1
|
Bouzid T, Kim E, Riehl BD, Yang R, Saraswathi V, Kim JK, Lim JY. Mechanical Stretch Control of Adipocyte AKT Signaling and the Role of FAK and ROCK Mechanosensors. Bioengineering (Basel) 2024; 11:1279. [PMID: 39768098 PMCID: PMC11673816 DOI: 10.3390/bioengineering11121279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Adipose tissue in vivo is physiologically exposed to compound mechanical loading due to bodyweight bearing, posture, and motion. The capability of adipocytes to sense and respond to mechanical loading milieus to influence metabolic functions may provide a new insight into obesity and metabolic diseases such as type 2 diabetes (T2D). Here, we evidenced physiological mechanical loading control of adipocyte insulin signaling cascades. We exposed differentiated 3T3-L1 adipocytes to mechanical stretching and assessed key markers of insulin signaling, AKT activation, and GLUT4 translocation, required for glucose uptake. We showed that cyclic stretch loading at 5% strain and 1 Hz frequency increases AKT phosphorylation and GLUT4 translocation to the plasma membrane by approximately two-fold increases compared to unstretched controls for both markers as assessed by immunoblotting (p < 0.05). These results indicate that cyclic stretching activates insulin signaling and GLUT4 trafficking in adipocytes. In the mechanosensing mechanism study, focal adhesion kinase (FAK) inhibitor (FAK14) and RhoA kinase (ROCK) inhibitor (Y-27632) impaired actin cytoskeleton structural formation and significantly suppressed the stretch induction of AKT phosphorylation in adipocytes (p < 0.001). This suggests the regulatory role of focal adhesion and cytoskeletal mechanosensing in adipocyte insulin signaling under stretch loading. Our finding on the impact of mechanical stretch loading on key insulin signaling effectors in differentiated adipocytes and the mediatory role of focal adhesion and cytoskeleton mechanosensors is the first of its kind to our knowledge. This may suggest a therapeutic potential of mechanical loading cue in improving conditions of obesity and T2D. For instance, cyclic mechanical stretch loading of adipose tissue could be explored as a tool to improve insulin sensitivity in patients with obesity and T2D, and the mediatory mechanosensors such as FAK and ROCK may be targeted to further invigorate stretch-induced insulin signaling activation.
Collapse
Affiliation(s)
- Tasneem Bouzid
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
| | - Brandon D. Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA
| | - Viswanathan Saraswathi
- Department of Internal Medicine, University of Nebraska Medical Center and VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA;
| | - Jason K. Kim
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
2
|
Matsui K, Emoto M, Fukuda N, Nomiyama R, Yamada K, Tanizawa Y. SNARE-binding protein synaptosomal-associated protein of 29 kDa (SNAP29) regulates the intracellular sequestration of glucose transporter 4 (GLUT4) vesicles in adipocytes. J Diabetes Investig 2022; 14:19-27. [PMID: 36181414 PMCID: PMC9807150 DOI: 10.1111/jdi.13912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
AIMS/INTRODUCTION Insulin stimulates translocation of glucose transporter 4 (GLUT4) from the perinuclear location to the plasma membrane. In the unstimulated state, intracellular vesicles containing GLUT4 are sequestered into specialized storage vesicles that have come to be known as the insulin-responsive compartment (IRC). The IRC is a functional compartment in the perinuclear region that is a target of the insulin signaling cascade, although its precise nature is unclear. Here, we report a novel molecular mechanism facilitating formation of the IRC. MATERIALS AND METHODS We determined synaptosomal-associated protein of 29 kDa (SNAP29) by mass spectrometry to be an EH domain-containing protein 1 (EHD1)-binding protein. Then, its expression was confirmed by western blotting. Subcellular localization of SNAP29 was determined by immunofluorescent microscopy. Interactions between SNAP29 and syntaxins were determined by immunoprecipitation. We measured glucose uptake and GLUT4 translocation in 3T3-L1 adipocyte expressing SNAP29 or silencing SNAP29. RESULTS We found SNAP29 to be localized in the perinuclear region and to show partial co-localization with GLUT4 under basal conditions. We also found that SNAP29 binds to syntaxin6, a Qc-SNARE, in adipocytes. In SNAP29-expressing cells, vesicles containing GLUT4 were observed to aggregate around the perinuclear region. In contrast, when SNAP29 was silenced, perinuclear GLUT4 vesicles were dispersed throughout the cytosol. Insulin-stimulated glucose uptake was inhibited in both SNAP29-expressing and SNAP29-silenced cells. CONCLUSIONS These data suggest that SNAP29 sequesters and anchors GLUT4-containing vesicles in the perinuclear region, and might have a role in the biogenesis of the perinuclear IRC.
Collapse
Affiliation(s)
- Kumiko Matsui
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Masahiro Emoto
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan,Emoto ClinicUbeJapan
| | - Naofumi Fukuda
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Ryuta Nomiyama
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Kyoko Yamada
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Yukio Tanizawa
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
3
|
Kandeel M, Al-Taher A, Venugopala KN, Marzok M, Morsy M, Nagaraja S. Camel Proteins and Enzymes: A Growing Resource for Functional Evolution and Environmental Adaptation. Front Vet Sci 2022; 9:911511. [PMID: 35903143 PMCID: PMC9315206 DOI: 10.3389/fvets.2022.911511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
In less agroecological parts of the Asian, Arabian, and African deserts, Camelus dromedarius play an important role in human survival. For many years, camels have been employed as a source of food, a tool of transportation, and a means of defense. They are becoming increasingly important as viable livestock animals in many desert climates. With the help of camel genetics, genomics and proteomics known so far, this review article will summarize camel enzymes and proteins, which allow them to thrive under varied harsh environmental situations. An in-depth study of the dromedary genome revealed the existence of protein-coding and fast-developing genes that govern a variety of metabolic responses including lipid and protein metabolism, glucoamylase, flavin-containing monooxygenase and guanidinoacetate methyltransferase are other metabolic enzymes found in the small intestine, liver, pancreas, and spleen. In addition, we will discuss the handling of common medications by camel liver cytochrome p 450, which are different from human enzymes. Moreover, camels developed several paths to get optimum levels of trace elements like copper, zinc, selenium, etc., which have key importance in their body for normal regulation of metabolic events. Insulin tolerance, carbohydrate and energy metabolism, xenobiotics metabolizing enzymes, vimentin functions, behavior during the rutting season, resistance to starvation and changes in blood composition and resistance to water loss were among the attractive aspects of camel enzymes and proteins peculiarities in the camels. Resolving the enigma of the method of adaptation and the molecular processes linked with camel life is still a developing repository full of mysteries that need additional exploration.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | - Abdulla Al-Taher
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Mohamed Marzok
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Surgery, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | - Mohamed Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Sreeharsha Nagaraja
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bengaluru, India
| |
Collapse
|
4
|
Kislev N, Mor-Yossef Moldovan L, Barak R, Egozi M, Benayahu D. MYH10 Governs Adipocyte Function and Adipogenesis through Its Interaction with GLUT4. Int J Mol Sci 2022; 23:ijms23042367. [PMID: 35216482 PMCID: PMC8875441 DOI: 10.3390/ijms23042367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Adipogenesis is dependent on cytoskeletal remodeling that determines and maintains cellular shape and function. Cytoskeletal proteins contribute to the filament-based network responsible for controlling the shape of adipocytes and promoting the intracellular trafficking of cellular components. Currently, the understanding of these mechanisms and their effect on differentiation and adipocyte function remains incomplete. In this study, we identified the non-muscle myosin 10 (MYH10) as a novel regulator of adipogenesis and adipocyte function through its interaction with the insulin-dependent glucose transporter 4 (GLUT4). MYH10 depletion in preadipocytes resulted in impaired adipogenesis, with knockdown cells exhibiting an absence of morphological alteration and molecular signals. MYH10 was shown in a complex with GLUT4 in adipocytes, an interaction regulated by insulin induction. The missing adipogenic capacity of MYH10 knockdown cells was restored when the cells took up GLUT4 vesicles from neighbor wildtype cells in a co-culture system. This signaling cascade is regulated by the protein kinase C ζ (PKCζ), which interacts with MYH10 to modify the localization and interaction of both GLUT4 and MYH10 in adipocytes. Overall, our study establishes MYH10 as an essential regulator of GLUT4 translocation, affecting both adipogenesis and adipocyte function, highlighting its importance in future cytoskeleton-based studies in adipocytes.
Collapse
|
5
|
Batty SR, Langlais PR. Microtubules in insulin action: what's on the tube? Trends Endocrinol Metab 2021; 32:776-789. [PMID: 34462181 PMCID: PMC8446328 DOI: 10.1016/j.tem.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Microtubules (MT) have a role in the intracellular response to insulin stimulation and subsequent glucose transport by glucose transporter 4 (GLUT4), which resides in specialized storage vesicles that travel through the cell. Before GLUT4 is inserted into the plasma membrane for glucose transport, it undergoes complex trafficking through the cell via the integration of cytoskeletal networks. In this review, we highlight the importance of MT elements in insulin action in adipocytes through a summary of MT depolymerization studies, MT-based GLUT4 movement, molecular motor proteins involved in GLUT4 trafficking, as well as MT-related phenomena in response to insulin and links between insulin action and MT-associated proteins.
