1
|
Clark SJ, Curcio C, Dick AD, Doyle S, Edwards M, Flores-Bellver M, Hass D, Lennon R, Toomey CB, Rohrer B. Breaking Bruch's: How changes in Bruch's membrane influence retinal homeostasis. Exp Eye Res 2025; 255:110343. [PMID: 40107443 DOI: 10.1016/j.exer.2025.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Simon J Clark
- Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Christine Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, USA
| | - Andrew D Dick
- University of Bristol and UCL-Institute of Ophthalmology and NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL-Institute of Ophthalmology, UK
| | - Sarah Doyle
- Department of Clinical Medicine, School of Medicine and Trinity Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Malia Edwards
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Miguel Flores-Bellver
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Hass
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Christopher B Toomey
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California at San Diego, La Jolla, CA, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston SC, USA.
| |
Collapse
|
2
|
Cerbulescu T, Anghel A, Brie DA, Petraşcu FM, Salavat MC, Ardelean AI, Barac IR, Borugă O. The impact of matrix metalloproteinases and their tissue inhibitors in patients with chronic glaucoma - a literature review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:557-565. [PMID: 39957016 PMCID: PMC11924901 DOI: 10.47162/rjme.65.4.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) play an important role in the pathophysiology of chronic glaucoma, as they are involved in extracellular matrix (ECM) remodeling in the trabecular meshwork (TM), affecting its ability to efficiently regulate intraocular pressure (IOP). Ensuring the balance between MMPs and TIMPs helps to maintain homeostasis in ocular tissues, which is essential to avoid glaucomatous lesions. Elevated levels of MMPs and increased degradation of the ECM, ultimately affecting aqueous humor outflow and increasing IOP, characterize glaucoma. In the current literature review, the impact and interactions of MMPs and TIMPs in chronic glaucoma have been emphasized, with multiple but still unelucidated roles in the mentioned pathology including their clinical implications, future research directions, and therapeutic approaches. Research to date indicates that the expression of TIMPs is altered in patients with chronic glaucoma, suggesting a compensatory response to increased MMPs activity. Certain drugs can influence the expression levels of MMPs and TIMPs, therefore therapeutic strategies can be developed to restore the balance between tissue enzymes and their inhibitors. Therefore, understanding the relationship between MMPs and TIMPs is a key factor in the pathogenesis of chronic glaucoma. Understanding the interplay between the two provides interesting insights into ECM remodeling in ocular tissues, highlighting the potential of targeted therapies to restore the balance between proteolytic enzymes and their inhibitors.
Collapse
Affiliation(s)
- Teodor Cerbulescu
- Department of Biochemistry, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania;
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Rehan IF, Elnagar A, Zigo F, Sayed-Ahmed A, Yamada S. Biomimetic strategies for the deputization of proteoglycan functions. Front Cell Dev Biol 2024; 12:1391769. [PMID: 39170918 PMCID: PMC11337302 DOI: 10.3389/fcell.2024.1391769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Proteoglycans (PGs), which have glycosaminoglycan chains attached to their protein cores, are essential for maintaining the morphology and function of healthy body tissues. Extracellular PGs perform various functions, classified into the following four categories: i) the modulation of tissue mechanical properties; ii) the regulation and protection of the extracellular matrix; iii) protein sequestration; and iv) the regulation of cell signaling. The depletion of PGs may significantly impair tissue function, encompassing compromised mechanical characteristics and unregulated inflammatory responses. Since PGs play critical roles in the function of healthy tissues and their synthesis is complex, the development of PG mimetic molecules that recapitulate PG functions for tissue engineering and therapeutic applications has attracted the interest of researchers for more than 20 years. These approaches have ranged from semisynthetic graft copolymers to recombinant PG domains produced by cells that have undergone genetic modifications. This review discusses some essential extracellular PG functions and approaches to mimicking these functions.
Collapse
Affiliation(s)
- Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Asmaa Elnagar
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - František Zigo
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ahmed Sayed-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| |
Collapse
|
4
|
Rajabloo Y, Saberi-Karimian M, Soflaei SS, Ferns GA, Ghayour-Mobarhan M. Syndecans and diabetic complications: A narrative review. Am J Med Sci 2024; 368:99-111. [PMID: 38697476 DOI: 10.1016/j.amjms.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Syndecan (SDC) is a member of the heparan sulfate proteoglycan (HSPG) family. It appears to play a role in the aetiology of diabetic complications, with decreased levels of SDCs being reported in the kidney, retina, and cardiac muscle in models of diabetes mellitus (DM). The reduced levels of SDCs may play an important role in the development of albuminuria in DM. Some studies have provided the evidence supporting the mechanisms underlying the role of SDCs in DM. However, SDCs and the molecular mechanisms involved are complex and need to be further elucidated. This review focuses on the underlying molecular mechanisms of SDCs that are involved in the development and progression of the complications of DM, which may help in developing new strategies to prevent and treat these complications.
Collapse
Affiliation(s)
- Yasamin Rajabloo
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Saberi-Karimian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sara Saffar Soflaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Moro J, Grinpelc A, Farré PL, Duca RB, Lacunza E, Graña KD, Scalise GD, Dalton GN, Massillo C, Piccioni F, Dimase F, Batagelj E, De Siervi A, De Luca P. miR-877-5p as a Potential Link between Triple-Negative Breast Cancer Development and Metabolic Syndrome. Int J Mol Sci 2023; 24:16758. [PMID: 38069080 PMCID: PMC10706566 DOI: 10.3390/ijms242316758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Metabolic syndrome (MS) is a risk factor for breast cancer (BC) that increases its aggressiveness and metastasis. The prevalence of MS is higher in triple-negative breast cancer (TNBC), which is the molecular subtype with the worst prognosis. The molecular mechanisms underlying this association have not been fully elucidated. MiRNAs are small, non-coding RNAs that regulate gene expression. Aberrant expression of miRNAs in both tissues and fluids are linked to several pathologies. The aim of this work was to identify circulating miRNAs in patients with alterations associated with MS (AAMS) that also impact on BC. Using microarray technology, we detected 23 miRNAs altered in the plasma of women with AAMS that modulate processes linked to cancer. We found that let-7b-5p and miR-28-3p were decreased in plasma from patients with AAMS and also in BC tumors, while miR-877-5p was increased. Interestingly, miR-877-5p expression was associated with lower patient survival, and its expression was higher in PAM50 basal-like BC tumors compared to the other molecular subtypes. Analyses from public databases revealed that miR-877-5p was also increased in plasma from BC patients compared to plasma from healthy donors. We identified IGF2 and TIMP3 as validated target genes of miR-877-5p whose expression was decreased in BC tissue and moreover, was negatively correlated with the levels of this miRNA in the tumors. Finally, a miRNA inhibitor against miR-877-5p diminished viability and tumor growth of the TNBC model 4T1. These results reveal that miR-877-5p inhibition could be a therapeutic option for the treatment of TNBC. Further studies are needed to investigate the role of this miRNA in TNBC progression.
Collapse
Affiliation(s)
- Juana Moro
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Agustina Grinpelc
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Paula Lucía Farré
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Rocío Belén Duca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires 1900, Argentina
| | - Karen Daniela Graña
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Georgina Daniela Scalise
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Guillermo Nicolás Dalton
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Cintia Massillo
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Flavia Piccioni
- Laboratorio de Inmunobiología del Cáncer, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Buenos Aires 1629, Argentina
| | - Federico Dimase
- Hospital Militar Central, CABA, Buenos Aires 1426, Argentina
| | - Emilio Batagelj
- Hospital Militar Central, CABA, Buenos Aires 1426, Argentina
| | - Adriana De Siervi
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Paola De Luca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| |
Collapse
|
6
|
Shoari A, Khalili-Tanha G, Coban MA, Radisky ES. Structure and computation-guided yeast surface display for the evolution of TIMP-based matrix metalloproteinase inhibitors. Front Mol Biosci 2023; 10:1321956. [PMID: 38074088 PMCID: PMC10702220 DOI: 10.3389/fmolb.2023.1321956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
The study of protein-protein interactions (PPIs) and the engineering of protein-based inhibitors often employ two distinct strategies. One approach leverages the power of combinatorial libraries, displaying large ensembles of mutant proteins, for example, on the yeast cell surface, to select binders. Another approach harnesses computational modeling, sifting through an astronomically large number of protein sequences and attempting to predict the impact of mutations on PPI binding energy. Individually, each approach has inherent limitations, but when combined, they generate superior outcomes across diverse protein engineering endeavors. This synergistic integration of approaches aids in identifying novel binders and inhibitors, fine-tuning specificity and affinity for known binding partners, and detailed mapping of binding epitopes. It can also provide insight into the specificity profiles of varied PPIs. Here, we outline strategies for directing the evolution of tissue inhibitors of metalloproteinases (TIMPs), which act as natural inhibitors of matrix metalloproteinases (MMPs). We highlight examples wherein design of combinatorial TIMP libraries using structural and computational insights and screening these libraries of variants using yeast surface display (YSD), has successfully optimized for MMP binding and selectivity, and conferred insight into the PPIs involved.
Collapse
Affiliation(s)
| | | | | | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
7
|
Coates-Park S, Lazaroff C, Gurung S, Rich J, Colladay A, O’Neill M, Butler GS, Overall CM, Stetler-Stevenson WG, Peeney D. Tissue inhibitors of metalloproteinases are proteolytic targets of matrix metalloproteinase 9. Matrix Biol 2023; 123:59-70. [PMID: 37804930 PMCID: PMC10843048 DOI: 10.1016/j.matbio.2023.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Extracellular proteolysis and turnover are core processes of tissue homeostasis. The predominant matrix-degrading enzymes are members of the Matrix Metalloproteinase (MMP) family. MMPs extensively degrade core matrix components in addition to processing a range of other factors in the extracellular, plasma membrane, and intracellular compartments. The proteolytic activity of MMPs is modulated by the Tissue Inhibitors of Metalloproteinases (TIMPs), a family of four multi-functional matrisome proteins with extensively characterized MMP inhibitory functions. Thus, a well-regulated balance between MMP activity and TIMP levels has been described as critical for healthy tissue homeostasis, and this balance can be chronically disturbed in pathological processes. The relationship between MMPs and TIMPs is complex and lacks the constraints of a typical enzyme-inhibitor relationship due to secondary interactions between various MMPs (specifically gelatinases) and TIMP family members. We illustrate a new complexity in this system by describing how MMP9 can cleave members of the TIMP family when in molar excess. Proteolytic processing of TIMPs can generate functionally altered peptides with potentially novel attributes. We demonstrate here that all TIMPs are cleaved at their C-terminal tails by a molar excess of MMP9. This processing removes the N-glycosylation site for TIMP3 and prevents the TIMP2 interaction with latent proMMP2, a prerequisite for cell surface MMP14-mediated activation of proMMP2. TIMP2/4 are further cleaved producing ∼14 kDa N-terminal proteins linked to a smaller C-terminal domain through residual disulfide bridges. These cleaved TIMP2/4 complexes show perturbed MMP inhibitory activity, illustrating that MMP9 may bear a particularly prominent influence upon the TIMP:MMP balance in tissues.
