of protein and RNA factors with Dicer substrates.
Collapse
Affiliation(s)
| | - Natalia Koralewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Maria Pokornowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Aleksander Tworak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Agnieszka Mickiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland Institute of Computing Science, Poznan University of Technology, Poznan 60-965, Poland
| |
Collapse
|
24
|
Swaminathan S, Murray DD, Kelleher AD. miRNAs and HIV: unforeseen determinants of host-pathogen interaction. Immunol Rev 2014; 254:265-80. [PMID: 23772625 DOI: 10.1111/imr.12077] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our understanding of the complexity of gene regulation has significantly improved in the last decade as the role of small non-coding RNAs, called microRNAs (miRNAs), has been appreciated. These 19-22 nucleotide RNA molecules are critical regulators of mRNA translation and turnover. The miRNAs bind via a protein complex to the 3' untranslated region (3' UTR) of mRNA, ultimately leading to mRNA translational inhibition, degradation, or repression. Although many mechanisms by which human immunodeficiency virus-1 (HIV-1) infection eventually induces catastrophic immune destruction have been elucidated, the important role that miRNAs play in HIV-1 pathogenesis is only now emerging. Accumulating evidence demonstrates that changes to endogenous miRNA levels following infection is important: in maintaining HIV-1 latency in resting CD4(+) T cells, potentially affect immune function via changes to cytokines such as interleukin-2 (IL-2) and IL-10 and may predict disease progression. We review the roles that both viral and host miRNAs play in different cell types and disease conditions that are important in HIV-1 infection and discuss how miRNAs affect key immunomodulatory molecules contributing to immune dysfunction. Further, we discuss whether miRNAs may be used as novel biomarkers in serum and the potential to modulate miRNA levels as a unique approach to combating this pathogen.
Collapse
Affiliation(s)
- Sanjay Swaminathan
- Laboratory of Human Retrovirology, Applied and Developmental Research Directorate (ADD), Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | |
Collapse
|
25
|
Casey Klockow L, Sharifi HJ, Wen X, Flagg M, Furuya AKM, Nekorchuk M, de Noronha CMC. The HIV-1 protein Vpr targets the endoribonuclease Dicer for proteasomal degradation to boost macrophage infection. Virology 2013; 444:191-202. [PMID: 23849790 DOI: 10.1016/j.virol.2013.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/09/2013] [Indexed: 12/13/2022]
Abstract
The HIV-1 protein Vpr enhances macrophage infection, triggers G2 cell cycle arrest, and targets cells for NK-cell killing. Vpr acts through the CRL4(DCAF1) ubiquitin ligase complex to cause G2 arrest and trigger expression of NK ligands. Corresponding ubiquitination targets have not been identified. UNG2 and SMUG1 are the only known substrates for Vpr-directed depletion through CRL4(DCAF1). Here we identify the endoribonuclease Dicer as a target of HIV-1 Vpr-directed proteasomal degradation through CRL4(DCAF1). We show that HIV-1 Vpr inhibits short hairpin RNA function as expected upon reduction of Dicer levels. Dicer inhibits HIV-1 replication in T cells. We demonstrate that Dicer also restricts HIV-1 replication in human monocyte-derived macrophages (MDM) and that reducing Dicer expression in MDMs enhances HIV-1 infection in a Vpr-dependent manner. Our results support a model in which Vpr complexes with human Dicer to boost its interaction with the CRL4(DCAF1) ubiquitin ligase complex and its subsequent degradation.
Collapse
Affiliation(s)
- Laurieann Casey Klockow
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Groen JN, Morris KV. Chromatin, non-coding RNAs, and the expression of HIV. Viruses 2013; 5:1633-45. [PMID: 23812489 PMCID: PMC3738951 DOI: 10.3390/v5071633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 12/20/2022] Open
Abstract
HIV is a chronic viral infection affecting an estimated 34 million people worldwide. Current therapies employ the use of a cocktail of antiretroviral medications to reduce the spread and effects of HIV, however complete eradication from an individual currently remains unattainable. Viral latency and regulation of gene expression is a key consideration when developing effective treatments. While our understanding of these processes remains incomplete new developments suggest that non-coding RNA (ncRNA) mediated regulation may provide an avenue to controlling both viral expression and latency. Here we discuss the importance of known regulatory mechanisms and suggest directions for further study, in particular the use ncRNAs in controlling HIV expression.
Collapse
Affiliation(s)
- Jessica N. Groen
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia; E-Mail:
| | - Kevin V. Morris
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia; E-Mail:
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-2-9385-2019
| |
Collapse
|
27
|
Vlachakis D, Tsiliki G, Pavlopoulou A, Roubelakis MG, Tsaniras SC, Kossida S. Antiviral Stratagems Against HIV-1 Using RNA Interference (RNAi) Technology. Evol Bioinform Online 2013; 9:203-13. [PMID: 23761954 PMCID: PMC3662398 DOI: 10.4137/ebo.s11412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The versatility of human immunodeficiency virus (HIV)-1 and its evolutionary potential to elude antiretroviral agents by mutating may be its most invincible weapon. Viruses, including HIV, in order to adapt and survive in their environment evolve at extremely fast rates. Given that conventional approaches which have been applied against HIV have failed, novel and more promising approaches must be employed. Recent studies advocate RNA interference (RNAi) as a promising therapeutic tool against HIV. In this regard, targeting multiple HIV sites in the context of a combinatorial RNAi-based approach may efficiently stop viral propagation at an early stage. Moreover, large high-throughput RNAi screens are widely used in the fields of drug development and reverse genetics. Computer-based algorithms, bioinformatics, and biostatistical approaches have been employed in traditional medicinal chemistry discovery protocols for low molecular weight compounds. However, the diversity and complexity of RNAi screens cannot be efficiently addressed by these outdated approaches. Herein, a series of novel workflows for both wet- and dry-lab strategies are presented in an effort to provide an updated review of state-of-the-art RNAi technologies, which may enable adequate progress in the fight against the HIV-1 virus.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Bioinformatics and Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
28
|
RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci U S A 2013; 110:6536-41. [PMID: 23550157 DOI: 10.1073/pnas.1301620110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing.
