1
|
Ashton AW, Dhanjal HK, Rossner B, Mahmood H, Patel VI, Nadim M, Lota M, Shahid F, Li Z, Joyce D, Pajkos M, Dosztányi Z, Jiao X, Pestell RG. Acetylation of nuclear receptors in health and disease: an update. FEBS J 2024; 291:217-236. [PMID: 36471658 DOI: 10.1111/febs.16695] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a common reversible post-translational modification of proteins that plays a key role in regulating gene expression. Nuclear receptors (NRs) include ligand-inducible transcription factors and orphan receptors for which the ligand is undetermined, which together regulate the expression of genes involved in development, metabolism, homeostasis, reproduction and human diseases including cancer. Since the original finding that the ERα, AR and HNF4 are acetylated, we now understand that the vast majority of NRs are acetylated and that this modification has profound effects on NR function. Acetylation sites are often conserved and involve both ordered and disordered regions of NRs. The acetylated residues function as part of an intramolecular signalling platform intersecting phosphorylation, methylation and other modifications. Acetylation of NR has been shown to impact recruitment into chromatin, co-repressor and coactivator complex formation, sensitivity and specificity of regulation by ligand and ligand antagonists, DNA binding, subcellular distribution and transcriptional activity. A growing body of evidence in mice indicates a vital role for NR acetylation in metabolism. Additionally, mutations of the NR acetylation site occur in human disease. This review focuses on the role of NR acetylation in coordinating signalling in normal physiology and disease.
Collapse
Affiliation(s)
- Anthony W Ashton
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Benjamin Rossner
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Huma Mahmood
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Vivek I Patel
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Mohammad Nadim
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Manpreet Lota
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Farhan Shahid
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Zhiping Li
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - David Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Xuanmao Jiao
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - Richard G Pestell
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
- The Wistar Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
2
|
Wang C, Zhou H, Xue Y, Liang J, Narita Y, Gerdt C, Zheng AY, Jiang R, Trudeau S, Peng CW, Gewurz BE, Zhao B. Epstein-Barr Virus Nuclear Antigen Leader Protein Coactivates EP300. J Virol 2018; 92:e02155-17. [PMID: 29467311 PMCID: PMC5899200 DOI: 10.1128/jvi.02155-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/10/2018] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus nuclear antigen (EBNA) leader protein (EBNALP) is one of the first viral genes expressed upon B-cell infection. EBNALP is essential for EBV-mediated B-cell immortalization. EBNALP is thought to function primarily by coactivating EBNA2-mediated transcription. Chromatin immune precipitation followed by deep sequencing (ChIP-seq) studies highlight that EBNALP frequently cooccupies DNA sites with host cell transcription factors (TFs), in particular, EP300, implicating a broader role in transcription regulation. In this study, we investigated the mechanisms of EBNALP transcription coactivation through EP300. EBNALP greatly enhanced EP300 transcription activation when EP300 was tethered to a promoter. EBNALP coimmunoprecipitated endogenous EP300 from lymphoblastoid cell lines (LCLs). EBNALP W repeat serine residues 34, 36, and 63 were required for EP300 association and coactivation. Deletion of the EP300 histone acetyltransferase (HAT) domain greatly reduced EBNALP coactivation and abolished the EBNALP association. An EP300 bromodomain inhibitor also abolished EBNALP coactivation and blocked the EP300 association with EBNALP. EBNALP sites cooccupied by EP300 had significantly higher ChIP-seq signals for sequence-specific TFs, including SPI1, RelA, EBF1, IRF4, BATF, and PAX5. EBNALP- and EP300-cooccurring sites also had much higher H3K4me1 and H3K27ac signals, indicative of activated enhancers. EBNALP-only sites had much higher signals for DNA looping factors, including CTCF and RAD21. EBNALP coactivated reporters under the control of NF-κB or SPI1. EP300 inhibition abolished EBNALP coactivation of these reporters. Clustered regularly interspaced short palindromic repeat interference targeting of EBNALP enhancer sites significantly reduced target gene expression, including that of EP300 itself. These data suggest a previously unrecognized mechanism by which EBNALP coactivates transcription through subverting of EP300 and thus affects the expression of LCL genes regulated by a broad range of host TFs.IMPORTANCE Epstein-Barr virus was the first human DNA tumor virus discovered over 50 years ago. EBV is causally linked to ∼200,000 human malignancies annually. These cancers include endemic Burkitt lymphoma, Hodgkin lymphoma, lymphoma/lymphoproliferative disease in transplant recipients or HIV-infected people, nasopharyngeal carcinoma, and ∼10% of gastric carcinoma cases. EBV-immortalized human B cells faithfully model key aspects of EBV lymphoproliferative diseases and are useful models of EBV oncogenesis. EBNALP is essential for EBV to transform B cells and transcriptionally coactivates EBNA2 by removing repressors from EBNA2-bound DNA sites. Here, we found that EBNALP can also modulate the activity of the key transcription activator EP300, an acetyltransferase that activates a broad range of transcription factors. Our data suggest that EBNALP regulates a much broader range of host genes than was previously appreciated. A small-molecule inhibitor of EP300 abolished EBNALP coactivation of multiple target genes. These findings suggest novel therapeutic approaches to control EBV-associated lymphoproliferative diseases.
