1
|
Lu K, Yan X, Wei L, Huang B, Jiang Y, Weng Z, Wang L, He X, Wang Q. Molecular characterization of the SP3a gene, a negative regulator of viral infection in the orange-spotted grouper, Epinephelus coioides. Gene 2024; 928:148809. [PMID: 39089532 DOI: 10.1016/j.gene.2024.148809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
SP3 (specificity protein 3) is a transcription factor characterized by three conserved Cys2His2 zinc finger motifs that exert a transregulatory effect by binding to GC boxes, either upregulating or downregulating multiple genes or by co-regulating gene expression in coordination with other proteins. SP3 potentially regulates a series of processes, such as the cell cycle, growth, metabolic pathways, and apoptosis, and plays an important role in antiviral effect. The function of sp3 in fish is poorly understood. In this study, the Sp3a open reading frame was cloned from the orange-spotted grouper, Epinephelus coioides. The full-length open reading frame of Sp3a was 2034 bp, encoding 677 amino acids, with a predicted molecular weight of 72.34 kDa and an isoelectric point of 5.05. Phylogenetically, Sp3a in Epinephelus coioides was the most closely related to Sp3a in the Malabar grouper, Epinephelus malabaricus. RT-qPCR revealed ubiquitous expression of Sp3a in all examined grouper tissues, with no significant differences in expression levels among tissues. A eukaryotic expression vector, pEGFP-Sp3a, was constructed and transfected into grouper spleen (GS) cells. Subcellular localization of Sp3a was observed using an inverted fluorescence microscope. When Spa3 was overexpressed in GS cells, the expression of orange-spotted grouper nerve necrosis virus (RGNNV) genes (CP and RdRp) decreased significantly, indicating that Sp3a significantly inhibited RGNNV replication. siRNA inhibition of Sp3a accelerated the intracellular replication of RGNNV, implying the antiviral effect of Sp3a. Conclusively, our findings contribute to further research on the antiviral capabilities of Sp3a in grouper and other fish. Therefore, our research has potential implications on the development of the aquaculture industry.
Collapse
Affiliation(s)
- Keyu Lu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xu Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Liyun Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Buci Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ziyang Weng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Longxin Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xuehong He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511457, Guangzhou, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China.
| |
Collapse
|
2
|
Zhu W, Dong X, Luo S, Guo S, Zhou W, Song W. Transcriptional activation of CSTB gene expression by transcription factor Sp3. Biochem Biophys Res Commun 2023; 649:71-78. [PMID: 36745972 DOI: 10.1016/j.bbrc.2023.01.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
CSTB has been reported to be associated with the pathogenesis of many malignant tumors, especially hepatocellular carcinoma (HCC). However, how the expression of this gene is regulated is largely unknown. We initially cloned and analyzed the promoter region of the CSTB gene by luciferase assay and the Sp3 binding site (CCCCGCCCCGCG) was found in it. The results of electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) experiments verified that the transcription factor, Sp3 could bind to the " CCCCGCCCCGCG ″ site of the CSTB gene promoter. We showed that the overexpression of Sp3 significantly increased the endogenous mRNA and protein expression levels of CSTB, whereas knockdown of Sp3 decreased the mRNA and protein expression levels according to quantitative real-time PCR (qRT‒PCR) and western blotting. In conclusion, CSTB gene expression is closely regulated by transcription factor Sp3, which may be a potential mechanism for the dysregulation of CSTB expression in HCC.
Collapse
Affiliation(s)
- Weiyi Zhu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyue Luo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325001, China.
| |
Collapse
|
3
|
TGF-β1-driven reduction of cytoglobin leads to oxidative DNA damage in stellate cells during non-alcoholic steatohepatitis. J Hepatol 2020; 73:882-895. [PMID: 32330605 DOI: 10.1016/j.jhep.2020.03.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species. The molecular role of CYGB in human hepatic stellate cell (HSC) activation and human liver disease remains uncharacterised. The aim of this study was to reveal the mechanism by which the TGF-β1/SMAD2 pathway regulates the human CYGB promoter and the pathophysiological function of CYGB in human non-alcoholic steatohepatitis (NASH). METHODS Immunohistochemical staining was performed using human NASH biopsy specimens. Molecular and biochemical analyses were performed by western blotting, quantitative PCR, and luciferase and immunoprecipitation assays. Hydroxyl radicals (•OH) and oxidative DNA damage were measured using an •OH-detectable probe and 8-hydroxy-2'-deoxyguanosine (8-OHdG) ELISA. RESULTS In culture, TGF-β1-pretreated human HSCs exhibited lower CYGB levels - together with increased NADPH oxidase 4 (NOX4) expression - and were primed for H2O2-triggered •OH production and 8-OHdG generation; overexpression of human CYGB in human HSCs reversed these effects. Electron spin resonance demonstrated the direct •OH scavenging activity of recombinant human CYGB. Mechanistically, pSMAD2 reduced CYGB transcription by recruiting the M1 repressor isoform of SP3 to the human CYGB promoter at nucleotide positions +2-+13 from the transcription start site. The same repression did not occur on the mouse Cygb promoter. TGF-β1/SMAD3 mediated αSMA and collagen expression. Consistent with observations in cultured human HSCs, CYGB expression was negligible, but 8-OHdG was abundant, in activated αSMA+pSMAD2+- and αSMA+NOX4+-positive hepatic stellate cells from patients with NASH and advanced fibrosis. CONCLUSIONS Downregulation of CYGB by the TGF-β1/pSMAD2/SP3-M1 pathway brings about •OH-dependent oxidative DNA damage in activated hepatic stellate cells from patients with NASH. LAY SUMMARY Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species and protects cells from oxidative DNA damage. Herein, we show that the cytokine TGF-β1 downregulates human CYGB expression. This leads to oxidative DNA damage in activated hepatic stellate cells. Our findings provide new insights into the relationship between CYGB expression and the pathophysiology of fibrosis in patients with non-alcoholic steatohepatitis.
Collapse
|
4
|
De S, Lindner DJ, Coleman CJ, Wildey G, Dowlati A, Stark GR. The FACT inhibitor CBL0137 Synergizes with Cisplatin in Small-Cell Lung Cancer by Increasing NOTCH1 Expression and Targeting Tumor-Initiating Cells. Cancer Res 2018; 78:2396-2406. [PMID: 29440145 DOI: 10.1158/0008-5472.can-17-1920] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/05/2017] [Accepted: 02/09/2018] [Indexed: 11/16/2022]
Abstract
Traditional treatments of small-cell lung cancer (SCLC) with cisplatin, a standard-of-care therapy, spare the tumor-initiating cells (TIC) that mediate drug resistance. Here we report a novel therapeutic strategy that preferentially targets TICs in SCLC, in which cisplatin is combined with CBL0137, an inhibitor of the histone chaperone facilitates chromatin transcription (FACT), which is highly expressed in TICs. Combination of cisplatin and CBL0137 killed patient-derived and murine SCLC cell lines synergistically. In response to CBL0137 alone, TICs were more sensitive than non-TICs, in part, because CBL0137 increased expression of the tumor suppressor NOTCH1 by abrogating the binding of negative regulator SP3 to the NOTCH1 promoter, and in part because treatment decreased the high expression of stem cell transcription factors. The combination of cisplatin and CBL0137 greatly reduced the growth of a patient-derived xenograft in mice and also the growth of a syngeneic mouse SCLC tumor. Thus, CBL0137 can be a highly effective drug against SCLC, especially in combination with cisplatin.Significance: These findings reveal a novel therapeutic regimen for SCLC, combining cisplatin with an inhibitor that preferentially targets tumor-initiating cells. Cancer Res; 78(9); 2396-406. ©2018 AACR.
Collapse
Affiliation(s)
- Sarmishtha De
- Department of Cancer Biology. Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.
| | - Daniel J Lindner
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio
| | - Claire J Coleman
- Department of Cancer Biology. Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Gary Wildey
- University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Afshin Dowlati
- University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - George R Stark
- Department of Cancer Biology. Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.
| |
Collapse
|
5
|
Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism. J Neurosci 2015; 35:7332-48. [PMID: 25972164 DOI: 10.1523/jneurosci.2174-14.2015] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Na(+)-Ca(2+) exchanger 1 (NCX1) is reduced in stroke by the RE1-silencing transcription factor (REST), whereas it is increased in ischemic brain preconditioning (PC) by hypoxia-inducible factor 1 (HIF-1). Because ncx1 brain promoter (ncx1-Br) has five putative consensus sequences, named Sp1A-E, for the specificity protein (Sp) family of transcription factors (Sp1-4), we investigated the role of this family in regulating ncx1 transcription in rat cortical neurons. Here we found that Sp1 is a transcriptional activator, whereas Sp3 is a transcriptional repressor of ncx1, and that both bind ncx1-Br in a sequence-specific manner, modulating ncx1 transcription through the Sp1 sites C-E. Furthermore, by transient middle cerebral artery occlusion (tMCAO) in rats, the transcriptional repressors Sp3 and REST colocalized with the two histone-deacetylases (HDACs) HDAC1 and HDAC2 on the ncx1-Br, with a consequent hypoacetylation. Contrarily, in PC+tMCAO the transcriptional activators Sp1 and HIF-1 colocalized with histone acetyltransferase p300 on ncx1-Br with a consequent hyperacetylation. In addition, in neurons silenced with siRNA of NCX1 and subjected to oxygen and glucose deprivation (OGD) (3 h) plus reoxygenation (RX) (24 h), the neuroprotection of Class I HDAC inhibitor MS-275 was counteracted, whereas in neurons overexpressing NCX1 and subjected to ischemic preconditioning (PC+OGD/RX), the neurotoxic effect of p300 inhibitor C646 was prevented. Collectively, these results demonstrate that NCX1 expression is regulated by the Sp3/REST/HDAC1/HDAC2 complex in tMCAO and by the Sp1/HIF-1/p300 complex in PC+tMCAO and that epigenetic intervention, by modulating the acetylation of ncx1-Br, may be a strategy for the development of innovative therapeutic intervention in stroke.