Collapse
|
29
|
Holland B, Wong J, Li M, Rasheed S. Identification of human microRNA-like sequences embedded within the protein-encoding genes of the human immunodeficiency virus. PLoS One 2013; 8:e58586. [PMID: 23520522 PMCID: PMC3592801 DOI: 10.1371/journal.pone.0058586] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/05/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are highly conserved, short (18-22 nts), non-coding RNA molecules that regulate gene expression by binding to the 3' untranslated regions (3'UTRs) of mRNAs. While numerous cellular microRNAs have been associated with the progression of various diseases including cancer, miRNAs associated with retroviruses have not been well characterized. Herein we report identification of microRNA-like sequences in coding regions of several HIV-1 genomes. RESULTS Based on our earlier proteomics and bioinformatics studies, we have identified 8 cellular miRNAs that are predicted to bind to the mRNAs of multiple proteins that are dysregulated during HIV-infection of CD4+ T-cells in vitro. In silico analysis of the full length and mature sequences of these 8 miRNAs and comparisons with all the genomic and subgenomic sequences of HIV-1 strains in global databases revealed that the first 18/18 sequences of the mature hsa-miR-195 sequence (including the short seed sequence), matched perfectly (100%), or with one nucleotide mismatch, within the envelope (env) genes of five HIV-1 genomes from Africa. In addition, we have identified 4 other miRNA-like sequences (hsa-miR-30d, hsa-miR-30e, hsa-miR-374a and hsa-miR-424) within the env and the gag-pol encoding regions of several HIV-1 strains, albeit with reduced homology. Mapping of the miRNA-homologues of env within HIV-1 genomes localized these sequence to the functionally significant variable regions of the env glycoprotein gp120 designated V1, V2, V4 and V5. CONCLUSIONS We conclude that microRNA-like sequences are embedded within the protein-encoding regions of several HIV-1 genomes. Given that the V1 to V5 regions of HIV-1 envelopes contain specific, well-characterized domains that are critical for immune responses, virus neutralization and disease progression, we propose that the newly discovered miRNA-like sequences within the HIV-1 genomes may have evolved to self-regulate survival of the virus in the host by evading innate immune responses and therefore influencing persistence, replication and/or pathogenicity.
Collapse
Affiliation(s)
- Bryan Holland
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jonathan Wong
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Meng Li
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Suraiya Rasheed
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
The multiple functions of TRBP, at the hub of cell responses to viruses, stress, and cancer. Microbiol Mol Biol Rev 2013; 76:652-66. [PMID: 22933564 DOI: 10.1128/mmbr.00012-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The TAR RNA binding protein (TRBP) has emerged as a key player in many cellular processes. First identified as a cellular protein that facilitates the replication of human immunodeficiency virus, TRBP has since been shown to inhibit the activation of protein kinase R (PKR), a protein involved in innate immune responses and the cellular response to stress. It also binds to the PKR activator PACT and regulates its function. TRBP also contributes to RNA interference as an integral part of the minimal RNA-induced silencing complex with Dicer and Argonaute proteins. Due to its multiple functions in the cell, TRBP is involved in oncogenesis when its sequence is mutated or its expression is deregulated. The depletion or overexpression of TRBP results in malignancy, suggesting that the balance of TRBP expression is key to normal cellular function. These studies show that TRBP is multifunctional and mediates cross talk between different pathways. Its activities at the molecular level impact the cellular function from normal development to cancer and the response to infections.
Collapse
|
31
|
Dhamija N, Rawat P, Mitra D. Epigenetic regulation of HIV-1 persistence and evolving strategies for virus eradication. Subcell Biochem 2013; 61:479-505. [PMID: 23150264 DOI: 10.1007/978-94-007-4525-4_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the intense effort put by researchers globally to understand Human Immunodeficiency Virus (HIV-1) pathogenesis since its discovery 30 years ago, the acquired knowledge till date is not good enough to eradicate HIV-1 from an infected individual. HIV-1 infects cells of the human immune system and integrates into the host cell genome thereby leading to persistent infection in these cells. Based on the activation status of the cells, the infection could be productive or result in latent infection. The current regimen used to treat HIV-1 infection in an AIDS patient includes combination of antiretroviral drugs called Highly Active Anti-Retroviral Therapy (HAART). A major challenge for the success of HAART has been these latent reservoirs of HIV which remain hidden and pose major hurdle for the eradication of virus. Combination of HAART therapy with simultaneous activation of latent reservoirs of HIV-1 seems to be the future of anti-retroviral therapy; however, this will require a much better understanding of the mechanisms and regulation of HIV-1 latency. In this chapter, we have tried to elaborate on HIV-1 latency, highlighting the strategies employed by the virus to ensure persistence in the host with specific focus on epigenetic regulation of latency. A complete understanding of HIV-1 latency will be extremely essential for ultimate eradication of HIV-1 from the human host.