Collapse
Affiliation(s)
- Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Carolyn Lazaroff
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
- Washington University in St. Louis School of Medicine, Department of Orthopedics
| | - Sadeechya Gurung
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Josh Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Alexandra Colladay
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Maura O’Neill
- Protein Characterization Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland
| | - Georgina S. Butler
- Centre for Blood Research, Life Sciences Centre, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Oral Biological and Medical Science, Faculty of Dentistry, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
| | - Christopher M. Overall
- Centre for Blood Research, Life Sciences Centre, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Oral Biological and Medical Science, Faculty of Dentistry, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
| | - William G. Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Stetler-Stevenson WG. The Continuing Saga of Tissue Inhibitor of Metalloproteinase 2: Emerging Roles in Tissue Homeostasis and Cancer Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1336-1352. [PMID: 37572947 PMCID: PMC10548276 DOI: 10.1016/j.ajpath.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as cytokine-like erythroid growth factors. Subsequently, TIMPs were characterized as endogenous inhibitors of matrixin proteinases. These proteinases are the primary mediators of extracellular matrix turnover in pathologic conditions, such as cancer invasion and metastasis. Thus, TIMPs were immediately recognized as important regulators of tissue homeostasis. However, TIMPs also demonstrate unique biological activities that are independent of metalloproteinase regulation. Although often overlooked, these non-protease-mediated TIMP functions demonstrate a variety of direct cellular effects of potential therapeutic value. TIMP2 is the most abundantly expressed TIMP family member, and ongoing studies show that its tumor suppressor activity extends beyond protease inhibition to include direct modulation of tumor, endothelial, and fibroblast cellular responses in the tumor microenvironment. Recent data suggest that TIMP2 can suppress both primary tumor growth and metastatic niche formation. TIMP2 directly interacts with cellular receptors and matrisome elements to modulate cell signaling pathways that result in reduced proliferation and migration of neoplastic, endothelial, and fibroblast cell populations. These effects result in enhanced cell adhesion and focal contact formation while reducing tumor and endothelial proliferation, migration, and epithelial-to-mesenchymal transitions. These findings are consistent with TIMP2 homeostatic functions beyond simple inhibition of metalloprotease activity. This review examines the ongoing evolution of TIMP2 function, future perspectives in TIMP research, and the therapeutic potential of TIMP2.
Collapse
Affiliation(s)
- William G Stetler-Stevenson
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
9
|
Farrugia BL, Melrose J. The Glycosaminoglycan Side Chains and Modular Core Proteins of Heparan Sulphate Proteoglycans and the Varied Ways They Provide Tissue Protection by Regulating Physiological Processes and Cellular Behaviour. Int J Mol Sci 2023; 24:14101. [PMID: 37762403 PMCID: PMC10531531 DOI: 10.3390/ijms241814101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review examines the roles of HS-proteoglycans (HS-PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS-PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS-PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo-Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin-neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS-PGs also promote or inhibit tumor development. Thus, HS-PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS-PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes-Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS-PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan.
Collapse
Affiliation(s)
- Brooke L. Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School (Northern), University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
10
|
Green J, Tinson RAJ, Betts JHJ, Piras M, Pelut A, Steverding D, Wren SP, Searcey M, Troeberg L. Suramin analogues protect cartilage against osteoarthritic breakdown by increasing levels of tissue inhibitor of metalloproteinases 3 (TIMP-3) in the tissue. Bioorg Med Chem 2023; 92:117424. [PMID: 37517101 DOI: 10.1016/j.bmc.2023.117424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Osteoarthritis is a chronic degenerative joint disease affecting millions of people worldwide, with no disease-modifying drugs currently available to treat the disease. Tissue inhibitor of metalloproteinases 3 (TIMP-3) is a potential therapeutic target in osteoarthritis because of its ability to inhibit the catabolic metalloproteinases that drive joint damage by degrading the cartilage extracellular matrix. We previously found that suramin inhibits cartilage degradation through its ability to block endocytosis and intracellular degradation of TIMP-3 by low-density lipoprotein receptor-related protein 1 (LRP1), and analysis of commercially available suramin analogues indicated the importance of the 1,3,5-trisulfonic acid substitutions on the terminal naphthalene rings for this activity. Here we describe synthesis and structure-activity relationship analysis of additional suramin analogues using ex vivo models of TIMP-3 trafficking and cartilage degradation. This showed that 1,3,6-trisulfonic acid substitution of the terminal naphthalene rings was also effective, and that the protective activity of suramin analogues depended on the presence of a rigid phenyl-containing central region, with para/para substitution of these phenyl rings being most favourable. Truncated analogues lost protective activity. The physicochemical characteristics of suramin and its analogues indicate that approaches such as intra-articular injection would be required to develop them for therapeutic use.
Collapse
Affiliation(s)
- Jonathan Green
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, United Kingdom
| | - Ryan A J Tinson
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, United Kingdom; School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Jacob H J Betts
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, United Kingdom
| | - Monica Piras
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Aylin Pelut
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, United Kingdom
| | - Dietmar Steverding
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, United Kingdom
| | - Stephen P Wren
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom; Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston upon Thames KT1 2EE, United Kingdom
| | - Mark Searcey
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, United Kingdom.
| |
Collapse
|
11
|
Peeney D, Fan Y, Gurung S, Lazaroff C, Ratnayake S, Warner A, Karim B, Meerzaman D, Stetler-Stevenson WG. Whole organism profiling of the Timp gene family. Matrix Biol Plus 2023; 18:100132. [PMID: 37095886 PMCID: PMC10121480 DOI: 10.1016/j.mbplus.2023.100132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
Tissue inhibitor of metalloproteinases (TIMPs/Timps) are an endogenous family of widely expressed matrisome-associated proteins that were initially identified as inhibitors of matrix metalloproteinase activity (Metzincin family proteases). Consequently, TIMPs are often considered simply as protease inhibitors by many investigators. However, an evolving list of new metalloproteinase-independent functions for TIMP family members suggests that this concept is outdated. These novel TIMP functions include direct agonism/antagonism of multiple transmembrane receptors, as well as functional interactions with matrisome targets. While the family was fully identified over two decades ago, there has yet to be an in-depth study describing the expression of TIMPs in normal tissues of adult mammals. An understanding of the tissues and cell-types that express TIMPs 1 through 4, in both normal and disease states are important to contextualize the growing functional capabilities of TIMP proteins, which are often dismissed as non-canonical. Using publicly available single cell RNA sequencing data from the Tabula Muris Consortium, we analyzed approximately 100,000 murine cells across eighteen tissues from non-diseased organs, representing seventy-three annotated cell types, to define the diversity in Timp gene expression across healthy tissues. We describe the unique expression profiles across tissues and organ-specific cell types that all four Timp genes display. Within annotated cell-types, we identify clear and discrete cluster-specific patterns of Timp expression, particularly in cells of stromal and endothelial origins. RNA in-situ hybridization across four organs expands on the scRNA sequencing analysis, revealing novel compartments associated with individual Timp expression. These analyses emphasize a need for specific studies investigating the functional significance of Timp expression in the identified tissues and cell sub-types. This understanding of the tissues, specific cell types and microenvironment conditions in which Timp genes are expressed adds important physiological context to the growing array of novel functions for TIMP proteins.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Yu Fan
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - Sadeechya Gurung
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Carolyn Lazaroff
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Shashikala Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - Andrew Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - William G. Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Ho M, Dasari S, Visram A, Drake MT, Charlesworth MC, Johnson KL, Pujari GP, Jevremovic D, Kourelis T. An atlas of the bone marrow bone proteome in patients with dysproteinemias. Blood Cancer J 2023; 13:63. [PMID: 37105956 PMCID: PMC10140150 DOI: 10.1038/s41408-023-00840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple myeloma (MM) bone disease is a significant cause of morbidity but there is a paucity of data on the impact of malignant plasma cells on adjacent trabecular bone within the BM. Here, we characterize the proteome of trabecular bone tissue from BM biopsies of 56 patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering (SMM), newly diagnosed (NDMM), relapsed MM (RMM), and normal controls. Proteins involved in extracellular matrix (ECM) formation and immunity pathways were decreased in SMM and active MM. Among the proteins most decreased were immunoglobulins, type IV collagen, and TIMP3, suggesting increased immunoparesis and decreased ECM remodelling within trabecular bone. Proteins most increased in SMM/MM were APP (enhances osteoclast activity), ENPP1 (enhances bone mineralization), and MZB1 (required for normal plasmablast differentiation). Pathway analyses showed that proteins involved in gamma -carboxylation, a pathway implicated in osteocalcin function, osteoblast differentiation, and normal hematopoiesis, were also overexpressed in SMM/MM. This study is the first comprehensive proteomic atlas of the BM bone proteome in dysproteinemias. We identify new key proteins and pathways for MM bone disease and potentially impaired hematopoiesis, and show for the first time that gamma -carboxylation pathways are increased in the bone tissue of SMM/MM.