Collapse
Affiliation(s)
- Skylar R Batty
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
6
|
Wong CY, Al-Salami H, Dass CR. C2C12 cell model: its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. J Pharm Pharmacol 2020; 72:1667-1693. [PMID: 32812252 DOI: 10.1111/jphp.13359] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The myoblast cell line, C2C12, has been utilised extensively in vitro as an examination model in understanding metabolic disease progression. Although it is indispensable in both preclinical and pharmaceutical research, a comprehensive review of its use in the investigation of insulin resistance progression and pharmaceutical development is not available. KEY FINDINGS C2C12 is a well-documented model, which can facilitate our understanding in glucose metabolism, insulin signalling mechanism, insulin resistance, oxidative stress, reactive oxygen species and glucose transporters at cellular and molecular levels. With the aid of the C2C12 model, recent studies revealed that insulin resistance has close relationship with various metabolic diseases in terms of disease progression, pathogenesis and therapeutic management. A holistic, safe and effective disease management is highly of interest. Therefore, significant efforts have been paid to explore novel drug compounds and natural herbs that can elicit therapeutic effects in the targeted sites at both cellular (e.g. mitochondria, glucose transporter) and molecular level (e.g. genes, signalling pathway). SUMMARY The use of C2C12 myoblast cell line is meaningful in pharmaceutical and biomedical research due to their expression of GLUT-4 and other features that are representative to human skeletal muscle cells. With the use of the C2C12 cell model, the impact of drug delivery systems (nanoparticles and quantum dots) on skeletal muscle, as well as the relationship between exercise, pancreatic β-cells and endothelial cells, was discovered.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, WA, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| |
Collapse
|
7
|
Zhang J, Oh E, Merz KE, Aslamy A, Veluthakal R, Salunkhe VA, Ahn M, Tunduguru R, Thurmond DC. DOC2B promotes insulin sensitivity in mice via a novel KLC1-dependent mechanism in skeletal muscle. Diabetologia 2019; 62:845-859. [PMID: 30707251 PMCID: PMC6451670 DOI: 10.1007/s00125-019-4824-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Skeletal muscle accounts for >80% of insulin-stimulated glucose uptake; dysfunction of this process underlies insulin resistance and type 2 diabetes. Insulin sensitivity is impaired in mice deficient in the double C2 domain β (DOC2B) protein, while whole-body overexpression of DOC2B enhances insulin sensitivity. Whether insulin sensitivity in the skeletal muscle is affected directly by DOC2B or is secondary to an effect on other tissues is unknown; the underlying molecular mechanisms also remain unclear. METHODS Human skeletal muscle samples from non-diabetic or type 2 diabetic donors were evaluated for loss of DOC2B during diabetes development. For in vivo analysis, new doxycycline-inducible skeletal-muscle-specific Doc2b-overexpressing mice fed standard or high-fat diets were evaluated for insulin and glucose tolerance, and insulin-stimulated GLUT4 accumulation at the plasma membrane (PM). For in vitro analyses, a DOC2B-overexpressing L6-GLUT4-myc myoblast/myotube culture system was coupled with an insulin resistance paradigm. Biochemical and molecular biology methods such as site-directed mutagenesis, co-immunoprecipitation and mass spectrometry were used to identify the molecular mechanisms linking insulin stimulation to DOC2B. RESULTS We identified loss of DOC2B (55% reduction in RNA and 40% reduction in protein) in the skeletal muscle of human donors with type 2 diabetes. Furthermore, inducible enrichment of DOC2B in skeletal muscle of transgenic mice enhanced whole-body glucose tolerance (AUC decreased by 25% for female mice) and peripheral insulin sensitivity (area over the curve increased by 20% and 26% for female and male mice, respectively) in vivo, underpinned by enhanced insulin-stimulated GLUT4 accumulation at the PM. Moreover, DOC2B enrichment in skeletal muscle protected mice from high-fat-diet-induced peripheral insulin resistance, despite the persistence of obesity. In L6-GLUT4-myc myoblasts, DOC2B enrichment was sufficient to preserve normal insulin-stimulated GLUT4 accumulation at the PM in cells exposed to diabetogenic stimuli. We further identified that DOC2B is phosphorylated on insulin stimulation, enhancing its interaction with a microtubule motor protein, kinesin light chain 1 (KLC1). Mutation of Y301 in DOC2B blocked the insulin-stimulated phosphorylation of DOC2B and interaction with KLC1, and it blunted the ability of DOC2B to enhance insulin-stimulated GLUT4 accumulation at the PM. CONCLUSIONS/INTERPRETATION These results suggest that DOC2B collaborates with KLC1 to regulate insulin-stimulated GLUT4 accumulation at the PM and regulates insulin sensitivity. Our observation provides a basis for pursuing DOC2B as a novel drug target in the muscle to prevent/treat type 2 diabetes.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Anwita Biosciences Inc, San Carlos, CA, USA
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Karla E Merz
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Arianne Aslamy
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Vishal A Salunkhe
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Ragadeepthi Tunduguru
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
8
|
Das TK, Chakrabarti SK, Zulkipli IN, Abdul Hamid MR. Curcumin Ameliorates the Impaired Insulin Signaling Involved in the Pathogenesis of Alzheimer's Disease in Rats. J Alzheimers Dis Rep 2019; 3:59-70. [PMID: 31025030 PMCID: PMC6481473 DOI: 10.3233/adr-180091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
To date, dysregulation of the insulin signaling pathway in the brain has not been demonstrated unequivocally in Alzheimer's disease (AD). The purpose of the study was to examine the possible dysregulation of insulin signaling pathway in an AD rat model. Furthermore, the present study investigated the effect of Donepezil and Curcumin on insulin signaling, insulin, and glucose levels in AD rat brain. The rats were induced to develop AD by intraperitoneal administration of Scopolamine. We found that glucose levels in plasma and brain were decreased in AD rats, whereas the insulin levels was increased in plasma but decreased in brain in AD rats. In addition, insulin signaling proteins IR-β, IGF-1, IRS-1, IRS-2 p-Akt (Ser473), and Akt were markedly reduced in the AD rats. Furthermore, GLUT3 and GLUT4 levels in the brain were markedly reduced in AD rats. All these data were compared to Saline-treated control rats. Curcumin significantly increased glucose levels in plasma and in brain. However, insulin levels was decreased in plasma and was increased in AD rats' brain. Moreover, GLUT3 and GLUT4 levels were significantly increased in Curcumin-treated AD rats. All these data were compared to Scopolamine- induced AD rats. Thus amelioration of impaired insulin signaling and improved glucose regulation in AD rats by Curcumin may be beneficial in the management of AD.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Universiti Brunei Darussalam, PAPRSB Institute of Health Sciences, Jalan Tungku Link, Gadong, Brunei Darussalam, Brunei
- Institute of Reproductive Medicine, Salt Lake, Kolkata, India
| | | | - Ihsan Nazurah Zulkipli
- Universiti Brunei Darussalam, PAPRSB Institute of Health Sciences, Jalan Tungku Link, Gadong, Brunei Darussalam, Brunei
| | - Mas R.W. Abdul Hamid
- Universiti Brunei Darussalam, PAPRSB Institute of Health Sciences, Jalan Tungku Link, Gadong, Brunei Darussalam, Brunei
| |
Collapse
|
9
|
Ali A, Baby B, Vijayan R. From Desert to Medicine: A Review of Camel Genomics and Therapeutic Products. Front Genet 2019; 10:17. [PMID: 30838017 PMCID: PMC6389616 DOI: 10.3389/fgene.2019.00017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Camels have an important role in the lives of human beings, especially in arid regions, due to their multipurpose role and unique ability to adapt to harsh conditions. In spite of its enormous economic, cultural, and biological importance, the camel genome has not been widely studied. The size of camel genome is roughly 2.38 GB, containing over 20,000 genes. The unusual genetic makeup of the camel is the main reason behind its ability to survive under extreme environmental conditions. The camel genome harbors several unique variations which are being investigated for the treatment of several disorders. Various natural products from camels have also been tested and prescribed as adjunct therapy to control the progression of ailments. Interestingly, the camel employs unique immunological and molecular mechanisms against pathogenic agents and pathological conditions. Here, we broadly review camel classification, distribution and breed as well as recent progress in the determination of the camel genome, its size, genetic distribution, response to various physiological conditions, immunogenetics and the medicinal potential of camel gene products.
Collapse
Affiliation(s)
| | | | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Bedi D, Dennis JC, Morrison EE, Braden TD, Judd RL. Regulation of intracellular trafficking and secretion of adiponectin by myosin II. Biochem Biophys Res Commun 2017; 490:202-208. [PMID: 28606474 DOI: 10.1016/j.bbrc.2017.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 01/08/2023]
Abstract
Adiponectin is a protein secreted by white adipocytes that plays an important role in insulin action, energy homeostasis and the development of atherosclerosis. The intracellular localization and trafficking of GLUT4 and leptin in adipocytes has been well studied, but little is known regarding the intracellular trafficking of adiponectin. Recent studies have demonstrated that constitutive adiponectin secretion is dependent on PIP2 levels and the integrity of cortical F-actin. Non-muscle myosin II is an actin-based motor that is associated with membrane vesicles and participates in vesicular trafficking in mammalian cells. Therefore, we investigated the role of myosin II in the trafficking and secretion of adiponectin in 3T3-L1 adipocytes. Confocal microscopy revealed that myosin IIA and IIB were dispersed throughout the cytoplasm of the adipocyte. Both myosin isoforms were localized in the Golgi/TGN region as evidenced by colocalization with the cis-Golgi marker, p115 and the trans-Golgi marker, γ-adaptin. Inhibition of myosin II activity by blebbistatin or actin depolymerization by latrunculin B dispersed myosin IIA and IIB towards the periphery while significantly inhibiting adiponectin secretion. Therefore, the constitutive trafficking and secretion of adiponectin in 3T3-L1 adipocytes occurs by an actin-dependent mechanism that involves the actin-based motors, myosin IIA and IIB.