Collapse
Affiliation(s)
- Neeru Dhamija
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, 411007, India
| | | | | |
Collapse
|
32
|
Zheng YH, Jeang KT, Tokunaga K. Host restriction factors in retroviral infection: promises in virus-host interaction. Retrovirology 2012; 9:112. [PMID: 23254112 PMCID: PMC3549941 DOI: 10.1186/1742-4690-9-112] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/09/2012] [Indexed: 01/19/2023] Open
Abstract
Retroviruses have an intricate life cycle. There is much to be learned from studying retrovirus-host interactions. Among retroviruses, the primate lentiviruses have one of the more complex genome structures with three categories of viral genes: structural, regulatory, and accessory genes. Over time, we have gained increasing understanding of the lentivirus life cycle from studying host factors that support virus replication. Similarly, studies on host restriction factors that inhibit viral replication have also made significant contributions to our knowledge. Here, we review recent progress on the rapidly growing field of restriction factors, focusing on the antiretroviral activities of APOBEC3G, TRIM5, tetherin, SAMHD1, MOV10, and cellular microRNAs (miRNAs), and the counter-activities of Vif, Vpu, Vpr, Vpx, and Nef.
Collapse
Affiliation(s)
- Yong-Hui Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
33
|
Liu X, Houzet L, Jeang KT. Tombusvirus P19 RNA silencing suppressor (RSS) activity in mammalian cells correlates with charged amino acids that contribute to direct RNA-binding. Cell Biosci 2012; 2:41. [PMID: 23216864 PMCID: PMC3533911 DOI: 10.1186/2045-3701-2-41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/21/2012] [Indexed: 12/31/2022] Open
Abstract
Background Tombusvirus P19 is a protein encoded by tomato bushy stunt virus and related tombusviruses. Earlier studies have demonstrated that P19 is an RNA silencing suppressor (RSS) in plant cells. However, it has not been systematically investigated how P19 suppresses RNA interference in various mammalian cell settings. Results We have studied the RSS effect of P19 in mammalian cells, HEK293T, HeLa, and mouse embryonic fibroblasts. We have individually mutated 18 positively charged residues in P19 and found that 6 of these charged residues in P19 reduce its ability to suppress RNA interference. In each case, the reduction of silencing of RNA interference correlated with the reduced ability by these P19 mutants to bind siRNAs (small interfering RNAs). Conclusions Our findings characterize a class of RNA-binding proteins that function as RSS moieties. We find a tight correlation between positively charged residues in P19 accounting for siRNA-binding and their RSS activity. Because P19’s activity is conserved in plant and animal cells, we conclude that its RSS function unlikely requires cell type-specific co-factors and likely arises from direct RNA-binding.
Collapse
Affiliation(s)
- Xiang Liu
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
34
|
Wagschal A, Rousset E, Basavarajaiah P, Contreras X, Harwig A, Laurent-Chabalier S, Nakamura M, Chen X, Zhang K, Meziane O, Boyer F, Parrinello H, Berkhout B, Terzian C, Benkirane M, Kiernan R. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell 2012; 150:1147-57. [PMID: 22980978 DOI: 10.1016/j.cell.2012.08.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 05/29/2012] [Accepted: 08/02/2012] [Indexed: 01/06/2023]
Abstract
Transcription elongation is increasingly recognized as an important mechanism of gene regulation. Here, we show that microprocessor controls gene expression in an RNAi-independent manner. Microprocessor orchestrates the recruitment of termination factors Setx and Xrn2, and the 3'-5' exoribonuclease, Rrp6, to initiate RNAPII pausing and premature termination at the HIV-1 promoter through cleavage of the stem-loop RNA, TAR. Rrp6 further processes the cleavage product, which generates a small RNA that is required to mediate potent transcriptional repression and chromatin remodeling at the HIV-1 promoter. Using chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-seq), we identified cellular gene targets whose transcription is modulated by microprocessor. Our study reveals RNAPII pausing and premature termination mediated by the co-operative activity of ribonucleases, Drosha/Dgcr8, Xrn2, and Rrp6, as a regulatory mechanism of RNAPII-dependent transcription elongation.
Collapse
Affiliation(s)
- Alexandre Wagschal
- Laboratoires de Virologie Moléculaire, Institut de Génétique Humaine, CNRS UPR1142, 34396 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sampey GC, Guendel I, Das R, Jaworski E, Klase Z, Narayanan A, Kehn-Hall K, Kashanchi F. Transcriptional Gene Silencing (TGS) via the RNAi Machinery in HIV-1 Infections. BIOLOGY 2012; 1:339-69. [PMID: 24832229 PMCID: PMC4009781 DOI: 10.3390/biology1020339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Gene silencing via non-coding RNA, such as siRNA and miRNA, can occur at the transcriptional, post-transcriptional, and translational stages of expression. Transcriptional gene silencing (TGS) involving the RNAi machinery generally occurs through DNA methylation, as well as histone post-translational modifications, and corresponding remodeling of chromatin around the target gene into a heterochromatic state. The mechanism by which mammalian TGS occurs includes the recruitment of RNA-induced initiation of transcriptional gene silencing (RITS) complexes, DNA methyltransferases (DNMTs), and other chromatin remodelers. Additionally, virally infected cells encoding miRNAs have also been shown to manipulate the host cell RNAi machinery to induce TGS at the viral genome, thereby establishing latency. Furthermore, the introduction of exogenous siRNA and shRNA into infected cells that target integrated viral promoters can greatly suppress viral transcription via TGS. Here we examine the latest findings regarding mammalian TGS, specifically focusing on HIV-1 infected cells, and discuss future avenues of exploration in this field.
