1
|
Gerstner JR, Flores CC, Lefton M, Rogers B, Davis CJ. FABP7: a glial integrator of sleep, circadian rhythms, plasticity, and metabolic function. Front Syst Neurosci 2023; 17:1212213. [PMID: 37404868 PMCID: PMC10315501 DOI: 10.3389/fnsys.2023.1212213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Sleep and circadian rhythms are observed broadly throughout animal phyla and influence neural plasticity and cognitive function. However, the few phylogenetically conserved cellular and molecular pathways that are implicated in these processes are largely focused on neuronal cells. Research on these topics has traditionally segregated sleep homeostatic behavior from circadian rest-activity rhythms. Here we posit an alternative perspective, whereby mechanisms underlying the integration of sleep and circadian rhythms that affect behavioral state, plasticity, and cognition reside within glial cells. The brain-type fatty acid binding protein, FABP7, is part of a larger family of lipid chaperone proteins that regulate the subcellular trafficking of fatty acids for a wide range of cellular functions, including gene expression, growth, survival, inflammation, and metabolism. FABP7 is enriched in glial cells of the central nervous system and has been shown to be a clock-controlled gene implicated in sleep/wake regulation and cognitive processing. FABP7 is known to affect gene transcription, cellular outgrowth, and its subcellular localization in the fine perisynaptic astrocytic processes (PAPs) varies based on time-of-day. Future studies determining the effects of FABP7 on behavioral state- and circadian-dependent plasticity and cognitive processes, in addition to functional consequences on cellular and molecular mechanisms related to neural-glial interactions, lipid storage, and blood brain barrier integrity will be important for our knowledge of basic sleep function. Given the comorbidity of sleep disturbance with neurological disorders, these studies will also be important for our understanding of the etiology and pathophysiology of how these diseases affect or are affected by sleep.
Collapse
Affiliation(s)
- Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Micah Lefton
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Brooke Rogers
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
2
|
Asaro A, Sinha R, Bakun M, Kalnytska O, Carlo-Spiewok AS, Rubel T, Rozeboom A, Dadlez M, Kaminska B, Aronica E, Malik AR, Willnow TE. ApoE4 disrupts interaction of sortilin with fatty acid-binding protein 7 essential to promote lipid signaling. J Cell Sci 2021; 134:272562. [PMID: 34557909 PMCID: PMC8572006 DOI: 10.1242/jcs.258894] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
Sortilin is a neuronal receptor for apolipoprotein E (apoE). Sortilin-dependent uptake of lipidated apoE promotes conversion of polyunsaturated fatty acids (PUFA) into neuromodulators that induce anti-inflammatory gene expression in the brain. This neuroprotective pathway works with the apoE3 variant but is lost with the apoE4 variant, the main risk factor for Alzheimer's disease (AD). Here, we elucidated steps in cellular handling of lipids through sortilin, and why they are disrupted by apoE4. Combining unbiased proteome screens with analyses in mouse models, we uncover interaction of sortilin with fatty acid-binding protein 7 (FABP7), the intracellular carrier for PUFA in the brain. In the presence of apoE3, sortilin promotes functional expression of FABP7 and its ability to elicit lipid-dependent gene transcription. By contrast, apoE4 binding blocks sortilin-mediated sorting, causing catabolism of FABP7 and impairing lipid signaling. Reduced FABP7 levels in the brain of AD patients expressing apoE4 substantiate the relevance of these interactions for neuronal lipid homeostasis. Taken together, we document interaction of sortilin with mediators of extracellular and intracellular lipid transport that provides a mechanistic explanation for loss of a neuroprotective lipid metabolism in AD.
Collapse
Affiliation(s)
- Antonino Asaro
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Rishabhdev Sinha
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Magda Bakun
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | | - Tymon Rubel
- Warsaw University of Technology, Institute of Radioelectronics and Multimedia Technology, 00-665 Warsaw, Poland
| | - Annemieke Rozeboom
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105AZ Amsterdam, The Netherlands.,Center for Neuroscience, Amsterdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.,Biology Department, Institute of Genetics and Biotechnology02-106 Warsaw, Poland
| | - Bozena Kaminska
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105AZ Amsterdam, The Netherlands
| | - Anna R Malik
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Department of Medical Biochemistry, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
3
|
Choi WS, Xu X, Goruk S, Wang Y, Patel S, Chow M, Field CJ, Godbout R. FABP7 Facilitates Uptake of Docosahexaenoic Acid in Glioblastoma Neural Stem-like Cells. Nutrients 2021; 13:2664. [PMID: 34444824 PMCID: PMC8402214 DOI: 10.3390/nu13082664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor with a dismal prognosis. Neural stem-like cells contribute to GBM's poor prognosis by driving drug resistance and maintaining cellular heterogeneity. GBM neural stem-like cells express high levels of brain fatty acid-binding protein (FABP7), which binds to polyunsaturated fatty acids (PUFAs) ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Similar to brain, GBM tissue is enriched in AA and DHA. However, DHA levels are considerably lower in GBM tissue compared to adult brain. Therefore, it is possible that increasing DHA content in GBM, particularly in neural stem-like cells, might have therapeutic value. Here, we examine the fatty acid composition of patient-derived GBM neural stem-like cells grown as neurosphere cultures. We also investigate the effect of AA and DHA treatment on the fatty acid profiles of GBM neural stem-like cells with or without FABP7 knockdown. We show that DHA treatment increases DHA levels and the DHA:AA ratio in GBM neural stem-like cells, with FABP7 facilitating the DHA uptake. We also found that an increased uptake of DHA inhibits the migration of GBM neural stem-like cells. Our results suggest that increasing DHA content in the GBM microenvironment may reduce the migration/infiltration of FABP7-expressing neural stem-like cancer cells.
Collapse
Affiliation(s)
- Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Xia Xu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Samir Patel
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Michael Chow
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| |
Collapse
|
4
|
Basak S, Mallick R, Banerjee A, Pathak S, Duttaroy AK. Maternal Supply of Both Arachidonic and Docosahexaenoic Acids Is Required for Optimal Neurodevelopment. Nutrients 2021; 13:2061. [PMID: 34208549 PMCID: PMC8234848 DOI: 10.3390/nu13062061] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
During the last trimester of gestation and for the first 18 months after birth, both docosahexaenoic acid,22:6n-3 (DHA) and arachidonic acid,20:4n-6 (ARA) are preferentially deposited within the cerebral cortex at a rapid rate. Although the structural and functional roles of DHA in brain development are well investigated, similar roles of ARA are not well documented. The mode of action of these two fatty acids and their derivatives at different structural-functional roles and their levels in the gene expression and signaling pathways of the brain have been continuously emanating. In addition to DHA, the importance of ARA has been much discussed in recent years for fetal and postnatal brain development and the maternal supply of ARA and DHA. These fatty acids are also involved in various brain developmental processes; however, their mechanistic cross talks are not clearly known yet. This review describes the importance of ARA, in addition to DHA, in supporting the optimal brain development and growth and functional roles in the brain.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India;
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India; (A.B.); (S.P.)
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India; (A.B.); (S.P.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
5
|
Shimamoto-Mitsuyama C, Nakaya A, Esaki K, Balan S, Iwayama Y, Ohnishi T, Maekawa M, Toyota T, Dean B, Yoshikawa T. Lipid Pathology of the Corpus Callosum in Schizophrenia and the Potential Role of Abnormal Gene Regulatory Networks with Reduced Microglial Marker Expression. Cereb Cortex 2020; 31:448-462. [PMID: 32924060 PMCID: PMC7727339 DOI: 10.1093/cercor/bhaa236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Structural changes in the corpus callosum have been reported in schizophrenia; however, the underlying molecular mechanism remains unclear. As the corpus callosum is high in lipid content, we analyzed the lipid contents of the corpora callosa from 15 patients with schizophrenia and 15 age- and sex-matched controls using liquid chromatography coupled to tandem mass spectrometry and identified lipid combinations associated with schizophrenia. Real-time quantitative polymerase chain reaction analyses using extended samples (schizophrenia, n = 95; control, n = 91) showed low expression levels of lipid metabolism-related genes and their potential upstream transcription factors in schizophrenia. Subsequent pathway analysis identified a gene regulatory network where nuclear factor of activated T cells 2 (NFATC2) is placed most upstream. We also observed low gene expression levels of microglial markers, inflammatory cytokines, and colony-stimulating factor 1 receptor (CSF1R), which is known to regulate the density of microglia, in the corpus callosum in schizophrenia. The interactions between CSF1R and several genes in the presently identified gene network originating from NFATC2 have been reported. Collectively, this study provides evidence regarding lipid abnormalities in the corpora callosa of patients with schizophrenia and proposes the potential role of impaired “NFATC2-relevant gene network-microglial axis” as its underlying mechanism.
Collapse
Affiliation(s)
| | - Akihiro Nakaya
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.,Laboratory of Genome Data Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kayoko Esaki
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Shabeesh Balan
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.,Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Tetsuo Ohnishi
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Motoko Maekawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Tomoko Toyota
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Howard Florey Laboratories, The University of Melbourne, Parkville, Victoria, Australia.,The Centre for Mental Health, Swinburne University, Hawthorn, Victoria, Australia
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| |
Collapse
|
6
|
Liu ZH, Chen NY, Tu PH, Wu CT, Chiu SC, Huang YC, Lim SN, Yip PK. DHA Attenuates Cerebral Edema Following Traumatic Brain Injury via the Reduction in Blood-Brain Barrier Permeability. Int J Mol Sci 2020; 21:ijms21176291. [PMID: 32878052 PMCID: PMC7503959 DOI: 10.3390/ijms21176291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) could result in edema and cause an increase in intracranial pressure of the brain resulting in mortality and morbidity. Although there is hyperosmolarity therapy available for this pathophysiological event, it remains controversial. Recently, several groups have shown docosahexaenoic acid (DHA) to improve functional and histological outcomes following brain injury based on reduction of neuroinflammation and apoptosis. However, the effect of DHA on blood-brain barrier (BBB) dysfunction after brain injury has not been fully studied. Here, a controlled cortical impact rat model was used to test the effect of a single dose of DHA administered 30 min post injury. Modified neurological severity score (mNSS) and forelimb asymmetry were used to determine the functional outcomes. Neuroimaging and histology were used to characterize the edema and BBB dysfunction. The study showed that DHA-treated TBI rats had better mNSS and forelimb asymmetry score than vehicle-treated TBI rats. Temporal analysis of edema using MRI revealed a significant reduction in edema level with DHA treatment compared to vehicle in TBI rats. Histological analysis using immunoglobulin G (IgG) extravasation showed that there was less extravasation, which corresponded with a reduction in aquaporin 4 and astrocytic metalloprotease 9 expression, and greater endothelial occludin expression in the peri-contusional site of the TBI rat brain treated with DHA in comparison to vehicle treatment. In conclusion, the study shows that DHA can exert its functional improvement by prevention of the edema formation via prevention of BBB dysfunction after TBI.