Collapse
Affiliation(s)
- Deepa Bedi
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States.
| | - John C Dennis
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Edward E Morrison
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Tim D Braden
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Robert L Judd
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
11
|
Fryk E, Sundelin JP, Strindberg L, Pereira MJ, Federici M, Marx N, Nyström FH, Schmelz M, Svensson PA, Eriksson JW, Borén J, Jansson PA. Microdialysis and proteomics of subcutaneous interstitial fluid reveals increased galectin-1 in type 2 diabetes patients. Metabolism 2016; 65:998-1006. [PMID: 27282870 DOI: 10.1016/j.metabol.2016.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To identify a potential therapeutic target for type 2 diabetes by comparing the subcutaneous interstitial fluid from type 2 diabetes patients and healthy men. METHODS Proteomics was performed on the interstitial fluid of subcutaneous adipose tissue obtained by microdialysis from 7 type 2 diabetes patients and 8 healthy participants. 851 proteins were detected, of which 36 (including galectin-1) showed significantly altered expression in type 2 diabetes. We also measured galectin-1 expression in: (1) adipocytes isolated from adipose tissue biopsies from these participants; (2) subcutaneous adipose tissue of 24 obese participants before, during and after 16weeks on a very low calorie diet (VLCD); and (3) adipocytes isolated from 6 healthy young participants after 4weeks on a diet and lifestyle intervention to promote weight gain. We also determined the effect of galectin-1 on glucose uptake in human adipose tissue. RESULTS Galectin-1 protein levels were elevated in subcutaneous dialysates from type 2 diabetes compared with healthy controls (p<0.05). In agreement, galectin-1 mRNA expression was increased in adipocytes from the type 2 diabetes patients (p<0.05). Furthermore, galectin-1 mRNA expression was decreased in adipose tissue after VLCD (p<0.05) and increased by overfeeding (p<0.05). Co-incubation of isolated human adipocytes with galectin-1 reduced glucose uptake (p<0.05) but this was independent of the insulin signal. CONCLUSION Proteomics of the interstitial fluid in subcutaneous adipose tissue in vivo identified a novel adipokine, galectin-1, with a potential role in the pathophysiology of type 2 diabetes.
Collapse
Affiliation(s)
- Emanuel Fryk
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Jeanna Perman Sundelin
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Lena Strindberg
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | - Massimo Federici
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy.
| | - Nikolaus Marx
- Division of Cardiology, University Hospital RWTH Aachen, Germany.
| | - Fredrik H Nyström
- Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoping University, Linkoping, Sweden.
| | - Martin Schmelz
- Department of Anesthesiology and Intensive Care Medicine Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Sweden.
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Per-Anders Jansson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Abstract
Obesity has emerged as one of the major global epidemics of the 21st century and is now reaching alarming proportions. Obese subjects have an increased morbidity and mortality, decreased quality of life and a major risk of developing pathologies such as diabetes mellitus, insulin resistance and cardiovascular disease. Obesity is a complex disease characterised by an increase in body fat mass resulting from an imbalance between energy intake and expenditure. Signal integration between adipose tissue, other peripheral organs and the CNS seems to regulate energy homeostasis. Proteomics may be useful in unravelling the pathogenesis of obesity, since a combination of genetic predisposition and environmental factors account for its development. Most of the proteomic studies performed to date have focused on protein profiling of adipose tissue in different models of experimental obesity and the study of the adipocyte differentiation process. Another issue that has recently attracted attention is the characterisation of the adipocyte secretome, which may be important in signalling to other organs and in regulating energy balance. Target identification of potential therapies has also been investigated by proteomics. This review focuses on the contributions of proteomics to understanding the molecular mechanisms of obesity and their potential therapies.
Collapse
Affiliation(s)
| | - Ramon Gomis
- Diabetes and Obesity Laboratory-Endocrinology and Nutrition Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
13
|
Shiau MY, Lu HF, Chang YH, Chiu YC, Shih YL. Characterization of proteins regulated by interleukin-4 in 3T3-L1 adipocytes. SPRINGERPLUS 2015; 4:242. [PMID: 26110103 PMCID: PMC4475513 DOI: 10.1186/s40064-015-0980-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 04/15/2015] [Indexed: 12/02/2022]
Abstract
Obesity is closely associated with metabolic syndrome, type 2 diabetes mellitus (T2DM) and cardiovascular diseases. Our previous reports uncover the significant associations between interleukin-4 (IL-4)/IL-4 receptor genotypes and T2DM, as well as IL-4 genotypes and high density lipoprotein-cholesterol. Theses observations suggest that IL-4 harbors the capacity to regulate lipid metabolism. The present study is aimed at further elucidating regulatory roles of IL-4 to lipid metabolism by identifying putative proteins in 3T3-L1 adipocytes which are differentially expressed under IL-4 treatment. Proteins in mature 3T3-L1 adipocytes with altered expression levels under IL-4 treatment were identified by proteomic strategy. Our results revealed that IL-4 up-regulated levels of ATP synthase δ chain, Cytochrome c reductase, Pyrophsphatase and Vimentin, whereas, Alpha-enolase, Gelsolin, Vinculin and Valosin were down-regulated. These observations suggest that IL-4 promotes energy metabolism and inhibit lipid deposits in adipocytes by up-regulating proteins accelerating ATP synthesis. Our results suggest that IL-4 facilitates adipocytes metabolism to catabolism with a favorable condition for lipolysis. These catabolized lipids in adipocytes triggered by IL-4 might either be released into periphery or metabolized intracellularlly, and modulate systemic energy metabolism.
Collapse
Affiliation(s)
- Ming-Yuh Shiau
- Department of Nursing, College of Medicine & Nursing, Hungkuang University, Taichung, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Chih Chiu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan.,School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
14
|
Pedersen DJ, Guilherme A, Danai LV, Heyda L, Matevossian A, Cohen J, Nicoloro SM, Straubhaar J, Noh HL, Jung D, Kim JK, Czech MP. A major role of insulin in promoting obesity-associated adipose tissue inflammation. Mol Metab 2015; 4:507-18. [PMID: 26137438 PMCID: PMC4481426 DOI: 10.1016/j.molmet.2015.04.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 04/18/2015] [Accepted: 04/22/2015] [Indexed: 12/23/2022] Open
Abstract
Objective Adipose tissue (AT) inflammation is associated with systemic insulin resistance and hyperinsulinemia in obese rodents and humans. A longstanding concept is that hyperinsulinemia may promote systemic insulin resistance through downregulation of its receptor on target tissues. Here we tested the novel hypothesis that insulin also impairs systemic insulin sensitivity by specifically enhancing adipose inflammation. Methods Circulating insulin levels were reduced by about 50% in diet-induced and genetically obese mice by treatments with diazoxide or streptozotocin, respectively. We then examined AT crown-like structures, macrophage markers and pro-inflammatory cytokine expression in AT. AT lipogenesis and systemic insulin sensitivity was also monitored. Conversely, insulin was infused into lean mice to determine its affects on the above parameters. Results Lowering circulating insulin levels in obese mice by streptozotocin treatment decreased macrophage content in AT, enhancing insulin stimulated Akt phosphorylation and de novo lipogenesis (DNL). Moreover, responsiveness of blood glucose levels to injected insulin was improved by streptozotocin and diazoxide treatments of obese mice without changes in body weight. Remarkably, even in lean mice, infusion of insulin under constant euglycemic conditions stimulated expression of cytokines in AT. Consistent with these findings, insulin treatment of 3T3-L1 adipocytes caused a 10-fold increase in CCL2 mRNA levels within 6 h, which was blocked by the ERK inhibitor PD98059. Conclusion Taken together, these results indicate that obesity-associated hyperinsulinemia unexpectedly drives AT inflammation in obese mice, which in turn contributes to factors that suppress insulin-stimulated adipocyte DNL and systemic insulin sensitivity. Adipose tissue inflammation correlates with hyperinsulinemia in obese mice and humans independent of BMI. Reduction of hyperinsulinemia ameliorates adipose tissue inflammation and enhances systemic insulin sensitivity. Insulin increases adipose inflammation in vivo and enhances adipocyte MCP-1 expression in vitro through ERK activation.
Collapse
Affiliation(s)
- David J Pedersen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laura V Danai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lauren Heyda
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anouch Matevossian
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jessica Cohen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sarah M Nicoloro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Juerg Straubhaar
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA ; Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - DaeYoung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA ; Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA ; Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
15
|
Stall R, Ramos J, Kent Fulcher F, Patel YM. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Exp Cell Res 2013; 322:81-8. [PMID: 24374234 DOI: 10.1016/j.yexcr.2013.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/04/2013] [Accepted: 12/08/2013] [Indexed: 11/18/2022]
Abstract
Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane.
Collapse
Affiliation(s)
- Richard Stall
- Department of Biology, University of North Carolina at Greensboro, 312 Eberhart Building, Greensboro, NC 27412, USA
| | - Joseph Ramos
- Department of Biology, University of North Carolina at Greensboro, 312 Eberhart Building, Greensboro, NC 27412, USA
| | - F Kent Fulcher
- Department of Biology, University of North Carolina at Greensboro, 312 Eberhart Building, Greensboro, NC 27412, USA
| | - Yashomati M Patel
- Department of Biology, University of North Carolina at Greensboro, 312 Eberhart Building, Greensboro, NC 27412, USA.
| |
Collapse
|
16
|
Renes J, Mariman E. Application of proteomics technology in adipocyte biology. MOLECULAR BIOSYSTEMS 2013; 9:1076-91. [PMID: 23629546 DOI: 10.1039/c3mb25596d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity and its associated complications have reached epidemic proportions in Western-type societies. Concomitantly, the obesity incidence in developing countries is increasing. One hallmark of obesity is the differentiation of pre-adipocytes into mature triglyceride-loaded adipocytes present in subcutaneous and visceral adipose tissue depots. This may ultimately lead to dysfunctional adipose tissue together with detrimental changes in the profiles of (pre-)adipocyte-secreted proteins, known as adipokines. Obesity-induced alterations in adipokine profiles contribute to the development of obesity-associated disorders. Consequently, the interest in the molecular events responsible for adipose tissue modifications during weight gain and weight loss as well as in the aetiology of obesity-associated disorders is growing. Molecular mechanisms involved in pre-adipocyte differentiation and alterations in adipokine profiles have been examined at the gene and protein level by high-throughput technologies. Independent proteomics studies have contributed significantly to further insight into adipocyte biology, particularly with respect to adipokine profiling. In this review novel findings obtained with adipo-proteomics studies are highlighted and the relevance of proteomics technologies to further understand molecular aspects of adipocyte biology is discussed.