Collapse
Affiliation(s)
- Gavin C Sampey
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20108, USA.
| | - Irene Guendel
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20108, USA.
| | - Ravi Das
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20108, USA.
| | - Elizabeth Jaworski
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20108, USA.
| | - Zachary Klase
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, 9000 Rockville Pike, Bethesda, MD 20810, USA.
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20108, USA.
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20108, USA.
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20108, USA.
| |
Collapse
|
36
|
Cell-penetrating properties of the transactivator of transcription and polyarginine (R9) peptides, their conjugative effect on nanoparticles and the prospect of conjugation with arsenic trioxide. Anticancer Drugs 2012; 23:471-82. [PMID: 22241171 DOI: 10.1097/cad.0b013e32835065ed] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell-penetrating peptides (CPPs) are short chains of amino acids with the distinct ability to cross cell plasma membranes. They are usually between seven and 30 residues in length. The mechanism of action is still a highly debated subject among researchers; it seems that a commonality between all CPPs is the presence of positively charged residues within the amino acid chain. Polyarginine and the transactivator of transcription peptide are two widely used CPPs. One distinct application of these CPPs is the ability to further enhance the therapeutic properties of a range of different agents. One group of agents of particular importance are nanoparticles (NPs). Most NPs have no mechanism for cellular uptake. Hence, by conjugating CPPs to NPs, the amount of NPs taken up by cells can be increased, and therefore, the therapeutic benefits can be maximized. Some examples of this will be explored further in this review. In addition to CPPs, the concept of conjugation with the anticancer drug arsenic trioxide is reviewed and the prospect of transactivator of transcription-conjugated arsenic trioxide albumin microspheres is also discussed. Recent locked nucleic acid technology to stabilize nucleotides (RNA or DNA) aptamer complexes able to target cancer cells more specifically and selectively to kill tumour cells and spare normal body cells. NPs tagged with modified locked nucleic acid-aptamers have the potential to kill cancer cells more specifically and effectively while sparing normal cells.
Collapse
|
37
|
Abstract
There has been a paradigm shift in our understanding of how protein regulation occurs within mammalian cells in the last 15 years. Our current understanding is that small, noncoding RNA molecules called microRNAs (miRNAs) play a vital role in modulating the translation of mRNAs into protein. Important studies suggest that HIV-1 replication may be restricted by certain host cellular miRNAs, and this in turn may play pivotal roles in host defense and in maintaining latency within resting CD4 T cells. Conversely, host cellular miRNAs have also been demonstrated to be essential for certain viruses to establish infection and the altered expression of cellular miRNAs in the setting of HIV-1 may also be a factor favoring viral replication. The differential expression of important protective histocompatability locus antigen (HLA) alleles in HIV-1 infection has recently been shown to be regulated by miRNAs. To date, most efforts into finding an effective vaccine to combat HIV-1 have not been successful. Understanding the role that miRNAs may play in HIV-1 pathogenesis may allow a different approach to targeting key small RNAs or the identification of new important protein targets regulated by miRNAs, which may result in a better vaccine construct. The purpose of this review is to look at our current state of understanding of how HIV-1 and the miRNA pathway interact and the possible therapeutic interventions that this knowledge may entail.
Collapse
|
38
|
Localization and sub-cellular shuttling of HTLV-1 tax with the miRNA machinery. PLoS One 2012; 7:e40662. [PMID: 22808228 PMCID: PMC3393700 DOI: 10.1371/journal.pone.0040662] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/11/2012] [Indexed: 12/18/2022] Open
Abstract
The innate ability of the human cell to silence endogenous retroviruses through RNA sequences encoding microRNAs, suggests that the cellular RNAi machinery is a major means by which the host mounts a defense response against present day retroviruses. Indeed, cellular miRNAs target and hybridize to specific sequences of both HTLV-1 and HIV-1 viral transcripts. However, much like the variety of host immune responses to retroviral infection, the virus itself contains mechanisms that assist in the evasion of viral inhibition through control of the cellular RNAi pathway. Retroviruses can hijack both the enzymatic and catalytic components of the RNAi pathway, in some cases to produce novel viral miRNAs that can either assist in active viral infection or promote a latent state. Here, we show that HTLV-1 Tax contributes to the dysregulation of the RNAi pathway by altering the expression of key components of this pathway. A survey of uninfected and HTLV-1 infected cells revealed that Drosha protein is present at lower levels in all HTLV-1 infected cell lines and in infected primary cells, while other components such as DGCR8 were not dramatically altered. We show colocalization of Tax and Drosha in the nucleus in vitro as well as coimmunoprecipitation in the presence of proteasome inhibitors, indicating that Tax interacts with Drosha and may target it to specific areas of the cell, namely, the proteasome. In the presence of Tax we observed a prevention of primary miRNA cleavage by Drosha. Finally, the changes in cellular miRNA expression in HTLV-1 infected cells can be mimicked by the add back of Drosha or the addition of antagomiRs against the cellular miRNAs which are downregulated by the virus.