Collapse
Affiliation(s)
- Matthew Ho
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Division of Biomedical Statistics and Informatics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Alissa Visram
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Matthew T Drake
- Division of Endocrinology, Department of Medicine, Rochester, USA
| | | | | | | | - Dragan Jevremovic
- Department of Laboratory Medicine, Division of Hematopathology, Rochester, USA
| | - Taxiarchis Kourelis
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Jayawardena DP, Masciantonio MG, Wang L, Mehta S, DeGurse N, Pape C, Gill SE. Imbalance of Pulmonary Microvascular Endothelial Cell-Expression of Metalloproteinases and Their Endogenous Inhibitors Promotes Septic Barrier Dysfunction. Int J Mol Sci 2023; 24:ijms24097875. [PMID: 37175585 PMCID: PMC10178398 DOI: 10.3390/ijms24097875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Sepsis is a life-threatening disease characterized by excessive inflammation leading to organ dysfunction. During sepsis, pulmonary microvascular endothelial cells (PMVEC) lose barrier function associated with inter-PMVEC junction disruption. Matrix metalloproteinases (MMP) and a disintegrin and metalloproteinases (ADAM), which are regulated by tissue inhibitors of metalloproteinases (TIMPs), can cleave cell-cell junctional proteins, suggesting a role in PMVEC barrier dysfunction. We hypothesize that septic PMVEC barrier dysfunction is due to a disruption in the balance between PMVEC-specific metalloproteinases and TIMPs leading to increased metalloproteinase activity. The effects of sepsis on TIMPs and metalloproteinases were assessed ex vivo in PMVEC from healthy (sham) and septic (cecal ligation and perforation) mice, as well as in vitro in isolated PMVEC stimulated with cytomix, lipopolysaccharide (LPS), and cytomix + LPS vs. PBS. PMVEC had high basal Timp expression and lower metalloproteinase expression, and septic stimulation shifted expression in favour of metalloproteinases. Septic stimulation increased MMP13 and ADAM17 activity associated with a loss of inter-PMVEC junctional proteins and barrier dysfunction, which was rescued by treatment with metalloproteinase inhibitors. Collectively, our studies support a role for metalloproteinase-TIMP imbalance in septic PMVEC barrier dysfunction, and suggest that inhibition of specific metalloproteinases may be a therapeutic avenue for septic patients.
Collapse
Affiliation(s)
- Devika P Jayawardena
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Marcello G Masciantonio
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Natalie DeGurse
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Cynthia Pape
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
14
|
Ho M, Dasari S, Visram A, Drake M, Charlesworth C, Johnson K, Pujari G, Jevremovic D, Kourelis T. An atlas of the bone marrow bone proteome in patients with dysproteinemias. RESEARCH SQUARE 2023:rs.3.rs-2468383. [PMID: 36747663 PMCID: PMC9900982 DOI: 10.21203/rs.3.rs-2468383/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Multiple myeloma (MM) bone disease is a significant cause of morbidity but there is a paucity of data on the impact of malignant plasma cells on adjacent trabecular bone within the BM. Here, we characterize the proteome of trabecular bone tissue from BM biopsies of 56 patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering (SMM), newly diagnosed (NDMM), relapsed MM (RMM), and normal controls. Proteins involved in extracellular matrix (ECM) formation and immunity pathways were decreased in SMM and active MM. Among the proteins most decreased were immunoglobulins, type IV collagen, and TIMP3, suggesting increased immunoparesis and decreased ECM remodelling within trabecular bone. Proteins most increased in SMM/MM were APP (enhances osteoclast activity), ENPP1 (enhances bone mineralization), and MZB1 (required for normal plasmablast differentiation). Pathway analyses showed that proteins involved in gamma -carboxylation, a pathway implicated in osteocalcin function, osteoblast differentiation, and normal hematopoiesis, were also overexpressed in SMM/MM. This study is the first comprehensive proteomic atlas of the BM bone proteome in dysproteinemias. We identify new key proteins and pathways for MM bone disease and potentially impaired hematopoiesis, and show for the first time that gamma -carboxylation pathways are increased in the bone tissue of SMM/MM.
Collapse
|
15
|
Deglycosylation Increases the Aggregation and Angiogenic Properties of Mutant Tissue Inhibitor of Metalloproteinase 3 Protein: Implications for Sorsby Fundus Dystrophy. Int J Mol Sci 2022; 23:ijms232214231. [PMID: 36430707 PMCID: PMC9696176 DOI: 10.3390/ijms232214231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Sorsby fundus dystrophy (SFD) is an autosomal dominant macular disorder caused by mutations in tissue Inhibitor of the metalloproteinase-3 (TIMP3) gene with the onset of symptoms including choroidal neovascularization as early as the second decade of life. We have previously reported that wild-type TIMP3 is an endogenous angiogenesis inhibitor that inhibits Vascular Endothelial Growth Factor (VEGF)-mediated signaling in endothelial cells. In contrast, SFD-related S179C-TIMP3 when expressed in endothelial cells, does not have angiogenesis-inhibitory properties. To evaluate if this is a common feature of TIMP3 mutants associated with SFD, we examined and compared endothelial cells expressing S179C, Y191C and S204C TIMP3 mutants for their angiogenesis-inhibitory function. Western blot analysis, zymography and reverse zymography and migration assays were utilized to evaluate TIMP3 protein, Matrix Metalloproteinase (MMP) and MMP inhibitory activity, VEGF signaling and in vitro migration in endothelial cells expressing (VEGF receptor-2 (VEGFR-2) and wild-type TIMP3 or mutant-TIMP3. We demonstrate that mutant S179C, Y191C- and S204C-TIMP3 all show increased glycosylation and multimerization/aggregation of the TIMP3 protein. In addition, endothelial cells expressing TIMP3 mutations show increased angiogenic activities and elevated VEGFR-2. Removal of N-glycosylation by mutation of Asn184, the only potential N-glycosylation site in mutant TIMP3, resulted in increased aggregation of TIMP3, further upregulation of VEGFR-2, VEGF-induced phosphorylation of VEGFR2 and VEGF-mediated migration concomitant with reduced MMP inhibitory activity. These results suggest that even though mutant TIMP3 proteins are more glycosylated, post-translational deglycosylation may play a critical role in the aggregation of mutant TIMP3 and contribute to the pathogenesis of SFD. The identification of factors that might contribute to changes in the glycome of patients with SFD will be useful. Future studies will evaluate whether variations in the glycosylation of mutant TIMP3 proteins are contributing to the severity of the disease.
Collapse
|
16
|
Cuffaro D, Ciccone L, Rossello A, Nuti E, Santamaria S. Targeting Aggrecanases for Osteoarthritis Therapy: From Zinc Chelation to Exosite Inhibition. J Med Chem 2022; 65:13505-13532. [PMID: 36250680 PMCID: PMC9620172 DOI: 10.1021/acs.jmedchem.2c01177] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease. In 1999, two members of the A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) family of metalloproteinases, ADAMTS4 and ADAMTS5, or aggrecanases, were identified as the enzymes responsible for aggrecan degradation in cartilage. The first aggrecanase inhibitors targeted the active site by chelation of the catalytic zinc ion. Due to the generally disappointing performance of zinc-chelating inhibitors in preclinical and clinical studies, inhibition strategies tried to move away from the active-site zinc in order to improve selectivity. Exosite inhibitors bind to proteoglycan-binding residues present on the aggrecanase ancillary domains (called exosites). While exosite inhibitors are generally more selective than zinc-chelating inhibitors, they are still far from fulfilling their potential, partly due to a lack of structural and functional data on aggrecanase exosites. Filling this gap will inform the design of novel potent, selective aggrecanase inhibitors.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department
of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Lidia Ciccone
- Department
of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Department
of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Elisa Nuti
- Department
of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Salvatore Santamaria
- Department
of Immunology and Inflammation, Imperial
College London, Du Cane Road, London W12
0NN, U.K.
| |
Collapse
|
17
|
Chen H, Chen S, Ye H, Guo X. Protective Effects of Circulating TIMP3 on Coronary Artery Disease and Myocardial Infarction: A Mendelian Randomization Study. J Cardiovasc Dev Dis 2022; 9:jcdd9080277. [PMID: 36005441 PMCID: PMC9410056 DOI: 10.3390/jcdd9080277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP3) is a protease with high expression levels in the heart and plays an essential role in extracellular matrix turnover by maintaining equilibrium with matrix metalloproteinases. Considerable data in experimental models have demonstrated a protective role of TIMP3 in coronary artery disease (CAD) and myocardial infarction (MI). However, causality remains unexplored in population studies. Here, we sought to decipher the potential causality between TIMP3 and CAD/MI using the Mendelian randomization (MR) method. We extracted summary−level datasets for TIMP3 and CAD/MI from the genome−wide association studies performed in the KORA study and CARDIoGRAMplusC4D consortium, respectively. Seven independent SNPs were obtained as instrumental variables for TIMP3. The MR analyses were replicated using FinnGen datasets, and the main results were combined in meta−analyses. Elevated genetically predicted serum TIMP3 levels were causally associated with a lower risk of CAD [odds ratio (OR), 0.97; 95% confidence interval (CI), 0.95, 0.98; p = 5.29 × 10−5] and MI (OR, 0.96; 95% CI, 0.95, 0.98; p = 3.85 × 10−5). The association patterns persisted in the meta−analyses combining the different datasets (CAD: OR, 0.97; 95% CI, 0.96, 0.99; p = 4.37 × 10−5; MI: OR, 0.97; 95% CI, 0.96, 0.99; p = 9.96 × 10−5) and was broadly consistent across a set of complementary analyses. Evidence of heterogeneity and horizontal pleiotropy was limited for all associations considered. In conclusion, this MR study supports inverse causal associations between serum TIMP3 and the risk of CAD and MI. Strategies for raising TIMP3 levels may offer new avenues for the prevention strategies of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Heng Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Siyuan Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Hengni Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Correspondence:
| |
Collapse
|
18
|
Shughoury A, Sevgi DD, Ciulla TA. Molecular Genetic Mechanisms in Age-Related Macular Degeneration. Genes (Basel) 2022; 13:1233. [PMID: 35886016 PMCID: PMC9316037 DOI: 10.3390/genes13071233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is among the leading causes of irreversible blindness worldwide. In addition to environmental risk factors, such as tobacco use and diet, genetic background has long been established as a major risk factor for the development of AMD. However, our ability to predict disease risk and personalize treatment remains limited by our nascent understanding of the molecular mechanisms underlying AMD pathogenesis. Research into the molecular genetics of AMD over the past two decades has uncovered 52 independent gene variants and 34 independent loci that are implicated in the development of AMD, accounting for over half of the genetic risk. This research has helped delineate at least five major pathways that may be disrupted in the pathogenesis of AMD: the complement system, extracellular matrix remodeling, lipid metabolism, angiogenesis, and oxidative stress response. This review surveys our current understanding of each of these disease mechanisms, in turn, along with their associated pathogenic gene variants. Continued research into the molecular genetics of AMD holds great promise for the development of precision-targeted, personalized therapies that bring us closer to a cure for this debilitating disease.