Collapse
|
6
|
Rawat A, Gopisetty G, Thangarajan R. E4BP4 is a repressor of epigenetically regulated SOSTDC1 expression in breast cancer cells. Cell Oncol (Dordr) 2014; 37:409-19. [DOI: 10.1007/s13402-014-0204-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 01/15/2023] Open
|
7
|
Histone deacetylase 4 promotes ubiquitin-dependent proteasomal degradation of Sp3 in SH-SY5Y cells treated with di(2-ethylhexyl)phthalate (DEHP), determining neuronal death. Toxicol Appl Pharmacol 2014; 280:190-8. [DOI: 10.1016/j.taap.2014.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/02/2014] [Accepted: 07/16/2014] [Indexed: 11/24/2022]
|
8
|
Formisano L, Guida N, Laudati G, Boscia F, Esposito A, Secondo A, Di Renzo G, Canzoniero LMT. Extracellular signal-related kinase 2/specificity protein 1/specificity protein 3/repressor element-1 silencing transcription factor pathway is involved in Aroclor 1254-induced toxicity in SH-SY5Y neuronal cells. J Neurosci Res 2014; 93:167-77. [PMID: 25093670 DOI: 10.1002/jnr.23464] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Abstract
Polychlorinated biphenyls (PCBs) cause a wide spectrum of toxic effects in the brain through undefined mechanisms. Exposure to the PCB mixture Aroclor-1254 (A1254) increases the repressor element-1 silencing transcription factor (REST) expression, leading to neuronal death. This study sought to understand the sequence of some molecular mechanisms to determine whether A1254 could increase REST expression and the cytoprotective effect of the phorbol ester tetradecanoylphorbol acetate (TPA) on A1254-induced toxicity in SH-SY5Y cells. As shown by Western blot analysis, A1254 (10 µg/ml) downregulates extracellular signal-related kinase 2 (ERK2) phosphorylation in a time-dependent manner, thereby triggering the binding of specificity protein 1 (Sp1) and Sp3 to the REST gene promoter as revealed by chromatin immunoprecipitation analysis. This chain of events results in an increase in REST mRNA and cell death, as assessed by quantitative real-time polymerase chain reaction and dimethylthiazolyl-2-5-diphenyltetrazolium-bromide assay, respectively. Accordingly, TPA prevented both the A1254-induced decrease in ERK2 phosphorylation and the A1254-induced increase in Sp1, Sp3, and REST protein expression. After 48 hr, TPA prevented A1254-induced cell death. ERK2 overexpression counteracted the A1254-induced increase in Sp1 and Sp3 protein expression and prevented A1254-induced Sp1 and Sp3 binding to the REST gene promoter, thus counteracting the increase in REST mRNA expression induced by the toxicant. In neuroblastoma SH-SY5Y cells, ERK2/Sp1/SP3/REST is a new pathway underlying the neurotoxic effect of PCB. The ERK2/Sp1/Sp3/REST pathway, which underlies A1254-induced neuronal death, might represent a new drug signaling cascade in PCB-induced neuronal toxicity.
Collapse
Affiliation(s)
- Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy; Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Paccez JD, Vogelsang M, Parker MI, Zerbini LF. The receptor tyrosine kinase Axl in cancer: biological functions and therapeutic implications. Int J Cancer 2013; 134:1024-33. [PMID: 23649974 DOI: 10.1002/ijc.28246] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/24/2013] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase Axl has been implicated in the malignancy of different types of cancer. Emerging evidence of Axl upregulation in numerous cancers, as well as reports demonstrating that its inhibition blocks tumor formation in animal models, highlight the importance of Axl as a new potential therapeutic target. Furthermore, recent data demonstrate that Axl plays a pivotal role in resistance to chemotherapeutic regimens. In this review we discuss the functions of Axl and its regulation and role in cancer development, resistance to therapy, and its importance as a potential drug target, focusing on acute myeloid leukemia, breast, prostate and non-small cell lung cancers.
Collapse
Affiliation(s)
- Juliano D Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa; Division of Medical Biochemistry, University of Cape Town, Cape Town, South Africa
| | | | | | | |
Collapse
|
10
|
Simms NAK, Rajput A, Sharratt EA, Ongchin M, Teggart CA, Wang J, Brattain MG. Transforming growth factor-β suppresses metastasis in a subset of human colon carcinoma cells. BMC Cancer 2012; 12:221. [PMID: 22672900 PMCID: PMC3517326 DOI: 10.1186/1471-2407-12-221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
Background TGFβ signaling has typically been associated with suppression of tumor initiation while the role it plays in metastasis is generally associated with progression of malignancy. However, we present evidence here for an anti-metastatic role of TGFβ signaling. Methods To test the importance of TGFβ signaling to cell survival and metastasis we compared human colon carcinoma cell lines that are either non-tumorigenic with TGFβ response (FET), or tumorigenic with TGFβ response (FETα) or tumorigenic with abrogated TGFβ response via introduction of dominant negative TGFβRII (FETα/DN) and their ability to metastasize. Metastatic competency was assessed by orthotopic transplantation. Metastatic colony formation was assessed histologically and by imaging. Results Abrogation of TGFβ signaling through introduction of a dominant negative TGFβ receptor II (TGFβRII) in non-metastatic FETα human colon cancer cells permits metastasis to distal organs, but importantly does not reduce invasive behavior at the primary site. Loss of TGFβ signaling in FETα-DN cells generated enhanced cell survival capabilities in response to cellular stress in vitro. We show that enhanced cellular survival is associated with increased AKT phosphorylation and cytoplasmic expression of inhibitor of apoptosis (IAP) family members (survivin and XIAP) that elicit a cytoprotective effect through inhibition of caspases in response to stress. To confirm that TGFβ signaling is a metastasis suppressor, we rescued TGFβ signaling in CBS metastatic colon cancer cells that had lost TGFβ receptor expression due to epigenetic repression. Restoration of TGFβ signaling resulted in the inhibition of metastatic colony formation in distal organs by these cells. These results indicate that TGFβ signaling has an important role in the suppression of metastatic potential in tumors that have already progressed to the stage of an invasive carcinoma. Conclusions The observations presented here indicate a metastasis suppressor role for TGFβ signaling in human colon cancer cells. This raises the concern that therapies targeting inhibition of TGFβ signaling may be imprudent in some patient populations with residual TGFβ tumor suppressor activity.
Collapse
Affiliation(s)
- Neka A K Simms
- Eppley Institute for Research in Cancer and Allied Diseases, University at Nebraska Medical Center, Omaha, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Batarseh A, Barlow KD, Martinez-Arguelles DB, Papadopoulos V. Functional characterization of the human translocator protein (18kDa) gene promoter in human breast cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:38-56. [PMID: 21958735 DOI: 10.1016/j.bbagrm.2011.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 09/11/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
The translocator protein (18kDa; TSPO) is a mitochondrial drug- and cholesterol-binding protein that has been implicated in several processes, including steroidogenesis, cell proliferation, and apoptosis. Expression of the human TSPO gene is elevated in several cancers. To understand the molecular mechanisms that regulate TSPO expression in human breast cancer cells, the TSPO promoter was identified, cloned, and functionally characterized in poor-in-TSPO hormone-dependent, non-aggressive MCF-7 cells and rich-in-TSPO hormone-independent, aggressive, and metastatic MDA-MB-231 breast cancer cells. RNA ligase-mediated 5'-rapid amplification of cDNA ends analysis indicated transcription initiated at multiple sites downstream of a GC-rich promoter that lacks functional TATA and CCAAT boxes. Deletion analysis indicated that the region from -121 to +66, which contains five putative regulatory sites known as GC boxes, was sufficient to induce reporter activity up to 24-fold in MCF-7 and nearly 120-fold in MDA-MB-231 cells. Electrophoretic mobility shift and chromatin immunoprecipitation assays indicated that Sp1, Sp3 and Sp4 bind to these GC boxes in vitro and to the endogenous TSPO promoter. Silencing of Sp1, Sp3 and Sp4 gene expression reduced TSPO levels. In addition, TSPO expression was epigenetically regulated at one or more of the identified GC boxes. Disruption of the sequence downstream of the main start site of TSPO differentially regulated TSPO promoter activity in MCF-7 and MDA-MB-231 cells, indicating that essential elements contribute to its differential expression in these cells. Taken together, these experiments constitute the first in-depth functional analysis of the human TSPO gene promoter and its transcriptional regulation.
Collapse
Affiliation(s)
- Amani Batarseh
- The Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal, Quebec, Canada H3G 1A4.
| | | | | | | |
Collapse
|
12
|
Chowdhury S, Howell GM, Teggart CA, Chowdhury A, Person JJ, Bowers DM, Brattain MG. Histone deacetylase inhibitor belinostat represses survivin expression through reactivation of transforming growth factor beta (TGFbeta) receptor II leading to cancer cell death. J Biol Chem 2011; 286:30937-30948. [PMID: 21757750 DOI: 10.1074/jbc.m110.212035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Survivin is a cancer-associated gene that functions to promote cell survival, cell division, and angiogenesis and is a marker of poor prognosis. Histone deacetylase inhibitors induce apoptosis and re-expression of epigenetically silenced tumor suppressor genes in cancer cells. In association with increased expression of the tumor suppressor gene transforming growth factor β receptor II (TGFβRII) induced by the histone deacetylase inhibitor belinostat, we observed repressed survivin expression. We investigated the molecular mechanisms involved in survivin down-regulation by belinostat downstream of reactivation of TGFβ signaling. We identified two mechanisms. At early time points, survivin protein half-life was decreased with its proteasomal degradation. We observed that belinostat activated protein kinase A at early time points in a TGFβ signaling-dependent mechanism. After longer times (48 h), survivin mRNA was also decreased by belinostat. We made the novel observation that belinostat mediated cell death through the TGFβ/protein kinase A signaling pathway. Induction of TGFβRII with concomitant survivin repression may represent a significant mechanism in the anticancer effects of this drug. Therefore, patient populations exhibiting high survivin expression with epigenetically silenced TGFβRII might potentially benefit from the use of this histone deacetylase inhibitor.