Collapse
Affiliation(s)
- Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan; (P.-h.T.); (Y.-C.H.)
- Correspondence: (Z.-H.L.); (P.K.Y.)
| | - Nan-Yu Chen
- Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan;
| | - Po-hsun Tu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan; (P.-h.T.); (Y.-C.H.)
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan;
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital at Linkou, Taoyuan County 333, Taiwan;
| | - Ying-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan; (P.-h.T.); (Y.-C.H.)
| | - Siew-Na Lim
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan;
| | - Ping K. Yip
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Neuroscience, Surgery & Trauma, London E1 2AT, UK
- Correspondence: (Z.-H.L.); (P.K.Y.)
| |
Collapse
|
7
|
Kagawa Y, Umaru BA, Shima H, Ito R, Zama R, Islam A, Kanno SI, Yasui A, Sato S, Jozaki K, Shil SK, Miyazaki H, Kobayashi S, Yamamoto Y, Kogo H, Shimamoto-Mitsuyama C, Sugawara A, Sugino N, Kanamori M, Tominaga T, Yoshikawa T, Fukunaga K, Igarashi K, Owada Y. FABP7 Regulates Acetyl-CoA Metabolism Through the Interaction with ACLY in the Nucleus of Astrocytes. Mol Neurobiol 2020; 57:4891-4910. [PMID: 32812201 PMCID: PMC7541391 DOI: 10.1007/s12035-020-02057-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/07/2020] [Indexed: 01/17/2023]
Abstract
Fatty acid binding protein 7 (FABP7) is an intracellular fatty acid chaperon that is highly expressed in astrocytes, oligodendrocyte-precursor cells, and malignant glioma. Previously, we reported that FABP7 regulates the response to extracellular stimuli by controlling the expression of caveolin-1, an important component of lipid raft. Here, we explored the detailed mechanisms underlying FABP7 regulation of caveolin-1 expression using primary cultured FABP7-KO astrocytes as a model of loss of function and NIH-3T3 cells as a model of gain of function. We discovered that FABP7 interacts with ATP-citrate lyase (ACLY) and is important for acetyl-CoA metabolism in the nucleus. This interaction leads to epigenetic regulation of several genes, including caveolin-1. Our novel findings suggest that FABP7-ACLY modulation of nuclear acetyl-CoA has more influence on histone acetylation than cytoplasmic acetyl-CoA. The changes to histone structure may modify caveolae-related cell activity in astrocytes and tumors, including malignant glioma.
Collapse
Affiliation(s)
- Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Banlanjo Abdulaziz Umaru
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ryo Ito
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ryo Zama
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ariful Islam
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shin-Ichiro Kanno
- Division of Dynamic Proteome in Aging and Cancer, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Aging and Cancer, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-0046, Japan
| | - Kosuke Jozaki
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-0046, Japan
| | - Subrata Kumar Shil
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hiroshi Kogo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | | | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-0046, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, 351-0198, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
8
|
Foerster S, Guzman de la Fuente A, Kagawa Y, Bartels T, Owada Y, Franklin RJM. The fatty acid binding protein FABP7 is required for optimal oligodendrocyte differentiation during myelination but not during remyelination. Glia 2020; 68:1410-1420. [PMID: 32017258 PMCID: PMC7317849 DOI: 10.1002/glia.23789] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
The major constituents of the myelin sheath are lipids, which are made up of fatty acids (FAs). The hydrophilic environment inside the cells requires FAs to be bound to proteins, preventing their aggregation. Fatty acid binding proteins (FABPs) are one class of proteins known to bind FAs in a cell. Given the crucial role of FAs for myelin sheath formation we investigated the role of FABP7, the major isoform expressed in oligodendrocyte progenitor cells (OPCs), in developmental myelination and remyelination. Here, we show that the knockdown of Fabp7 resulted in a reduction of OPC differentiation in vitro. Consistent with this result, a delay in developmental myelination was observed in Fabp7 knockout animals. This delay was transient with full myelination being established before adulthood. FABP7 was dispensable for remyelination, as the knockout of Fapb7 did not alter remyelination efficiency in a focal demyelination model. In summary, while FABP7 is important in OPC differentiation in vitro, its function is not crucial for myelination and remyelination in vivo.
Collapse
Affiliation(s)
- Sarah Foerster
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Alerie Guzman de la Fuente
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Theresa Bartels
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Robin J M Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Field CS, Baixauli F, Kyle RL, Puleston DJ, Cameron AM, Sanin DE, Hippen KL, Loschi M, Thangavelu G, Corrado M, Edwards-Hicks J, Grzes KM, Pearce EJ, Blazar BR, Pearce EL. Mitochondrial Integrity Regulated by Lipid Metabolism Is a Cell-Intrinsic Checkpoint for Treg Suppressive Function. Cell Metab 2020; 31:422-437.e5. [PMID: 31883840 PMCID: PMC7001036 DOI: 10.1016/j.cmet.2019.11.021] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) subdue immune responses. Central to Treg activation are changes in lipid metabolism that support their survival and function. Fatty acid binding proteins (FABPs) are a family of lipid chaperones required to facilitate uptake and intracellular lipid trafficking. One family member, FABP5, is expressed in T cells, but its function remains unclear. We show that in Tregs, genetic or pharmacologic inhibition of FABP5 function causes mitochondrial changes underscored by decreased OXPHOS, impaired lipid metabolism, and loss of cristae structure. FABP5 inhibition in Tregs triggers mtDNA release and consequent cGAS-STING-dependent type I IFN signaling, which induces heightened production of the regulatory cytokine IL-10 and promotes Treg suppressive activity. We find evidence of this pathway, along with correlative mitochondrial changes in tumor infiltrating Tregs, which may underlie enhanced immunosuppression in the tumor microenvironment. Together, our data reveal that FABP5 is a gatekeeper of mitochondrial integrity that modulates Treg function.
Collapse
Affiliation(s)
- Cameron S Field
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Francesc Baixauli
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Ryan L Kyle
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Daniel J Puleston
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; The Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Alanna M Cameron
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - David E Sanin
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Keli L Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Michael Loschi
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Mauro Corrado
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Joy Edwards-Hicks
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Katarzyna M Grzes
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Edward J Pearce
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
10
|
Structure and ligand binding of As-p18, an extracellular fatty acid binding protein from the eggs of a parasitic nematode. Biosci Rep 2019; 39:BSR20191292. [PMID: 31273060 PMCID: PMC6646235 DOI: 10.1042/bsr20191292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/02/2023] Open
Abstract
Intracellular lipid-binding proteins (iLBPs) of the fatty acid-binding protein (FABP) family of animals transport, mainly fatty acids or retinoids, are confined to the cytosol and have highly similar 3D structures. In contrast, nematodes possess fatty acid-binding proteins (nemFABPs) that are secreted into the perivitelline fluid surrounding their developing embryos. We report structures of As-p18, a nemFABP of the large intestinal roundworm Ascaris suum, with ligand bound, determined using X-ray crystallography and nuclear magnetic resonance spectroscopy. In common with other FABPs, As-p18 comprises a ten β-strand barrel capped by two short α-helices, with the carboxylate head group of oleate tethered in the interior of the protein. However, As-p18 exhibits two distinctive longer loops amongst β-strands not previously seen in a FABP. One of these is adjacent to the presumed ligand entry portal, so it may help to target the protein for efficient loading or unloading of ligand. The second, larger loop is at the opposite end of the molecule and has no equivalent in any iLBP structure yet determined. As-p18 preferentially binds a single 18-carbon fatty acid ligand in its central cavity but in an orientation that differs from iLBPs. The unusual structural features of nemFABPs may relate to resourcing of developing embryos of nematodes.
Collapse
|
11
|
Falomir-Lockhart LJ, Cavazzutti GF, Giménez E, Toscani AM. Fatty Acid Signaling Mechanisms in Neural Cells: Fatty Acid Receptors. Front Cell Neurosci 2019; 13:162. [PMID: 31105530 PMCID: PMC6491900 DOI: 10.3389/fncel.2019.00162] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
Fatty acids (FAs) are typically associated with structural and metabolic roles, as they can be stored as triglycerides, degraded by β-oxidation or used in phospholipids’ synthesis, the main components of biological membranes. It has been shown that these lipids exhibit also regulatory functions in different cell types. FAs can serve as secondary messengers, as well as modulators of enzymatic activities and substrates for cytokines synthesis. More recently, it has been documented a direct activity of free FAs as ligands of membrane, cytosolic, and nuclear receptors, and cumulative evidence has emerged, demonstrating its participation in a wide range of physiological and pathological conditions. It has been long known that the central nervous system is enriched with poly-unsaturated FAs, such as arachidonic (C20:4ω-6) or docosohexaenoic (C22:6ω-3) acids. These lipids participate in the regulation of membrane fluidity, axonal growth, development, memory, and inflammatory response. Furthermore, a whole family of low molecular weight compounds derived from FAs has also gained special attention as the natural ligands for cannabinoid receptors or key cytokines involved in inflammation, largely expanding the role of FAs as precursors of signaling molecules. Nutritional deficiencies, and alterations in lipid metabolism and lipid signaling have been associated with developmental and cognitive problems, as well as with neurodegenerative diseases. The molecular mechanism behind these effects still remains elusive. But in the last two decades, different families of proteins have been characterized as receptors mediating FAs signaling. This review focuses on different receptors sensing and transducing free FAs signals in neural cells: (1) membrane receptors of the family of G Protein Coupled Receptors known as Free Fatty Acid Receptors (FFARs); (2) cytosolic transport Fatty Acid-Binding Proteins (FABPs); and (3) transcription factors Peroxisome Proliferator-Activated Receptors (PPARs). We discuss how these proteins modulate and mediate direct regulatory functions of free FAs in neural cells. Finally, we briefly discuss the advantages of evaluating them as potential targets for drug design in order to manipulate lipid signaling. A thorough characterization of lipid receptors of the nervous system could provide a framework for a better understanding of their roles in neurophysiology and, potentially, help for the development of novel drugs against aging and neurodegenerative processes.