Collapse
Affiliation(s)
- Aumer Shughoury
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
| | - Duriye Damla Sevgi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
| | - Thomas A. Ciulla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
- Clearside Biomedical, Inc., Alpharetta, GA 30005, USA
- Midwest Eye Institute, Indianapolis, IN 46290, USA
| |
Collapse
|
19
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
20
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
21
|
Lv Z, Han G, Li C. Tissue inhibitor of metalloproteinases 1 is involved in ROS-mediated inflammation via regulating matrix metalloproteinase 1 expression in the sea cucumber Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104298. [PMID: 34662683 DOI: 10.1016/j.dci.2021.104298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) serve as matrix metalloproteinase (MMP) inhibitors in the pathogenesis of inflammatory diseases in vertebrates. We cloned and characterised the TIMP1 gene from Apostichopus japonicus using RACE approaches (designated as AjTIMP1). For Vibrio splendidus-challenged sea cucumbers, the peak expression of AjTIMP1 mRNAs in coelomocytes was detected at 24 h (23.44-fold) and remained at high levels (4.01-fold) until 72 h. Similarly, AjTIMP1 expression was upregulated in primary coelomocytes exposed to 10 μg mL-1 LPS. AjTIMP1 was expressed in all tissues, and the highest expression was observed in the body wall. Functional investigation revealed an imbalance in the ratio of AjMMP1/AjTIMP1 in the skin ulceration syndrome (SUS) diseased group; it was sharply up-regulated to 3.97:1 compared with the healthy group. Furthermore, when AjTIMP1 was knocked down using small interfering RNA (siRNA-KD) to 0.4-fold, AjMMP1 and AjMMP19 were upregulated to 1.99- and 1.85-fold, respectively. AjTIMP1 siRNA-KD can promote ROS production by 26.2%, whereas AjMMP1 siRNA-KD can eliminate the increase in ROS. In inflamed tissues, collagen I and III levels were decreased by 33.1% and 33.6%, respectively, in the AjTIMP1 siRNA group at 24 h AjTIMP1 was involved in the inflammatory response by mediating ROS formation and collagen degradation.
Collapse
Affiliation(s)
- Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Guanghui Han
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
22
|
Laurent D, Small C, Lucke-Wold B, Dodd WS, Chalouhi N, Hu YC, Hosaka K, Motwani K, Martinez M, Polifka A, Koch M, Busl KM, Maciel CB, Hoh B. Understanding the genetics of intracranial aneurysms: A primer. Clin Neurol Neurosurg 2022; 212:107060. [PMID: 34863053 PMCID: PMC10116189 DOI: 10.1016/j.clineuro.2021.107060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 02/08/2023]
Abstract
The genetics of intracranial aneurysms is complex. Much work has been done looking at the extracellular matrix surrounding cerebral vasculature as well as the role of matrix metalloproteinases. This comprehensive review summarizes what is known to date about the important genetic components that predispose to aneurysm formation and critically discusses the published findings. We discuss promising pre-clinical models of aneurysm formation and subarachnoid hemorrhage, and highlight avenues for future discovery, while considering limitations in the research to date. This review will further serve as a comprehensive reference guide to understand the genetic underpinnings for aneurysm pathophysiology and act as a primer for further investigation.
Collapse
Affiliation(s)
- Dimitri Laurent
- Department of Neurosurgery, University of Florida, Gainesville, United States.
| | - Coulter Small
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - William S Dodd
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Nohra Chalouhi
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Yin C Hu
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Kartik Motwani
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Melanie Martinez
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Adam Polifka
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Matthew Koch
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Katharina M Busl
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Carolina B Maciel
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Brian Hoh
- Department of Neurosurgery, University of Florida, Gainesville, United States.
| |
Collapse
|
23
|
Pan B, Zhan X, Li J. MicroRNA-574 Impacts Granulosa Cell Estradiol Production via Targeting TIMP3 and ERK1/2 Signaling Pathway. Front Endocrinol (Lausanne) 2022; 13:852127. [PMID: 35813635 PMCID: PMC9261285 DOI: 10.3389/fendo.2022.852127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Estradiol represents a key steroid ovarian hormone that not only plays a vital role in ovarian follicular development but also is associated with many other reproductive functions. Our primary study revealed that miR-574 expression decreased in porcine granulosa cells during development from small to large follicles, and the increase of ERK1/2 phosphorylation accompanies this change. Since it has been well established that the ERK1/2 activity is tightly associated with granulosa cell functions, including ovarian hormone production, we thus further investigate if the miRNA is involved in the regulation of estradiol production in granulosa cells. We found that overexpression of miR-574 decreased phosphorylated ERK1/2 without affecting the level of ERK1/2 protein, and on the other hand, the inhibition of miR-574 increased phosphorylated ERK1/2 level (P<0.05); meanwhile, overexpression of miR-574 increased estradiol production but knockdown of miR-574 decreased estradiol level in granulosa cells. To further identify the potential mechanism involved in the miR-574 regulatory effect, in silico screening was performed and revealed a potential binding site on the 3'UTR region of the tissue inhibitor of metalloproteinase 3 (TIMP3). Our gain-, loss- of function experiments, and luciferase reporter assay confirmed that TIMP3 is indeed the target of miR-574 in granulosa cell. Furthermore, the siRNA TIMP3 knockdown resulted in decreased phosphorylated ERK1/2, and an increase in estradiol production. In contrast, the addition of recombinant TIMP3 increased phosphorylated ERK1/2 level and decreased estradiol production. In summary, our results suggest that the miR-574-TIMP3-pERK1/2 cascade may be one of the pathways by which microRNAs regulate granulosa cell estradiol production.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD, United States
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Julang Li,
| |
Collapse
|
24
|
Peeney D, Liu Y, Lazaroff C, Gurung S, Stetler-Stevenson WG. OUP accepted manuscript. Carcinogenesis 2022; 43:405-418. [PMID: 35436325 PMCID: PMC9167030 DOI: 10.1093/carcin/bgac037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as endogenous inhibitors of matrixin and adamalysin endopeptidase activity. The matrixins and adamalysins are the major mediators of extracellular matrix (ECM) turnover, thus making TIMPs important regulators of ECM structure and composition. Despite their high sequence identity and relative redundancy in inhibitory profiles, each TIMP possesses unique biological characteristics that are independent of their regulation of metalloproteinase activity. As our understanding of TIMP biology has evolved, distinct roles have been assigned to individual TIMPs in cancer progression. In this respect, data regarding TIMP2's role in cancer have borne conflicting reports of both tumor suppressor and, to a lesser extent, tumor promoter functions. TIMP2 is the most abundant TIMP family member, prevalent in normal and diseased mammalian tissues as a constitutively expressed protein. Despite its apparent stable expression, recent work highlights how TIMP2 is a cell stress-induced gene product and that its biological activity can be dictated by extracellular posttranslational modifications. Hence an understanding of TIMP2 molecular targets, and how its biological functions evolve in the progressing tumor microenvironment may reveal new therapeutic opportunities. In this review, we discuss the continually evolving functions of TIMP proteins, future perspectives in TIMP research, and the therapeutic utility of this family, with a particular focus on TIMP2.
Collapse
Affiliation(s)
- David Peeney
- To whom correspondence should be addressed. Tel: 240-858-3233;
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Carolyn Lazaroff
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
25
|
Pompili S, Latella G, Gaudio E, Sferra R, Vetuschi A. The Charming World of the Extracellular Matrix: A Dynamic and Protective Network of the Intestinal Wall. Front Med (Lausanne) 2021; 8:610189. [PMID: 33937276 PMCID: PMC8085262 DOI: 10.3389/fmed.2021.610189] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal extracellular matrix (ECM) represents a complex network of proteins that not only forms a support structure for resident cells but also interacts closely with them by modulating their phenotypes and functions. More than 300 molecules have been identified, each of them with unique biochemical properties and exclusive biological functions. ECM components not only provide a scaffold for the tissue but also afford tensile strength and limit overstretch of the organ. The ECM holds water, ensures suitable hydration of the tissue, and participates in a selective barrier to the external environment. ECM-to-cells interaction is crucial for morphogenesis and cell differentiation, proliferation, and apoptosis. The ECM is a dynamic and multifunctional structure. The ECM is constantly renewed and remodeled by coordinated action among ECM-producing cells, degrading enzymes, and their specific inhibitors. During this process, several growth factors are released in the ECM, and they, in turn, modulate the deposition of new ECM. In this review, we describe the main components and functions of intestinal ECM and we discuss their role in maintaining the structure and function of the intestinal barrier. Achieving complete knowledge of the ECM world is an important goal to understand the mechanisms leading to the onset and the progression of several intestinal diseases related to alterations in ECM remodeling.
Collapse
Affiliation(s)
- Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
26
|
Fassini D, Wilkie IC, Pozzolini M, Ferrario C, Sugni M, Rocha MS, Giovine M, Bonasoro F, Silva TH, Reis RL. Diverse and Productive Source of Biopolymer Inspiration: Marine Collagens. Biomacromolecules 2021; 22:1815-1834. [PMID: 33835787 DOI: 10.1021/acs.biomac.1c00013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Marine biodiversity is expressed through the huge variety of vertebrate and invertebrate species inhabiting intertidal to deep-sea environments. The extraordinary variety of "forms and functions" exhibited by marine animals suggests they are a promising source of bioactive molecules and provides potential inspiration for different biomimetic approaches. This diversity is familiar to biologists and has led to intensive investigation of metabolites, polysaccharides, and other compounds. However, marine collagens are less well-known. This review will provide detailed insight into the diversity of collagens present in marine species in terms of their genetics, structure, properties, and physiology. In the last part of the review the focus will be on the most common marine collagen sources and on the latest advances in the development of innovative materials exploiting, or inspired by, marine collagens.
Collapse
Affiliation(s)
- Dario Fassini
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Iain C Wilkie
- Institute of Biodiversity Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Cinzia Ferrario
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Michela Sugni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miguel S Rocha
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Francesco Bonasoro
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
27
|
Li W, Song YYY, Rao T, Yu WM, Ruan Y, Ning JZ, Yao XB, Yang SYS, Cheng F. CircCSNK1G3 up-regulates miR-181b to promote growth and metastasis via TIMP3-mediated epithelial to mesenchymal transitions in renal cell carcinoma. J Cell Mol Med 2021; 26:1729-1741. [PMID: 33560588 PMCID: PMC8918408 DOI: 10.1111/jcmm.15911] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer, with a high recurrence rate and metastasis capacity. Circular RNAs (circRNAs) have been suggested to act as the critical regulator in several diseases. This study is designed to investigate the role of circCSNK1G3 on RCC progression. We observed a highly expression of circCSNK1G3 in RCC tissues compared with normal tissues. The aberrantly circCSNK1G3 promoted the tumour growth and metastasis in RCC. In the subsequent mechanism investigation, we discovered that the tumour‐promoting effects of circCSNK1G3 were, at least partly, achieved by up‐regulating miR‐181b. Increased miR‐181b inhibits several tumour suppressor gene, including CYLD, LATS2, NDRG2 and TIMP3. Furthermore, the decreased TIMP3 leads to the enhanced epithelial to mesenchymal transition (EMT) process, thus promoting the cancer metastasis. In conclusion, we identified the oncogenic role of circCSNK1G3 in RCC progression and demonstrated the regulatory role of circCSNK1G3 induced miR‐181b expression, which leads to TIMP3‐mediated EMT process, thus resulting in tumour growth and metastasis in RCC. This study reveals the promise of circCSNK1G3 to be developed as a potential diagnostic and prognostic biomarker in the clinic. And the roles of circCSNK1G3 in cancer research deserve further investigation.