Collapse
Affiliation(s)
- Sanjib Chowdhury
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Gillian M Howell
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Carol A Teggart
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Aparajita Chowdhury
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Jonathan J Person
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Dawn M Bowers
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Michael G Brattain
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696.
| |
Collapse
|
13
|
Chowdhury S, Howell GM, Rajput A, Teggart CA, Brattain LE, Weber HR, Chowdhury A, Brattain MG. Identification of a novel TGFβ/PKA signaling transduceome in mediating control of cell survival and metastasis in colon cancer. PLoS One 2011; 6:e19335. [PMID: 21559296 PMCID: PMC3086924 DOI: 10.1371/journal.pone.0019335] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/27/2011] [Indexed: 12/30/2022] Open
Abstract
Background Understanding drivers for metastasis in human cancer is important for potential development of therapies to treat metastases. The role of loss of TGFβ tumor suppressor activities in the metastatic process is essentially unknown. Methodology/Principal Findings Utilizing in vitro and in vivo techniques, we have shown that loss of TGFβ tumor suppressor signaling is necessary to allow the last step of the metastatic process - colonization of the metastatic site. This work demonstrates for the first time that TGFβ receptor reconstitution leads to decreased metastatic colonization. Moreover, we have identified a novel TGFβ/PKA tumor suppressor pathway that acts directly on a known cell survival mechanism that responds to stress with the survivin/XIAP dependent inhibition of caspases that effect apoptosis. The linkage between the TGFβ/PKA transduceome signaling and control of metastasis through induction of cell death was shown by TGFβ receptor restoration with reactivation of the TGFβ/PKA pathway in receptor deficient metastatic colon cancer cells leading to control of aberrant cell survival. Conclusion/Significance This work impacts our understanding of the possible mechanisms that are critical to the growth and maintenance of metastases as well as understanding of a novel TGFβ function as a metastatic suppressor. These results raise the possibility that regeneration of attenuated TGFβ signaling would be an effective target in the treatment of metastasis. Our work indicates the clinical potential for developing anti-metastasis therapy based on inhibition of this very important aberrant cell survival mechanism by the multifaceted TGFβ/PKA transduceome induced pathway. Development of effective treatments for metastatic disease is a pressing need since metastases are the major cause of death in solid tumors.
Collapse
Affiliation(s)
- Sanjib Chowdhury
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Gillian M. Howell
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ashwani Rajput
- Department of Surgery, The University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Carol A. Teggart
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lisa E. Brattain
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Hannah R. Weber
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Aparajita Chowdhury
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael G. Brattain
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
14
|
Lu XF, Li EM, Du ZP, Xie JJ, Guo ZY, Gao SY, Liao LD, Shen ZY, Xie D, Xu LY. Specificity protein 1 regulates fascin expression in esophageal squamous cell carcinoma as the result of the epidermal growth factor/extracellular signal-regulated kinase signaling pathway activation. Cell Mol Life Sci 2010; 67:3313-29. [PMID: 20502940 PMCID: PMC11115853 DOI: 10.1007/s00018-010-0382-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 04/10/2010] [Accepted: 04/21/2010] [Indexed: 02/05/2023]
Abstract
The overexpression of fascin in human carcinomas is associated with aggressive clinical phenotypes and poor prognosis. However, the molecular mechanism underlying the increased expression of fascin in cancer cells is largely unknown. Here, we identified a Sp1 binding element located at -70 to -60 nts of the FSCN1 promoter and validated that Sp1 specifically bound to this element in esophageal carcinoma cells. Fascin expression was enhanced by Sp1 overexpression and blocked by Sp1 RNAi knockdown. Specific inhibition of ERK1/2 decreased phosphorylation levels of Sp1, and thus suppressed the transcription of the FSCN1, resulting in the down-regulation of fascin. Stimulation with EGF could enhance fascin expression via activating the ERK1/2 pathway and increasing phosphorylation levels of Sp1. These data suggest that FSCN1 transcription may be subjected to the regulation of the EGF/EGFR signaling pathway and can be used as a viable biomarker to predict the efficacy of EGFR inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiao-Feng Lu
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Ze-Peng Du
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Zhang-Yan Guo
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Shu-Ying Gao
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Lian-Di Liao
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
| | - Zhong-Ying Shen
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
| | - Dong Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
- Laboratory of Molecular Oncology, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
| |
Collapse
|
15
|
Hypes MK, Pirisi L, Creek KE. Mechanisms of decreased expression of transforming growth factor-beta receptor type I at late stages of HPV16-mediated transformation. Cancer Lett 2009; 282:177-86. [PMID: 19344999 DOI: 10.1016/j.canlet.2009.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/16/2022]
Abstract
Transforming growth factor-beta (TGF-beta) signaling is disrupted in many cancers, including cervical cancer, leading to TGF-beta resistance. Although initially sensitive, human papillomavirus type 16 (HPV16) immortalized human keratinocytes (HKc/HPV16) become increasingly resistant to the growth inhibitory effects of TGF-beta during in vitro progression to a differentiation resistant phenotype (HKc/DR). We have previously shown that loss of TGF-beta sensitivity in HKc/DR is attributed to decreased expression of TGF-beta receptor type I (TGF-beta RI), while the levels of TGF-beta receptor type II (TGF-beta RII) remain unchanged. The present study explored molecular mechanisms leading to reduced TGF-beta RI expression in HKc/DR. Using TGF-beta RI and TGF-beta RII promoter reporter constructs, we determined that acute expression of the HPV16 oncogenes E6 and E7 decreased the promoter activity of TGF-beta RI and TGF-beta RII by about 50%. However, promoter activity of TGF-beta RI is decreased to a greater extent than TGF-beta RII as HKc/HPV16 progress to HKc/DR. Reduced TGF-beta RI expression in HKc/DR was found not to be linked to mutations within the TGF-beta RI promoter or to promoter methylation. Electrophoretic mobility shift and supershift assays using probes encompassing Sp1 binding sites in the TGF-beta RI promoter found no changes between HKc/HPV16 and HKc/DR in binding of the transcription factors Sp1 or Sp3 to the probes. Also, Western blots determined that protein levels of Sp1 and Sp3 remain relatively unchanged between HKc/HPV16 and HKc/DR. Overall, these results demonstrate that mutations in or hypermethylation of the TGF-beta RI promoter, along with altered levels of Sp1 or Sp3, are not responsible for the reduced expression of TGF-beta RI we observe in HKc/DR. Rather the HPV16 oncogenes E6 and E7 themselves exhibit an inhibitory effect on TGF-beta receptor promoter activity.
Collapse
Affiliation(s)
- Melissa K Hypes
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | |
Collapse
|
16
|
Chowdhury S, Ammanamanchi S, Howell GM. Epigenetic Targeting of Transforming Growth Factor β Receptor II and Implications for Cancer Therapy. ACTA ACUST UNITED AC 2009; 1:57-70. [PMID: 20414468 DOI: 10.4255/mcpharmacol.09.07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The transforming growth factor (TGF) β signaling pathway is involved in many cellular processes including proliferation, differentiation, adhesion, motility and apoptosis. The loss of TGFβ signaling occurs early in carcinogenesis and its loss contributes to tumor progression. The loss of TGFβ responsiveness frequently occurs at the level of the TGFβ type II receptor (TGFβRII) which has been identified as a tumor suppressor gene (TSG). In keeping with its TSG role, the loss of TGFβRII expression is frequently associated with high tumor grade and poor patient prognosis. Reintroduction of TGFβRII into tumor cell lines results in growth suppression. Mutational loss of TGFβRII has been characterized, particularly in a subset of colon cancers with DNA repair enzyme defects. However, the most frequent cause of TGFβRII silencing is through epigenetic mechanisms. Therefore, re-expression of TGFβRII by use of epigenetic therapies represents a potential therapeutic approach to utilizing the growth suppressive effects of the TGFβ signaling pathway. However, the restoration of TGFβ signaling in cancer treatment is challenging because in late stage disease, TGFβ is a pro-metastatic factor. This effect is associated with increased expression of the TGFβ ligand. In this Review, we discuss the mechanisms associated with TGFβRII silencing in cancer and the potential usefulness of histone deacetylase (HDAC) inhibitors in reversing this effect. The use of HDAC inhibitors may provide a unique opportunity to restore TGFβRII expression in tumors as their pleiotropic effects antagonize many of the cellular processes, which mediate the pro-metastatic effects associated with increased TGFβ expression.
Collapse
Affiliation(s)
- Sanjib Chowdhury
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, Nebraska
| | | | | |
Collapse
|
17
|
Ying S, Dong S, Kawada A, Kojima T, Chavanas S, Méchin MC, Adoue V, Serre G, Simon M, Takahara H. Transcriptional regulation of peptidylarginine deiminase expression in human keratinocytes. J Dermatol Sci 2009; 53:2-9. [DOI: 10.1016/j.jdermsci.2008.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/25/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
|
18
|
Richer E, Campion CG, Dabbas B, White JH, Cellier MFM. Transcription factors Sp1 and C/EBP regulate NRAMP1 gene expression. FEBS J 2008; 275:5074-89. [PMID: 18786141 DOI: 10.1111/j.1742-4658.2008.06640.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The natural resistance-associated macrophage protein 1 (Nramp1), which belongs to a conserved family of membrane metal transporters, contributes to phagocyte-autonomous antimicrobial defense mechanisms. Genetic polymorphisms in the human NRAMP1 gene predispose to susceptibility to infectious or inflammatory diseases. To characterize the transcriptional mechanisms controlling NRAMP1 expression, we previously showed that a 263 bp region upstream of the ATG drives basal promoter activity, and that a 325 bp region further upstream confers myeloid specificity and activation during differentiation of HL-60 cells induced by vitamin D. Herein, the major transcription start site was mapped in the basal region by S1 protection assay, and two cis-acting elements essential for myeloid transactivation were characterized by in vitro DNase footprinting, electrophoretic mobility shift experiments, in vivo transfection assays using linker-mutated constructs, and chromatin immunoprecipitation assays in differentiated monocytic cells. One distal cis element binds Sp1 and is required for NRAMP1 myeloid regulation. Another site in the proximal region binds CCAAT enhancer binding proteins alpha or beta and is crucial for transcription. This study implicates Sp1 and C/EBP factors in regulating the expression of the NRAMP1 gene in myeloid cells.
Collapse
Affiliation(s)
- Etienne Richer
- Institut national de la recherche scientifique, INRS-Institut Armand-Frappier, Laval, Canada
| | | | | | | | | |
Collapse
|
19
|
Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex. Biochem J 2008; 412:123-30. [DOI: 10.1042/bj20071440] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NF1 (nuclear factor 1) binds to two upstream elements of the human ANT2 (adenine nucleotide translocator-2) promoter and actively represses expression of the gene in growth-arrested diploid skin fibroblasts [Luciakova, Barath, Poliakova, Persson and Nelson (2003) J. Biol. Chem. 278, 30624–30633]. ChIP (chromatin immunoprecipitation) and co-immunoprecipitation analyses of nuclear extracts from growth-arrested and growth-activated diploid cells demonstrate that NF1, when acting as a repressor, is part of a multimeric complex that also includes Smad and Sp-family proteins. This complex appears to be anchored to both the upstream NF1-repressor elements and the proximal promoter, Sp1-dependent activation elements in growth-arrested cells. In growth-activated cells, the repressor complex dissociates and NF1 leaves the promoter. As revealed by co-immunoprecipitation experiments, NF1–Smad4–Sp3 complexes are present in nuclear extracts only from growth-inhibited cells, suggesting that the growth-state-dependent formation of these complexes is not an ANT2 promoter-specific event. Consistent with the role of Smad proteins in the repression complex, TGF-β (transforming growth factor-β) can fully repress ANT2 transcription in normally growing fibroblasts. Finally, pull-down experiments of in vitro transcribed/translated NF1 isoforms by GST (glutathione transferase)–Smad and GST–Smad MH fusion proteins indicate direct physical interactions between members of the two families. These findings suggest a possible functional relationship between the NF1 and Smad proteins that has not been previously observed.