Collapse
Affiliation(s)
- Johan Renes
- Department of Human Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|
17
|
Wu S, Gallagher KL. Intact microtubules are required for the intercellular movement of the SHORT-ROOT transcription factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:148-159. [PMID: 23294290 DOI: 10.1111/tpj.12112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/11/2012] [Accepted: 01/02/2013] [Indexed: 05/28/2023]
Abstract
In both plants and animals, cell-to-cell signaling controls key aspects of development. In plants, cells communicate through direct transfer of transcription factors between cells. It is thought that most, if not all, mobile transcription factors move via plasmodesmata, membrane-lined channels that connect nearly all cells in the plant. However, the mechanisms by which these proteins access the plasmodesmata are not known. Using four independent assays, we examined the movement of the SHORT-ROOT (SHR) transcription factor under conditions that affect microtubule stability, organization or dynamics. We found that intact microtubules are required for cell-to-cell trafficking of SHR. Either chemical or genetic disruption of microtubules results in a significant reduction in SHR transport. Interestingly, inhibition of microtubules also results in mis-localization of the SHR-INTERACTING EMBRYONIC LETHAL (SIEL) protein, which has been shown to bind directly to SHR and is required for SHR movement. These results show that microtubules facilitate cell-to-cell transport of an endogenous plant protein.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
18
|
Warda M, Prince A, Kim HK, Khafaga N, Scholkamy T, Linhardt RJ, Jin H. Proteomics of old world camelid (Camelus dromedarius): Better understanding the interplay between homeostasis and desert environment. J Adv Res 2013; 5:219-42. [PMID: 25685490 PMCID: PMC4294715 DOI: 10.1016/j.jare.2013.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/04/2013] [Accepted: 03/13/2013] [Indexed: 01/26/2023] Open
Abstract
Life is the interplay between structural–functional integrity of biological systems and the influence of the external environment. To understand this interplay, it is useful to examine an animal model that competes with harsh environment. The dromedary camel is the best model that thrives under severe environment with considerable durability. The current proteomic study on dromedary organs explains a number of cellular mysteries providing functional correlates to arid living. Proteome profiling of camel organs suggests a marked increased expression of various cytoskeleton proteins that promote intracellular trafficking and communication. The comparative overexpression of α-actinin of dromedary heart when compared with rat heart suggests an adaptive peculiarity to sustain hemoconcentration–hemodilution episodes associated with alternative drought-rehydration periods. Moreover, increased expression of the small heat shock protein, α B-crystallin facilitates protein folding and cellular regenerative capacity in dromedary heart. The observed unbalanced expression of different energy related dependent mitochondrial enzymes suggests the possibility of mitochondrial uncoupling in the heart in this species. The evidence of increased expression of H+-ATPase subunit in camel brain guarantees a rapidly usable energy supply. Interestingly, the guanidinoacetate methyltransferase in camel liver has a renovation effect on high energy phosphate with possible concomitant intercession of ion homeostasis. Surprisingly, both hump fat tissue and kidney proteomes share the altered physical distribution of proteins that favor cellular acidosis. Furthermore, the study suggests a vibrant nature for adipose tissue of camel hump by the up-regulation of vimentin in adipocytes, augmenting lipoprotein translocation, blood glucose trapping, and challenging external physical extra-stress. The results obtained provide new evidence of homeostasis in the arid habitat suitable for this mammal.
Collapse
Key Words
- 2D, two-dimensional
- ACTH, adrenocorticotropic hormone
- Actin
- CHAPS, 3-(3-cholamidopropyl)-dimethylammoniopropane sulfonate
- CHCA, α-cyano-4-signal-to-noise
- Camel
- Crystallin
- DAPLE, Dvl-associating protein with a high frequency of leucine residues
- DTT, dithiothreitol
- Dvl, dishevelled: scaffold protein involved in the regulation of the Wnt signaling pathway
- IPG, immobilized pH gradient
- MALDI, matrix assisted laser desorption ionization
- MAPK, map kinase
- MS, mass spectrometry
- Metabolism
- PAGE, polyacrylamide gel electrophoresis
- PDB, protein database
- PMF, peptide mass finger printing
- Proteome
- SDS, sodium dodecylsulfate
- TFA, trifluoracetic acid
- TOF, time of flight
- Vimentin
- hsp, heat shock protein
- pI, isoelectric point
Collapse
Affiliation(s)
- Mohamad Warda
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt ; Biotechnology Center for Services and Researches, Cairo University, Giza, Egypt
| | - Abdelbary Prince
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Nagwa Khafaga
- Animal Health Research Institute, Dokki, Giza, Egypt
| | - Tarek Scholkamy
- Field Investigation Department, Animal Reproduction Research Institute, Giza, Egypt
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Han Jin
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| |
Collapse
|
19
|
Lee A, Hakuno F, Northcott P, Pessin JE, Adcock MR. Nexilin, a cardiomyopathy-associated F-actin binding protein, binds and regulates IRS1 signaling in skeletal muscle cells. PLoS One 2013; 8:e55634. [PMID: 23383252 PMCID: PMC3559603 DOI: 10.1371/journal.pone.0055634] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/03/2013] [Indexed: 01/11/2023] Open
Abstract
Insulin stimulates glucose uptake through a highly organized and complex process that involves movement of the glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane. Previous studies in L6 skeletal muscle cells have shown that insulin-induced activation and assembly of insulin receptor substrate 1 (IRS1) and p85α the regulatory subunit of the Type 1A phosphatidylinositol-3-kinase (PI3K), within remodeled actin-rich membrane structures is critical for downstream signalling mediating the translocation of GLUT4. The mechanism for localization within actin cytoskeletal scaffolds is not known, as direct interaction of IRS1 or p85α with F-actin has not been demonstrated. Here we show that nexilin, a F-actin binding protein implicated in the pathogenesis of familial dilated cardiomyopathies, preferentially binds to IRS1 over IRS2 to influence glucose transport in skeletal muscle cells. Nexilin stably associates with IRS1 under basal conditions in L6 myotubes and this complex is disassembled by insulin. Exposure of L6 myotubes to Latrunculin B disrupts the spatial patterning of nexilin and its transient association with IRS1. Functional silencing of nexilin has no effect on insulin-stimulated IRS1 tyrosine phosphorylation, however it enhances recruitment of p85α to IRS1 resulting in increased PI-3, 4, 5-P3 formation, coincident with enhanced AKT activation and glucose uptake. By contrast, overexpression of nexilin inhibits transmission of IRS1 signals to AKT. Based on these findings we propose that nexilin may tether IRS1 to actin-rich structures under basal conditions, confining IRS1 signaling to specific subcellular locations in the cell. Insulin-elicited release of this constraint may enhance the efficiency of IRS1/PI3K interaction and PI-3, 4, 5-P3 production at localized sites. Moreover, the selective binding of nexilin to IRS1 and not IRS2 may contribute to the differential specificity of IRS isoforms in the modulation of GLUT4 trafficking in skeletal muscle cells.
Collapse
Affiliation(s)
- Andrew Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Paul Northcott
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey E. Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maria Rozakis Adcock
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
20
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Choi D, Oh KJ, Han HS, Yoon YS, Jung CY, Kim ST, Koo SH. Protein arginine methyltransferase 1 regulates hepatic glucose production in a FoxO1-dependent manner. Hepatology 2012; 56:1546-56. [PMID: 22532369 DOI: 10.1002/hep.25809] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Postprandial insulin plays a critical role in suppressing hepatic glucose production to maintain euglycemia in mammals. Insulin-dependent activation of protein kinase B (Akt) regulates this process, in part, by inhibiting FoxO1-dependent hepatic gluconeogenesis by direct phosphorylation and subsequent cytoplasmic exclusion. Previously, it was demonstrated that protein arginine methyltransferase 1 (PRMT1)-dependent arginine modification of FoxO1 interferes with Akt-dependent phosphorylation, both in cancer cells and in the Caenorhabditis elegans model, suggesting that this additional modification of FoxO1 might be critical in its transcriptional activity. In this study, we attempted to directly test the effect of arginine methylation of FoxO1 on hepatic glucose metabolism. The ectopic expression of PRMT1 enhanced messenger RNA levels of FoxO1 target genes in gluconeogenesis, resulting in increased glucose production from primary hepatocytes. Phosphorylation of FoxO1 at serine 253 was reduced with PRMT1 expression, without affecting the serine 473 phosphorylation of Akt. Conversely, knockdown of PRMT1 promoted an inhibition of FoxO1 activity and hepatic gluconeogenesis by enhancing the phosphorylation of FoxO1. In addition, genetic haploinsufficiency of Prmt1 reduced hepatic gluconeogenesis and blood-glucose levels in mouse models, underscoring the importance of this factor in hepatic glucose metabolism in vivo. Finally, we were able to observe an amelioration of the hyperglycemic phenotype of db/db mice with PRMT1 knockdown, showing a potential importance of this protein as a therapeutic target for the treatment of diabetes. CONCLUSION Our data strongly suggest that the PRMT1-dependent regulation of FoxO1 is critical in hepatic glucose metabolism in vivo.