Collapse
Affiliation(s)
- Wen Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang-Yi-Yan Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei-Min Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Bing Yao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song-Yi-Sha Yang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Changes in Gene and Protein Expression of Metalloproteinase-2 and -9 and Their Inhibitors TIMP2 and TIMP3 in Different Parts of Fluoride-Exposed Rat Brain. Int J Mol Sci 2020; 22:ijms22010391. [PMID: 33396569 PMCID: PMC7796218 DOI: 10.3390/ijms22010391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Fluoride (F) exposure decreases brain receptor activity and neurotransmitter production. A recent study has shown that chronic fluoride exposure during childhood can affect cognitive function and decrease intelligence quotient, but the mechanism of this phenomenon is still incomplete. Extracellular matrix (ECM) and its enzymes are one of the key players of neuroplasticity which is essential for cognitive function development. Changes in the structure and the functioning of synapses are caused, among others, by ECM enzymes. These enzymes, especially matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), are involved in both physiological processes, such as learning or memory, and pathological processes like glia scare formation, brain tissue regeneration, brain-blood barrier damage and inflammation. Therefore, in this study, we examined the changes in gene and protein expression of MMP2, MMP9, TIMP2 and TIMP3 in the prefrontal cortex, hippocampus, striatum and cerebellum of rats (Wistar) exposed to relatively low F doses (50 mg/L in drinking water) during the pre- and neonatal period. We found that exposure to F during pre- and postnatal period causes a change in the mRNA and protein level of MMP2, MMP9, TIMP2 and TIMP3 in the prefrontal cortex, striatum, hippocampus and cerebellum. These changes may be associated with many disorders that are observed during F intoxication. MMPs/TIMPs imbalance may contribute to cognitive impairments. Moreover, our results suggest that a chronic inflammatory process and blood-brain barrier (BBB) damage occur in rats’ brains exposed to F.
Collapse
|
29
|
Frank SJ. Classical and novel GH receptor signaling pathways. Mol Cell Endocrinol 2020; 518:110999. [PMID: 32835785 PMCID: PMC7799394 DOI: 10.1016/j.mce.2020.110999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
In this review, I summarize historical and recent features of the classical pathways activated by growth hormone (GH) through the cell surface GH receptor (GHR). GHR is a cytokine receptor superfamily member that signals by activating the non-receptor tyrosine kinase, JAK2, and members of the Src family kinases. Activation of the GHR engages STATs, PI3K, and ERK pathways, among others, and details of these now-classical pathways are presented. Modulating elements, including the SOCS proteins, phosphatases, and regulated GHR metalloproteolysis, are discussed. In addition, a novel physical and functional interaction of GHR with IGF-1R is summarized and discussed in terms of its mechanisms, consequences, and physiological and therapeutic implications.
Collapse
Affiliation(s)
- Stuart J Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, 1720 2nd Avenue South, BDB 485, AL, 35294-0012, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Endocrinology Section, Medical Service, Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
30
|
Abstract
Enzymes are a class of protein that catalyze a wide range of chemical reactions, including the cleavage of specific peptide bonds. They are expressed in all cell types, play vital roles in tissue development and homeostasis, and in many diseases, such as cancer. Enzymatic activity is tightly controlled through the use of inactive pro-enzymes, endogenous inhibitors and spatial localization. Since the presence of specific enzymes is often correlated with biological processes, and these proteins can directly modify biomolecules, they are an ideal biological input for cell-responsive biomaterials. These materials include both natural and synthetic polymers, cross-linked hydrogels and self-assembled peptide nanostructures. Within these systems enzymatic activity has been used to induce biodegradation, release therapeutic agents and for disease diagnosis. As technological advancements increase our ability to quantify the expression and nanoscale organization of proteins in cells and tissues, as well as the synthesis of increasingly complex and well-defined biomaterials, enzyme-responsive biomaterials are poised to play vital roles in the future of biomedicine.
Collapse
Affiliation(s)
- E. Thomas Pashuck
- Department of Bioengineering, P.C. Rossin College of Engineering and Applied Science, Lehigh University Bethlehem Pennsylvania USA
| |
Collapse
|
31
|
Lobb DC, Doviak H, Brower GL, Romito E, O'Neill JW, Smith S, Shuman JA, Freels PD, Zellars KN, Freeburg LA, Khakoo AY, Lee T, Spinale FG. Targeted Injection of a Truncated Form of Tissue Inhibitor of Metalloproteinase 3 Alters Post-Myocardial Infarction Remodeling. J Pharmacol Exp Ther 2020; 375:296-307. [PMID: 32958629 PMCID: PMC7589956 DOI: 10.1124/jpet.120.000047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/18/2020] [Indexed: 12/28/2022] Open
Abstract
Infarct expansion can occur after myocardial infarction (MI), which leads to adverse left ventricular (LV) remodeling and failure. An imbalance between matrix metalloproteinase (MMP) induction and tissue inhibitors of MMPs (TIMPs) can accelerate this process. Past studies have shown different biologic effects of TIMP-3, which may depend upon specific domains within the TIMP-3 molecule. This study tested the hypothesis that differential effects of direct myocardial injections of either a full-length recombinant TIMP-3 (F-TIMP-3) or a truncated form encompassing the N-terminal region (N-TIMP-3) could be identified post-MI. MI was induced in pigs that were randomized for MI injections (30 mg) and received targeted injections within the MI region of F-TIMP-3 (n = 8), N-TIMP-3 (n = 9), or saline injection (MI-only, n = 11). At 14 days post-MI, LV ejection fraction fell post-MI but remained higher in both TIMP-3 groups. Tumor necrosis factor and interleukin-10 mRNA increased by over 10-fold in the MI-only and N-TIMP-3 groups but were reduced with F-TIMP-3 at this post-MI time point. Direct MI injection of either a full-length or truncated form of TIMP-3 is sufficient to favorably alter the course of post-MI remodeling. The functional and differential relevance of TIMP-3 domains has been established in vivo since the TIMP-3 constructs demonstrated different MMP/cytokine expression profiles. These translational studies identify a unique and more specific therapeutic strategy to alter the course of LV remodeling and dysfunction after MI. SIGNIFICANCE STATEMENT: Using different formulations of tissue inhibitor of matrix metalloproteinase-3 (TIMP-3), when injected into the myocardial infarction (MI) region, slowed the progression of indices of left ventricular (LV) failure, suggesting that the N terminus of TIMP-3 is sufficient to attenuate early adverse functional events post-MI. Injections of full-length recombinant TIMP-3, but not of the N-terminal region of TIMP-3, reduced relative indices of inflammation at the mRNA level, suggesting that the C-terminal region affects other biological pathways. These unique proof-of-concept studies demonstrate the feasibility of using recombinant small molecules to selectively interrupt adverse LV remodeling post-MI.
Collapse
Affiliation(s)
- David C Lobb
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Heather Doviak
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Gregory L Brower
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Eva Romito
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Jason W O'Neill
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Stephen Smith
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - James A Shuman
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Parker D Freels
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Kia N Zellars
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Lisa A Freeburg
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Aarif Y Khakoo
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - TaeWeon Lee
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| |
Collapse
|
32
|
Wolk A, Upadhyay M, Ali M, Suh J, Stoehr H, Bonilha VL, Anand-Apte B. The retinal pigment epithelium in Sorsby Fundus Dystrophy shows increased sensitivity to oxidative stress-induced degeneration. Redox Biol 2020; 37:101681. [PMID: 32828705 PMCID: PMC7767753 DOI: 10.1016/j.redox.2020.101681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Sorsby Fundus Dystrophy (SFD) is a rare inherited autosomal dominant macular degeneration caused by specific mutations in TIMP3. Patients with SFD present with pathophysiology similar to the more common Age-related Macular Degeneration (AMD) and loss of vision due to both choroidal neovascularization and geographic atrophy. Previously, it has been shown that RPE degeneration in AMD is due in part to oxidative stress. We hypothesized that similar mechanisms may be at play in SFD. The objective of this study was to evaluate whether mice carrying the S179C-Timp3 mutation, a variant commonly observed in SFD, showed increased sensitivity to oxidative stress. Antioxidant genes are increased at baseline in the RPE in SFD mouse models, but not in the retina. This suggests the presence of a pro-oxidant environment in the RPE in the presence of Timp3 mutations. To determine if the RPE of Timp3 mutant mice is more susceptible to degeneration when exposed to low levels of oxidative stress, mice were injected with low doses of sodium iodate. The RPE and photoreceptors in Timp3 mutant mice degenerated at low doses of sodium iodate, which had no effect in wildtype control mice. These studies suggest that TIMP3 mutations may result in a dysregulation of pro-oxidant-antioxidant homeostasis in the RPE, leading to RPE degeneration in SFD.