Collapse
|
20
|
Hockings JK, Degner SC, Morgan SS, Kemp MQ, Romagnolo DF. Involvement of a specificity proteins-binding element in regulation of basal and estrogen-induced transcription activity of the BRCA1 gene. Breast Cancer Res 2008; 10:R29. [PMID: 18377656 PMCID: PMC2397528 DOI: 10.1186/bcr1987] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 02/28/2008] [Accepted: 03/31/2008] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Increased estrogen level has been regarded to be a risk factor for breast cancer. However, estrogen has also been shown to induce the expression of the tumor suppressor gene, BRCA1. Upregulation of BRCA1 is thought to be a feedback mechanism for controlling DNA repair in proliferating cells. Estrogens enhance transcription of target genes by stimulating the association of the estrogen receptor (ER) and related coactivators to estrogen response elements or to transcription complexes formed at activator protein (AP)-1 or specificity protein (Sp)-binding sites. Interestingly, the BRCA1 gene lacks a consensus estrogen response element. We previously reported that estrogen stimulated BRCA1 transcription through the recruitment of a p300/ER-alpha complex to an AP-1 site harbored in the proximal BRCA1 promoter. The purpose of the study was to analyze the contribution of cis-acting sites flanking the AP-1 element to basal and estrogen-dependent regulation of BRCA1 transcription. METHODS Using transfection studies with wild-type and mutated BRCA1 promoter constructs, electromobility binding and shift assays, and DNA-protein interaction and chromatin immunoprecipitation assays, we investigated the role of Sp-binding sites and cAMP response element (CRE)-binding sites harbored in the proximal BRCA1 promoter. RESULTS We report that in the BRCA1 promoter the AP-1 site is flanked upstream by an element (5'-GGGGCGGAA-3') that recruits Sp1, Sp3, and Sp4 factors, and downstream by a half CRE-binding motif (5'-CGTAA-3') that binds CRE-binding protein. In ER-alpha-positive MCF-7 cells and ER-alpha-negative Hela cells expressing exogenous ER-alpha, mutation of the Sp-binding site interfered with basal and estrogen-induced BRCA1 transcription. Conversely, mutation of the CRE-binding element reduced basal BRCA1 promoter activity but did not prevent estrogen activation. In combination with the AP-1/CRE sites, the Sp-binding domain enhanced the recruitment of nuclear proteins to the BRCA1 promoter. Finally, we report that the MEK1 (mitogen-activated protein kinase kinase-1) inhibitor PD98059 attenuated the recruitment of Sp1 and phosphorylated ER-alpha, respectively, to the Sp and AP-1 binding element. CONCLUSION These cumulative findings suggest that the proximal BRCA1 promoter segment comprises cis-acting elements that are targeted by Sp-binding and CRE-binding proteins that contribute to regulation of BRCA1 transcription.
Collapse
Affiliation(s)
- Jennifer K Hockings
- Cancer Biology Interdisciplinary Graduate Program, Department of Nutritional Sciences, The University of Arizona, E 4th Street, Tucson, Arizona 85721-0038, USA
| | | | | | | | | |
Collapse
|
21
|
Dong S, Ying S, Kojima T, Shiraiwa M, Kawada A, Méchin MC, Adoue V, Chavanas S, Serre G, Simon M, Takahara H. Crucial Roles of MZF1 and Sp1 in the Transcriptional Regulation of the Peptidylarginine Deiminase Type I Gene (PADI1) in Human Keratinocytes. J Invest Dermatol 2008; 128:549-57. [PMID: 17851584 DOI: 10.1038/sj.jid.5701048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptidylarginine deiminases (PADs) catalyze the conversion of protein-bound arginine residues into citrulline residues in a calcium-dependent manner. The PAD1 gene (PADI1) is expressed in a few tissues, including the epidermis, where the protein is detected with a higher level in the more differentiated keratinocytes. Using quantitative reverse transcription-PCR experiments, we show that PADI1 mRNAs are more abundant in keratinocytes cultured with 1.2 than 0.15 mM calcium. We cloned and characterized the promoter region using human keratinocytes transfected with variously deleted fragments of the 5'-upstream region of PADI1 coupled to the luciferase gene. We found that as few as 195 bp upstream from the transcription initiation site were sufficient to direct transcription of the reporter gene. Mutations of MZF1- or Sp1-binding sites markedly reduced PADI1 promoter activity. Chromatin immunoprecipitation assays revealed that MZF1 and Sp1/Sp3 bind to this region in vivo. Furthermore, MZF1 or Sp1 small interfering RNAs (siRNAs) effectively diminished PADI1 expression in keratinocytes cultured in both low- and high-calcium-containing medium. In addition, the expression of MZF1 and PAD1 increased in parallel when normal human epidermal keratinocytes underwent differentiation. These data indicate that MZF1 and Sp1/Sp3 binding to the promoter region drive the PADI1 expression.
Collapse
Affiliation(s)
- Sijun Dong
- Department of Applied Biological Resource Sciences, School of Agriculture, Ibaraki University, Ami-machi, Inashiki-gun, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Thangasamy A, Rogge J, Ammanamanchi S. Regulation of RON tyrosine kinase-mediated invasion of breast cancer cells. J Biol Chem 2007; 283:5335-43. [PMID: 18165235 DOI: 10.1074/jbc.m706957200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RON (recepteur d'origine nantais), a tyrosine kinase receptor for macrophage-stimulating protein (MSP) was implicated in tumor progression. However, it was not investigated how this important oncogene is regulated. We show that MSP promotes invasion of MDA MB 231 and MDA MB 468 but not MCF-7 breast cancer cells. Reverse transcription-PCR and Western analysis indicated the expression of RON message and protein, respectively, in MDA MB 231 and MDA MB 468 cells but not in MCF-7 cells. RON expression correlated with Sp1 expression. Initial analysis of a 1.2-kb and 400-bp RON promoter in MDA MB 231 and MDA MB 468 cells suggested the presence of all the necessary regulatory elements within 400 bp from the transcription start site. Site-directed mutagenesis of the 400-bp RON promoter revealed that the overlapping Sp1 sites at-94 (Sp1-3/4) and Sp1 site at -113 (Sp1-5) are essential for RON gene transcription. Electrophoretic mobility shift assays and chromatin immunoprecipitation analysis indicated that Sp1 binding to these sites is required for RON promoter activity. Ectopic Sp1 expression in Sp1 null SL2 cells confirmed the involvement of these Sp1 sites in the regulation of oncogenic RON tyrosine kinase. Treatment of MDA MB 231 cells with mithramycin A, an inhibitor of Sp1 binding, or siRNA knock-down of Sp1 blocked RON gene expression and MSP-mediated invasion of MDA MB 231 cells. This is the first report demonstrating a clear link between Sp1-dependent RON tyrosine kinase expression and invasion of breast carcinoma cells.
Collapse
Affiliation(s)
- Amalraj Thangasamy
- Department of Medicine, Division of Hematology and Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | |
Collapse
|
23
|
Baugé C, Beauchef G, Leclercq S, Kim SJ, Pujol JP, Galéra P, Boumédiene K. NFkappaB mediates IL-1beta-induced down-regulation of TbetaRII through the modulation of Sp3 expression. J Cell Mol Med 2007; 12:1754-66. [PMID: 18053089 PMCID: PMC3918091 DOI: 10.1111/j.1582-4934.2007.00173.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
We previously showed that interleukin-1beta (IL-1beta) down-regulation of type II TGFbeta receptor (TbetaRII) involves NFkappaB pathway and requires de novo synthesis of a yet unknown protein. Here, we demonstrate that this effect is mediated through Sp1 site located at position -25 of human TbetaRII promoter. Inhibition of transcription factors binding (decoy oligonucleotides or mithramycin) abolished IL-1beta effect. EMSA and ChIP revealed that this treatment induced Sp3 binding to cis-sequence whereby IL-1beta exerts its transcriptional effects whereas it decreased that of Sp1. Moreover, although the cytokine did not modulate Sp1 expression, it increased that of Sp3 via NFkappaB pathway. Experiments of gain and loss of function clearly showed that Sp3 inhibited TbetaRII expression whereas its silencing abolished IL-1beta effect. In addition, both Sp1 and Sp3 were found to interact with NFkappaB, which therefore may indirectly interact with TbetaRII pro moter. Altogether, these data suggest that IL-1beta decreases TbetaRII expression by inducing Sp3 via NFkappaB and its binding on core promote at the expense of Sp1, which could explain the loss of cell responsiveness in certain conditions. These findings bring new insights in the knowledge of the interference between two antagonistic transduction pathways involved in multiple physiopathological processes.