Collapse
Affiliation(s)
- Lisandro Jorge Falomir-Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Gian Franco Cavazzutti
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Ezequiel Giménez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Andrés Martín Toscani
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
12
|
Dieriks BV, Dean JM, Aronica E, Waldvogel HJ, Faull RLM, Curtis MA. Differential Fatty Acid-Binding Protein Expression in Persistent Radial Glia in the Human and Sheep Subventricular Zone. Dev Neurosci 2018; 40:145-161. [PMID: 29680832 DOI: 10.1159/000487633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/18/2018] [Indexed: 01/19/2023] Open
Abstract
Fatty acid-binding proteins (FABPs) are a family of transport proteins that facilitate intracellular transport of fatty acids. Despite abundant expression in the brain, the role that FABPs play in the process of cell proliferation and migration in the subventricular zone (SVZ) remains unclear. Our results provide a detailed characterisation of FABP3, 5, and 7 expression in adult and fetal human and sheep SVZ. High FABP5 expression was specifically observed in the adult human SVZ and co-labelled with polysialylated neural cell adhesion molecule (PSA-NCAM), glial fibrillary acidic protein (GFAP), GFAPδ, and proliferating cell nuclear antigen (PCNA), indicating a role for FABP5 throughout the full maturation process of astrocytes and neuroblasts. Some FABP5+ cells had a radial glial-like appearance and co-labelled with the radial glia markers vimentin (40E-C) and GFAP. In the fetal human brain, FABP5 was expressed by radial glia cells throughout the ventricular zone. In contrast, radial glia-like cells in sheep highly expressed FABP3. Taken together, these differences highlight the species-specific expression profile of FABPs in the SVZ. In this study, we demonstrate the distribution of FABP in the adult human SVZ and fetal ventricular zone and reveal its expression on persistent radial glia that may be involved in adult neurogenesis.
Collapse
Affiliation(s)
- Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, Amsterdam, the Netherlands
| | - Henry J Waldvogel
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Elsherbiny ME, Chen H, Emara M, Godbout R. ω-3 and ω-6 Fatty Acids Modulate Conventional and Atypical Protein Kinase C Activities in a Brain Fatty Acid Binding Protein Dependent Manner in Glioblastoma Multiforme. Nutrients 2018; 10:nu10040454. [PMID: 29642372 PMCID: PMC5946239 DOI: 10.3390/nu10040454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly infiltrative brain cancer with a dismal prognosis. High levels of brain fatty acid binding protein (B-FABP) are associated with increased migration/infiltration in GBM cells, with a high ratio of arachidonic acid (AA) to docosahexaenoic acid (DHA) driving B-FABP-mediated migration. Since several protein kinase Cs (PKCs) are overexpressed in GBM and linked to migration, we explored a possible relationship between B-FABP and levels/activity of different PKCs, as a function of AA and DHA supplementation. We report that ectopic expression of B-FABP in U87 cells alters the levels of several PKCs, particularly PKCζ. Upon analysis of PKCζ RNA levels in a panel of GBM cell lines and patient-derived GBM neurospheres, we observed a trend towards moderate positive correlation (r = 0.624, p = 0.054) between B-FABP and PKCζ RNA levels. Analysis of PKC activity in U87 GBM cells revealed decreased typical PKC activity (23.4%) in B-FABP-expressing cells compared with nonexpressing cells, with no difference in novel and atypical PKC activities. AA and DHA modulated both conventional and atypical PKC activities in a B-FABP-dependent manner, but had no effect on novel PKC activity. These results suggest that conventional and atypical PKCs are potential downstream effectors of B-FABP/fatty acid-mediated alterations in GBM growth properties.
Collapse
Affiliation(s)
- Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Hua Chen
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
14
|
Han X, Li H, Zhang Y, Qin J, Yang Q, Wang L, Yuan M, Xia C. Brain lipid-binding protein promotes proliferation and modulates cell cycle in C6 rat glioma cells. Int J Oncol 2017; 51:1439-1448. [PMID: 29048614 PMCID: PMC5642387 DOI: 10.3892/ijo.2017.4132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the most common primary brain tumors affecting adults. Four grades of gliomas have been identified, namely, grades I-IV. Brain lipid-binding protein (BLBP), which functions in the intracellular transport of fatty acids, is expressed in all grades of human gliomas. The glioma cells that are cultured in vitro are grouped into the BLBP-positive and BLBP-negative cell lines. In the present study, we found that C6 rat glioma cells was a distinct type of BLBP-negative cell line. Our results confirmed that in the C6 cells, the expression of exogenous BLBP increased the proliferation and percentage of cells in the S phase, in the culture medium containing 10 or 1% FBS. Moreover, exogenous BLBP was found to downregulate the tumor suppressors p21 and p16 in the 1% FBS culture medium, but only p21 in the 10% FBS culture medium. The results of the xenograft model assay showed that exogenous BLBP also stimulated tumor formation and downregulated p21 and p16. In conclusion, our study demonstrated that exogenous BLBP promoted proliferation of the C6 cells in vitro and facilitated tumor formation in vivo. Therefore, BLBP expression in glioma cells may promote cell growth by inhibiting the tumor suppressors.
Collapse
Affiliation(s)
- Xiao Han
- Department of Anatomy and Cytoneurobiology Unit, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Haoming Li
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ye Zhang
- Department of Anatomy and Cytoneurobiology Unit, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jianbing Qin
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qingqing Yang
- Department of Medicine, Xinglin College of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Lu Wang
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Mingjie Yuan
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chunlin Xia
- Department of Anatomy and Cytoneurobiology Unit, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
15
|
Hsu HC, Tong S, Zhou Y, Elmes MW, Yan S, Kaczocha M, Deutsch DG, Rizzo RC, Ojima I, Li H. The Antinociceptive Agent SBFI-26 Binds to Anandamide Transporters FABP5 and FABP7 at Two Different Sites. Biochemistry 2017. [PMID: 28632393 DOI: 10.1021/acs.biochem.7b00194] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human FABP5 and FABP7 are intracellular endocannabinoid transporters. SBFI-26 is an α-truxillic acid 1-naphthyl monoester that competitively inhibits the activities of FABP5 and FABP7 and produces antinociceptive and anti-inflammatory effects in mice. The synthesis of SBFI-26 yields several stereoisomers, and it is not known how the inhibitor binds the transporters. Here we report co-crystal structures of SBFI-26 in complex with human FABP5 and FABP7 at 2.2 and 1.9 Å resolution, respectively. We found that only (S)-SBFI-26 was present in the crystal structures. The inhibitor largely mimics the fatty acid binding pattern, but it also has several unique interactions. Notably, the FABP7 complex corroborates key aspects of the ligand binding pose at the canonical site previously predicted by virtual screening. In FABP5, SBFI-26 was unexpectedly found to bind at the substrate entry portal region in addition to binding at the canonical ligand-binding pocket. Our structural and binding energy analyses indicate that both R and S forms appear to bind the transporter equally well. We suggest that the S enantiomer observed in the crystal structures may be a result of the crystallization process selectively incorporating the (S)-SBFI-26-FABP complexes into the growing lattice, or that the S enantiomer may bind to the portal site more rapidly than to the canonical site, leading to an increased local concentration of the S enantiomer for binding to the canonical site. Our work reveals two binding poses of SBFI-26 in its target transporters. This knowledge will guide the development of more potent FABP inhibitors based upon the SBFI-26 scaffold.
Collapse
Affiliation(s)
- Hao-Chi Hsu
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute , Grand Rapids, Michigan 49503, United States
| | - Simon Tong
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Yuchen Zhou
- Department of Applied Mathematics and Statistics, Stony Brook University , Stony Brook, New York 11794, United States
| | - Matthew W Elmes
- Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794, United States
| | - Su Yan
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Martin Kaczocha
- Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794, United States.,Department of Anesthesiology, Stony Brook University , Stony Brook, New York 11794, United States
| | - Dale G Deutsch
- Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794, United States.,Institute of Chemical Biology and Drug Discovery, Stony Brook University , Stony Brook, New York 11794, United States
| | - Robert C Rizzo
- Department of Applied Mathematics and Statistics, Stony Brook University , Stony Brook, New York 11794, United States.,Institute of Chemical Biology and Drug Discovery, Stony Brook University , Stony Brook, New York 11794, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University , Stony Brook, New York 11794, United States
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.,Institute of Chemical Biology and Drug Discovery, Stony Brook University , Stony Brook, New York 11794, United States
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute , Grand Rapids, Michigan 49503, United States.,Institute of Chemical Biology and Drug Discovery, Stony Brook University , Stony Brook, New York 11794, United States
| |
Collapse
|
16
|
Takaoka N, Takayama T, Ozono S. Functional analysis of fatty acid binding protein 7 and its effect on fatty acid of renal cell carcinoma cell lines. BMC Cancer 2017; 17:192. [PMID: 28292269 PMCID: PMC5351052 DOI: 10.1186/s12885-017-3184-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Background Renal cell carcinomas (RCCs) overexpress fatty acid binding protein 7 (FABP7). We chose to study the TUHR14TKB cell line, because it expresses higher levels of FABP7 than other cell lines derived from renal carcinomas (OS-RC-2, 786-O, 769-P, Caki-1, and ACHN). Methods FABP7 expression was detected using western blotting and real-time PCR. Cell proliferation was determined using an MTS assay and by directly by counting cells. The cell cycle was assayed using flow cytometry. Cell migration was assayed using wound-healing assays. An FABP7 expression vector was used to transfect RCC cell lines. Results The levels of FABP7 expressed by TUHR14TKB cells and their doubling times decreased during passage. High-passage TUHR14TKB cells comprised fewer G0/G1-phase and more S-phase cells than low-passage cells. Cell proliferation differed among subclones isolated from cultures of low-passage TUHR14TKB cells. The proliferation of TUHR14TKB cells decreased when FABP7 was overexpressed, and the cell migration property of TUHR14TKB cells were decreased when FABP7 was overexpressed. High concentrations of docosatetraenoic acid and eicosapentaenoic acid accumulated in TUHR14TKB cells that overexpressed FABP7, and docosatetraenoic acid enhanced cell proliferation. Conclusions The TUHR14TKB cell line represents a heterogeneous population that does not express FABP7 when it rapidly proliferates. The differences in FABP7 function between RCC cell lines suggests that FABP7 affects cell proliferation depending on cell phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3184-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naohisa Takaoka
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Tatsuya Takayama
- Department of Urology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Seiichiro Ozono
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
17
|
Atomic determinants of BK channel activation by polyunsaturated fatty acids. Proc Natl Acad Sci U S A 2016; 113:13905-13910. [PMID: 27849612 DOI: 10.1073/pnas.1615562113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Docosahexaenoic acid (DHA), a polyunsaturated ω-3 fatty acid enriched in oily fish, contributes to better health by affecting multiple targets. Large-conductance Ca2+- and voltage-gated Slo1 BK channels are directly activated by nanomolar levels of DHA. We investigated DHA-channel interaction by manipulating both the fatty acid structure and the channel composition through the site-directed incorporation of unnatural amino acids. Electrophysiological measurements show that the para-group of a Tyr residue near the ion conduction pathway has a critical role. To robustly activate the channel, ionization must occur readily by a fatty acid for a good efficacy, and a long nonpolar acyl tail with a Z double bond present at the halfway position for a high affinity. The results suggest that DHA and the channel form an ion-dipole bond to promote opening and demonstrate the channel druggability. DHA, a marine-derived nutraceutical, represents a promising lead compound for rational drug design and discovery.