Collapse
Affiliation(s)
- Alyson Wolk
- Department of Ophthalmic Research, Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA; Cleveland Clinic Lerner College of Medicine, Dept. of Molecular Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Mala Upadhyay
- Department of Ophthalmic Research, Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Mariya Ali
- Department of Ophthalmic Research, Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jason Suh
- Department of Ophthalmic Research, Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Heidi Stoehr
- Institute of Human Genetics, University of Regensburg, 31 Universitätsstraße, Regensburg, 93053, Germany
| | - Vera L Bonilha
- Department of Ophthalmic Research, Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Dept. of Ophthalmology, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA; Cleveland Clinic Lerner College of Medicine, Dept. of Molecular Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Dept. of Ophthalmology, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
33
|
Fan D, Kassiri Z. Biology of Tissue Inhibitor of Metalloproteinase 3 (TIMP3), and Its Therapeutic Implications in Cardiovascular Pathology. Front Physiol 2020; 11:661. [PMID: 32612540 PMCID: PMC7308558 DOI: 10.3389/fphys.2020.00661] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP3) is unique among the four TIMPs due to its extracellular matrix (ECM)-binding property and broad range of inhibitory substrates that includes matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAM with thrombospondin motifs (ADAMTSs). In addition to its metalloproteinase-inhibitory function, TIMP3 can interact with proteins in the extracellular space resulting in its multifarious functions. TIMP3 mRNA has a long 3' untranslated region (UTR) which is a target for numerous microRNAs. TIMP3 levels are reduced in various cardiovascular diseases, and studies have shown that TIMP3 replenishment ameliorates the disease, suggesting a therapeutic potential for TIMP3 in cardiovascular diseases. While significant efforts have been made in identifying the effector targets of TIMP3, the regulatory mechanism for the expression of this multi-functional TIMP has been less explored. Here, we provide an overview of TIMP3 gene structure, transcriptional and post-transcriptional regulators (transcription factors and microRNAs), protein structure and partners, its role in cardiovascular pathology and its application as therapy, while also drawing reference from TIMP3 function in other diseases.
Collapse
Affiliation(s)
- Dong Fan
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
34
|
Li ZL, Wang ZJ, Wei GH, Yang Y, Wang XW. Changes in extracellular matrix in different stages of colorectal cancer and their effects on proliferation of cancer cells. World J Gastrointest Oncol 2020; 12:267-275. [PMID: 32206177 PMCID: PMC7081112 DOI: 10.4251/wjgo.v12.i3.267] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/12/2020] [Accepted: 02/07/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The extracellular matrix is the main component of the tumor microenvironment. Extracellular matrix remodels with the oncogenesis and development of tumors. Previous studies usually focused on the changes of proteins in normal colorectal tissues and colorectal cancers. Little is known about the changes in the extracellular matrix in different stages of colorectal cancer and the effects of these changes on the development of this cancer. AIM To test the changes of type I collagen, type IV collagen, matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-3 (TIMP-3) in different stages of colorectal cancer and the effects of these changes on the proliferation of cancer cells. METHODS The extracellular matrix from various stages of colorectal cancer and normal colon tissue was obtained by using acellular technology. We used proteomics to detect the differential expression of proteins between normal colon tissues and colorectal cancer tissues, and then we used Western blot to observe their expression in each stage of colorectal cancer and in normal colon tissue. By co-culturing the extracellular matrix and HT29 colon cancer cells in vivo and in vitro, we tested the cancer cell proliferation rate in vitro by methyl thiazolyl tetrazolium (MTT) assay and in vivo by measuring the tumor volume. RESULTS The expression of type I collagen and MMP-2 increased with increased tumor stage. The expression of MMP-9 was higher in colorectal cancer tissues and was highest in stage III cancer. The expression of type IV collagen and TIMP-3 decreased with increased tumor stage. The proliferation rate of cancer cells in the extracellular matrix of colorectal cancer was higher than that in the extracellular matrix of the normal colon. CONCLUSION These data suggest that the extracellular matrix structure and composition become disorganized during the development of tumors, which is more conducive for the growth of cancer cells.
Collapse
Affiliation(s)
- Zhu-Lin Li
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhen-Jun Wang
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Guang-Hui Wei
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yong Yang
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiao-Wan Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
35
|
Wolk A, Hatipoglu D, Cutler A, Ali M, Bell L, Hua Qi J, Singh R, Batoki J, Karle L, Bonilha VL, Wessely O, Stoehr H, Hascall V, Anand-Apte B. Role of FGF and Hyaluronan in Choroidal Neovascularization in Sorsby Fundus Dystrophy. Cells 2020; 9:E608. [PMID: 32143276 PMCID: PMC7140456 DOI: 10.3390/cells9030608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022] Open
Abstract
Sorsby's fundus dystrophy (SFD) is an inherited blinding disorder caused by mutations in the tissue inhibitor of metalloproteinase-3 (TIMP3) gene. The SFD pathology of macular degeneration with subretinal deposits and choroidal neovascularization (CNV) closely resembles that of the more common age-related macular degeneration (AMD). The objective of this study was to gain further insight into the molecular mechanism(s) by which mutant TIMP3 induces CNV. In this study we demonstrate that hyaluronan (HA), a large glycosaminoglycan, is elevated in the plasma and retinal pigment epithelium (RPE)/choroid of patients with AMD. Mice carrying the S179C-TIMP3 mutation also showed increased plasma levels of HA as well as accumulation of HA around the RPE in the retina. Human RPE cells expressing the S179C-TIMP3 mutation accumulated HA apically, intracellularly and basally when cultured long-term compared with cells expressing wildtype TIMP3. We recently reported that RPE cells carrying the S179C-TIMP3 mutation have the propensity to induce angiogenesis via basic fibroblast growth factor (FGF-2). We now demonstrate that FGF-2 induces accumulation of HA in RPE cells. These results suggest that the TIMP3-MMP-FGF-2-HA axis may have an important role in the pathogenesis of CNV in SFD and possibly AMD.
Collapse
Affiliation(s)
- Alyson Wolk
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
- Cleveland Clinic Lerner College of Medicine, Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA;
| | - Dilara Hatipoglu
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Alecia Cutler
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Mariya Ali
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Lestella Bell
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Department of Ophthalmology, Cleveland, OH 44195, USA
| | - Jian Hua Qi
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Rupesh Singh
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Julia Batoki
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Laura Karle
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Vera L. Bonilha
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
- Cleveland Clinic Lerner College of Medicine, Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA;
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Department of Ophthalmology, Cleveland, OH 44195, USA
| | - Oliver Wessely
- Cleveland Clinic Lerner College of Medicine, Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA;
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Heidi Stoehr
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany;
| | - Vincent Hascall
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Bela Anand-Apte
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
- Cleveland Clinic Lerner College of Medicine, Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA;
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Department of Ophthalmology, Cleveland, OH 44195, USA
| |
Collapse
|
36
|
Eckfeld C, Häußler D, Schoeps B, Hermann CD, Krüger A. Functional disparities within the TIMP family in cancer: hints from molecular divergence. Cancer Metastasis Rev 2020; 38:469-481. [PMID: 31529339 DOI: 10.1007/s10555-019-09812-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The members of the tissue inhibitor of metalloproteinase (TIMP) family (TIMP-1, 2, 3, 4) are prominently appreciated as natural inhibitors of cancer-promoting metalloproteinases. However, clinical and recent functional studies indicate that some of them correlate with bad prognosis and contribute to the progression of cancer and metastasis, pointing towards mechanisms beyond inhibition of cancer-promoting proteases. Indeed, it is increasingly recognized that TIMPs are multi-functional proteins mediating a variety of cellular effects including direct cell signaling. Our aim was to provide comprehensive information towards a better appreciation and understanding of the biological heterogeneity and complexity of the TIMPs in cancer. Comparison of all four members revealed distinct cancer-associated expression patterns and distinct prognostic impact including a clear correlation of TIMP-1 with bad prognosis for almost all cancer types. For the first time, we present the interactomes of all TIMPs regarding overlapping and non-overlapping interaction partners. Interestingly, the overlap was maximal for metalloproteinases (e.g., matrix metalloproteinase 1, 2, 3, 9) and decreased for non-protease molecules, especially cell surface receptors (e.g., CD63, overlapping only for TIMP-1 and 4; IGF-1R unique for TIMP-2; VEGFR2 unique for TIMP-3). Finally, we attempted to identify and summarize experimental evidence for common and unique structural traits of the four TIMPs on the basis of amino acid sequence and protein folding, which account for functional disparities. Altogether, the four TIMPs have to be appreciated as molecules with commonalities, but, more importantly, functional disparities, which need to be investigated further in the future, since those determine their distinct roles in cancer and metastasis.
Collapse
Affiliation(s)
- Celina Eckfeld
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Daniel Häußler
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Benjamin Schoeps
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Chris D Hermann
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Achim Krüger
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany.
| |
Collapse
|
37
|
Rai GP, Baird SK. Tissue inhibitor of matrix metalloproteinase-3 has both anti-metastatic and anti-tumourigenic properties. Clin Exp Metastasis 2020; 37:69-76. [PMID: 31894441 DOI: 10.1007/s10585-019-10017-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
TIMP-3 is one of four tissue inhibitors of matrix metalloproteinases, the endogenous inhibitors of the matrix metalloproteinase enzymes. These enzymes have an important role in metastasis, in the invasion of cancer cells through the basement membrane and extracellular matrix. TIMP-1, -2 and -4 both promote and inhibit tumour development, in a context-dependent manner, however TIMP-3 is consistently anti-tumourigenic. TIMP-3 is also the only insoluble member of the family, being either bound to the extracellular matrix or the low density lipoprotein-related protein-1, through which it can be endocytosed. Levels of TIMP-3 have also been shown to be regulated by micro RNAs and promoter hypermethylation, resulting in frequent silencing in many tumour types, to the extent that its expression has been suggested as a prognostic marker in some tumours, being associated with lower levels of metastasis, or better response to treatment. TIMP-3 has been shown to have anti-metastatic effects, both through inhibition of matrix metalloproteinases and ADAM family members and downregulation of angiogenesis. This occurs via interactions with receptors including VEGF, via modulation of signaling pathways and due to protease inhibition. TIMP-3 has also been shown to reduce tumour growth rate, most often by inducing apoptosis by stabilisation of death receptors. A number of successful mechanisms of delivery of TIMP-3 to tumour or inflammatory sites have been investigated in vitro or in animal studies. It may therefore be worthwhile further exploring the use of TIMP-3 as a potential anti-metastatic or anti-tumorigenic therapy for many tumour types.