Collapse
Affiliation(s)
- C Baugé
- Laboratory of Connective Tissue Biochemistry, University of Caen, Caen, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Zampetaki A, Zeng L, Xiao Q, Margariti A, Hu Y, Xu Q. Lacking cytokine production in ES cells and ES-cell-derived vascular cells stimulated by TNF-alpha is rescued by HDAC inhibitor trichostatin A. Am J Physiol Cell Physiol 2007; 293:C1226-38. [PMID: 17626239 DOI: 10.1152/ajpcell.00152.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation and TNF-alpha signaling play a central role in most of the pathological conditions where cell transplantation could be applied. As shown by initial experiments, embryonic stem (ES) cells and ES-cell derived vascular cells express very low levels of TNF-alpha receptor I (TNFRp55) and thus do not induce cytokine expression in response to TNF-alpha stimulation. Transient transfection analysis of wild-type or deletion variants of the TNFRp55 gene promoter showed a strong activity for a 250-bp fragment in the upstream region of the gene. This activity was abolished by mutations targeting the Sp1/Sp3 or AP1 binding sites. Moreover, treatment with trichostatin A (TSA) led to a pronounced increase in TNFRp55 mRNA and promoter activity. Overexpression of Sp1 or c-fos further enhanced the TSA-induced luciferase activity, and this response was attenuated by Sp3 or c-jun coexpression. Additional experiments revealed that TSA did not affect the Sp1/Sp3 ratio but caused transcriptional activation of the c-fos gene. Thus, we provide the first evidence that ES and ES-cell-derived vascular cells lack cytokine expression in response to TNF-alpha stimulation due to low levels of c-fos and transcriptional activation of Sp1 that can be regulated by inhibition of histone deacetylase activity.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line
- Cells, Cultured
- Cytokines/genetics
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/drug effects
- Embryonic Stem Cells/metabolism
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression/drug effects
- Histone Deacetylase Inhibitors
- Histone Deacetylases/metabolism
- Hydroxamic Acids/pharmacology
- Interleukin-6/genetics
- Mice
- Mutation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- Proto-Oncogene Proteins c-jun/genetics
- RNA, Small Interfering/genetics
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sp1 Transcription Factor/genetics
- Sp3 Transcription Factor/genetics
- Transfection
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Anna Zampetaki
- Cardiovascular Division, School of Medicine, King's College London, James Black Centre, London, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Down-regulation of human topoisomerase IIalpha expression correlates with relative amounts of specificity factors Sp1 and Sp3 bound at proximal and distal promoter regions. BMC Mol Biol 2007; 8:36. [PMID: 17511886 PMCID: PMC1885802 DOI: 10.1186/1471-2199-8-36] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 05/20/2007] [Indexed: 11/10/2022] Open
Abstract
Background Topoisomerase IIα has been shown to be down-regulated in doxorubicin-resistant cell lines. The specificity proteins Sp1 and Sp3 have been implicated in regulation of topoisomerase IIα transcription, although the mechanism by which they regulate expression is not fully understood. Sp1 has been shown to bind specifically to both proximal and distal GC elements of the human topoisomerase IIα promoter in vitro, while Sp3 binds only to the distal GC element unless additional flanking sequences are included. While Sp1 is thought to be an activator of human topoisomerase IIα, the functional significance of Sp3 binding is not known. Therefore, we sought to determine the functional relationship between Sp1 and Sp3 binding to the topoisomerase IIα promoter in vivo. We investigated endogenous levels of Sp1, Sp3 and topoisomerase IIα as well as binding of both Sp1 and Sp3 to the GC boxes of the topoisomerase IIα promoter in breast cancer cell lines in vivo after short term doxorubicin exposure. Results Functional effects of Sp1 and Sp3 were studied using transient cotransfection assays using a topoisomerase IIα promoter reporter construct. The in vivo interactions of Sp1 and Sp3 with the GC elements of the topoisomerase IIα promoter were studied in doxorubicin-treated breast cancer cell lines using chromatin immunoprecipitation assays. Relative amounts of endogenous proteins were measured using immunoblotting. In vivo DNA looping mediated by proteins bound at the GC1 and GC2 elements was studied using the chromatin conformation capture assay. Both Sp1 and Sp3 bound to the GC1 and GC2 regions. Sp1 and Sp3 were transcriptional activators and repressors respectively, with Sp3 repression being dominant over Sp1-mediated activation. The GC1 and GC2 elements are linked in vivo to form a loop, thus bringing distal regulatory elements and their cognate transcription factors into close proximity with the transcription start site. Conclusion These observations provide a mechanistic explanation for the modulation of topoisomerase IIα and concomitant down-regulation that can be mediated by topoisomerase II poisons. Competition between Sp1 and Sp3 for the same cognate DNA would result in activation or repression depending on absolute amounts of each transcription factor in cells treated with doxorubicin.
Collapse
|
26
|
Abstract
Specificity protein 1 (Sp1) and other Sp and Krüppel-like factor (KLF) proteins are members of a family of transcription factors which bind GC/GT-rich promoter elements through three C(2)H(2)-type zinc fingers that are present at their C-terminal domains. Sp1-Sp4 proteins regulate expression of multiple genes in normal tissues and tumours. There is growing evidence that some Sp proteins play a critical role in the growth and metastasis of many tumour types by regulating expression of cell cycle genes and vascular endothelial growth factor. Sp/KLF proteins are also potential targets for cancer chemotherapy.
Collapse
Affiliation(s)
- Stephen Safe
- Institute of Biosciences and Technology, Texas A and M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA.
| | | |
Collapse
|
27
|
Wooten LG, Ogretmen B. Sp1/Sp3-dependent regulation of human telomerase reverse transcriptase promoter activity by the bioactive sphingolipid ceramide. J Biol Chem 2005; 280:28867-76. [PMID: 15951564 DOI: 10.1074/jbc.m413444200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the roles of Sp1/Sp3 transcription factors in the regulation of the activity of human telomerase reverse transcriptase (hTERT) promoter in response to ceramide were examined in the A549 human lung adenocarcinoma cells. The activity of the N-terminal truncated hTERT promoter, lacking the c-Myc recognition (E-box) region but containing multiple Sp1/Sp3 sites, was also significantly inhibited by C6-ceramide, indicating a role for ceramide in the regulation of Sp1/Sp3 function. Partial inhibition of Sp1 expression using small interfering RNA resulted in a significant inhibition of the hTERT promoter. Treatment with C6-ceramide inhibited the trans-activation function of overexpressed Sp1, whereas it induced the repressor effects of exogenous Sp3 on the hTERT promoter. The interaction between Sp1 and hTERT promoter DNA was significantly reduced in response to ceramide as assessed by chromatin immunoprecipitation analysis. In contrast, the promoter DNA-binding activity of Sp3 was slightly increased in response to C6-ceramide, resulting in the increased ratio of Sp3/Sp1 on the hTERT promoter, which was concomitant with the reduced recruitment of RNA polymerase II to the promoter. Furthermore, mutations of various Sp1/Sp3 recognition sequences significantly attenuated the activity of the promoter in the presence or absence of ceramide, demonstrating the importance of multiple Sp1/Sp3 recognition sites for the promoter activity. Mechanistically, the data demonstrated that C6-ceramide reduced the acetylation of Sp3 protein and partially blocked the activation of the hTERT promoter by the histone deacetylase inhibitor trichostatin A. The roles of endogenous long chain ceramide generated in response to gemcitabine in the inhibition of hTERT promoter activity and the regulation of Sp3 acetylation were also demonstrated.
Collapse
Affiliation(s)
- Leslie G Wooten
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
28
|
Choi HS, Hwang CK, Kim CS, Song KY, Law PY, Wei LN, Loh HH. Transcriptional regulation of mouse mu opioid receptor gene: Sp3 isoforms (M1, M2) function as repressors in neuronal cells to regulate the mu opioid receptor gene. Mol Pharmacol 2005; 67:1674-83. [PMID: 15703380 DOI: 10.1124/mol.104.008284] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 5'-flanking region of the mouse mu opioid receptor (MOR) gene has two promoters, referred to as distal and proximal. MOR mRNA is predominantly initiated by the proximal promoter. Previously, several important cis-elements and trans-factors have been shown to play a functional role in the proximal promoter of the MOR gene. In this study, we defined another functional, negative regulatory element located in the -219- to -189-base pair (translational start site designed as +1) region of the proximal promoter. It is designated as the Sp binding sequence for its sequence homology to the consensus Sp binding element. Mutation of the Sp binding element led to a 100% increase of MOR promoter activity in MOR-positive cells (NMB cells), confirming the negative role of the Sp binding sequence. Surprisingly, electrophoretic mobility shift analysis and chromatin immunoprecipitation assays revealed that Sp3 and its isoforms (M1 and M2) were specifically bound to the Sp binding sequence. In cotransfection assays of Drosophila melanogaster SL2 cells using cDNA encoding Sp1, Sp3, and the M1 and M2 isoforms of Sp3, the M1 and M2 isoforms trans-repressed the MOR promoter, whereas Sp1 and Sp3 trans-activated the MOR promoter. Significantly, ectopic expression of the M1 and M2 isoforms of Sp3 led to repression of the endogenous MOR gene transcripts in NMB cells. These results suggest that the binding of the M1 and M2 isoforms of the Sp3 transcription factor to the Sp binding sequence may play a role in mouse MOR gene expression.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Lou Z, Maher VM, McCormick JJ. Identification of the promoter of human transcription factor Sp3 and evidence of the role of factors Sp1 and Sp3 in the expression of Sp3 protein. Gene 2005; 351:51-9. [PMID: 15857802 DOI: 10.1016/j.gene.2005.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/18/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
In a study of the role of transcription factor Sp1 in the formation of tumors by human fibrosarcoma cell lines that overexpress it [Cancer Res., 65 (2005) 1007], we found that expression of an Sp1-specific ribozyme, not only reduced the level of Sp1 protein, but also that of Sp3 protein, and that when the protein levels of these two transcription factors in the fibrosarcoma cell lines were reduced to near that found in normal human fibroblasts, the cell lines could no longer form tumors. An Sp1-specific ribozyme could reduce the level of expression of both Sp1 protein and Sp3 protein if the promoter of the Sp1 gene and that of the Sp3 gene both have Sp1/Sp3 transcription factor binding sites and if such sites are critically responsible for the level of expression of both Sp1 and Sp3 protein in the cells. The Sp1 minimal promoter has been identified and it has two Sp1/Sp3 sites [J. Biol. Chem. 276 (2001) 22126]. To characterize the Sp3 promoter, we isolated 2.1 kb of the 5'-flanking region of the Sp3 gene, which contains Sp1/Sp3 binding sites, and using an expression reporter assay, showed that it has promoter activity. We then systematically reduced the size of the 5' flanking region, and determined that the nt-339 to nt-39 fragment, which contains an Sp1/Sp3 binding site at nt-181 and another at nt-168, retained the same promoter activity as the 2.1 kb region. Electrophoretic mobility shift assays indicated that both Sp3 protein and Sp1protein bind to these two sites. By mutating either or both of these binding sites, we showed using the reporter assay that each site is required for full promoter activity. We then designed an Sp3-specific ribozyme, expressed it in a human fibrosarcoma cell line in which Sp1 protein and Sp3 protein are expressed at high levels, and found that, indeed, the level of expression of both proteins was significantly reduced.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Animals
- Base Sequence
- Binding Sites/genetics
- Blotting, Western
- Cell Line, Tumor
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Female
- Gene Expression/genetics
- Genetic Vectors/genetics
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- Mice, Nude
- Molecular Sequence Data
- Oligonucleotides, Antisense/genetics
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Sp1 Transcription Factor/physiology
- Sp3 Transcription Factor
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription Initiation Site
- Transfection
Collapse
Affiliation(s)
- Zhenjun Lou
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics, Michigan State University, Food Safety and Toxicology Building, East Lansing, 48824-1302, USA
| | | | | |
Collapse
|
30
|
Segura JA, Donadio AC, Lobo C, Matés JM, Márquez J, Alonso FJ. Inhibition of glutaminase expression increases Sp1 phosphorylation and Sp1/Sp3 transcriptional activity in Ehrlich tumor cells. Cancer Lett 2005; 218:91-8. [PMID: 15639344 DOI: 10.1016/j.canlet.2004.06.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 06/28/2004] [Indexed: 12/31/2022]
Abstract
Tumor cells expressing antisense glutaminase RNA show a drastic inhibition of glutaminase activity and they acquire a more differentiated phenotype. We have studied the expression of Sp1 and Sp3 transcription factors in both Ehrlich tumor cells and their derivative 0.28AS-2 antisense glutaminase expressing cells. The expression of phosphorylated Sp1 in 0.28AS-2 cells was 3-fold the expression in EATC. Full length Sp3 was also incremented in 0.28AS-2 cells. Sp1 and Sp3 binding to a consensus Sp1 probe was higher in 0.28AS-2 nuclear extracts, as determined by supershift assays. Sp1-DNA binding was inhibited by phosphatase treatment, demonstrating that phosphorylation of Sp1 is critical for its DNA binding capacity. The Sp1 and Sp3 DNA binding found in 0.28AS-2 cells was also correlated with an increased Sp1 activity, as shown in transient transfections assays carried out with a luciferase reporter plasmid. Incubation of Ehrlich tumor cells with the differentiation agent PMA could not totally reproduce the Sp1/Sp3 changes observed in 0.28AS-2 cells. However, it was demonstrated that the intracellular concentration of glutamine, but not glutamate or aspartate, is increased in 0.28AS-2 cells. In conclusion, the antisense inhibition of glutaminase leads to an increased expression of phosphorylated Sp1 and that correlates with an increase in Sp1 activity.