Collapse
|
18
|
Figueroa JD, Serrano-Illan M, Licero J, Cordero K, Miranda JD, De Leon M. Fatty Acid Binding Protein 5 Modulates Docosahexaenoic Acid-Induced Recovery in Rats Undergoing Spinal Cord Injury. J Neurotrauma 2016; 33:1436-49. [PMID: 26715431 DOI: 10.1089/neu.2015.4186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) promote functional recovery in rats undergoing spinal cord injury (SCI). However, the precise molecular mechanism coupling n-3 PUFAs to neurorestorative responses is not well understood. The aim of the present study was to determine the spatiotemporal expression of fatty acid binding protein 5 (FABP5) after contusive SCI and to investigate whether this protein plays a role in n-3 PUFA-mediated functional recovery post-SCI. We found that SCI resulted in a robust spinal cord up-regulation in FABP5 mRNA levels (556 ± 187%) and protein expression (518 ± 195%), when compared to sham-operated rats, at 7 days post-injury (dpi). This upregulation coincided with significant alterations in the metabolism of fatty acids in the injured spinal cord, as revealed by metabolomics-based lipid analyses. In particular, we found increased levels of the n-3 series PUFAs, particularly docosahexaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic acid (EPA; 20:5 n-3) at 7 dpi. Animals consuming a diet rich in DHA and EPA exhibited a significant upregulation in FABP5 mRNA levels at 7 dpi. Immunofluorescence showed low basal FABP5 immunoreactivity in spinal cord ventral gray matter NeuN(+) neurons of sham-operated rats. SCI resulted in a robust induction of FABP5 in glial (GFAP(+), APC(+), and NG2(+)) and precursor cells (DCX(+), nestin(+)). We found that continuous intrathecal administration of FABP5 silencing with small interfering RNA (2 μg) impaired spontaneous open-field locomotion post-SCI. Further, FABP5 siRNA administration hindered the beneficial effects of DHA to ameliorate functional recovery at 7 dpi. Altogether, our findings suggest that FABP5 may be an important player in the promotion of cellular uptake, transport, and/or metabolism of DHA post-SCI. Given the beneficial roles of n-3 PUFAs in ameliorating functional recovery, we propose that FABP5 is an important contributor to basic repair mechanisms in the injured spinal cord.
Collapse
Affiliation(s)
- Johnny D Figueroa
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Miguel Serrano-Illan
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Jenniffer Licero
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Kathia Cordero
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Jorge D Miranda
- 2 Physiology Department, University of Puerto Rico Medical Sciences Campus , San Juan, Puerto Rico
| | - Marino De Leon
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
19
|
Pan Y, Scanlon MJ, Owada Y, Yamamoto Y, Porter CJH, Nicolazzo JA. Fatty Acid-Binding Protein 5 Facilitates the Blood–Brain Barrier Transport of Docosahexaenoic Acid. Mol Pharm 2015; 12:4375-85. [DOI: 10.1021/acs.molpharmaceut.5b00580] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Yuji Owada
- Department
of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Minami-kogushi
1-1-1, Ube 755-8505, Japan
- Department
of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo-machi
2-1, Aoba-ku, Sendai 980-8575, Japan
| | - Yui Yamamoto
- Department
of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Minami-kogushi
1-1-1, Ube 755-8505, Japan
| | | | | |
Collapse
|
20
|
Long-Term Effect of Docosahexaenoic Acid Feeding on Lipid Composition and Brain Fatty Acid-Binding Protein Expression in Rats. Nutrients 2015; 7:8802-17. [PMID: 26506385 PMCID: PMC4632453 DOI: 10.3390/nu7105433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Arachidonic (AA) and docosahexaenoic acid (DHA) brain accretion is essential for brain development. The impact of DHA-rich maternal diets on offspring brain fatty acid composition has previously been studied up to the weanling stage; however, there has been no follow-up at later stages. Here, we examine the impact of DHA-rich maternal and weaning diets on brain fatty acid composition at weaning and three weeks post-weaning. We report that DHA supplementation during lactation maintains high DHA levels in the brains of pups even when they are fed a DHA-deficient diet for three weeks after weaning. We show that boosting dietary DHA levels for three weeks after weaning compensates for a maternal DHA-deficient diet during lactation. Finally, our data indicate that brain fatty acid binding protein (FABP7), a marker of neural stem cells, is down-regulated in the brains of six-week pups with a high DHA:AA ratio. We propose that elevated levels of DHA in developing brain accelerate brain maturation relative to DHA-deficient brains.
Collapse
|
21
|
Elmes MW, Kaczocha M, Berger WT, Leung K, Ralph BP, Wang L, Sweeney JM, Miyauchi JT, Tsirka SE, Ojima I, Deutsch DG. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). J Biol Chem 2015; 290:8711-21. [PMID: 25666611 DOI: 10.1074/jbc.m114.618447] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 01/03/2023] Open
Abstract
Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders.
Collapse
Affiliation(s)
| | - Martin Kaczocha
- From the Departments of Biochemistry and Cell Biology, Anesthesiology, and
| | - William T Berger
- Chemistry, the Institute of Chemical Biology and Drug Discovery, and
| | - KwanNok Leung
- From the Departments of Biochemistry and Cell Biology
| | - Brian P Ralph
- From the Departments of Biochemistry and Cell Biology
| | - Liqun Wang
- From the Departments of Biochemistry and Cell Biology
| | | | - Jeremy T Miyauchi
- the Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11795-5215
| | - Stella E Tsirka
- the Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11795-5215
| | - Iwao Ojima
- Chemistry, the Institute of Chemical Biology and Drug Discovery, and
| | | |
Collapse
|
22
|
Tyukhtenko S, Chan K, Jiang R, Zhou H, Mercier RW, Yang DP, Makriyannis A, Guo JJ. Hydrogen-bonded His93 as a sensitive probe for identifying inhibitors of the endocannabinoid transport protein FABP7. Chem Biol Drug Des 2014; 85:534-40. [PMID: 25255720 DOI: 10.1111/cbdd.12440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/18/2022]
Abstract
The human brain FABP (FABP7) has been shown to be an intracellular carrier protein that can significantly potentiate the uptake of the endocannabinoid anandamide. For this reason, there is a great interest in the discovery and development of FABP7 inhibitors for treating stress, pain, inflammation, and drug abuse. We found that in the (1) H-NMR spectrum of the protein, a well-separated downfield resonance arising from the hydrogen-bonded His93 side chain is very sensitive to ligand binding. Using this characteristic spectral marker together with another well-resolved upfield resonance from the side chain of Val84, we have identified that an adipocyte FABP (FABP4) inhibitor BMS309403 also binds tightly to FABP7. Our data demonstrated that this unique His93 downfield resonance can be used as a sensitive probe for rapidly and unambiguously identifying novel high-affinity FABP7 ligands. The findings should help accelerate the discovery of potential drug leads for the modulation of endocannabinoid transport.
Collapse
Affiliation(s)
- Sergiy Tyukhtenko
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, McGrath JC, Catterall WA, Spedding M, Peters JA, Harmar AJ, Abul-Hasn N, Anderson CM, Anderson CMH, Araiksinen MS, Arita M, Arthofer E, Barker EL, Barratt C, Barnes NM, Bathgate R, Beart PM, Belelli D, Bennett AJ, Birdsall NJM, Boison D, Bonner TI, Brailsford L, Bröer S, Brown P, Calo G, Carter WG, Catterall WA, Chan SLF, Chao MV, Chiang N, Christopoulos A, Chun JJ, Cidlowski J, Clapham DE, Cockcroft S, Connor MA, Cox HM, Cuthbert A, Dautzenberg FM, Davenport AP, Dawson PA, Dent G, Dijksterhuis JP, Dollery CT, Dolphin AC, Donowitz M, Dubocovich ML, Eiden L, Eidne K, Evans BA, Fabbro D, Fahlke C, Farndale R, Fitzgerald GA, Fong TM, Fowler CJ, Fry JR, Funk CD, Futerman AH, Ganapathy V, Gaisnier B, Gershengorn MA, Goldin A, Goldman ID, Gundlach AL, Hagenbuch B, Hales TG, Hammond JR, Hamon M, Hancox JC, Hauger RL, Hay DL, Hobbs AJ, Hollenberg MD, Holliday ND, Hoyer D, Hynes NA, Inui KI, Ishii S, Jacobson KA, Jarvis GE, Jarvis MF, Jensen R, Jones CE, Jones RL, Kaibuchi K, Kanai Y, Kennedy C, Kerr ID, Khan AA, Klienz MJ, Kukkonen JP, Lapoint JY, Leurs R, et alAlexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, McGrath JC, Catterall WA, Spedding M, Peters JA, Harmar AJ, Abul-Hasn N, Anderson CM, Anderson CMH, Araiksinen MS, Arita M, Arthofer E, Barker EL, Barratt C, Barnes NM, Bathgate R, Beart PM, Belelli D, Bennett AJ, Birdsall NJM, Boison D, Bonner TI, Brailsford L, Bröer S, Brown P, Calo G, Carter WG, Catterall WA, Chan SLF, Chao MV, Chiang N, Christopoulos A, Chun JJ, Cidlowski J, Clapham DE, Cockcroft S, Connor MA, Cox HM, Cuthbert A, Dautzenberg FM, Davenport AP, Dawson PA, Dent G, Dijksterhuis JP, Dollery CT, Dolphin AC, Donowitz M, Dubocovich ML, Eiden L, Eidne K, Evans BA, Fabbro D, Fahlke C, Farndale R, Fitzgerald GA, Fong TM, Fowler CJ, Fry JR, Funk CD, Futerman AH, Ganapathy V, Gaisnier B, Gershengorn MA, Goldin A, Goldman ID, Gundlach AL, Hagenbuch B, Hales TG, Hammond JR, Hamon M, Hancox JC, Hauger RL, Hay DL, Hobbs AJ, Hollenberg MD, Holliday ND, Hoyer D, Hynes NA, Inui KI, Ishii S, Jacobson KA, Jarvis GE, Jarvis MF, Jensen R, Jones CE, Jones RL, Kaibuchi K, Kanai Y, Kennedy C, Kerr ID, Khan AA, Klienz MJ, Kukkonen JP, Lapoint JY, Leurs R, Lingueglia E, Lippiat J, Lolait SJ, Lummis SCR, Lynch JW, MacEwan D, Maguire JJ, Marshall IL, May JM, McArdle CA, McGrath JC, Michel MC, Millar NS, Miller LJ, Mitolo V, Monk PN, Moore PK, Moorhouse AJ, Mouillac B, Murphy PM, Neubig RR, Neumaier J, Niesler B, Obaidat A, Offermanns S, Ohlstein E, Panaro MA, Parsons S, Pwrtwee RG, Petersen J, Pin JP, Poyner DR, Prigent S, Prossnitz ER, Pyne NJ, Pyne S, Quigley JG, Ramachandran R, Richelson EL, Roberts RE, Roskoski R, Ross RA, Roth M, Rudnick G, Ryan RM, Said SI, Schild L, Sanger GJ, Scholich K, Schousboe A, Schulte G, Schulz S, Serhan CN, Sexton PM, Sibley DR, Siegel JM, Singh G, Sitsapesan R, Smart TG, Smith DM, Soga T, Stahl A, Stewart G, Stoddart LA, Summers RJ, Thorens B, Thwaites DT, Toll L, Traynor JR, Usdin TB, Vandenberg RJ, Villalon C, Vore M, Waldman SA, Ward DT, Willars GB, Wonnacott SJ, Wright E, Ye RD, Yonezawa A, Zimmermann M. The Concise Guide to PHARMACOLOGY 2013/14: overview. Br J Pharmacol 2014; 170:1449-58. [PMID: 24528237 DOI: 10.1111/bph.12444] [Show More Authors] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties from the IUPHAR database. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. This compilation of the major pharmacological targets is divided into seven areas of focus: G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors & Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 2014; 111:E3534-43. [PMID: 25114248 DOI: 10.1073/pnas.1405507111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences harbor multiple regulatory motifs and hence are capable of influencing expression of host genes. In response to environmental changes, TEs are known to be released from epigenetic repression and to become transcriptionally active. Such activation could also lead to lineage-inappropriate activation of oncogenes, as one study described in Hodgkin lymphoma. However, little further evidence for this mechanism in other cancers has been reported. Here, we reanalyzed whole transcriptome data from a large cohort of patients with diffuse large B-cell lymphoma (DLBCL) compared with normal B-cell centroblasts to detect genes ectopically expressed through activation of TE promoters. We have identified 98 such TE-gene chimeric transcripts that were exclusively expressed in primary DLBCL cases and confirmed several in DLBCL-derived cell lines. We further characterized a TE-gene chimeric transcript involving a fatty acid-binding protein gene (LTR2-FABP7), normally expressed in brain, that was ectopically expressed in a subset of DLBCL patients through the use of an endogenous retroviral LTR promoter of the LTR2 family. The LTR2-FABP7 chimeric transcript encodes a novel chimeric isoform of the protein with characteristics distinct from native FABP7. In vitro studies reveal a dependency for DLBCL cell line proliferation and growth on LTR2-FABP7 chimeric protein expression. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in cancer and suggest that LTR2-FABP7 may contribute to the pathogenesis of DLBCL in a subgroup of patients.