Collapse
Affiliation(s)
- Geetanjali P Rai
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Sarah K Baird
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
38
|
Wang RM, Christman KL. Injectable biopolymers in the treatment of heart failure and cardiac remodeling. EMERGING TECHNOLOGIES FOR HEART DISEASES 2020:333-355. [DOI: 10.1016/b978-0-12-813706-2.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
39
|
Dewing JM, Carare RO, Lotery AJ, Ratnayaka JA. The Diverse Roles of TIMP-3: Insights into Degenerative Diseases of the Senescent Retina and Brain. Cells 2019; 9:cells9010039. [PMID: 31877820 PMCID: PMC7017234 DOI: 10.3390/cells9010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a component of the extracellular environment, where it mediates diverse processes including matrix regulation/turnover, inflammation and angiogenesis. Rare TIMP-3 risk alleles and mutations are directly linked with retinopathies such as age-related macular degeneration (AMD) and Sorsby fundus dystrophy, and potentially, through indirect mechanisms, with Alzheimer's disease. Insights into TIMP-3 activities may be gleaned from studying Sorsby-linked mutations. However, recent findings do not fully support the prevailing hypothesis that a gain of function through the dimerisation of mutated TIMP-3 is responsible for retinopathy. Findings from Alzheimer's patients suggest a hitherto poorly studied relationship between TIMP-3 and the Alzheimer's-linked amyloid-beta (A) proteins that warrant further scrutiny. This may also have implications for understanding AMD as aged/diseased retinae contain high levels of A. Findings from TIMP-3 knockout and mutant knock-in mice have not led to new treatments, particularly as the latter does not satisfactorily recapitulate the Sorsby phenotype. However, recent advances in stem cell and in vitro approaches offer novel insights into understanding TIMP-3 pathology in the retina-brain axis, which has so far not been collectively examined. We propose that TIMP-3 activities could extend beyond its hitherto supposed functions to cause age-related changes and disease in these organs.
Collapse
Affiliation(s)
- Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Roxana O. Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Correspondence: ; Tel.: +44-238120-8183
| |
Collapse
|
40
|
Huang HL, Liu YM, Sung TY, Huang TC, Cheng YW, Liou JP, Pan SL. TIMP3 expression associates with prognosis in colorectal cancer and its novel arylsulfonamide inducer, MPT0B390, inhibits tumor growth, metastasis and angiogenesis. Theranostics 2019; 9:6676-6689. [PMID: 31588243 PMCID: PMC6771239 DOI: 10.7150/thno.34020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Tissue inhibitors of metalloproteinase 3 (TIMP3) are a major endogenous inhibitor of matrix metalloproteinase (MMPs) that inhibit tumor growth, invasion, metastasis and angiogenesis. In this study, we found that TIMP3 expression is associated with positive prognosis of colorectal cancer (CRC) clinicopathologically. Therefore, we developed a series of arylsulfonamide derivatives as TIMP3 inducers in order to define potential colorectal cancer therapeutic agent. Among these, MPT0B390 was selected for anti-tumor, anti-metastasis, and anti-angiogenesis property determination. Methods: The relationship between TIMP3 expression and clinical pathological features in colorectal patients and cell lines were determined by immunohistochemistry, bioinformatics analysis and western blotting. The anti-tumor function was validated by using MTT, apoptosis pathway detection and in vivo xenograft model for tumor growth inhibition determination. The anti-metastatic function was validated using a transwell migration assay, and using in vivo lung metastasis and liver metastasis models. The mechanism of MPT0B390-induced TIMP3 expression was further tested using qPCR and Chromatin IP assay. The anti-angiogenesis function was examined by using transwell migration assay, and in vivo Matrigel plug assay. Results: After screening candidate compounds, we identified MPT0B390 as an effective inducer of TIMP3. We showed that MPT0B390 induces TIMP3 expression significantly and inhibits CRC cell growth in vitro and in vivo. By inducing TIMP3 expression, MPT0B390 can also exert its anti-metastasis effect to inhibit CRC cell migration and invasion and downregulates migration markers such as uPA, uPAR, and c-Met. Subsequent Chromatin immunoprecipitation assay revealed that MPT0B390 can significantly inhibit EZH2 expression as well as its binding to TIMP3 promoter region to regulate TIMP3 induction. In addition to the anti-tumor and anti-metastasis capability, MPT0B390 can also induce TIMP3 expression in endothelial cells to inhibit tumor angiogenesis. Conclusion: These data suggest the potential therapeutic applications of the TIMP3 inducer, MPT0B390, for colorectal cancer treatment.
Collapse
|
41
|
Logue T, Lizotte-Waniewski M, Brew K. Thermodynamic profiles of the interactions of suramin, chondroitin sulfate, and pentosan polysulfate with the inhibitory domain of TIMP-3. FEBS Lett 2019; 594:94-103. [PMID: 31359422 DOI: 10.1002/1873-3468.13556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 01/01/2023]
Abstract
Extracellular levels of soluble TIMP-3 are low, reflecting its binding by extracellular matrix (ECM) components including sulfated glycosaminoglycans (SGAGs) and endocytosis via low density lipoprotein receptor-related protein 1. Since TIMP-3 inhibits ECM degradation, the ability of SGAGs to elevate extracellular TIMP-3 is significant for osteoarthritis treatment. Previous studies of such interactions have utilized immobilized TIMP-3 or ligands. Here, we report the thermodynamics of the interactions of the sGAG-binding N-domain of TIMP-3 with chondroitin sulfate, pentosan polysulfate, and suramin in solution using isothermal titration calorimetry. All three interactions are driven by a favorable negative enthalpy change combined with an unfavorable decrease in entropy. The heat capacity changes (ΔCp ) for all of the interactions are zero, indicating an insignificant contribution from hydrophobic interactions.
Collapse
Affiliation(s)
- Timothy Logue
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Michelle Lizotte-Waniewski
- Integrated Medical Sciences Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Keith Brew
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| |
Collapse
|
42
|
Su CW, Lin CW, Yang WE, Yang SF. TIMP-3 as a therapeutic target for cancer. Ther Adv Med Oncol 2019; 11:1758835919864247. [PMID: 31360238 PMCID: PMC6637839 DOI: 10.1177/1758835919864247] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3), a secreted glycoprotein, plays an important role in carcinogenesis. It can bind to many proteinases to suppress their activity and thus protect the extracellular matrix from degradation. TIMP-3 may have many anticancer properties, including apoptosis induction and antiproliferative, antiangiogenic, and antimetastatic activities. This review summarizes the structure, proteinase inhibition ability, genetic and epigenetic regulation, cancer therapy potential, and contribution to cancer development of TIMP-3. Furthermore, in this review we discuss its potential as a biomarker for predicting cancer progression and the current state of drugs that target TIMP-3, either alone or in combination with clinical treatment. In conclusion, TIMP-3 can be a biomarker of cancer and a potential target for cancer therapy. This review article can serve as a basis to understand how to modulate TIMP-3 levels as a drug target of cancers.
Collapse
Affiliation(s)
- Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung
| | - Wei-En Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, 110 Chien-Kuo N. Road, Section 1, Taichung 402
| |
Collapse
|
43
|
The Role of Tissue Inhibitors of Metalloproteinases in Organ Development and Regulation of ADAMTS Family Metalloproteinases in Caenorhabditis elegans. Genetics 2019; 212:523-535. [PMID: 30992386 DOI: 10.1534/genetics.119.301795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 01/05/2023] Open
Abstract
Remodeling of the extracellular matrix supports tissue and organ development, by regulating cellular morphology and tissue integrity. However, proper extracellular matrix remodeling requires spatiotemporal regulation of extracellular metalloproteinase activity. Members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family, including MIG-17 and GON-1, are evolutionarily conserved, secreted, zinc-requiring metalloproteinases. Although these proteases are required for extracellular matrix remodeling during gonadogenesis in Caenorhabditis elegans, their in vivo regulatory mechanisms remain to be delineated. Therefore, we focused on the C. elegans tissue inhibitors of metalloproteinases (TIMPs), TIMP-1 and CRI-2 Analysis of the transcription and translation products for GFP/Venus fusions, with TIMP-1 or CRI-2, indicated that these inhibitors were secreted and localized to the basement membrane of gonads and the plasma membrane of germ cells. A timp-1 deletion mutant exhibited gonadal growth defects and sterility, and the phenotypes of this mutant were fully rescued by a TIMP-1::Venus construct, but not by a TIMP-1(C21S)::Venus mutant construct, in which the inhibitor coding sequence had been mutated. Moreover, genetic data suggested that TIMP-1 negatively regulates proteolysis of the α1 chain of type IV collagen. We also found that the loss-of-function observed for the mutants timp-1 and cri-2 involves a partial suppression of gonadal defects found for the mutants mig-17/ADAMTS and gon-1/ADAMTS, and that this suppression was canceled upon overexpression of gon-1 or mig-17, respectively. Based on these results, we propose that both TIMP-1 and CRI-2 act as inhibitors of MIG-17 and GON-1 ADAMTSs to regulate gonad development in a noncell-autonomous manner.
Collapse
|
44
|
Ruiz-Gómez G, Vogel S, Möller S, Pisabarro MT, Hempel U. Glycosaminoglycans influence enzyme activity of MMP2 and MMP2/TIMP3 complex formation - Insights at cellular and molecular level. Sci Rep 2019; 9:4905. [PMID: 30894640 PMCID: PMC6426840 DOI: 10.1038/s41598-019-41355-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/08/2019] [Indexed: 01/01/2023] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic network constantly remodeled by a fine-tuned protein formation and degradation balance. Matrix metalloproteinases (MMPs) constitute key orchestrators of ECM degradation. Their activity is controlled by tissue inhibitors of metalloproteinases (TIMPs) and glycosaminoglycans (GAG). Here, we investigated the molecular interplay of MMP2 with different GAG (chondroitin sulfate, hyaluronan (HA), sulfated hyaluronan (SH) and heparin (HE)) and the impact of GAG on MMP2/TIMP3 complex formation using in vitro-experiments with human bone marrow stromal cells, in silico docking and molecular dynamics simulations. SH and HE influenced MMP2 and TIMP3 protein levels and MMP2 activity. Only SH supported the alignment of both proteins in fibrillar-like structures, which, based on our molecular models, would be due to a stabilization of the interactions between MMP2-hemopexin domain and TIMP3-C-terminal tail. Dependent on the temporal sequential order in which the final ternary complex was formed, our models indicated that SH and HA can affect TIMP3-induced MMP2 inhibition through precluding or supporting their interactions, respectively. Our combined experimental and theoretical approach provides valuable new insights on how GAG interfere with MMP2 activity and MMP2/TIMP3 complex formation. The results obtained evidence GAG as promising molecules for fine-balanced intervention of ECM remodeling.