Collapse
Affiliation(s)
- Juan Antonio Segura
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | | | | | | | | | | |
Collapse
|
31
|
Irvine SA, Foka P, Rogers SA, Mead JR, Ramji DP. A critical role for the Sp1-binding sites in the transforming growth factor-beta-mediated inhibition of lipoprotein lipase gene expression in macrophages. Nucleic Acids Res 2005; 33:1423-34. [PMID: 15755745 PMCID: PMC1062872 DOI: 10.1093/nar/gki280] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Increasing evidence suggests that the cytokine transforming growth factor-β (TGF-β) inhibits the development of atherosclerosis. The lipoprotein lipase (LPL) enzyme expressed by macrophages has been implicated in the pathogenesis of atherosclerosis by stimulating the uptake of lipoprotein particles. Unfortunately, the action of TGF-β on the expression of LPL in macrophages remains largely unclear. We show that TGF-β inhibits LPL gene expression at the transcriptional level. Transient transfection assays reveal that the −31/+187 sequence contains the minimal TGF-β-responsive elements. Electrophoretic mobility shift assays show that Sp1 and Sp3 interact with two regions in the −31/+187 sequence. Mutations of these Sp1/Sp3 sites abolish the TGF-β-mediated suppression whereas multimers of the sequence impart the response to a heterologous promoter. TGF-β has no effect on the binding or steady-state polypeptide levels of Sp1 and Sp3. These results, therefore, suggest a novel mechanism for the TGF-β-mediated repression of LPL gene transcription that involves regulation of the action of Sp1 and Sp3.
Collapse
Affiliation(s)
| | | | | | | | - Dipak P. Ramji
- To whom correspondence should be addressed: Tel/Fax: +44 029 20876753;
| |
Collapse
|
32
|
Jinawath A, Miyake S, Yanagisawa Y, Akiyama Y, Yuasa Y. Transcriptional regulation of the human DNA methyltransferase 3A and 3B genes by Sp3 and Sp1 zinc finger proteins. Biochem J 2005; 385:557-64. [PMID: 15362956 PMCID: PMC1134729 DOI: 10.1042/bj20040684] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 08/05/2004] [Accepted: 09/14/2004] [Indexed: 11/17/2022]
Abstract
The DNMT3A (DNA methyltransferase 3A) and DNMT3B genes encode putative de novo methyltransferases and show complex transcriptional regulation in the presence of three and two different promoters respectively. All promoters of DNMT3A and DNMT3B lack typical TATA sequences adjacent to their transcription start sites and contain several Sp1-binding sites. The importance of these Sp1-binding sites was demonstrated by using a GC-rich DNA-binding protein inhibitor, mithramycin A, i.e. on the basis of decrease in the promoter activities and mRNA expression levels of DNMT3A and DNMT3B. Overexpression of Sp1 and Sp3 up-regulated the promoter activities of these two genes. The physical binding of Sp1 and Sp3 to DNMT3A and DNMT3B promoters was confirmed by a gel shift assay. Interestingly, Sp3 overexpression in HEK-293T cells (human embryonic kidney 293T cells) resulted in 3.3- and 4.0-fold increase in DNMT3A and DNMT3B mRNA expression levels respectively by quantitative reverse transcriptase-PCR, whereas Sp1 overexpression did not. Furthermore, an antisense oligonucleotide to Sp3 significantly decreased the mRNA levels of DNMT3A and DNMT3B. These results indicate the functional importance of Sp proteins, particularly Sp3, in the regulation of DNMT3A and DNMT3B gene expression.
Collapse
MESH Headings
- Adenoviridae
- Binding Sites/genetics
- Cell Line
- Cell Line, Transformed
- DNA/metabolism
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA Methyltransferase 3A
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Humans
- Kidney/chemistry
- Kidney/embryology
- Kidney/metabolism
- Kidney/virology
- Mutagenesis, Site-Directed/genetics
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Plicamycin/analogs & derivatives
- Plicamycin/pharmacology
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Sp1 Transcription Factor/metabolism
- Sp1 Transcription Factor/physiology
- Sp3 Transcription Factor
- Transcription Factors/deficiency
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Zinc Fingers/genetics
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Artit Jinawath
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Satoshi Miyake
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yuka Yanagisawa
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
33
|
Ammanamanchi S, Brattain MG. Restoration of transforming growth factor-beta signaling through receptor RI induction by histone deacetylase activity inhibition in breast cancer cells. J Biol Chem 2004; 279:32620-5. [PMID: 15155736 DOI: 10.1074/jbc.m402691200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The loss of transforming growth factor-beta (TGF-beta) response due to the dysregulation of TGF-beta receptors type I (RI) and type II (RII) is well known for its contribution to oncogenesis. Estrogen receptor-expressing breast cancer cells are refractory to TGF-beta-mediated growth control because of the reduced expression of TGF-beta receptors. Although RII is required for the binding of TGF-beta to RI, RI is responsible for directly transducing TGF-beta signals through the Smad protein family. Treatment of estrogen receptor-expressing MCF-7L and ZR75 breast cancer cells with the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) led to a dramatic induction of RI. Accumulation of acetylated histones H3 and H4 was observed in the SAHA-treated cells. Chromatin immunoprecipitation analysis followed by PCR with RI promoter-specific primers indicated an accumulation of acetylated histones in chromatin associated with the RI gene, suggesting that histone deacetylation was involved in the transcriptional inactivation of RI. SAHA treatment stimulated RI promoter activity through the inhibition of Sp1/Sp3-associated HDAC activity. Histone acetyltransferase p300 stimulated RI promoter activity, thus further confirming the involvement of HDAC activity in the transcriptional repression of RI. Significantly, SAHA-mediated RI regeneration restored the TGF-beta response in breast cancer cells.
Collapse
MESH Headings
- Acetylation
- Acetyltransferases/metabolism
- Activin Receptors, Type I/chemistry
- Activin Receptors, Type I/metabolism
- Blotting, Western
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromatin/metabolism
- DNA Methylation
- DNA-Binding Proteins/metabolism
- Genes, Reporter
- Histone Acetyltransferases
- Histone Deacetylases/metabolism
- Histones/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Luciferases/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Sp1 Transcription Factor/metabolism
- Sp3 Transcription Factor
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Transforming Growth Factor beta/metabolism
- Vorinostat
Collapse
Affiliation(s)
- Sudhakar Ammanamanchi
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | |
Collapse
|
34
|
Ou XM, Chen K, Shih JC. Dual functions of transcription factors, transforming growth factor-beta-inducible early gene (TIEG)2 and Sp3, are mediated by CACCC element and Sp1 sites of human monoamine oxidase (MAO) B gene. J Biol Chem 2004; 279:21021-8. [PMID: 15024015 DOI: 10.1074/jbc.m312638200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Monoamine oxidases (MAO) A and B catalyze the oxidative deamination of many biogenic and dietary amines. Abnormal expression of MAO has been implicated in several psychiatric and neurodegenerative disorders. Human MAO B core promoter (-246 to -99 region) consists of CACCC element flanked by two clusters of overlapping Sp1 sites. Here, we show that cotransfection with transforming growth factor (TGF)-beta-inducible early gene (TIEG)2 increased MAO B gene expression at promoter, mRNA, protein, and catalytic activity levels in both SH-SY5Y and HepG2 cells. Mutation of the CACCC element increased the MAO B promoter activity, and cotransfection with TIEG2 further increased the promoter activity, suggesting that CACCC was a repressor element. This increase was reduced when the proximal Sp1 overlapping sites was mutated. Similar interactions were found with Sp3. These results showed that TIEG2 and Sp3 were repressors at the CACCC element but were activators at proximal Sp1 overlapping sites of MAO B. Gel-shift and chromatin immunoprecipitation assays showed that TIEG2 and Sp3 bound directly to CACCC element and the proximal Sp1 sites in both synthetic oligonucleotides and natural MAO B core promoter. TIEG2 had a higher affinity to Sp1 sites than CACCC element, whereas Sp3 had an equal affinity to both elements. Thus, TIEG2 was an activator, but Sp3 had no effect on MAO B gene expression. This study provides new insights into MAO B gene expression and illustrates the complexity of gene regulation.