Collapse
|
25
|
Shimamoto C, Ohnishi T, Maekawa M, Watanabe A, Ohba H, Arai R, Iwayama Y, Hisano Y, Toyota T, Toyoshima M, Suzuki K, Shirayama Y, Nakamura K, Mori N, Owada Y, Kobayashi T, Yoshikawa T. Functional characterization of FABP3, 5 and 7 gene variants identified in schizophrenia and autism spectrum disorder and mouse behavioral studies. Hum Mol Genet 2014; 23:6495-511. [PMID: 25027319 PMCID: PMC4240203 DOI: 10.1093/hmg/ddu369] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Disturbances of lipid metabolism have been implicated in psychiatric illnesses. We previously reported an association between the gene for fatty acid binding protein 7 (FABP7) and schizophrenia. Furthermore, we identified and reported several rare non-synonymous polymorphisms of the brain-expressed genes FABP3, FABP5 and FABP7 from schizophrenia and autism spectrum disorder (ASD), diseases known to part share genetic architecture. Here, we conducted further studies to better understand the contribution these genes make to the pathogenesis of schizophrenia and ASD. In postmortem brains, we detected altered mRNA expression levels of FABP5 in schizophrenia, and of FABP7 in ASD and altered FABP5 in peripheral lymphocytes. Using a patient cohort, comprehensive mutation screening identified six missense and two frameshift variants from the three FABP genes. The two frameshift proteins, FABP3 E132fs and FABP7 N80fs, formed cellular aggregates and were unstable when expressed in cultured cells. The four missense mutants with predicted possible damaging outcomes showed no changes in intracellular localization. Examining ligand binding properties, FABP7 S86G and FABP7 V126L lost their preference for docosahexaenoic acid to linoleic acid. Finally, mice deficient in Fabp3, Fabp5 and Fabp7 were evaluated in a systematic behavioral test battery. The Fabp3 knockout (KO) mice showed decreased social memory and novelty seeking, and Fabp7 KO mice displayed hyperactive and anxiety-related phenotypes, while Fabp5 KO mice showed no apparent phenotypes. In conclusion, disturbances in brain-expressed FABPs could represent an underlying disease mechanism in a proportion of schizophrenia and ASD sufferers.
Collapse
Affiliation(s)
- Chie Shimamoto
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan, Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Hisako Ohba
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Ryoichi Arai
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yasuko Hisano
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Manabu Toyoshima
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, Chiba 299-0111, Japan
| | - Kazuhiko Nakamura
- Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine, Aomori 036-8562, Japan and
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Tetsuyuki Kobayashi
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan,
| |
Collapse
|
26
|
Ruskamo S, Yadav RP, Sharma S, Lehtimäki M, Laulumaa S, Aggarwal S, Simons M, Bürck J, Ulrich AS, Juffer AH, Kursula I, Kursula P. Atomic resolution view into the structure-function relationships of the human myelin peripheral membrane protein P2. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:165-76. [PMID: 24419389 PMCID: PMC3919267 DOI: 10.1107/s1399004713027910] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/11/2013] [Indexed: 01/03/2023]
Abstract
P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.
Collapse
Affiliation(s)
- Salla Ruskamo
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ravi P. Yadav
- Molecular Biology Unit, Institute of Medical Sciences (IMS), Banaras Hindu University, Varanasi, India
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
| | - Satyan Sharma
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mari Lehtimäki
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Saara Laulumaa
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
| | - Shweta Aggarwal
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Mikael Simons
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany
| | - André H. Juffer
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Inari Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
| | - Petri Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
27
|
Oresti GM, García-López J, Aveldaño MI, del Mazo J. Cell-type-specific regulation of genes involved in testicular lipid metabolism: fatty acid-binding proteins, diacylglycerol acyltransferases, and perilipin 2. Reproduction 2013; 146:471-80. [DOI: 10.1530/rep-13-0199] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Male germ cell differentiation entails the synthesis and remodeling of membrane polar lipids and the formation of triacylglycerols (TAGs). This requires fatty acid-binding proteins (FABPs) for intracellular fatty acid traffic, a diacylglycerol acyltransferase (DGAT) to catalyze the final step of TAG biosynthesis, and a TAG storage mode. We examined the expression of genes encoding five members of the FABP family and two DGAT proteins, as well as the lipid droplet protein perilipin 2 (PLIN2), during mouse testis development and in specific cells from seminiferous epithelium.Fabp5expression was distinctive of Sertoli cells and consequently was higher in prepubertal than in adult testis. The expression ofFabp3increased in testis during postnatal development, associated with the functional differentiation of interstitial cells, but was low in germ cells.Fabp9, together withFabp12, was prominently expressed in the latter. Their transcripts increased from spermatocytes to spermatids and, interestingly, were highest in spermatid-derived residual bodies (RB). Both Sertoli and germ cells, which produce neutral lipids and store them in lipid droplets, expressedPlin2. Yet, whileDgat1was detected in Sertoli cells,Dgat2accumulated in germ cells with a similar pattern of expression asFabp9. These results correlated with polyunsaturated fatty acid-rich TAG levels also increasing with mouse germ cell differentiation highest in RB, connecting DGAT2 with the biosynthesis of such TAGs. The age- and germ cell type-associated increases inFabp9,Dgat2, andPlin2levels are thus functionally related in the last stages of germ cell differentiation.
Collapse
|
28
|
Parmar MB, Wright JM. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes. Genome 2013; 56:691-701. [DOI: 10.1139/gen-2013-0172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A whole-genome duplication (WGD) early in the teleost fish lineage makes fish ideal organisms to study the fate of duplicated genes and underlying evolutionary trajectories that have led to the retention of ohnologous gene duplicates in fish genomes. Here, we compare the genomic organization and tissue-specific transcription of the ohnologous fabp7 and fabp10 genes in medaka, three-spined stickleback, and spotted green pufferfish to the well-studied duplicated fabp7 and fabp10 genes of zebrafish. Teleost fabp7 and fabp10 genes contain four exons interrupted by three introns. Polypeptide sequences of Fabp7 and Fabp10 show the highest sequence identity and similarity with their orthologs from vertebrates. Orthology was evident as the ohnologous Fabp7 and Fabp10 polypeptides of teleost fishes each formed distinct clades and clustered together with their orthologs from other vertebrates in a phylogenetic tree. Furthermore, ohnologous teleost fabp7 and fabp10 genes exhibit conserved gene synteny with human FABP7 and chicken FABP10, respectively, which provides compelling evidence that the duplicated fabp7 and fabp10 genes of teleost fishes most likely arose from the well-documented WGD. The tissue-specific distribution of fabp7a, fabp7b, fabp10a, and fabp10b transcripts provides evidence of diverged spatial transcriptional regulation between ohnologous gene duplicates of fabp7 and fabp10 in teleost fishes.
Collapse
Affiliation(s)
- Manoj B. Parmar
- Department of Biology, Dalhousie University, 1355 Oxford Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| | - Jonathan M. Wright
- Department of Biology, Dalhousie University, 1355 Oxford Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
29
|
Impact of lipid nutrition on neural stem/progenitor cells. Stem Cells Int 2013; 2013:973508. [PMID: 24260036 PMCID: PMC3821937 DOI: 10.1155/2013/973508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 09/09/2013] [Indexed: 11/17/2022] Open
Abstract
The neural system originates from neural stem/progenitor cells (NSPCs). Embryonic NSPCs first proliferate to increase their numbers and then produce neurons and glial cells that compose the complex neural circuits in the brain. New neurons are continually produced even after birth from adult NSPCs in the inner wall of the lateral ventricle and in the hippocampal dentate gyrus. These adult-born neurons are involved in various brain functions, including olfaction-related functions, learning and memory, pattern separation, and mood control. NSPCs are regulated by various intrinsic and extrinsic factors. Diet is one of such important extrinsic factors. Of dietary nutrients, lipids are important because they constitute the cell membrane, are a source of energy, and function as signaling molecules. Metabolites of some lipids can be strong lipid mediators that also regulate various biological activities. Recent findings have revealed that lipids are important regulators of both embryonic and adult NSPCs. We and other groups have shown that lipid signals including fat, fatty acids, their metabolites and intracellular carriers, cholesterol, and vitamins affect proliferation and differentiation of embryonic and adult NSPCs. A better understanding of the NSPCs regulation by lipids may provide important insight into the neural development and brain function.