Collapse
Affiliation(s)
- Dahee Choi
- Division of Biochemistry and Molecular Biology, Department of Molecular Cell Biology and Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Montessuit C, Lerch R. Regulation and dysregulation of glucose transport in cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:848-56. [PMID: 22967513 DOI: 10.1016/j.bbamcr.2012.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/29/2022]
Abstract
The ability of the heart muscle to derive energy from a wide variety of substrates provides the myocardium with remarkable capacity to adapt to the ever-changing metabolic environment depending on factors including nutritional state and physical activity. There is increasing evidence that loss of metabolic flexibility of the myocardium contributes to cardiac dysfunction in disease conditions such as diabetes, ischemic heart disease and heart failure. At the level of glucose metabolism reduced metabolic adaptation in most cases is characterized by impaired stimulation of transarcolemmal glucose transport in the cardiomyocytes in response to insulin, referred to as insulin resistance, or to other stimuli such as energy deficiency. This review discusses cellular mechanisms involved in the regulation of glucose uptake in cardiomyocytes and their potential implication in impairment of stimulation of glucose transport under disease conditions. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Christophe Montessuit
- Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland.
| | | |
Collapse
|
23
|
Abstract
Despite daily fasting and feeding, plasma glucose levels are normally maintained within a narrow range owing to the hormones insulin and glucagon. Insulin increases glucose uptake into fat and muscle cells through the regulated trafficking of vesicles that contain glucose transporter type 4 (GLUT4). New insights into insulin signalling reveal that phosphorylation events initiated by the insulin receptor regulate key GLUT4 trafficking proteins, including small GTPases, tethering complexes and the vesicle fusion machinery. These proteins, in turn, control GLUT4 movement through the endosomal system, formation and retention of specialized GLUT4 storage vesicles and targeted exocytosis of these vesicles. Understanding these processes may help to explain the development of insulin resistance in type 2 diabetes and provide new potential therapeutic targets.
Collapse
|
24
|
Cassimeris L, Silva VC, Miller E, Ton Q, Molnar C, Fong J. Fueled by microtubules: Does tubulin dimer/polymer partitioning regulate intracellular metabolism? Cytoskeleton (Hoboken) 2012; 69:133-43. [DOI: 10.1002/cm.21008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/11/2012] [Indexed: 11/07/2022]
|
25
|
Abstract
Adipose tissue plays a central role in body weight homeostasis, inflammation, and insulin resistance via serving as a fat-buffering system, regulating lipid storage and mobilization and releasing a large range of adipokines and cytokines. Adipose tissue is also the major inflammation-initiated site in obesity. Adipose-derived adipokines and cytokines are known to be involved in the modulation of a wide range of important physiological processes, particularly immune response, glucose and lipid homeostasis and insulin resistance. Adipose tissue dysfunction, characterized by an imbalanced secretion of pro- and anti-inflammatory adipokines and cytokines, decreased insulin-stimulated glucose uptake, dysregulation of lipid storage and release and mitochondrial dysfunction, has been linked to obesity and its associated metabolic disorders. Proteomic technology has been a powerful tool for identifying key components of the adipose proteome, which may contribute to the pathogenesis of adipose tissue dysfunction in obesity. In this review, we summarized the recent advances in the proteomic characterization of adipose tissue and discussed the identified proteins that potentially play important roles in insulin resistance and lipid homeostasis.
Collapse
|
26
|
Hirata Y, Hosaka T, Iwata T, Le CT, Jambaldorj B, Teshigawara K, Harada N, Sakaue H, Sakai T, Yoshimoto K, Nakaya Y. Vimentin binds IRAP and is involved in GLUT4 vesicle trafficking. Biochem Biophys Res Commun 2011; 405:96-101. [DOI: 10.1016/j.bbrc.2010.12.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 12/31/2010] [Indexed: 01/16/2023]
|
27
|
Vijayakumar MV, Ajay AK, Bhat MK. Demonstration of a visual cell-based assay for screening glucose transporter 4 translocation modulators in real time. J Biosci 2010; 35:525-31. [DOI: 10.1007/s12038-010-0060-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Kozak LP, Newman S, Chao PM, Mendoza T, Koza RA. The early nutritional environment of mice determines the capacity for adipose tissue expansion by modulating genes of caveolae structure. PLoS One 2010; 5:e11015. [PMID: 20574519 PMCID: PMC2888576 DOI: 10.1371/journal.pone.0011015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 05/14/2010] [Indexed: 01/11/2023] Open
Abstract
While the phenomenon linking the early nutritional environment to disease susceptibility exists in many mammalian species, the underlying mechanisms are unknown. We hypothesized that nutritional programming is a variable quantitative state of gene expression, fixed by the state of energy balance in the neonate, that waxes and wanes in the adult animal in response to changes in energy balance. We tested this hypothesis with an experiment, based upon global gene expression, to identify networks of genes in which expression patterns in inguinal fat of mice have been altered by the nutritional environment during early post-natal development. The effects of over- and under-nutrition on adiposity and gene expression phenotypes were assessed at 5, 10, 21 days of age and in adult C57Bl/6J mice fed chow followed by high fat diet for 8 weeks. Under-nutrition severely suppressed plasma insulin and leptin during lactation and diet-induced obesity in adult mice, whereas over-nourished mice were phenotypically indistinguishable from those on a control diet. Food intake was not affected by under- or over-nutrition. Microarray gene expression data revealed a major class of genes encoding proteins of the caveolae and cytoskeleton, including Cav1, Cav2, Ptrf (Cavin1), Ldlr, Vldlr and Mest, that were highly associated with adipose tissue expansion in 10 day-old mice during the dynamic phase of inguinal fat development and in adult animals exposed to an obesogenic environment. In conclusion gene expression profiles, fat mass and adipocyte size in 10 day old mice predicted similar phenotypes in adult mice with variable diet-induced obesity. These results are supported by phenotypes of KO mice and suggest that when an animal enters a state of positive energy balance adipose tissue expansion is initiated by coordinate changes in mRNA levels for proteins required for modulating the structure of the caveolae to maximize the capacity of the adipocyte for lipid storage.
Collapse
Affiliation(s)
- Leslie P Kozak
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA.
| | | | | | | | | |
Collapse
|
29
|
Jedrychowski MP, Gartner CA, Gygi SP, Zhou L, Herz J, Kandror KV, Pilch PF. Proteomic analysis of GLUT4 storage vesicles reveals LRP1 to be an important vesicle component and target of insulin signaling. J Biol Chem 2009; 285:104-14. [PMID: 19864425 DOI: 10.1074/jbc.m109.040428] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Insulin stimulates the translocation of intracellular GLUT4 to the plasma membrane where it functions in adipose and muscle tissue to clear glucose from circulation. The pathway and regulation of GLUT4 trafficking are complicated and incompletely understood and are likely to be contingent upon the various proteins other than GLUT4 that comprise and interact with GLUT4-containing vesicles. Moreover, not all GLUT4 intracellular pools are insulin-responsive as some represent precursor compartments, thus posing a biochemical challenge to the purification and characterization of their content. To address these issues, we immunodepleted precursor GLUT4-rich vesicles and then immunopurified GLUT4 storage vesicle (GSVs) from primary rat adipocytes and subjected them to semi-quantitative and quantitative proteomic analysis. The purified vesicles translocate to the cell surface almost completely in response to insulin, the expected behavior for bona fide GSVs. In total, over 100 proteins were identified, about 50 of which are novel in this experimental context. LRP1 (low density lipoprotein receptor-related protein 1) was identified as a major constituent of GSVs, and we show it interacts with the lumenal domains of GLUT4 and other GSV constituents. Its cytoplasmic tail interacts with the insulin-signaling pathway target, AS160 (Akt substrate of 160 kDa). Depletion of LRP1 from 3T3-L1 adipocytes reduces GLUT4 expression and correspondingly results in decreased insulin-stimulated 2-[(3)H]deoxyglucose uptake. Furthermore, adipose-specific LRP1 knock-out mice also exhibit decreased GLUT4 expression. These findings suggest LRP1 is an important component of GSVs, and its expression is needed for the formation of fully functional GSVs.
Collapse
Affiliation(s)
- Mark P Jedrychowski
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Compartmentalization and regulation of insulin signaling to GLUT4 by the cytoskeleton. VITAMINS AND HORMONES 2009; 80:193-215. [PMID: 19251039 DOI: 10.1016/s0083-6729(08)00608-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
One of the early events in the development of Type 2 diabetes appears to be an inhibition of insulin-mediated GLUT4 redistribution to the cell surface in tissues that express GLUT4. Understanding this process, and how it begins to breakdown in the development of insulin resistance is quite important as we face treatment and prevention of metabolic diseases. Over the past few years, and increasing number of laboratories have produced compelling data to demonstrate a role for both the actin and microtubule networks in the regulation of insulin-mediated GLUT4 redistribution to the cell surface. In this review, we explore this process from insulin-signal transduction to fusion of GLUT4 membrane vesicles, focusing on studies that have implicated a role for the cytoskeleton. We see from this body of work that both the actin network and the microtubule cytoskeleton play roles as targets of insulin action and effectors of insulin signaling leading to changes in GLUT4 redistribution to the cell surface and insulin-mediated glucose uptake.
Collapse
|
31
|
Evidence for a pathogenic determinant in HIV-1 Nef involved in B cell dysfunction in HIV/AIDS. Cell Host Microbe 2008; 4:63-76. [PMID: 18621011 DOI: 10.1016/j.chom.2008.05.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/05/2008] [Accepted: 05/07/2008] [Indexed: 12/19/2022]
Abstract
B lymphocyte hyperactivation and elevated immunoglobulin levels (hypergammaglobulinemia) are pathogenic manifestations of HIV-1 infection. Here we provide evidence that these hallmarks are caused by a soluble factor whose production by infected macrophages is induced by the HIV-1 Nef protein. In vitro, HIV-1-infected macrophages or macrophages expressing Nef promoted B cell activation and differentiation to immunoglobulin-secreting cells. Nef-mediated activation of NF-kappaB in macrophages induced secretion of the acute-phase protein ferritin, and ferritin was necessary and sufficient for the observed Nef-dependent B cell changes. The extent of hypergammaglobulinemia in HIV-1-infected individuals correlated directly with plasma ferritin levels and with viral load. Furthermore, the induction of ferritin production and hypergammaglobulinemia was recapitulated when Nef was specifically expressed in macrophages and T cells of transgenic mice. Collectively, these results indicate that the HIV-1 Nef protein carries a pathogenic determinant that governs B cell defects in HIV-1 infection.