Collapse
Affiliation(s)
- Xiao-Ming Ou
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
35
|
Kopp JL, Wilder PJ, Desler M, Kim JH, Hou J, Nowling T, Rizzino A. Unique and selective effects of five Ets family members, Elf3, Ets1, Ets2, PEA3, and PU.1, on the promoter of the type II transforming growth factor-beta receptor gene. J Biol Chem 2004; 279:19407-20. [PMID: 14976186 DOI: 10.1074/jbc.m314115200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that the promoter of the type II TGF-beta receptor gene (TbetaR-II) is strongly stimulated by Elf3, a member of the Ets transcription factor family. The TbetaR-II gene behaves as a tumor suppressor and it is expressed in nearly all cell types, whereas Elf3 is expressed primarily in epithelial cells. Hence, the TbetaR-II gene is likely to be regulated by other Ets proteins in nonepithelial cells. In this study, we examined the effects of four other Ets family members (Ets1, Ets2, PEA3, and PU.1) on TbetaR-II promoter/reporter constructs that contain the two essential ets sites of this gene. These studies employed F9 embryonal carcinoma cells and their differentiated cells, because transcription of the TbetaR-II gene increases after F9 cells differentiate. Here we demonstrate that Ets2, which is expressed in F9-differentiated cells along with Elf3, does not stimulate or bind to the TbetaR-II promoter in these cells. In contrast, PEA3 stimulates the TbetaR-II promoter in F9-differentiated cells, but it inhibits this promoter in F9 cells. Thus, the effects of PEA3 on the TbetaR-II promoter are cell context-dependent. We also show that the effects of Elf3 are cell context-dependent. Elf3 strongly stimulates the TbetaR-II promoter in F9-differentiated cells, but not in F9 cells. In contrast to Elf3 and PEA3, Ets1 strongly stimulates this promoter in both F9 cells and F9-differentiated cells. Finally, we show that PU.1 exerts little or no effect on the activity of the TbetaR-II promoter. Together, our findings indicate that Elf3 is not the only Ets protein capable of stimulating the TbetaR-II promoter. Importantly, our findings also indicate that each of the five Ets proteins influences the TbetaR-II promoter in a unique manner because of important differences in their biochemical properties or their patterns of cellular expression.
Collapse
Affiliation(s)
- Janel L Kopp
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Naso M, Uitto J, Klement JF. Transcriptional Control of the Mouse Col7a1 Gene in Keratinocytes: Basal and Transforming Growth Factor-β Regulated Expression. J Invest Dermatol 2003; 121:1469-78. [PMID: 14675198 DOI: 10.1111/j.1523-1747.2003.12640.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Anchoring fibrils at the cutaneous basement membrane zone of the stratified squamous epithelia are essential to maintaining skin integrity, as absence of these structures leads to the chronic blistering disease, dystrophic epidermolysis bullosa. Type VII collagen, the major component of anchoring fibrils, is synthesized primarily by basal keratinocytes and to a lesser degree by dermal fibroblasts. To elucidate the transcriptional control elements of the type VII collagen gene (Col7a1), 3 kb of 5' flanking sequence of the mouse gene was cloned, sequenced, and fused to the chloramphenicol acetyltransferase reporter gene. Promoter deletion analyses revealed that 560 bp of Col7a1 5' flanking sequence was sufficient and necessary for basal level of transcription in cultured murine keratinocytes. Mutagenesis of DNA sequences with similarity to consensus binding sites for transcription factors, including Sp1/Sp3, AP2, AP1, and Smads, within the p-560Col7a1 promoter/chloramphenicol acetyltransferase construct, coupled with DNA binding assays, revealed the importance of these sites for basal Col7a1 expression. The effect of transforming growth factor beta, an activator of Col7a1 expression in keratinocytes and dermal fibroblasts, was examined using the same Col7a1 promoter/chloramphenicol acetyltransferase constructs. These analyses demonstrated that transforming growth factor beta1 stimulation of Col7a1 transcription is dependent on a putative interaction between Smads and AP1. Interestingly, the Smad-like binding site was essential for both basal and transforming growth factor beta1 stimulated Col7a1 transcription. Collectively, these findings attest to the complex regulation of Col7a1 transcription in epidermal keratinocytes.
Collapse
Affiliation(s)
- Michael Naso
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
37
|
Abstract
Sp3 transcription factor can either activate or repress target gene expression. However, the molecular event that controls this dual function is unclear. We previously reported (Ammanamanchi, S., and Brattain, M. G. (2001) J. Biol. Chem. 276, 3348-3352) that unmodified Sp3 acts as a transcriptional repressor of transforming growth factor-beta receptors in MCF-7L breast cancer cells. We now report that histone deacetylase inhibitor trichostatin A (TSA) induces acetylation of Sp3, which acts as a transcriptional activator of transforming growth factor-beta receptor type II (RII) in MCF-7L cells. Mutation analysis indicated the TSA response is mediated through a GC box located on the RII promoter, which was previously identified as an Sp1/Sp3-binding site that was critical for RII promoter activity. Ectopic Sp3 expression in Sp3-deficient MCF-7E breast cancer cells repressed RII promoter activity in the absence of TSA. However, in the TSA-treated MCF-7E cells ectopic Sp3 activated RII promoter. Histone acetyltransferase p300 was shown to acetylate Sp3. Sp3-mediated RII promoter activity was stimulated by wild type p300 but not the histone acetyltransferase domain-deleted mutant p300 in MCF-7L cells, suggesting the positive effect of p300 acetylase activity on Sp3. Consequently, the results presented in this manuscript demonstrate that acetylation acts as a switch that controls the repressor and activator role of Sp3.
Collapse
Affiliation(s)
- Sudhakar Ammanamanchi
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
38
|
Roy SK, Wang J, Yang P. Dexamethasone inhibits transforming growth factor-beta receptor (Tbeta R) messenger RNA expression in hamster preantral follicles: possible association with NF-YA. Biol Reprod 2003; 68:2180-8. [PMID: 12606399 DOI: 10.1095/biolreprod.102.013011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To evaluate the site(s) and mechanism(s) of glucocorticoid-inhibition of transforming growth factor (TGF) beta receptor (TbetaR) mRNA expression in ovarian cells, steady-state levels of TbetaR mRNA in hamster preantral follicles exposed to FSH or estradiol with or without dexamethasone were determined by reverse transcription polymerase chain reaction and Southern hybridization. The effect of dexamethasone on follicular DNA and steroid synthesis and the expression of NF-Y and Sp3 were also investigated. Dexamethasone differentially inhibited FSH- or estradiol-induced expression of TbetaR mRNA in preantral follicles at all stages. Dexamethasone also strongly inhibited FSH-induced but not TGFbeta2-induced follicular DNA synthesis, and the inhibition was completely reversed by TGFbeta2. However, TGFbeta2 markedly attenuated FSH + dexamethasone-stimulated progesterone and FSH-induced follicular estradiol synthesis. Both FSH and estradiol upregulated NF-YA expression, but the effect was significantly attenuated by dexamethasone. Our results suggest that suppression of NF-YA levels is one of the mechanisms whereby dexamethasone reduces hormone-induced TbetaRI and TbetaRII mRNA levels in hamster preantral follicles. Dexamethasone potentiates the effect of FSH on granulosa cell steroidogenesis, whereas TGFbeta counteracts the effect. These data indicate that glucocorticoid and TGFbeta may form an important regulatory loop to modulate FSH regulation of preantral follicular growth and differentiation.
Collapse
Affiliation(s)
- Shyamal K Roy
- Departments of Obstetrics, University of Nebraska Medical Center, Omaha, Nebraska 68198-4515, USA.
| | | | | |
Collapse
|
39
|
Chadjichristos C, Ghayor C, Herrouin JF, Ala-Kokko L, Suske G, Pujol JP, Galéra P. Down-regulation of human type II collagen gene expression by transforming growth factor-beta 1 (TGF-beta 1) in articular chondrocytes involves SP3/SP1 ratio. J Biol Chem 2002; 277:43903-17. [PMID: 12186868 DOI: 10.1074/jbc.m206111200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although transforming growth factor beta1 (TGF-beta1) is generally considered as a stimulator of type I collagen production in smooth organs, we found that it can inhibit type II collagen biosynthesis in primary rabbit articular chondrocytes (RAC) at transcriptional levels. Constructs of promoter and first intron sequences associated with the luciferase reporter gene were used to delineate the gene sequences involved in TGF-beta1 control of human COL2A1 gene transcription. Cotransfection of these DNA fragments with a TbetaRII/I cDNA hybrid receptor, capable of inducing a TGF-beta1 dominant negative effect, showed that TGF-beta1 inhibits specifically COL2A1 gene transcription in RAC by a 63-bp proximal promoter. Footprint and gel retardation analyses revealed that the TGF-beta1-induced inhibition effect exerted through the 63-bp promoter sequence implies a multimeric complex that binds to the -41/-33 sequence and involves Sp1 and Sp3 transcription factors. Transfection of decoy Sp-binding oligonucleotides corroborated the implication of the proximal promoter in the TGF-beta1-induced inhibition of COL2A1 gene transcription. In addition, TGF-beta1 was found to increase the expression of Sp3 without significant changes to its binding level, but repressed both the biosynthesis and binding activity of Sp1. In functional assays, Sp3 inhibited the 63-bp promoter activity and prevented Sp1 induction of transcription. These findings suggest that TGF-beta1 inhibition of COL2A1 gene transcription in RAC is mediated by an increase of the Sp3/Sp1 ratio and by the repression of Sp1 transactivating effects on that gene.
Collapse
Affiliation(s)
- Christos Chadjichristos
- Laboratoire de Biochimie du Tissu Conjonctif, Faculté de Médecine, CHU niveau 3, Avenue de Côte de Nacre, 14032, Caen Cedex, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Leung-Pineda V, Kilberg MS. Role of Sp1 and Sp3 in the nutrient-regulated expression of the human asparagine synthetase gene. J Biol Chem 2002; 277:16585-91. [PMID: 11867623 DOI: 10.1074/jbc.m110972200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human asparagine synthetase (AS) gene responds to depletion of mammalian cells for either amino acids or carbohydrates. Five specific cis-elements have been implicated: three GC boxes (GC-I, GC-II and GC-III) and two nutrient-sensing response elements (NSRE-1, -2). This study shows that all three GC boxes are required to maintain basal transcription and to obtain maximal induction of the AS gene by amino acid limitation. However, there is not complete redundancy among the three GC boxes, and there is a hierarchy of importance with regard to transcription (GC-III > GC-II > GC-I). In vitro, two GC boxes formed protein-DNA complexes (GC-II and GC-III) with Sp1 and Sp3. Although transcription of the AS gene is elevated by nutrient limitation, the absolute amount of these protein-DNA complexes and the total pools of Sp1 and Sp3 did not increase. A small, but detectable portion of Sp1 was modified by phosphorylation following amino acid deprivation. In vivo, expression of Sp1 and Sp3 in Drosophila SL2 cells increased AS promoter activity. Sp1 expression increased basal transcription but did not cause a further increase when SL2 cells were amino acid-deprived. Sp3 expression enhanced both the basal and the starvation-induced transcription.