Collapse
|
30
|
Hoshi T, Xu R, Hou S, Heinemann SH, Tian Y. A point mutation in the human Slo1 channel that impairs its sensitivity to omega-3 docosahexaenoic acid. ACTA ACUST UNITED AC 2013; 142:507-22. [PMID: 24127525 PMCID: PMC3813383 DOI: 10.1085/jgp.201311061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Long-chain polyunsaturated omega-3 fatty acids such as docosahexaenoic acid (DHA) at nanomolar concentrations reversibly activate human large-conductance Ca2+- and voltage-gated K+ (Slo1 BK) channels containing auxiliary β1 or β4 subunits in cell-free patches. Here we examined the action of DHA on the Slo1 channel without any auxiliary subunit and sought to elucidate the biophysical mechanism and the molecular determinants of the DHA sensitivity. Measurements of ionic currents through human Slo1 (hSlo1) channels reveal that the stimulatory effect of DHA does not require activation of the voltage or Ca2+ sensors. Unlike gating of the hSlo1 channel, that of the Drosophila melanogaster Slo1 (dSlo1) channel is unaltered by DHA. Our mutagenesis study based on the differential responses of human and dSlo1 channels to DHA pinpoints that Y318 near the cytoplasmic end of S6 in the hSlo1 channel is a critical determinant of the stimulatory action of DHA. The mutation Y318S in hSlo1, which replaces Y with S as found in dSlo1, greatly diminishes the channel’s response to DHA with a 22-carbon chain whether β1 or β4 is absent or present. However, the responses to α-linolenic acid, an omegea-3 fatty acid with an 18-carbon chain, and to arachidonic acid, an omega-6 fatty acid with a 20-carbon chain, remain unaffected by the mutation. Y318 in the S6 segment of hSlo1 is thus an important determinant of the electrophysiological response of the channel to DHA. Furthermore, the mutation Y318S may prove to be useful in dissecting out the complex lipid-mediated modulation of Slo1 BK channels.
Collapse
Affiliation(s)
- Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | | |
Collapse
|
31
|
Elsherbiny ME, Emara M, Godbout R. Interaction of brain fatty acid-binding protein with the polyunsaturated fatty acid environment as a potential determinant of poor prognosis in malignant glioma. Prog Lipid Res 2013; 52:562-70. [PMID: 23981365 DOI: 10.1016/j.plipres.2013.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/29/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022]
Abstract
Malignant gliomas are the most common adult brain cancers. In spite of aggressive treatment, recurrence occurs in the great majority of patients and is invariably fatal. Polyunsaturated fatty acids are abundant in brain, particularly ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Although the levels of ω-6 and ω-3 polyunsaturated fatty acids are tightly regulated in brain, the ω-6:ω-3 ratio is dramatically increased in malignant glioma, suggesting deregulation of fundamental lipid homeostasis in brain tumor tissue. The migratory properties of malignant glioma cells can be modified by altering the ratio of AA:DHA in growth medium, with increased migration observed in AA-rich medium. This fatty acid-dependent effect on cell migration is dependent on expression of the brain fatty acid binding protein (FABP7) previously shown to bind DHA and AA. Increased levels of enzymes involved in eicosanoid production in FABP7-positive malignant glioma cells suggest that FABP7 is an important modulator of AA metabolism. We provide evidence that increased production of eicosanoids in FABP7-positive malignant glioma growing in an AA-rich environment contributes to tumor infiltration in the brain. We discuss pathways and molecules that may underlie FABP7/AA-mediated promotion of cell migration and FABP7/DHA-mediated inhibition of cell migration in malignant glioma.
Collapse
Affiliation(s)
- Marwa E Elsherbiny
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | | | | |
Collapse
|
32
|
Dyszy F, Pinto APA, Araújo APU, Costa-Filho AJ. Probing the interaction of brain fatty acid binding protein (B-FABP) with model membranes. PLoS One 2013; 8:e60198. [PMID: 23555925 PMCID: PMC3610644 DOI: 10.1371/journal.pone.0060198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/21/2013] [Indexed: 12/11/2022] Open
Abstract
Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called “portal region”, formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that B-FABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.
Collapse
Affiliation(s)
- Fábio Dyszy
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Sao Paulo, Brazil
| | - Andressa P. A. Pinto
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Sao Paulo, Brazil
| | - Ana P. U. Araújo
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Sao Paulo, Brazil
| | - Antonio J. Costa-Filho
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Sao Paulo, Brazil
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
33
|
Abstract
Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) are recommended for management of patients with wide-ranging chronic diseases, including coronary heart disease, rheumatoid arthritis, dementia, and depression. Increased consumption of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is recommended by many health authorities to prevent (up to 0.5 g/day) or treat chronic disease (1.0 g/day for coronary heart disease; 1.2–4 g/day for elevated triglyceride levels). Recommendations for dietary intake of LC n-3 PUFAs are often provided for α-linolenic acid, and for the combination of EPA and DHA. However, many studies have also reported differential effects of EPA, DHA and their metabolites in the clinic and at the laboratory bench. The aim of this article is to review studies that have identified divergent responses to EPA and DHA, and to explore reasons for these differences. In particular, we review potential contributing factors such as differential membrane incorporation, modulation of gene expression, activation of signaling pathways and metabolite formation. We suggest that there may be future opportunity to refine recommendations for intake of individual LC n-3 PUFAs.
Collapse
Affiliation(s)
- Fraser D Russell
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4556, Australia.
| | | |
Collapse
|
34
|
Sharifi K, Morihiro Y, Maekawa M, Yasumoto Y, Hoshi H, Adachi Y, Sawada T, Tokuda N, Kondo H, Yoshikawa T, Suzuki M, Owada Y. FABP7 expression in normal and stab-injured brain cortex and its role in astrocyte proliferation. Histochem Cell Biol 2011; 136:501-13. [PMID: 21938553 PMCID: PMC3192944 DOI: 10.1007/s00418-011-0865-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2011] [Indexed: 02/07/2023]
Abstract
Reactive gliosis, in which astrocytes as well as other types of glial cells undergo massive proliferation, is a common hallmark of all brain pathologies. Brain-type fatty acid-binding protein (FABP7) is abundantly expressed in neural stem cells and astrocytes of developing brain, suggesting its role in differentiation and/or proliferation of glial cells through regulation of lipid metabolism and/or signaling. However, the role of FABP7 in proliferation of glial cells during reactive gliosis is unknown. In this study, we examined the expression of FABP7 in mouse cortical stab injury model and also the phenotype of FABP7-KO mice in glial cell proliferation. Western blotting showed that FABP7 expression was increased significantly in the injured cortex compared with the contralateral side. By immunohistochemistry, FABP7 was localized to GFAP+ astrocytes (21% of FABP7+ cells) and NG2+ oligodendrocyte progenitor cells (62%) in the normal cortex. In the injured cortex there was no change in the population of FABP7+/NG2+ cells, while there was a significant increase in FABP7+/GFAP+ cells. In the stab-injured cortex of FABP7-KO mice there was decrease in the total number of reactive astrocytes and in the number of BrdU+ astrocytes compared with wild-type mice. Primary cultured astrocytes from FABP7-KO mice also showed a significant decrease in proliferation and omega-3 fatty acid incorporation compared with wild-type astrocytes. Overall, these data suggest that FABP7 is involved in the proliferation of astrocytes by controlling cellular fatty acid homeostasis.
Collapse
Affiliation(s)
- Kazem Sharifi
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li YY, An J, Jones SJM. A computational approach to finding novel targets for existing drugs. PLoS Comput Biol 2011; 7:e1002139. [PMID: 21909252 PMCID: PMC3164726 DOI: 10.1371/journal.pcbi.1002139] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/14/2011] [Indexed: 01/08/2023] Open
Abstract
Repositioning existing drugs for new therapeutic uses is an efficient approach to drug discovery. We have developed a computational drug repositioning pipeline to perform large-scale molecular docking of small molecule drugs against protein drug targets, in order to map the drug-target interaction space and find novel interactions. Our method emphasizes removing false positive interaction predictions using criteria from known interaction docking, consensus scoring, and specificity. In all, our database contains 252 human protein drug targets that we classify as reliable-for-docking as well as 4621 approved and experimental small molecule drugs from DrugBank. These were cross-docked, then filtered through stringent scoring criteria to select top drug-target interactions. In particular, we used MAPK14 and the kinase inhibitor BIM-8 as examples where our stringent thresholds enriched the predicted drug-target interactions with known interactions up to 20 times compared to standard score thresholds. We validated nilotinib as a potent MAPK14 inhibitor in vitro (IC50 40 nM), suggesting a potential use for this drug in treating inflammatory diseases. The published literature indicated experimental evidence for 31 of the top predicted interactions, highlighting the promising nature of our approach. Novel interactions discovered may lead to the drug being repositioned as a therapeutic treatment for its off-target's associated disease, added insight into the drug's mechanism of action, and added insight into the drug's side effects.
Collapse
Affiliation(s)
- Yvonne Y Li
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
36
|
Smathers RL, Petersen DR. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics 2011; 5:170-91. [PMID: 21504868 PMCID: PMC3500171 DOI: 10.1186/1479-7364-5-3-170] [Citation(s) in RCA: 344] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fatty acid-binding proteins (FABPs) are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20) fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied.
Collapse
Affiliation(s)
- Rebecca L Smathers
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | | |
Collapse
|
37
|
Kipp M, Clarner T, Gingele S, Pott F, Amor S, van der Valk P, Beyer C. Brain lipid binding protein (FABP7) as modulator of astrocyte function. Physiol Res 2011; 60:S49-60. [PMID: 21777034 DOI: 10.33549/physiolres.932168] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Over a century ago, hyperplasia and hypertrophy of astrocytes was noted as a histopathological hallmark of multiple sclerosis and was hypothesized to play an important role in the development and course of this disease. However until today, the factual contribution of astrocytes to multiple sclerosis is elusive. Astrocytes may play an active role during degeneration and demyelination by controlling local inflammation in the CNS, provoking damage of oligodendrocytes and axons, and glial scarring but might also be beneficial by creating a permissive environment for remyelination and oligodendrocyte precursor migration, proliferation, and differentiation. Recent findings from our lab suggest that brain lipid binding protein (FABP7) is implicated in the course of multiple sclerosis and the regulation of astrocyte function. The relevance of our findings and data from other groups are highlighted and discussed in this paper in the context of myelin repair.
Collapse
Affiliation(s)
- M Kipp
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The intracellular fatty acid-binding proteins (FABPs) are abundantly expressed in almost all tissues. They exhibit high affinity binding of a single long-chain fatty acid, with the exception of liver FABP, which binds two fatty acids or other hydrophobic molecules. FABPs have highly similar tertiary structures consisting of a 10-stranded antiparallel β-barrel and an N-terminal helix-turn-helix motif. Research emerging in the last decade has suggested that FABPs have tissue-specific functions that reflect tissue-specific aspects of lipid and fatty acid metabolism. Proposed roles for FABPs include assimilation of dietary lipids in the intestine, targeting of liver lipids to catabolic and anabolic pathways, regulation of lipid storage and lipid-mediated gene expression in adipose tissue and macrophages, fatty acid targeting to β-oxidation pathways in muscle, and maintenance of phospholipid membranes in neural tissues. The regulation of these diverse processes is accompanied by the expression of different and sometimes multiple FABPs in these tissues and may be driven by protein-protein and protein-membrane interactions.