Collapse
|
32
|
Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Exp Cell Res 2008; 314:3264-74. [PMID: 18773891 DOI: 10.1016/j.yexcr.2008.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/07/2008] [Accepted: 08/10/2008] [Indexed: 01/15/2023]
Abstract
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.
Collapse
|
33
|
Selective regulation of the perinuclear distribution of glucose transporter 4 (GLUT4) by insulin signals in muscle cells. Eur J Cell Biol 2008; 87:337-51. [PMID: 18417252 DOI: 10.1016/j.ejcb.2008.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 01/28/2008] [Accepted: 02/06/2008] [Indexed: 01/31/2023] Open
Abstract
Insulin regulates glucose transporter 4 (GLUT4) availability at the surface of muscle and adipose cells. In L6 myoblasts, stably expressed GLUT4myc is detected mostly in a perinuclear region. In unstimulated cells, about half of perinuclear GLUT4myc colocalizes with the transferrin receptor (TfR). Insulin stimulation selectively decreased the perinuclear colocalization of GLUT4myc with TfR determined by 3D-reconstruction of fluorescence images. Perinuclear GLUT4myc adopted two main distributions defined morphometrically as 'conical' and 'concentric'. Insulin rapidly reduced the proportion of cells with conical in favor of concentric perinuclear GLUT4myc distributions in association with the gain in surface GLUT4myc. Upon removal of insulin, the GLUT4myc perinuclear distribution and surface levels reversed in parallel. In contrast, hypertonicity (which like insulin elevates surface GLUT4myc) did not elicit perinuclear GLUT4myc redistribution. Insulin also caused redistribution of perinuclear vesicle-associated membrane protein-2 (VAMP2), without alteration of perinuclear TfR and VAMP3. Inhibitory mutants of phosphatidylinositol-3 kinase (Deltap85) or Akt substrate AS160 (AS160-4P) prevented insulin-mediated perinuclear GLUT4myc redistribution. Tetanus toxin expression did not prevent the perinuclear GLUT4myc redistribution, suggesting that redistribution is independent of GLUT4myc fusion with the plasma membrane. We propose that insulin causes selective, dynamic relocalization of perinuclear GLUT4myc and VAMP2 and perinuclear GLUT4myc redistribution is a direct target of insulin-derived signals.
Collapse
|
34
|
Montessuit C, Papageorgiou I, Lerch R. Nuclear receptor agonists improve insulin responsiveness in cultured cardiomyocytes through enhanced signaling and preserved cytoskeletal architecture. Endocrinology 2008; 149:1064-74. [PMID: 18063688 DOI: 10.1210/en.2007-0656] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin resistance is the failure of insulin to stimulate the transport of glucose into its target cells. A highly regulatable supply of glucose is important for cardiomyocytes to cope with situations of metabolic stress. We recently observed that isolated adult rat cardiomyocytes become insulin resistant in vitro. Insulin resistance is combated at the whole body level with agonists of the nuclear receptor complex peroxisome proliferator-activated receptor gamma (PPARgamma)/retinoid X receptor (RXR). We investigated the effects of PPARgamma/RXR agonists on the insulin-stimulated glucose transport and on insulin signaling in insulin-resistant adult rat cardiomyocytes. Treatment of cardiomyocytes with ciglitazone, a PPARgamma agonist, or 9-cis retinoic acid (RA), a RXR agonist, increased insulin- and metabolic stress-stimulated glucose transport, whereas agonists of PPARalpha or PPARbeta/delta had no effect. Stimulation of glucose transport in response to insulin requires the phosphorylation of the signaling intermediate Akt on the residues Thr308 and Ser473 and, downstream of Akt, AS160 on several Thr and Ser residues. Phosphorylation of Akt and AS160 in response to insulin was lower in insulin-resistant cardiomyocytes. However, treatment with 9-cis RA markedly increased phosphorylation of both proteins. Treatment with 9-cis RA also led to better preservation of microtubules in cultured cardiomyocytes. Disruption of microtubules in insulin-responsive cardiomyocytes abolished insulin-stimulated glucose transport and reduced phosphorylation of AS160 but not Akt. Metabolic stress-stimulated glucose transport also involved AS160 phosphorylation in a microtubule-dependent manner. Thus, the stimulation of glucose uptake in response to insulin or metabolic stress is dependent in cardiomyocytes on the presence of intact microtubules.
Collapse
Affiliation(s)
- Christophe Montessuit
- Division of Cardiology, Geneva University Hospitals, 24 Micheli-du-Crest, 1211 Geneva 14, Switzerland.
| | | | | |
Collapse
|
35
|
Pilch PF. The mass action hypothesis: formation of Glut4 storage vesicles, a tissue-specific, regulated exocytic compartment. Acta Physiol (Oxf) 2008; 192:89-101. [PMID: 18171432 DOI: 10.1111/j.1748-1716.2007.01788.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insulin stimulates glucose uptake into the target tissues of fat and muscle by recruiting or translocating Glut4 glucose transport proteins to their functional location at the cell surface. In the basal state, Glut4 is sequestered intracellularly in several vesicular compartments, one of which has come to be known as Glut4 storage vesicles (GSVs). The GSVs represent a tissue-specific compartment that is an ultimate target of the insulin signalling cascade. Glut4 translocation has been extensively studied because of its intrinsic scientific importance to cell biology as well as its relevance to the pathology of type 2 diabetes mellitus. I review herein the ontogeny of GSVs and their composition as it relates to a tissue-specific, hormone-sensitive exocytic compartment and propose a mechanism for their formation.
Collapse
Affiliation(s)
- P F Pilch
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
36
|
Kim JY, Wu Y, Smas CM. Characterization of ScAP-23, a new cell line from murine subcutaneous adipose tissue, identifies genes for the molecular definition of preadipocytes. Physiol Genomics 2007; 31:328-42. [PMID: 17609412 DOI: 10.1152/physiolgenomics.00206.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The 3T3-L1 model of in vitro adipogenesis has provided key insights into the molecular nature of this process. However, given that 3T3-L1 are of an embryonic origin, it is not clear to what extent they represent adipogenesis as it occurs in white adipose tissue (WAT). With the goal of better defining preadipocytes and adipogenesis in WAT, we have generated a new cell culture model from adipocyte precursors present in C57BL/6 mouse subcutaneous WAT. ScAP-23 preadipocytes show fibroblastic morphology, and on treatment with dexamethasone, 3-methylisobutylxanthine, insulin, and indomethacin, convert to nearly 100% adipocyte morphology. ScAP-23 adipocytes contain abundant lipid droplets and express transcripts for PPARγ, C/EBP family, and SREBP-1c transcription factors, SCD1, aFABP, ATGL, GLUT4, FAS, LDL, and GPDH, and are insulin responsive. Differential screening of 1,176 genes using nylon DNA arrays identified 10 transcripts enriched in ScAP-23 adipocytes vs. preadipocytes and 26 transcripts enriched in ScAP-23 preadipocytes vs. adipocytes. Semiquantitative or real-time PCR analyses identified a common cohort of 14 transcripts markedly downregulated in both ScAP-23 and 3T3-L1 adipogenesis. These included catenin-β1, chemokine ligand-2, serine or cysteine peptidase inhibitor f1, aurora kinase B, thrombospondin2, and solute carrier-7a5. Five of these transcripts (Ccl2, Serpinf1, Aurkb, Thbs2, and Slc7a5) demonstrated at least a twofold increase in WAT from obese ( ob/ob) mice compared with that of wild-type mice. This suggests that comparative gene expression studies of ScAP-23 and 3T3-L1 adipogenesis may be particularly fruitful in identifying preadipocyte-expressed genes that play a role in adipose tissue physiology and/or pathophysiology.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio 43614, USA
| | | | | |
Collapse
|
37
|
Xu YK, Xu KD, Li JY, Feng LQ, Lang D, Zheng XX. Bi-directional transport of GLUT4 vesicles near the plasma membrane of primary rat adipocytes. Biochem Biophys Res Commun 2007; 359:121-8. [PMID: 17532293 DOI: 10.1016/j.bbrc.2007.05.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 01/05/2023]
Abstract
Insulin stimulates glucose uptake into adipocytes by mobilizing intracellular membrane vesicles containing GLUT4 proteins to the plasma membrane. Here we applied time-lapse total internal reflection fluorescence microscopy to study moving parameters and characters of exogenously expressed GLUT4 vesicles in basal, insulin and nocodazole treated primary rat adipocytes. Our results showed that microtubules were essential for long-range transport of GLUT4 vesicles but not obligatory for GLUT4 distribution in rat adipocytes. Insulin reduced the mobility of the vesicles, made them tethered/docked to the PM and finally had constitutive exocytosis. Moreover, long-range bi-directional movements of GLUT4 vesicles were visualized for the first time by TIRFM. It is likely that there are interactions between insulin signaling and microtubules, to regulating GLUT4 translocation in rat adipocytes.