Collapse
|
39
|
Sanghvi VR, Steel LF. RNA silencing as a cellular defense against HIV-1 infection: progress and issues. FASEB J 2012; 26:3937-45. [PMID: 22751007 DOI: 10.1096/fj.12-210765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are known to have a role in gene regulation that is closely integrated into the pathways that control virtually all fundamental cell processes of growth, differentiation, metabolism, and death. Whether silencing RNAs and the cellular pathways that generate them are also used in antiviral defense in higher eukaryotes, as they are in plants and lower eukaryotes, has been the subject of much study. Results to date point to a complex interplay between viruses and vertebrate host cells that can vary considerably among different viruses. Here, we review current knowledge regarding interactions between HIV-1 and host cell RNA silencing mechanisms. Important questions in this field remain unresolved, including whether HIV-1 itself encodes small silencing RNAs that might either promote or repress its replication, whether host cell miRNAs can directly target viral transcripts or can alter the course of infection indirectly through effects on cellular genes necessary for viral replication, and whether HIV-1 produces proteins or RNAs that suppress the host-silencing pathway. We summarize evidence and controversies related to the potential role of RNA silencing pathways as a defense against HIV-1 infection.
Collapse
Affiliation(s)
- Viraj R Sanghvi
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2245 North 15th St., MS1013A, Philadelphia, PA 19102, USA
| | | |
Collapse
|
40
|
Kobayashi-Ishihara M, Yamagishi M, Hara T, Matsuda Y, Takahashi R, Miyake A, Nakano K, Yamochi T, Ishida T, Watanabe T. HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period. Retrovirology 2012; 9:38. [PMID: 22569184 PMCID: PMC3410806 DOI: 10.1186/1742-4690-9-38] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent evidence proposes a novel concept that mammalian natural antisense RNAs play important roles in cellular homeostasis by regulating the expression of several genes. Identification and characterization of retroviral antisense RNA would provide new insights into mechanisms of replication and pathogenesis. HIV-1 encoded-antisense RNAs have been reported, although their structures and functions remain to be studied. We have tried to identify and characterize antisense RNAs of HIV-1 and their function in viral infection. RESULTS Characterization of transcripts of HEK293T cells that were transiently transfected with an expression plasmid with HIV-1NL4-3 DNA in the antisense orientation showed that various antisense transcripts can be expressed. By screening and characterizing antisense RNAs in HIV-1NL4-3-infected cells, we defined the primary structure of a major form of HIV-1 antisense RNAs, which corresponds to a variant of previously reported ASP mRNA. This 2.6 kb RNA was transcribed from the U3 region of the 3' LTR and terminated at the env region in acutely or chronically infected cell lines and acutely infected human peripheral blood mononuclear cells. Reporter assays clearly demonstrated that the HIV-1 LTR harbours promoter activity in the reverse orientation. Mutation analyses suggested the involvement of NF-κΒ binding sites in the regulation of antisense transcription. The antisense RNA was localized in the nuclei of the infected cells. The expression of this antisense RNA suppressed HIV-1 replication for more than one month. Furthermore, the specific knockdown of this antisense RNA enhanced HIV-1 gene expression and replication. CONCLUSIONS The results of the present study identified an accurate structure of the major form of antisense RNAs expressed from the HIV-1NL4-3 provirus and demonstrated its nuclear localization. Functional studies collectively demonstrated a new role of the antisense RNA in viral replication. Thus, we suggest a novel viral mechanism that self-limits HIV-1 replication and provides new insight into the viral life cycle.
Collapse
Affiliation(s)
- Mie Kobayashi-Ishihara
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mohan KVK, Devadas K, Sainath Rao S, Hewlett I, Atreya C. Identification of XMRV infection-associated microRNAs in four cell types in culture. PLoS One 2012; 7:e32853. [PMID: 22438885 PMCID: PMC3306368 DOI: 10.1371/journal.pone.0032853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/31/2012] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs (miRNA), which regulate gene expression, were so far not identified in cells infected with XMRV in culture. METHODS Two prostate cell lines (LNCaP and DU145) and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV. Total mRNA was extracted from mock- and virus-infected cells at 6, 24 and 48 hours post infection and evaluated for microRNA profile in a microarray. RESULTS MicroRNA expression profiles of XMRV-infected continuous prostate cancer cell lines differ from that of virus-infected primary cells (PBL and MDMs). miR-193a-3p and miRPlus-E1245 observed to be specific to XMRV infection in all 4 cell types. While miR-193a-3p levels were down regulated miRPlus-E1245 on the other hand exhibited varied expression profile between the 4 cell types. DISCUSSION The present study clearly demonstrates that cellular microRNAs are expressed during XMRV infection of human cells and this is the first report demonstrating the regulation of miR193a-3p and miRPlus-E1245 during XMRV infection in four different human cell types.