Collapse
Affiliation(s)
- Judith Storch
- From the Department of Nutritional Sciences and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901.
| | - Alfred E Thumser
- Division of Biochemical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.
| |
Collapse
|
39
|
Long D, Yang D. Millisecond timescale dynamics of human liver fatty acid binding protein: testing of its relevance to the ligand entry process. Biophys J 2010; 98:3054-61. [PMID: 20550918 DOI: 10.1016/j.bpj.2010.03.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022] Open
Abstract
For over a decade, scientists have been attempting to know more about the conformational dynamics of fatty acid binding proteins (FABPs), to answer the puzzling question of how ligands could access the internalized binding site(s). Conformational exchange of FABPs on the microsecond to millisecond timescales has been found in many FABPs and offers an important hypothesis for the ligand entry mechanism. Despite the potential significance, the validity of this hypothesis has not been verified yet. In this study, the slow dynamics of human liver fatty acid binding protein (hLFABP) that was shown previously to be highly flexible on millisecond timescales was quantitatively characterized in detail. In addition, the interaction between hLFABP and 1,8-ANS was studied using NMR spectroscopy, and the kinetic rate of ANS association to hLFABP was measured. We believe the current result excludes the possibility that the intrinsic millisecond dynamics of hLFABP represents a critical conformational reorganization process required for ligand entry, but implies that it may represent the exchange between the apo-state and a state resembling the singly-bound conformation. Furthermore, we suggest these results show that the ligand-entry related functional dynamics could occur on the microsecond/submicrosecond timescales, highly encouraging future computational studies on this topic.
Collapse
Affiliation(s)
- Dong Long
- Department of Biological Sciences, National University of Singapore, Singapore
| | | |
Collapse
|
40
|
Mita R, Beaulieu MJ, Field C, Godbout R. Brain fatty acid-binding protein and omega-3/omega-6 fatty acids: mechanistic insight into malignant glioma cell migration. J Biol Chem 2010; 285:37005-15. [PMID: 20834042 DOI: 10.1074/jbc.m110.170076] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Malignant gliomas (MG) are highly infiltrative tumors that consistently recur despite aggressive treatment. Brain fatty acid-binding protein (FABP7), which binds docosahexaenoic acid (DHA) and arachidonic acid (AA), localizes to sites of tumor infiltration and is associated with a poor prognosis in MG. Manipulation of FABP7 expression in MG cell lines affects cell migration, suggesting a role for FABP7 in tumor infiltration and recurrence. Here, we show that DHA inhibits and AA stimulates migration in an FABP7-dependent manner in U87 MG cells. We demonstrate that DHA binds to and sequesters FABP7 to the nucleus, resulting in decreased cell migration. This anti-migratory effect is partially dependent on peroxisome proliferator-activated receptor γ, a DHA-activated transcription factor. Conversely, AA-bound FABP7 stimulates cell migration by activating cyclooxygenase-2 and reducing peroxisome proliferator-activated receptor γ levels. Our data provide mechanistic insight as to why FABP7 is associated with a poor prognosis in MG and suggest that relative levels of DHA and AA in the tumor environment can make a profound impact on tumor growth properties. We propose that FABP7 and its fatty acid ligands may be key therapeutic targets for controlling the dissemination of MG cells within the brain.
Collapse
Affiliation(s)
- Raja Mita
- Department of Oncology, School of Cancer, Engineering and Imaging Sciences, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2
| | | | | | | |
Collapse
|
41
|
Liao S, Tung ETK, Zheng W, Chong K, Xu Y, Dai P, Guo Y, Bartlam M, Yuen KY, Rao Z. Crystal structure of the Mp1p ligand binding domain 2 reveals its function as a fatty acid-binding protein. J Biol Chem 2010; 285:9211-20. [PMID: 20053994 PMCID: PMC2838340 DOI: 10.1074/jbc.m109.057760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Penicillium marneffei is a dimorphic, pathogenic fungus in Southeast Asia that mostly afflicts immunocompromised individuals. As the only dimorphic member of the genus, it goes through a phase transition from a mold to yeast form, which is believed to be a requisite for its pathogenicity. Mp1p, a cell wall antigenic mannoprotein existing widely in yeast, hyphae, and conidia of the fungus, plays a vital role in host immune response during infection. To understand the function of Mp1p, we have determined the x-ray crystal structure of its ligand binding domain 2 (LBD2) to 1.3 A. The structure reveals a dimer between the two molecules. The dimer interface forms a ligand binding cavity, in which electron density was observed for a palmitic acid molecule interacting with LBD2 indirectly through hydrogen bonding networks via two structural water molecules. Isothermal titration calorimetry experiments measured the ligand binding affinity (K(d)) of Mp1p at the micromolar level. Mutations of ligand-binding residues, namely S313A and S332A, resulted in a 9-fold suppression of ligand binding affinity. Analytical ultracentrifugation assays demonstrated that both LBD2 and Mp1p are mostly monomeric in vitro, no matter with or without ligand, and our dimeric crystal structure of LBD2 might be the result of crystal packing. Based on the conformation of the ligand-binding pocket in the dimer structure, a model for the closed, monomeric form of LBD2 is proposed. Further structural analysis indicated the biological importance of fatty acid binding of Mp1p for the survival and pathogenicity of the conditional pathogen.
Collapse
Affiliation(s)
- Shuang Liao
- From the Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China, ,the National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China, and
| | - Edward T. K. Tung
- the State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Wei Zheng
- From the Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Ken Chong
- the National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China, and
| | - Yuanyuan Xu
- From the Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Peng Dai
- From the Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Yingying Guo
- From the Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Mark Bartlam
- the Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kwok-Yung Yuen
- the State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, , To whom correspondence may be addressed: State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong. Tel.: 852-28554892; Fax: 852-28551241; E-mail:
| | - Zihe Rao
- From the Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China, ,the National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China, and ,the Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China, To whom correspondence may be addressed: Laboratory of Structural Biology, New Life Sciences Bldg., Tsinghua University, Beijing 100084, China. Tel.: 86-10-62771493; Fax: 86-10-62773145; E-mail:
| |
Collapse
|
42
|
Bianchetti CM, Blouin GC, Bitto E, Olson JS, Phillips GN. The structure and NO binding properties of the nitrophorin-like heme-binding protein from Arabidopsis thaliana gene locus At1g79260.1. Proteins 2010; 78:917-31. [PMID: 19938152 PMCID: PMC2811769 DOI: 10.1002/prot.22617] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The protein from Arabidopsis thaliana gene locus At1g79260.1 is comprised of 166-residues and is of previously unknown function. Initial structural studies by the Center for Eukaryotic Structural Genomics (CESG) suggested that this protein might bind heme, and consequently, the crystal structures of apo and heme-bound forms were solved to near atomic resolution of 1.32 A and 1.36 A, respectively. The rate of hemin loss from the protein was measured to be 3.6 x 10(-5) s(-1), demonstrating that it binds heme specifically and with high affinity. The protein forms a compact 10-stranded beta-barrel that is structurally similar to the lipocalins and fatty acid binding proteins (FABPs). One group of lipocalins, the nitrophorins (NP), are heme proteins involved in nitric oxide (NO) transport and show both sequence and structural similarity to the protein from At1g79260.1 and two human homologues, all of which contain a proximal histidine capable of coordinating a heme iron. Rapid-mixing and laser photolysis techniques were used to determine the rate constants for carbon monoxide (CO) binding to the ferrous form of the protein (k'(CO) = 0.23 microM(-1) s(-1), k(CO) = 0.050 s(-1)) and NO binding to the ferric form (k'(NO) = 1.2 microM(-1) s(-1), k(NO) = 73 s(-1)). Based on both structural and functional similarity to the nitrophorins, we have named the protein nitrobindin and hypothesized that it plays a role in NO transport. However, one of the two human homologs of nitrobindin contains a THAP domain, implying a possible role in apoptosis. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Christopher M. Bianchetti
- Departments of Biochemistry, University of Wisconsin, Madison, WI 53706, USA,Centers for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706, USA
| | - George C. Blouin
- Department of Biochemistry and Cell Biology and the W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005
| | - Eduard Bitto
- Department of Chemistry and Biochemistry, Georgian Court University, Lakewood NJ 08701
| | - John S. Olson
- Department of Biochemistry and Cell Biology and the W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005
| | - George N. Phillips
- Departments of Biochemistry, University of Wisconsin, Madison, WI 53706, USA,Centers for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
43
|
Storch J, McDermott L. Structural and functional analysis of fatty acid-binding proteins. J Lipid Res 2008; 50 Suppl:S126-31. [PMID: 19017610 DOI: 10.1194/jlr.r800084-jlr200] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian FA-binding proteins (FABPs) bind long-chain FA with high affinity. The large number of FABP types is suggestive of distinct functions in specific tissues. Multiple experimental approaches have shown that individual FABPs possess both unique and overlapping functions, some of which are based on specific elements in the protein structure. Although FA binding affinities for all FABPs tend to correlate directly with FA hydrophobicity, structure-function studies indicate that subtle three-dimensional changes that occur upon ligand binding may promote specific protein-protein or protein-membrane interactions that ultimately determine the function of each FABP. The conformational changes are focused in the FABP helical/portal domain, a region that was identified by in vitro studies to be vital for the FA transport properties of the FABPs. Thus, the FABPs modulate intracellular lipid homeostasis by regulating FA transport in the nuclear and extra-nuclear compartments of the cell; in so doing, they also impact systemic energy homeostasis.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
44
|
Nasrollahzadeh J, Siassi F, Doosti M, Eshraghian MR, Shokri F, Modarressi MH, Mohammadi-Asl J, Abdi K, Nikmanesh A, Karimian SM. The influence of feeding linoleic, gamma-linolenic and docosahexaenoic acid rich oils on rat brain tumor fatty acids composition and fatty acid binding protein 7 mRNA expression. Lipids Health Dis 2008; 7:45. [PMID: 19014610 PMCID: PMC2605445 DOI: 10.1186/1476-511x-7-45] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 11/16/2008] [Indexed: 11/10/2022] Open
Abstract
Background Experimental studies indicate that gamma linolenic acid (GLA) and docosahexaenoic acid (DHA) may inhibit glioma cells growth but effects of oral consumption of these fatty acids on brain tumor fatty acid composition have not been determined in vivo. Methods GLA oil (GLAO; 72% GLA), DHA oil (DHAO; 73% DHA) were fed to adult wistar rats (1 mL/rat/day) starting one week prior to C6 glioma cells implantation and continued for two weeks after implantation. Control group were fed same amount of high linoleic acid safflower oil (74–77% linoleic acid). Fatty acid composition of tumor samples was determined in a set of 8–12 animals in each group and serum fatty acid in 6 animals per each group. Gene expression of tumor fatty acid binding protein 7 (FABP7), epidermal growth factor receptor (EGFR), peroxisome proliferator activated receptor γ (PPAR-γ) and retinoid × receptor-α (RXR-α) were determined in a set of 18 animals per group. Results DHAO feeding increased EPA of brain tumors and decreased ratio of n-6/n-3 fatty acids. Serum levels of EPA were also increased in DHAO group. A similar trend in serum and tumor levels of DHA were observed in DHAO group but it did not achieve statistical significance. GLAO increased serum concentration of GLA but had no significant effect on tumor GLA or dihomo-gamma linolenic acid (DGLA) concentrations. Gene expression of FABP7 was up-regulated in tumors of DHAO group but no other significant effects were observed on EGFR, PPAR-γ or RXR-α expression, and expression of these genes in tumors of GLAO were not different from SFO group. Conclusion Dietary supplementation of DHA containing oil could be an effective way to increase levels of long chain n-3 fatty acids in brain tumors and this increase may be mediated partly by up-regulation of FABP7 expression.