Collapse
Affiliation(s)
- Ying-Ke Xu
- Key Laboratory for Biomedical Engineering of Ministry of China, Department of Biomedical Engineering, Zhejiang University, Zhejiang 310027, PR China
| | | | | | | | | | | |
Collapse
|
38
|
Flowers JB, Oler AT, Nadler ST, Choi Y, Schueler KL, Yandell BS, Kendziorski CM, Attie AD. Abdominal obesity in BTBR male mice is associated with peripheral but not hepatic insulin resistance. Am J Physiol Endocrinol Metab 2007; 292:E936-45. [PMID: 17132824 DOI: 10.1152/ajpendo.00370.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance is a common feature of obesity. BTBR mice have more fat mass than most other inbred mouse strains. On a chow diet, BTBR mice have elevated insulin levels relative to the C57BL/6J (B6) strain. Male F1 progeny of a B6 x BTBR cross are insulin resistant. Previously, we reported insulin resistance in isolated muscle and in isolated adipocytes in this strain. Whereas the muscle insulin resistance was observed only in male F1 mice, adipocyte insulin resistance was also present in male BTBR mice. We examined in vivo mechanisms of insulin resistance with the hyperinsulinemic euglycemic clamp technique. At 10 wk of age, BTBR and F1 mice had a >30% reduction in whole body glucose disposal primarily due to insulin resistance in heart, soleus muscle, and adipose tissue. The increased adipose tissue mass and decreased muscle mass in BTBR and F1 mice were negatively and positively correlated with whole body glucose disposal, respectively. Genes involved in focal adhesion, actin cytoskeleton, and inflammation were more highly expressed in BTBR and F1 than in B6 adipose tissue. The BTBR and F1 mice have higher levels of testosterone, which may be related to the pathological changes in adipose tissue that lead to systemic insulin resistance. Despite profound peripheral insulin resistance, BTBR and F1 mice retained hepatic insulin sensitivity. These studies reveal a genetic difference in body composition that correlates with large differences in peripheral insulin sensitivity.
Collapse
Affiliation(s)
- Jessica B Flowers
- Department of Nutritional Sciences, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Eyster CA, Duggins QS, Gorbsky GJ, Olson AL. Microtubule network is required for insulin signaling through activation of Akt/protein kinase B: evidence that insulin stimulates vesicle docking/fusion but not intracellular mobility. J Biol Chem 2006; 281:39719-27. [PMID: 17068336 DOI: 10.1074/jbc.m607101200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microtubule network has been shown to be required for insulin-dependent GLUT4 redistribution; however, the precise molecular function has not been elucidated. In this article, we used fluorescence recovery after photobleaching (FRAP) to evaluate the role of microtubules in intracellular GLUT4 vesicle mobility. A comparison of the rate of fluorescence recovery (t((1/2))), and the maximum fluorescence recovered (F(max)) was made between basal and insulin-treated cells with or without nocodazole treatment to disrupt microtubules. We found that intracellular mobility of fluorescently tagged GLUT4 (HA-GLUT4-GFP) was high in basal cells. Mobility was not increased by insulin treatment. Basal mobility was dependent upon an intact microtubule network. Using a constitutively active Akt to signal GLUT4 redistribution, we found that microtubule-based GLUT4 vesicle mobility was not obligatory for GLUT4 plasma membrane insertion. Our findings suggest that microtubules organize the insulin-signaling complex and provide a surface for basal mobility of GLUT4 vesicles. Our data do not support an obligatory requirement for long range microtubule-based movement of GLUT4 vesicles for insulin-mediated GLUT4 redistribution to the cell surface. Taken together, these findings suggest a model in which insulin signaling targets membrane docking and/or fusion rather than GLUT4 trafficking to the cell surface.
Collapse
Affiliation(s)
- Craig A Eyster
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
40
|
Frame S, Zheleva D. Targeting glycogen synthase kinase-3 in insulin signalling. Expert Opin Ther Targets 2006; 10:429-44. [PMID: 16706683 DOI: 10.1517/14728222.10.3.429] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The renewed interest in an enzyme first discovered over 25 years ago stems from the potential of inhibitors of this enzyme to treat conditions as diverse as diabetes, Alzheimer's disease, stroke and bipolar disorder, and even to enhance the repopulating capacity of transplanted haematopoietic stem cells. The emergence of the first few potent and specific glycogen synthase kinase-3 (GSK-3) inhibitors will end years of speculation on their potential and finally allow the impact of GSK-3 inhibitors to be evaluated clinically. The next few years are likely to be particularly exciting ones for fans of this old enzyme. This review focuses on the role of GSK-3 in the insulin signalling pathway and highlights the evidence implicating the enzyme in insulin resistance. Pharmacological in vitro and in vivo proof-of-concept studies are also discussed, which establish the therapeutic potential of GSK-3 inhibitors as agents for the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Sheelagh Frame
- Cyclacel Ltd., James Lindsay Place, Dundee, DD1 5JJ, UK.
| | | |
Collapse
|
41
|
Liu L, Jedrychowski MP, Gygi SP, Pilch PF. Role of insulin-dependent cortical fodrin/spectrin remodeling in glucose transporter 4 translocation in rat adipocytes. Mol Biol Cell 2006; 17:4249-56. [PMID: 16870704 PMCID: PMC1635356 DOI: 10.1091/mbc.e06-04-0278] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fodrin or nonerythroid spectrin is an abundant component of the cortical cytoskeletal network in rat adipocytes. Fodrin has a highly punctate distribution in resting cells, and insulin causes a dramatic remodeling of fodrin to a more diffuse pattern. Insulin-mediated remodeling of actin occurs to a lesser extent than does that of fodrin. We show that fodrin interacts with the t-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 4, and this interaction is increased by insulin stimulation and decreased by prior latrunculin A treatment. Latrunculin A disrupts all actin filaments, inhibits glucose transporter 4 (GLUT4) translocation, and causes fodrin to partially redistribute from the plasma membrane to the cytosol. In contrast, cytochalasin D disrupts only the short actin filament signal, and cytochalasin D neither inhibits GLUT4 translocation nor fodrin redistribution in adipocytes. Together, our data suggest that insulin induces remodeling of the fodrin-actin network, which is required for the fusion of GLUT4 storage vesicles with the plasma membrane by permitting their access to the t-SNARE syntaxin 4.
Collapse
Affiliation(s)
- Libin Liu
- *Department of Biochemistry, Boston University Medical School, Boston, MA 02118; and
| | - Mark P. Jedrychowski
- *Department of Biochemistry, Boston University Medical School, Boston, MA 02118; and
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Paul F. Pilch
- *Department of Biochemistry, Boston University Medical School, Boston, MA 02118; and
| |
Collapse
|
42
|
McCarthy AM, Spisak KO, Brozinick JT, Elmendorf JS. Loss of cortical actin filaments in insulin-resistant skeletal muscle cells impairs GLUT4 vesicle trafficking and glucose transport. Am J Physiol Cell Physiol 2006; 291:C860-8. [PMID: 16774991 PMCID: PMC2424226 DOI: 10.1152/ajpcell.00107.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Study has demonstrated an essential role of cortical filamentous actin (F-actin) in insulin-regulated glucose uptake by skeletal muscle. Here, we tested whether perturbations in F-actin contributed to impaired insulin responsiveness provoked by hyperinsulinemia. In L6 myotubes stably expressing GLUT4 that carries an exofacial myc-epitope tag, acute insulin stimulation (20 min, 100 nM) increased GLUT4myc translocation and glucose uptake by approximately 2-fold. In contrast, a hyperinsulinemic state, induced by inclusion of 5 nM insulin in the medium for 12 h decreased the ability of insulin to stimulate these processes. Defects in insulin signaling did not readily account for the observed disruption. In contrast, hyperinsulinemia reduced cortical F-actin. This occurred concomitant with a loss of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)), a lipid involved in cytoskeletal regulation. Restoration of plasma membrane PIP(2) in hyperinsulinemic cells restored F-actin and insulin responsiveness. Consistent with these in vitro observations suggesting that the hyperinsulinemic state negatively affects cortical F-actin structure, epitrochlearis skeletal muscle from insulin-resistant hyperinsulinemic Zucker fatty rats displayed a similar loss of F-actin structure compared with that in muscle from lean insulin-sensitive littermates. We propose that a component of insulin-induced insulin resistance in skeletal muscle involves defects in PIP(2)/F-actin structure essential for insulin-regulated glucose transport.
Collapse
Affiliation(s)
- Alicia M McCarthy
- Dept. of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
43
|
He A, Liu X, Liu L, Chang Y, Fang F. How many signals impinge on GLUT4 activation by insulin? Cell Signal 2006; 19:1-7. [PMID: 16919913 DOI: 10.1016/j.cellsig.2006.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 05/23/2006] [Indexed: 01/26/2023]
Abstract
GLUT4 is the main glucose transporter activated by insulin in skeletal muscle cells and adipocytes. GLUT4 storage vesicles (GSVs) traffic in endocytic and exocytic compartments. In the basal state, GLUT4 compartments are preferentially sequestered in perinuclear deposits wherein stimuli including insulin and non-insulin factors can increase GLUT4 vesicle formation, its exocytosis, and fusion to plasma membrane. In addition to well-established effectors of insulin signaling pathway, such as PKCzeta and Akt, the cytoskeletal network is implicated in GLUT4 translocation. This review will discuss the mechanisms and activation of GLUT4 trafficking and incorporating to PM from three aspects: known molecules of the insulin signaling pathway; Rho and Rab family proteins and cytoskeletal molecules.
Collapse
Affiliation(s)
- Aibin He
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | |
Collapse
|
44
|
Abstract
In skeletal muscle and adipose tissue, insulin-stimulated glucose uptake is dependent upon translocation of the insulin-responsive glucose transporter GLUT4 from intracellular storage compartments to the plasma membrane. This insulin-induced redistribution of GLUT4 protein is achieved through a series of highly organized membrane trafficking events, orchestrated by insulin receptor signals. Recently, several key molecules linking insulin receptor signals and membrane trafficking have been identified, and emerging evidence supports the importance of subcellular compartmentalization of signaling components at the right time and in the right place. In addition, the translocation of GLUT4 in adipocytes requires insulin stimulation of dynamic actin remodeling at the inner surface of the plasma membrane (cortical actin) and in the perinuclear region. This results from at least two independent insulin receptor signals, one leading to the activation of phosphatidylinositol (PI) 3-kinase and the other to the activation of the Rho family small GTP-binding protein TC10. Thus, both spatial and temporal regulations of actin dynamics, both beneath the plasma membrane and around endomembranes, by insulin receptor signals are also involved in the process of GLUT4 translocation.