Collapse
Affiliation(s)
- Ketha V. K. Mohan
- Section of Cell Biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Krishnakumar Devadas
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Shilpakala Sainath Rao
- Section of Cell Biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Indira Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Chintamani Atreya
- Section of Cell Biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| |
Collapse
|
42
|
Bouttier M, Saumet A, Peter M, Courgnaud V, Schmidt U, Cazevieille C, Bertrand E, Lecellier CH. Retroviral GAG proteins recruit AGO2 on viral RNAs without affecting RNA accumulation and translation. Nucleic Acids Res 2011; 40:775-86. [PMID: 21948796 PMCID: PMC3258151 DOI: 10.1093/nar/gkr762] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular micro(mi)RNAs are able to recognize viral RNAs through imperfect micro-homologies. Similar to the miRNA-mediated repression of cellular translation, this recognition is thought to tether the RNAi machinery, in particular Argonaute 2 (AGO2) on viral messengers and eventually to modulate virus replication. Here, we unveil another pathway by which AGO2 can interact with retroviral mRNAs. We show that AGO2 interacts with the retroviral Group Specific Antigen (GAG) core proteins and preferentially binds unspliced RNAs through the RNA packaging sequences without affecting RNA stability or eliciting translation repression. Using RNAi experiments, we provide evidences that these interactions, observed with both the human immunodeficiency virus 1 (HIV-1) and the primate foamy virus 1 (PFV-1), are required for retroviral replication. Taken together, our results place AGO2 at the core of the retroviral life cycle and reveal original AGO2 functions that are not related to miRNAs and translation repression.
Collapse
Affiliation(s)
- Manuella Bouttier
- Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 route de Mende, F-34293 Montpellier cedex 5, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier cedex 5, Université Montpellier 1, 5 Bd Henry IV, F-34967 Montpellier cedex 2, Institut de Recherche en Cancérologie de Montpellier INSERM U896, Université Montpellier 1, Centre Régional de Lutte Contre le Cancer Val d'Aurelle Paul Lamarque, Montpellier, F-34298 and Centre de Ressources en Imagerie Cellulaire, F-34093 Montpellier, France
| | - Anne Saumet
- Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 route de Mende, F-34293 Montpellier cedex 5, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier cedex 5, Université Montpellier 1, 5 Bd Henry IV, F-34967 Montpellier cedex 2, Institut de Recherche en Cancérologie de Montpellier INSERM U896, Université Montpellier 1, Centre Régional de Lutte Contre le Cancer Val d'Aurelle Paul Lamarque, Montpellier, F-34298 and Centre de Ressources en Imagerie Cellulaire, F-34093 Montpellier, France
| | - Marion Peter
- Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 route de Mende, F-34293 Montpellier cedex 5, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier cedex 5, Université Montpellier 1, 5 Bd Henry IV, F-34967 Montpellier cedex 2, Institut de Recherche en Cancérologie de Montpellier INSERM U896, Université Montpellier 1, Centre Régional de Lutte Contre le Cancer Val d'Aurelle Paul Lamarque, Montpellier, F-34298 and Centre de Ressources en Imagerie Cellulaire, F-34093 Montpellier, France
| | - Valérie Courgnaud
- Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 route de Mende, F-34293 Montpellier cedex 5, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier cedex 5, Université Montpellier 1, 5 Bd Henry IV, F-34967 Montpellier cedex 2, Institut de Recherche en Cancérologie de Montpellier INSERM U896, Université Montpellier 1, Centre Régional de Lutte Contre le Cancer Val d'Aurelle Paul Lamarque, Montpellier, F-34298 and Centre de Ressources en Imagerie Cellulaire, F-34093 Montpellier, France
| | - Ute Schmidt
- Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 route de Mende, F-34293 Montpellier cedex 5, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier cedex 5, Université Montpellier 1, 5 Bd Henry IV, F-34967 Montpellier cedex 2, Institut de Recherche en Cancérologie de Montpellier INSERM U896, Université Montpellier 1, Centre Régional de Lutte Contre le Cancer Val d'Aurelle Paul Lamarque, Montpellier, F-34298 and Centre de Ressources en Imagerie Cellulaire, F-34093 Montpellier, France
| | - Chantal Cazevieille
- Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 route de Mende, F-34293 Montpellier cedex 5, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier cedex 5, Université Montpellier 1, 5 Bd Henry IV, F-34967 Montpellier cedex 2, Institut de Recherche en Cancérologie de Montpellier INSERM U896, Université Montpellier 1, Centre Régional de Lutte Contre le Cancer Val d'Aurelle Paul Lamarque, Montpellier, F-34298 and Centre de Ressources en Imagerie Cellulaire, F-34093 Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 route de Mende, F-34293 Montpellier cedex 5, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier cedex 5, Université Montpellier 1, 5 Bd Henry IV, F-34967 Montpellier cedex 2, Institut de Recherche en Cancérologie de Montpellier INSERM U896, Université Montpellier 1, Centre Régional de Lutte Contre le Cancer Val d'Aurelle Paul Lamarque, Montpellier, F-34298 and Centre de Ressources en Imagerie Cellulaire, F-34093 Montpellier, France
| | - Charles-Henri Lecellier
- Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 route de Mende, F-34293 Montpellier cedex 5, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier cedex 5, Université Montpellier 1, 5 Bd Henry IV, F-34967 Montpellier cedex 2, Institut de Recherche en Cancérologie de Montpellier INSERM U896, Université Montpellier 1, Centre Régional de Lutte Contre le Cancer Val d'Aurelle Paul Lamarque, Montpellier, F-34298 and Centre de Ressources en Imagerie Cellulaire, F-34093 Montpellier, France
- *To whom correspondence should be addressed. Tel: +33 4 34 35 96 78; Fax: +33 4 34 35 96 34;
| |
Collapse
|
43
|
The cellular TAR RNA binding protein, TRBP, promotes HIV-1 replication primarily by inhibiting the activation of double-stranded RNA-dependent kinase PKR. J Virol 2011; 85:12614-21. [PMID: 21937648 DOI: 10.1128/jvi.05240-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TAR RNA binding protein, TRBP, is a cellular double-stranded RNA (dsRNA) binding protein that can promote the replication of HIV-1 through interactions with the viral TAR element as well as with cellular proteins that affect the efficiency of translation of viral transcripts. The structured TAR element, present on all viral transcripts, can impede efficient translation either by sterically blocking access of translation initiation factors to the 5'-cap or by activating the dsRNA-dependent kinase, PKR. Several mechanisms by which TRBP can facilitate translation of viral transcripts have been proposed, including the binding and unwinding of TAR and the suppression of PKR activation. Further, TRBP has been identified as a cofactor of Dicer in the processing of microRNAs (miRNAs), and sequestration of TRBP by TAR in infected cells has been proposed as a viral countermeasure to potential host cell RNA interference-based antiviral activities. Here, we have addressed the relative importance of these various roles for TRBP in HIV-1 replication. Using Jurkat T cells, primary human CD4(+) T cells, and additional cultured cell lines, we show that depletion of TRBP has no effect on viral replication when PKR activation is otherwise blocked. Moreover, the presence of TAR-containing mRNAs does not affect the efficacy of cellular miRNA silencing pathways. These results establish that TRBP, when expressed at physiological levels, promotes HIV-1 replication mainly by suppressing the PKR-mediated antiviral response, while its contribution to HIV-1 replication through PKR-independent pathways is minimal.
Collapse
|
44
|
Sun G, Rossi JJ. MicroRNAs and their potential involvement in HIV infection. Trends Pharmacol Sci 2011; 32:675-81. [PMID: 21862142 DOI: 10.1016/j.tips.2011.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/15/2011] [Accepted: 07/21/2011] [Indexed: 12/12/2022]
Abstract
Treatment and cure of HIV-1 infection remain one of the greatest therapeutic challenges owing to its persistent infection, which often leads to AIDS. Although it has been 28 years since the discovery of the virus, the development of an effective vaccine is still years away. Relatively newly discovered miRNAs are a family of small noncoding RNAs that can regulate gene expression primarily by binding to the 3' untranslated region of targeted transcripts. An understanding of how HIV-1 infection affects the host miRNA pathway could generate new insights into the basic mechanisms underlying HIV-1-mediated pathologies and T-lymphocyte depletion. Here, we review literature on the biogenesis of HIV-1-encoded miRNAs, cellular miRNAs that can directly target HIV-1 or essential cellular factors required for HIV-1 replication. We also discuss the feasibility of using miRNAs for HIV-1 therapy.
Collapse
Affiliation(s)
- Guihua Sun
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA
| | | |
Collapse
|
45
|
Houzet L, Jeang KT. Genome-wide screening using RNA interference to study host factors in viral replication and pathogenesis. Exp Biol Med (Maywood) 2011; 236:962-7. [PMID: 21727185 PMCID: PMC3415036 DOI: 10.1258/ebm.2010.010272] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
With the recent development of short interfering RNA and short hairpin RNA expression libraries, RNA interference (RNAi) technology has been extensively employed to identify genes involved in diverse cellular processes, such as signal transduction, cell cycle, cancer biology and host-pathogen interactions. In the field of viral infection, this approach has already identified hundreds of new genes not previously known to be important for various virus lifecycles. In this brief review, we focus on recent studies performed using genome-wide RNAi-based screens in mammalian cells for the identification of essential host factors for viral infection and pathogenesis.
Collapse
Affiliation(s)
- Laurent Houzet
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0460, USA
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0460, USA
| |
Collapse
|
46
|
Russo A, Potenza N. Antiviral effects of human microRNAs and conservation of their target sites. FEBS Lett 2011; 585:2551-5. [PMID: 21784072 DOI: 10.1016/j.febslet.2011.07.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022]
Abstract
MicroRNAs are small non-coding RNAs that modulate gene expression at post-transcriptional level, playing a crucial role in cell differentiation and development. Recently, some reports have shown that a limited number of mammalian microRNAs also display antiviral effects. This article summarizes the data in the field paying a special attention to the conservation of the microRNA target sequences in the viral populations. This issue is relevant both for the evaluation of the biological significance of the antiviral effects and for the development of microRNA-based strategies for antiviral intervention.