Collapse
Affiliation(s)
- Javad Nasrollahzadeh
- Department of Nutrition and Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gawrisch K, Soubias O, Mihailescu M. Insights from biophysical studies on the role of polyunsaturated fatty acids for function of G-protein coupled membrane receptors. Prostaglandins Leukot Essent Fatty Acids 2008; 79:131-4. [PMID: 19004627 PMCID: PMC3987897 DOI: 10.1016/j.plefa.2008.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The composition of the lipid matrix is critical for function of membrane proteins. Perhaps one of the best studied examples is the function of the G-protein-coupled membrane receptor (GPCR) rhodopsin which is located in membranes with high content of phospholipids with polyunsaturated docosahexaenoic acid chains (DHA, 22:6n-3). Technological advances enabled a more detailed study of structure and dynamics of DHA chains and their interaction with rhodopsin. It was established that polyunsaturated DHA differs from saturated and monounsaturated hydrocarbon chains by far more rapid structural conversions. Furthermore, DHA chains tend to have higher density near the lipid/water interface while density of saturated chains is higher in the bilayer center. The interface of rhodopsin has a small number of sites for tighter interaction with DHA. Polyunsaturated phosphatidylethanolamines accumulate preferentially near the protein. Surprisingly, the high conformational freedom of most DHA chains is not measurably reduced upon interaction with rhodopsin. While some observations point at an involvement of continuum elastic properties of membranes in modulation of rhodopsin function, there is growing evidence for a role of weakly specific DHA-rhodopsin interactions.
Collapse
Affiliation(s)
- Klaus Gawrisch
- Section of NMR, Laboratory of Membrane Biochemistry and Biophysics, NIAAA, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
46
|
Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 2008; 7:489-503. [PMID: 18511927 PMCID: PMC2821027 DOI: 10.1038/nrd2589] [Citation(s) in RCA: 1311] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipids are vital components of many biological processes and crucial in the pathogenesis of numerous common diseases, but the specific mechanisms coupling intracellular lipids to biological targets and signalling pathways are not well understood. This is particularly the case for cells burdened with high lipid storage, trafficking and signalling capacity such as adipocytes and macrophages. Here, we discuss the central role of lipid chaperones--the fatty acid-binding proteins (FABPs)--in lipid-mediated biological processes and systemic metabolic homeostasis through the regulation of diverse lipid signals, and highlight their therapeutic significance. Pharmacological agents that modify FABP function may provide tissue-specific or cell-type-specific control of lipid signalling pathways, inflammatory responses and metabolic regulation, potentially providing a new class of drugs for diseases such as obesity, diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
47
|
Polozova A, Salem N. Role of liver and plasma lipoproteins in selective transport of n-3 fatty acids to tissues: a comparative study of 14C-DHA and 3H-oleic acid tracers. J Mol Neurosci 2008; 33:56-66. [PMID: 17901547 DOI: 10.1007/s12031-007-0039-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
We conducted a study aimed at a direct comparison of the plasma dynamics and uptake of docosahexaenoic (DHA) and oleic (OA) fatty acids by various organs. 14C-DHA and 3H-OA were intravenously co-injected into mice. At 5 min after injection, more than 40% of the 14C-DHA, but less than 20% of the 3H-OA, labels was associated with the liver. Heart uptake of 14C-DHA was three to four times greater compared to the 3H-OA label. Brain incorporation of 14C-DHA slowly rose to 0.7% at 24 h, but it remained at the 1-1.5% level for 3H-OA. Total 14C activity in plasma reached 2% of the injected dose at 20 min and leveled off at 0.5% after 1.5 h. Fifteen percent of 14C-DHA plasma activity at 30 min was associated with non-esterified fatty acids, whereas about 85% was recovered in triglycerides in very low-density lipoprotein (VLDL) and LDL fractions. Only 30% of 3H-OA derived activity was found in the VLDL fraction at 30 min. All 3H activity in plasma at later time points was in catabolite fractions. These findings demonstrate that liver plays an important role in the initial selectivity for DHA. It is likely that DHA is specifically taken up by liver, esterified, loaded into lipoproteins, and then delivered to brain, heart, and other target tissues.
Collapse
Affiliation(s)
- Alla Polozova
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Bethesda, MD 20892-9410, USA
| | | |
Collapse
|
48
|
Watanabe A, Toyota T, Owada Y, Hayashi T, Iwayama Y, Matsumata M, Ishitsuka Y, Nakaya A, Maekawa M, Ohnishi T, Arai R, Sakurai K, Yamada K, Kondo H, Hashimoto K, Osumi N, Yoshikawa T. Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype. PLoS Biol 2007; 5:e297. [PMID: 18001149 PMCID: PMC2071943 DOI: 10.1371/journal.pbio.0050297] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 09/19/2007] [Indexed: 01/11/2023] Open
Abstract
Deficits in prepulse inhibition (PPI) are a biological marker for schizophrenia. To unravel the mechanisms that control PPI, we performed quantitative trait loci (QTL) analysis on 1,010 F2 mice derived by crossing C57BL/6 (B6) animals that show high PPI with C3H/He (C3) animals that show low PPI. We detected six major loci for PPI, six for the acoustic startle response, and four for latency to response peak, some of which were sex-dependent. A promising candidate on the Chromosome 10-QTL was Fabp7 (fatty acid binding protein 7, brain), a gene with functional links to the N-methyl-D-aspartic acid (NMDA) receptor and expression in astrocytes. Fabp7-deficient mice showed decreased PPI and a shortened startle response latency, typical of the QTL's proposed effects. A quantitative complementation test supported Fabp7 as a potential PPI-QTL gene, particularly in male mice. Disruption of Fabp7 attenuated neurogenesis in vivo. Human FABP7 showed altered expression in schizophrenic brains and genetic association with schizophrenia, which were both evident in males when samples were divided by sex. These results suggest that FABP7 plays a novel and crucial role, linking the NMDA, neurodevelopmental, and glial theories of schizophrenia pathology and the PPI endophenotype, with larger or overt effects in males. We also discuss the results from the perspective of fetal programming.
Collapse
Affiliation(s)
- Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Yuji Owada
- Histology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Takeshi Hayashi
- Animal Genome Research Unit, National Institute of Agrobiological Sciences, Ibaragi, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Miho Matsumata
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yuichi Ishitsuka
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Akihiro Nakaya
- Department of Computational Biology, University of Tokyo, Tokyo, Japan
| | - Motoko Maekawa
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Ryoichi Arai
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - Katsuyasu Sakurai
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuo Yamada
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Hisatake Kondo
- Histology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Noriko Osumi
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, Miyagi, Japan
- CREST, Japan Science and Technology Agency (JST), Saitama, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
- CREST, Japan Science and Technology Agency (JST), Saitama, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Mita R, Coles JE, Glubrecht DD, Sung R, Sun X, Godbout R. B-FABP-expressing radial glial cells: the malignant glioma cell of origin? Neoplasia 2007; 9:734-44. [PMID: 17898869 PMCID: PMC1993858 DOI: 10.1593/neo.07439] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 07/04/2007] [Accepted: 07/06/2007] [Indexed: 11/18/2022] Open
Abstract
Brain fatty acid-binding protein (B-FABP) is normally expressed in radial glial cells, where it plays a role in the establishment of the radial glial fiber network required for neuronal migration. B-FABP is also expressed in astrocytoma tumors and in some malignant glioma cell lines. To address the role of B-FABP in malignant glioma, we have studied the growth properties of clonal populations of malignant glioma cells modified for B-FABP expression. Here, we demonstrate that expression of B-FABP in B-FABP-negative malignant glioma cells is accompanied by the appearance of radial glial-like properties, such as increased migration and extended bipolar cell processes, as well as reduced transformation. Conversely, B-FABP depletion in B-FABP-positive malignant glioma cells results in decreased migration, reduction in cell processes, and a more transformed phenotype. Moreover, expression of B-FABP in astrocytomas is associated with regions of tumor infiltration and recurrence. Rather than being a direct manifestation of the tumorigenic process, we propose that the ability of high-grade astrocytoma cells to migrate long distances from the primary tumor reflects properties associated with their cell of origin. Thus, targeting B-FABP-expressing cells may make a significant impact on the treatment of these tumors.
Collapse
Affiliation(s)
- Raja Mita
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Mihajlovic M, Lazaridis T. Modeling fatty acid delivery from intestinal fatty acid binding protein to a membrane. Protein Sci 2007; 16:2042-55. [PMID: 17660261 PMCID: PMC2206986 DOI: 10.1110/ps.072875307] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Intestinal fatty acid binding protein (IFABP) interacts with biological membranes and delivers fatty acid (FA) into them via a collisional mechanism. However, the membrane-bound structure of the protein and the pathway of FA transfer are not precisely known. We used molecular dynamics (MD) simulations with an implicit membrane model to determine the optimal orientation of apo- and holo-IFABP (bound with palmitate) on an anionic membrane. In this orientation, the helical portal region, delimited by the alphaII helix and the betaC-betaD and betaE-betaF turns, is oriented toward the membrane whereas the putative beta-strand portal, delimited by the betaB-betaC, betaF-betaG, betaH-betaI turns and the N terminus, is exposed to solvent. Starting from the MD structure of holo-IFABP in the optimal orientation relative to the membrane, we examined the release of palmitate via both pathways. Although the domains can widen enough to allow the passage of palmitate, fatty acid release through the helical portal region incurs smaller conformational changes and a lower energetic cost.
Collapse
Affiliation(s)
- Maja Mihajlovic
- Department of Chemistry, City College of New York/CUNY, New York, New York 10031, USA
| | | |
Collapse
|