Collapse
Affiliation(s)
- Makoto Kanzaki
- TUBERO/Tohoku University Biomedical Engineering Research Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
45
|
Sarkar S, Bananis E, Nath S, Anwer MS, Wolkoff AW, Murray JW. PKCzeta is required for microtubule-based motility of vesicles containing the ntcp transporter. Traffic 2006; 7:1078-91. [PMID: 16734659 DOI: 10.1111/j.1600-0854.2006.00447.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracellular trafficking regulates the abundance and therefore activity of transporters present at the plasma membrane. The transporter, Na+-taurocholate co-transporting polypeptide (ntcp), is increased at the plasma membrane upon treatment of cells with cAMP, for which microtubules (MTs) are required and the PI3K pathway and PKCzeta have been implicated. However, trafficking of ntcp on MTs has not been demonstrated directly and the regulation and intracellular localization of ntcp is not well understood. Here, we utilize in vitro and whole-cell immunofluorescence microscopy assays to demonstrate that ntcp is present on intracellular vesicles that bind MTs and move bidirectionally, using kinesin-1 and dynein. These vesicles co-localize with markers for recycling endosomes and early but not late endosomes. They frequently undergo fission, providing a mechanism for the exclusion of ntcp from late endosomes. PI(3,4,5)P3 activates PKCzeta and enhances motility of the ntcp vesicles and overcomes the partial inhibition produced by a PI3-kinase inhibitor. Specific inhibition of PKCzeta blocks the motility of ntcp-containing vesicles but has no effect on late vesicles as shown both in vitro and in living cells transfected with ntcp-GFP. These data indicate that PKCzeta is required specifically for the intracellular movement of vesicles that contain the ntcp transporter.
Collapse
Affiliation(s)
- Souvik Sarkar
- Marion Bessin Liver Research Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
46
|
Liu Z, Zhang YW, Chang YS, Fang FD. The role of cytoskeleton in glucose regulation. BIOCHEMISTRY (MOSCOW) 2006; 71:476-80. [PMID: 16732724 DOI: 10.1134/s0006297906050026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytoskeleton plays an important role in glucose regulation, mainly in the following three aspects. First, cytoskeleton regulates insulin secretion by guiding intracellular transport of insulin-containing vesicles and regulating release of insulin. Second, cytoskeleton is involved in insulin action by regulating distribution of insulin receptor substrate, GLUT4 translocation, and internalization of insulin receptor. In addition, cytoskeleton directs the intracellular distribution of glucose metabolism related enzymes including glycogen synthase and many glycolysis enzymes.
Collapse
Affiliation(s)
- Zhuo Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | |
Collapse
|
47
|
Park SY, Lee S, Park KS, Lee HK, Lee W. Proteomic analysis of cellular change involved in mitochondria-to-nucleus communication in L6 GLUT4myc myocytes. Proteomics 2006; 6:1210-22. [PMID: 16402357 DOI: 10.1002/pmic.200500284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genetic or biochemical abnormalities in mitochondria are closely associated with apoptosis, aging, cancer, and other chronic degenerative diseases. Mitochondrial dysfunction resulting from mitochondrial DNA (mtDNA) depletion dispatches retrograde signals to the nucleus to compensate by altering the expression of various genes. In this study, a proteomic approach was used to gain insight into the nuclear gene targets of mitochondrial stress signaling and the pathophysiological mechanisms associated with mitochondrial dysfunction. We have used 2-DE to characterize the nuclear gene responses resulting from mtDNA depletion in L6 GLUT4myc myocytes. Our results showed that 77 polypeptides were differentially expressed in mtDNA-depleted cells; 33 polypeptides were down-regulated and 44 polypeptides were up-regulated. Of these differentially expressed polypeptides, 40 were identified as 36 different proteins by MALDI-TOF MS. These proteins are related to various cellular responses, such as apoptosis, cellular metabolism, signaling and cytoskeleton functions. It is suggested that the insulin resistance developed in mtDNA-depleted myocytes may be associated with disorganization of cytoskeleton assembly, and that cellular mtDNA depletion might promote the ability to evade apoptosis or other death effectors.
Collapse
Affiliation(s)
- Seung Yoon Park
- Department of Biochemistry, Dongguk University, College of Medicine, Kyungju, Kyungpook, Korea
| | | | | | | | | |
Collapse
|
48
|
Clarke M, Ewart MA, Santy LC, Prekeris R, Gould GW. ACRP30 is secreted from 3T3-L1 adipocytes via a Rab11-dependent pathway. Biochem Biophys Res Commun 2006; 342:1361-7. [PMID: 16516854 DOI: 10.1016/j.bbrc.2006.02.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 02/12/2006] [Indexed: 01/06/2023]
Abstract
Adipocytes are now known to secrete a range of adipokines that exhibit distinct biological functions. Here, we sought to understand the secretory pathways utilised by ACRP30 to the surface of adipocytes. We find that ACRP30 overlaps with adipsin in intracellular compartments distinct from Glut4, but nonetheless exhibits insulin-stimulated secretion from cells. Both adipsin and ACRP30 overlap with transferrin receptor-positive membranes, implying that the pathway of secretion involves the transferrin receptor-positive endosomal system. Consistent with this, we show that ablation of endosomes significantly inhibited the secretion of ACRP30, as did treatment of cells with Brefeldin A. In order to further probe the role of recycling endosomes on the secretion of ACRP30, we over-expressed a mutant form of Rab11, Rab11-S25N, in 3T3-L1 adipocytes and found that expression of this mutant significantly reduced basal and insulin-stimulated secretion. We also demonstrate that Arf6 also plays a role in the secretion of ACRP30. Collectively, these data implicate both Arf6 and Rab11 as crucial mediators of constitutive and insulin-stimulated secretion of ACRP30 and further suggest that recycling endosomes may play a central role in this process.
Collapse
Affiliation(s)
- Mairi Clarke
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | |
Collapse
|
49
|
Thomas EC, Zhe Y, Molero JC, Schmitz-Peiffer C, Ramm G, James DE, Whitehead JP. The subcellular fractionation properties and function of insulin receptor substrate-1 (IRS-1) are independent of cytoskeletal integrity. Int J Biochem Cell Biol 2006; 38:1686-99. [PMID: 16702017 DOI: 10.1016/j.biocel.2006.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/15/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
Efficient insulin action requires spatial and temporal coordination of signaling cascades. The prototypical insulin receptor substrate, IRS-1 plays a central role in insulin signaling. By subcellular fractionation IRS-1 is enriched in a particulate fraction, termed the high speed pellet (HSP), and its redistribution from this fraction is associated with signal attenuation and insulin resistance. Anecdotal evidence suggests the cytoskeleton may underpin the localization of IRS-1 to the HSP. In the present study we have taken a systematic approach to examine whether the cytoskeleton contributes to the subcellular fractionation properties and function of IRS-1. By standard microscopy or immunoprecipitation we were unable to detect evidence to support a specific interaction between IRS-1 and the major cytoskeletal components actin (microfilaments), vimentin (intermediate filaments), and tubulin (microtubules) in 3T3-L1 adipocytes or in CHO.IR.IRS-1 cells. Pharmacological disruption of microfilaments and microtubules, individually or in combination, was without effect on the subcellular distribution of IRS-1 or insulin-stimulated tyrosine phosphorylation in either cell type. Phosphorylation of Akt was modestly reduced (20-35%) in 3T3-L1 adipocytes but not in CHO.IR.IRS-1 cells. In cells lacking intermediate filaments (Vim(-/-)) IRS-1 expression, distribution and insulin-stimulated phosphorylation appeared normal. Even after depolymerisation of microfilaments and microtubules, insulin-stimulated phosphorylation of IRS-1 and Akt were maintained in Vim(-/-) cells. Taken together these data indicate that the characteristic subcellular fractionation properties and function of IRS-1 are unlikely to be mediated by cytoskeletal networks and that proximal insulin signaling does not require an intact cytoskeleton.
Collapse
Affiliation(s)
- Elaine C Thomas
- Centre for Diabetes and Endocrine Research, Princess Alexandra Hospital, University of Queensland, Brisbane, Qld 4102, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Sebastian BM, Nagy LE. Decreased insulin-dependent glucose transport by chronic ethanol feeding is associated with dysregulation of the Cbl/TC10 pathway in rat adipocytes. Am J Physiol Endocrinol Metab 2005; 289:E1077-84. [PMID: 16105861 PMCID: PMC1283127 DOI: 10.1152/ajpendo.00296.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heavy alcohol consumption is an independent risk factor for type 2 diabetes. Although the exact mechanism by which alcohol contributes to the increased risk is unknown, impaired glucose disposal is a likely target. Insulin-stimulated glucose disposal in adipocytes is regulated by two separate and independent pathways, the PI3K pathway and the Cbl/TC10 pathway. Previous studies suggest that chronic ethanol feeding impairs insulin-stimulated glucose transport in adipocytes in a PI3K-independent manner. In search of potential targets of ethanol that would affect insulin-stimulated glucose transport, we investigated the effects of 4-wk ethanol feeding to male Wistar rats on the Cbl/TC10 pathway in isolated adipocytes. Chronic ethanol feeding inhibited insulin-stimulated cCbl phosphorylation compared with pair feeding. Insulin receptor and Akt/PKB phosphorylation were not affected by ethanol feeding. Chronic ethanol exposure also impaired cCbl and TC10 recruitment to a lipid raft fraction isolated from adipocytes by detergent extraction. Furthermore, chronic ethanol feeding increased the amount of activated TC10 and filamentous actin in adipocytes at baseline and abrogated the ability of insulin to further activate TC10 or polymerize actin. These results demonstrate that the impairment in insulin-stimulated glucose transport observed in adipocytes after chronic ethanol feeding to rats is associated with a disruption of insulin-mediated Cbl/TC10 signaling and actin polymerization.
Collapse
Affiliation(s)
- Becky M Sebastian
- Dept. of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4906, USA
| | | |
Collapse
|