Collapse
Affiliation(s)
- Gloria Ruiz-Gómez
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Sarah Vogel
- Medical Department, Institute of Physiological Chemistry, TU Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V., Prüssingstraße 27 B, 07745, Jena, Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Ute Hempel
- Medical Department, Institute of Physiological Chemistry, TU Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.
| |
Collapse
|
45
|
Schubert K, Collins LE, Green P, Nagase H, Troeberg L. LRP1 Controls TNF Release via the TIMP-3/ADAM17 Axis in Endotoxin-Activated Macrophages. THE JOURNAL OF IMMUNOLOGY 2019; 202:1501-1509. [PMID: 30659107 DOI: 10.4049/jimmunol.1800834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
The metalloproteinase ADAM17 plays a pivotal role in initiating inflammation by releasing TNF from its precursor. Prolonged TNF release causes many chronic inflammatory diseases, indicating that tight regulation of ADAM17 activity is essential for resolution of inflammation. In this study, we report that the endogenous ADAM17 inhibitor TIMP-3 inhibits ADAM17 activity only when it is bound to the cell surface and that cell surface levels of TIMP-3 in endotoxin-activated human macrophages are dynamically controlled by the endocytic receptor LRP1. Pharmacological blockade of LRP1 inhibited endocytic clearance of TIMP-3, leading to an increase in cell surface levels of the inhibitor that blocked TNF release. Following LPS stimulation, TIMP-3 levels on the surface of macrophages increased 4-fold within 4 h and continued to accumulate at 6 h, before a return to baseline levels at 8 h. This dynamic regulation of cell surface TIMP-3 levels was independent of changes in TIMP-3 mRNA levels, but correlated with shedding of LRP1. These results shed light on the basic mechanisms that maintain a regulated inflammatory response and ensure its timely resolution.
Collapse
Affiliation(s)
- Kristin Schubert
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Laura E Collins
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Patricia Green
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Hideaki Nagase
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Linda Troeberg
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
46
|
Chen Y, Aiken A, Saw S, Weiss A, Fang H, Khokha R. TIMP Loss Activates Metalloproteinase-TNFα-DKK1 Axis To Compromise Wnt Signaling and Bone Mass. J Bone Miner Res 2019; 34:182-194. [PMID: 30216540 DOI: 10.1002/jbmr.3585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 12/17/2022]
Abstract
Deregulated proteolysis invariably underlies most human diseases including bone pathologies. Metalloproteinases constitute the largest of the five protease families, and the metzincin metalloproteinases are inhibited by the four tissue inhibitors of metalloproteinase called TIMPs. We hypothesized that Timp genes are essential for skeletal homeostasis. We bred individual Timp knockout mice to generate unique mouse models, the quadruple Timp null strain (QT) as well as mice harboring only a single Timp3 allele (QT3+/- ). QT mice are grossly smaller and exhibit a dramatic reduction of trabeculae in long bones by μCT imaging with a corresponding increase in metalloproteinase activity. At the cellular level, Timp deficiency compromised differentiation markers, matrix deposition and mineralization in neonatal osteoblasts from calvariae, as well as the fibroblastic colony-forming unit (CFU-F) capacity of bone marrow-derived stromal cells. In contrast, we observed that osteoclasts were overactive in the Timp null state, consistent with the noted excessive bone resorption of QT bones. Immunohistochemistry (IHC) and immunofluorescence (IF) analyses of bone sections revealed higher Cathepsin K and RANKL signals upon Timp loss. Seeking the molecular mechanism, we identified abnormal TNFα bioactivity to be a central event in Timp-deficient mice. Specifically, TNFα triggered induction of the Wnt signaling inhibitor Dkk1 in the osteoblasts at the mRNA and protein levels, with a simultaneous increase in RANKL. Neutralizing TNFα antibody was capable of rescuing the induction of Dkk1 as well as RANKL. Therefore, the generation of novel Timp-deficient systems allowed us to uncover the essential and collective function of TIMP proteins in mammalian long-bone homeostasis. Moreover, our study discovers a functional TIMP/metalloproteinase-TNFα-Dkk1/RANKL nexus for optimal control of the bone microenvironment, which dictates coexistence of the osteoblast and osteoclast lineages. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yan Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Alison Aiken
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sanjay Saw
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ashley Weiss
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hui Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
47
|
Zheng Z, He X, Zhu M, Jin X, Li C, Zhu F, Lv C, Li W, Hu X, Wang W, Wang F. Tissue inhibitor of the metalloproteinases-3 gene polymorphisms and carotid plaque susceptibility in the Han Chinese population. Int J Neurosci 2018; 128:920-927. [PMID: 29498555 DOI: 10.1080/00207454.2018.1436544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tissue inhibitor of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases that are involved in normal cellular processes and in the development and progression of atherosclerosis. Our purpose was to evaluate the polymorphisms of the TIMP-3 genes for their associations with carotid plaques or with serum protein levels in the Han Chinese population. Two promoter variants, -915A/G (rs2234921) and -1296T/C (rs9619311), were genotyped in 548 subjects with no plaques, 462 subjects with echogenic plaques, and 427 subjects with mixture plaques. The serum TIMP-3 levels were measured using an enzyme-linked immunosorbent assay (ELISA). There was a strong linkage disequilibrium between -1296T/C and -915A/G (D' = 1.0, r2 = 0.991). The individuals with the genotype (TC+CC) were 1.8 times more likely to have mixture plaques than the individuals with the TT genotype (P = 0.001, OR: 1.836, 95%CI: 1.269-2.665). The frequency of the C allele in the mixture plaque group was significantly higher than in the no plaque group (P = 0.009, CI: 1.119-2.187). We observed a significant elevation of the TIMP-3 levels in the serum of patients affected with mixture plaques compared to those with no plaques (P = 0.013). The current data suggest that genetic variation in the TIMP-3 genes may contribute to individual differences in mixture plaque susceptibility in the Han Chinese population.
Collapse
Affiliation(s)
- Zhou Zheng
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Xinwei He
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Min Zhu
- b Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College , Medical Research Center , Taizhou , Zhejiang , China
| | - Xiaoping Jin
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Cai Li
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Feng Zhu
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Chenling Lv
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Weiling Li
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Xiaofei Hu
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Wanfeng Wang
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Feng Wang
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| |
Collapse
|
48
|
The Activity of Matrix Metalloproteinases (MMP-2, MMP-9) and Their Tissue Inhibitors (TIMP-1, TIMP-3) in the Cerebral Cortex and Hippocampus in Experimental Acanthamoebiasis. Int J Mol Sci 2018; 19:ijms19124128. [PMID: 30572657 PMCID: PMC6321078 DOI: 10.3390/ijms19124128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
The pathological process occurring within the central nervous system (CNS) as a result of the infection by Acanthamoeba spp. is not fully understood. Therefore, the aim of this study was to determine whether Acanthamoeba spp. may affect the levels of matrix metalloproteinases (MMP-2,-9), their tissue inhibitors (TIMP-1,-3) and MMP-9/TIMP-1, MMP-2/TIMP-3 ratios in the cerebral cortex and hippocampus, in relation to the host’s immunological status. Our results showed that Acanthamoeba spp. infection can change the levels of MMP and TIMP in the CNS and may be amenable targets for limiting amoebic encephalitis. The increase in the activity of matrix metalloproteinases during acanthamoebiasis may be primarily the result of inflammation process, probably an increased activity of proteolytic processes, but also (to a lesser extent) a defense mechanism preventing the processes of neurodegeneration.
Collapse
|
49
|
Mechanisms of receptor shedding in platelets. Blood 2018; 132:2535-2545. [DOI: 10.1182/blood-2018-03-742668] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
The ability to upregulate and downregulate surface-exposed proteins and receptors is a powerful process that allows a cell to instantly respond to its microenvironment. In particular, mobile cells in the bloodstream must rapidly react to conditions where infection or inflammation are detected, and become proadhesive, phagocytic, and/or procoagulant. Platelets are one such blood cell that must rapidly acquire and manage proadhesive and procoagulant properties in order to execute their primary function in hemostasis. The regulation of platelet membrane properties is achieved via several mechanisms, one of which involves the controlled metalloproteolytic release of adhesion receptors and other proteins from the platelet surface. Proteolysis effectively lowers receptor density and reduces the reactivity of platelets, and is a mechanism to control robust platelet activation. Recent research has also established clear links between levels of platelet receptors and platelet lifespan. In this review, we will discuss the current knowledge of metalloproteolytic receptor regulation in the vasculature with emphasis on the platelet receptor system to highlight how receptor density can influence both platelet function and platelet survival.
Collapse
|
50
|
MacDonald A, Priess M, Curran J, Guess J, Farutin V, Oosterom I, Chu CL, Cochran E, Zhang L, Getchell K, Lolkema M, Schultes BC, Krause S. Necuparanib, A Multitargeting Heparan Sulfate Mimetic, Targets Tumor and Stromal Compartments in Pancreatic Cancer. Mol Cancer Ther 2018; 18:245-256. [PMID: 30401693 DOI: 10.1158/1535-7163.mct-18-0417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/06/2018] [Accepted: 11/02/2018] [Indexed: 11/16/2022]
Abstract
Pancreatic cancer has an abysmal 5-year survival rate of 8%, making it a deadly disease with a need for novel therapies. Here we describe a multitargeting heparin-based mimetic, necuparanib, and its antitumor activity in both in vitro and in vivo models of pancreatic cancer. Necuparanib reduced tumor cell proliferation and invasion in a three-dimensional (3D) culture model; in vivo, it extended survival and reduced metastasis. Furthermore, proteomic analysis demonstrated that necuparanib altered the expression levels of multiple proteins involved in cancer-driving pathways including organ development, angiogenesis, proliferation, genomic stability, cellular energetics, and invasion and metastasis. One protein family known to be involved in invasion and metastasis and altered by necuparanib treatment was the matrix metalloprotease (MMP) family. Necuparanib reduced metalloproteinase 1 (MMP1) and increased tissue inhibitor of metalloproteinase 3 (TIMP3) protein levels and was found to increase RNA expression of TIMP3. MMP enzymatic activity was also found to be reduced in the 3D model. Finally, we confirmed necuparanib's in vivo activity by analyzing plasma samples of patients enrolled in a phase I/II study in patients with metastatic pancreatic cancer; treatment with necuparanib plus standard of care significantly increased TIMP3 plasma protein levels. Together, these results demonstrate necuparanib acts as a broad multitargeting therapeutic with in vitro and in vivo anti-invasive and antimetastatic activity.
Collapse
Affiliation(s)
| | | | | | - Jamey Guess
- Momenta Pharmaceuticals, Inc. Cambridge, Massachusetts
| | | | - Ilse Oosterom
- Erasmus Medical Center Cancer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Chia Lin Chu
- Momenta Pharmaceuticals, Inc. Cambridge, Massachusetts
| | | | - Lynn Zhang
- Momenta Pharmaceuticals, Inc. Cambridge, Massachusetts
| | | | - Martijn Lolkema
- Erasmus Medical Center Cancer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Silva Krause
- Momenta Pharmaceuticals, Inc. Cambridge, Massachusetts.
| |
Collapse
|