Collapse
Affiliation(s)
- Van Leung-Pineda
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | |
Collapse
|
41
|
Ross S, Tienhaara A, Lee MS, Tsai LH, Gill G. GC box-binding transcription factors control the neuronal specific transcription of the cyclin-dependent kinase 5 regulator p35. J Biol Chem 2002; 277:4455-64. [PMID: 11724806 DOI: 10.1074/jbc.m110771200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 5 (cdk5)/p35 kinase activity is highest in post-mitotic neurons of the central nervous system and is critical for development and function of the brain. The neuronal specific activity of the cdk5/p35 kinase is achieved through the regulated expression of p35 mRNA. We have identified a small 200-bp fragment of the p35 promoter that is sufficient for high levels of neuronal specific expression. Mutational analysis of this TATA-less promoter has identified a 17-bp GC-rich element, present twice, that is both required for promoter activity and sufficient for neuronal specific transcription. A GC box within the 17-bp element is critical for both promoter activity and protein-DNA complex formation. The related transcription factors Sp1, Sp3, and Sp4 constitute most of the GC box DNA binding activity in neurons. We have found that both the relative contribution of the Sp family proteins to GC box binding and the transcriptional activity of these proteins is regulated during neuronal differentiation. Thus, our data show that the GC box-binding Sp proteins contribute to the regulation of p35 expression in neurons, suggesting changes in the Sp transcription factors level and activity may contribute to cell type-specific expression of many genes in the central nervous system.
Collapse
Affiliation(s)
- Sarah Ross
- Department of Pathology and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
42
|
Jennings R, Alsarraj M, Wright KL, Muñoz-Antonia T. Regulation of the human transforming growth factor beta type II receptor gene promoter by novel Sp1 sites. Oncogene 2001; 20:6899-909. [PMID: 11687969 DOI: 10.1038/sj.onc.1204808] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2001] [Revised: 06/14/2001] [Accepted: 07/05/2001] [Indexed: 11/08/2022]
Abstract
The transforming growth factor-beta (TGF beta) type II receptor (T beta R-II) is responsible for transducing the growth inhibitory signals of TGF beta. The T beta R-II gene promoter lacks both a TATA box and a CAAT box near the transcription initiation site, and has been shown to contain binding sequences for several transcription factors (Sp1, AP1, NF-Y, Cut and ERT) which are important for T beta R-II gene promoter activity in vitro. However, it is still not clear which interactions are important for the regulation of T beta R-II gene promoter activity in vivo. Using in vivo genomic DNA footprinting of normal human epithelial cells (HaCaT), we have identified two novel identical and strongly protected sites (ggggctgg) at positions -59 and -102 of the T beta R-II gene promoter. Mutation of either site significantly reduced promoter activity in transient transfections. Protein binding to these sites, as determined by electrophoretic mobility shift assays (EMSA), was specifically competed with consensus Sp1 oligonucleotides. Furthermore, anti-Sp1/3 antibodies produced band shifts when incubated with the T beta R-II -59 and -102 DNA probes. Importantly, Sp1 protein binding was influenced by the presence of an intact NF-Y binding site at position -83. Our data suggests that both Sp1 and NF-Y may play an important role in regulating T beta R-II gene promoter basal activity in vivo.
Collapse
Affiliation(s)
- R Jennings
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Department of Oncology, University of South Florida, Tampa, Florida, FL 33612, USA
| | | | | | | |
Collapse
|
43
|
Hogeveen KN, Talikka M, Hammond GL. Human sex hormone-binding globulin promoter activity is influenced by a (TAAAA)n repeat element within an Alu sequence. J Biol Chem 2001; 276:36383-90. [PMID: 11473114 DOI: 10.1074/jbc.m104681200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sex hormone-binding globulin (SHBG) is the major sex steroid-binding protein in human plasma and is produced by the liver. Plasma SHBG levels vary considerably between individuals and are influenced by hormonal, metabolic, and nutritional factors. We have now found that a (TAAAA)(n) pentanucleotide repeat, located within an alu sequence at the 5' boundary of the human SHBG promoter, influences its transcriptional activity in association with downstream elements, including an SP1-binding site. Furthermore, SHBG alleles within the general population contain at least 6-10 TAAAA repeats, and the transcriptional activity of a human SHBG promoter-luciferase reporter construct containing 6 TAAAA repeats was significantly lower than for similar reporter constructs containing 7-10 TAAAA repeats when tested in human HepG2 hepatoblastoma cells. This difference in transcriptional activity reflected the preferential binding of a 46-kDa liver-enriched nuclear factor to an oligonucleotide containing 6 rather than 7-10 TAAAA repeats. Thus, a (TAAAA)(n) element within the human SHBG promoter influences transcriptional activity in HepG2 cells and may contribute to differences in plasma SHBG levels between individuals.
Collapse
Affiliation(s)
- K N Hogeveen
- Department of Obstetrics & Gynaecology, University of Western Ontario, London, Ontario N6A 4L6, Canada
| | | | | |
Collapse
|
44
|
Ammanamanchi S, Brattain MG. 5-azaC treatment enhances expression of transforming growth factor-beta receptors through down-regulation of Sp3. J Biol Chem 2001; 276:32854-9. [PMID: 11443124 DOI: 10.1074/jbc.m103951200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that Sp3 acts as a transcriptional repressor of transforming growth factor-beta receptors type I (RI) and type II (RII). We now present data suggesting that treatment of MCF-7L breast and GEO colon cancer cells with 5-aza cytidine (5-azaC) leads to down-regulation of Sp3 and the concomitant induction of RI and RII. Western blot and gel shift analyses on 5-azaC-treated MCF-7L and GEO nuclear extracts indicated reduced Sp3 protein levels and decreased binding of Sp3 protein to radiolabeled consensus Sp1 oligonucleotide. Southwestern analysis detected decreased binding of Sp3 to RI and RII promoters in 5-azaC-treated MCF-7L and GEO cells, suggesting a correlation between decreased Sp3 binding and enhanced RI and RII expression in these cells. Reverse transcription-polymerase chain reaction and nuclear run-on data from 5-azaC-treated MCF-7L and GEO cells indicated down-regulation of Sp3 mRNA as a result of decreased transcription of Sp3. We reported earlier that 5-azaC treatment induces RI and RII expression through increased Sp1 protein levels/activities in these cells. These studies demonstrate that the effect of 5-azaC involves a combination of effects on Sp1 and Sp3.
Collapse
Affiliation(s)
- S Ammanamanchi
- Department of Surgery, The University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | |
Collapse
|
45
|
Black AR, Black JD, Azizkhan-Clifford J. Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 2001; 188:143-60. [PMID: 11424081 DOI: 10.1002/jcp.1111] [Citation(s) in RCA: 844] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Sp/KLF family contains at least twenty identified members which include Sp1-4 and numerous krüppel-like factors. Members of the family bind with varying affinities to sequences designated as 'Sp1 sites' (e.g., GC-boxes, CACCC-boxes, and basic transcription elements). Family members have different transcriptional properties and can modulate each other's activity by a variety of mechanisms. Since cells can express multiple family members, Sp/KLF factors are likely to make up a transcriptional network through which gene expression can be fine-tuned. 'Sp1 site'-dependent transcription can be growth-regulated, and the activity, expression, and/or post-translational modification of multiple family members is altered with cell growth. Furthermore, Sp/KLF factors are involved in many growth-related signal transduction pathways and their overexpression can have positive or negative effects on proliferation. In addition to growth control, Sp/KLF factors have been implicated in apoptosis and angiogenesis; thus, the family is involved in several aspects of tumorigenesis. Consistent with a role in cancer, Sp/KLF factors interact with oncogenes and tumor suppressors, they can be oncogenic themselves, and altered expression of family members has been detected in tumors. Effects of changes in Sp/KLF factors are context-dependent and can appear contradictory. Since these factors act within a network, this diversity of effects may arise from differences in the expression profile of family members in various cells. Thus, it is likely that the properties of the overall network of Sp/KLF factors play a determining role in regulation of cell growth and tumor progression.
Collapse
Affiliation(s)
- A R Black
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | |
Collapse
|
46
|
Geiger A, Salazar G, Kervran A. Role of the Sp family of transcription factors on glucagon receptor gene expression. Biochem Biophys Res Commun 2001; 285:838-44. [PMID: 11453669 DOI: 10.1006/bbrc.2001.5239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glucagon receptor mediates the actions of glucagon on carbohydrate metabolism by the liver and on insulin release by the pancreatic beta-cell, which are key processes in the control of glucose homeostasis. The 5'-region of the mouse glucagon receptor gene has been recently cloned and two functional promoters were characterized. In the present study, we show that most of the glucagon receptor mRNA was transcribed from the distal promoter, in the mouse liver. In the distal promoter region, a GC-rich sequence with five putative binding sites for the Sp family of transcription factors was localized. To elucidate the role of these Sp1-binding sites in the mouse MIN6 beta-cell line, the expression of reporter gene constructs containing deletion or point mutation of each site was carried out. Selective mutation of the second Sp1-binding site decreased the activity of the distal promoter. Electrophoretic mobility shift assay with a DNA fragment spanning the three first Sp1 sites confirmed that the second site bound specifically MIN6 nuclear proteins, and supershift using specific Sp antibodies demonstrated that it interacted with Sp3 but not Sp1 transcription factors. These data illustrate that the basal expression of the mouse glucagon receptor gene, driven by the distal promoter, requires an Sp1-binding site that binds Sp3 proteins.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- Animals
- Binding Sites/genetics
- Blotting, Western
- Cells, Cultured
- DNA-Binding Proteins/metabolism
- Electrophoresis, Polyacrylamide Gel
- Gene Expression/physiology
- Genes, Reporter
- Islets of Langerhans/cytology
- Islets of Langerhans/metabolism
- Liver/metabolism
- Mice
- Mice, Inbred C57BL
- Mutagenesis, Site-Directed
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Receptors, Glucagon/biosynthesis
- Receptors, Glucagon/genetics
- Sp1 Transcription Factor/metabolism
- Sp3 Transcription Factor
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- A Geiger
- INSERM U376, CHU Arnaud de Villeneuve, 371, rue Doyen G. Giraud, 34295 Montpellier Cedex 5, France
| | | | | |
Collapse
|