Collapse
Affiliation(s)
- Aniello Russo
- Department of Life Sciences, Second University of Naples, Caserta, Italy.
| | | |
Collapse
|
47
|
MicroRNAs and human retroviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:686-93. [PMID: 21640212 PMCID: PMC3177989 DOI: 10.1016/j.bbagrm.2011.05.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control a multitude of critical processes in mammalian cells. Increasing evidence has emerged that host miRNAs serve in animal cells to restrict viral infections. In turn, many viruses encode RNA silencing suppressors (RSS) which are employed to moderate the potency of the cell's miRNA selection against viral replication. Some viruses also encode viral miRNAs. In this review, we summarize findings from human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1) that illustrate examples of host cell miRNAs that target the viruses, of RSS encoded by viruses, and of host cell miRNA profile changes that are seen in infected cells. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
|
48
|
Adenovirus and miRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:660-7. [PMID: 21621026 PMCID: PMC7102710 DOI: 10.1016/j.bbagrm.2011.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 01/15/2023]
Abstract
Adenovirus infection has a tremendous
impact on the cellular silencing machinery. Adenoviruses express high
amounts of non-coding virus associated (VA) RNAs able to saturate key
factors of the RNA interference (RNAi) processing pathway, such as
Exportin 5 and Dicer. Furthermore, a proportion of VA RNAs is cleaved by
Dicer into viral microRNAs (mivaRNAs) that can saturate Argonaute, an
essential protein for miRNA function. Thus, processing and function of
cellular miRNAs is blocked in adenoviral-infected cells. However, viral
miRNAs actively target the expression of cellular genes involved in
relevant functions such as cell proliferation, DNA repair or RNA
regulation. Interestingly, the cellular silencing machinery is active at
early times post-infection and can be used to control the adenovirus cell
cycle. This is relevant for therapeutic purposes against adenoviral
infections or when recombinant adenoviruses are used as vectors for gene
therapy. Manipulation of the viral genome allows the use of adenoviral
vectors to express therapeutic miRNAs or to be silenced by the RNAi
machinery leading to safer vectors with a specific tropism. This article
is part of a "Special Issue entitled:MicroRNAs in viral gene
regulation".
Collapse
|
49
|
Hayes AM, Qian S, Yu L, Boris-Lawrie K. Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1. Retrovirology 2011; 8:36. [PMID: 21569500 PMCID: PMC3120759 DOI: 10.1186/1742-4690-8-36] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 05/13/2011] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNA (miRNA)-mediated RNA silencing is integral to virtually every cellular process including cell cycle progression and response to virus infection. The interplay between RNA silencing and HIV-1 is multifaceted, and accumulating evidence posits a strike-counterstrike interface that alters the cellular environment to favor virus replication. For instance, miRNA-mediated RNA silencing of HIV-1 translation is antagonized by HIV-1 Tat RNA silencing suppressor activity. The activity of HIV-1 accessory proteins Vpr/Vif delays cell cycle progression, which is a process prominently modulated by miRNA. The expression profile of cellular miRNA is altered by HIV-1 infection in both cultured cells and clinical samples. The open question stands of what, if any, is the contribution of Tat RNA silencing suppressor activity or Vpr/Vif activity to the perturbation of cellular miRNA by HIV-1. Results Herein, we compared the perturbation of miRNA expression profiles of lymphocytes infected with HIV-1NL4-3 or derivative strains that are deficient in Tat RNA silencing suppressor activity (Tat K51A substitution) or ablated of the vpr/vif open reading frames. Microarrays recapitulated the perturbation of the cellular miRNA profile by HIV-1 infection. The miRNA expression trends overlapped ~50% with published microarray results on clinical samples from HIV-1 infected patients. Moreover, the number of miRNA perturbed by HIV-1 was largely similar despite ablation of Tat RSS activity and Vpr/Vif; however, the Tat RSS mutation lessened HIV-1 downregulation of twenty-two miRNAs. Conclusions Our study identified miRNA expression changes attributable to Tat RSS activity in HIV-1NL4-3. The results accomplish a necessary step in the process to understand the interface of HIV-1 with host RNA silencing activity. The overlap in miRNA expression trends observed between HIV-1 infected CEMx174 lymphocytes and primary cells supports the utility of cultured lymphocytes as a tractable model to investigate interplay between HIV-1 and host RNA silencing. The subset of miRNA determined to be perturbed by Tat RSS in HIV-1 infection provides a focal point to define the gene networks that shape the cellular environment for HIV-1 replication.
Collapse
Affiliation(s)
- Amy M Hayes
- Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus OH, USA
| | | | | | | |
Collapse
|
50
|
Sanghvi VR, Steel LF. A re-examination of global suppression of RNA interference by HIV-1. PLoS One 2011; 6:e17246. [PMID: 21386885 PMCID: PMC3046114 DOI: 10.1371/journal.pone.0017246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/23/2011] [Indexed: 12/30/2022] Open
Abstract
The nature of the interaction between replicating HIV-1 and the cellular RNAi pathway has been controversial, but it is clear that it can be complex and multifaceted. It has been proposed that the interaction is bi-directional, whereby cellular silencing pathways can restrict HIV-1 replication, and in turn, HIV-1 can suppress silencing pathways. Overall suppression of RNAi has been suggested to occur via direct binding and inhibition of Dicer by the HIV-1 Tat protein or through sequestration of TRBP, a Dicer co-factor, by the structured TAR element of HIV-1 transcripts. The role of Tat as an inhibitor of Dicer has been questioned and our results support and extend the conclusion that Tat does not inhibit RNAi that is mediated by either exogenous or endogenous miRNAs. Similarly, we find no suppression of silencing pathways in cells with replicating virus, suggesting that viral products such as the TAR RNA elements also do not reduce the efficacy of cellular RNA silencing. However, knockdown of Dicer does allow increased viral replication and this occurs at a post-transcriptional level. These results support the idea that although individual miRNAs can act to restrict HIV-1 replication, the virus does not counter these effects through a global suppression of RNAi synthesis or processing.
Collapse
Affiliation(s)
- Viraj R. Sanghvi
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Laura F. Steel
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|