Collapse
Affiliation(s)
- Chong Wang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hufeng Zhou
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Xue
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jun Liang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yohei Narita
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine Gerdt
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Y Zheng
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Runsheng Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Trudeau
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Chih-Wen Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Sekar B, Martins J, Petkar S. Confirmed early myocardial rupture in a patient with pulseless electrical activity (PEA) following late presentation of ST elevation myocardial infarction. Echo Res Pract 2017; 4:I11-I12. [PMID: 28420670 PMCID: PMC5457502 DOI: 10.1530/erp-17-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Baskar Sekar
- Cardiology Department, Heart and Lung Centre, New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Joe Martins
- Cardiology Department, Russell's Hall Hospital, The Dudley Group NHS Foundation Trust, Dudley, UK
| | - Sanjiv Petkar
- Cardiology Department, Heart and Lung Centre, New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, UK
| |
Collapse
|
4
|
Molecular Basis for the Regulation of Transcriptional Coactivator p300 in Myogenic Differentiation. Sci Rep 2015; 5:13727. [PMID: 26354606 PMCID: PMC4564756 DOI: 10.1038/srep13727] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/03/2015] [Indexed: 01/02/2023] Open
Abstract
Skeletal myogenesis is a highly ordered process which specifically depends on the function of transcriptional coactivator p300. Previous studies have established that Akt/protein kinase B (PKB), a positive regulator of p300 in proliferating cells, is also important for proper skeletal muscle development. Nevertheless, it is not clear as to how the p300 is regulated by myogenic signaling events given that both p300 and Akt are involved in many cellular processes. Our studies revealed that the levels of p300 protein are temporally maintained in ligand-enhanced skeletal myocyte development. Interestingly, this maintenance of p300 protein is observed at the stage of myoblast differentiation, which coincides with an increase in Akt phosphorylation. Moreover, regulation of p300 during myoblast differentiation appears to be mediated by Akt signaling. Blunting of p300 impairs myogenic expression and myoblast differentiation. Thus, our data suggests a particular role for Akt in myoblast differentiation through interaction with p300. Our studies also establish the potential of exploiting p300 regulation and Akt activation to decipher the complex signaling cascades involved in skeletal muscle development.
Collapse
|
5
|
Kapadia B, Viswakarma N, Parsa KVL, Kain V, Behera S, Suraj SK, Babu PP, Kar A, Panda S, Zhu YJ, Jia Y, Thimmapaya B, Reddy JK, Misra P. ERK2-mediated phosphorylation of transcriptional coactivator binding protein PIMT/NCoA6IP at Ser298 augments hepatic gluconeogenesis. PLoS One 2013; 8:e83787. [PMID: 24358311 PMCID: PMC3866170 DOI: 10.1371/journal.pone.0083787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022] Open
Abstract
PRIP-Interacting protein with methyl transferase domain (PIMT) serves as a molecular bridge between CREB-binding protein (CBP)/ E1A binding protein p300 (Ep300) -anchored histone acetyl transferase and the Mediator complex sub-unit1 (Med1) and modulates nuclear receptor transcription. Here, we report that ERK2 phosphorylates PIMT at Ser(298) and enhances its ability to activate PEPCK promoter. We observed that PIMT is recruited to PEPCK promoter and adenoviral-mediated over-expression of PIMT in rat primary hepatocytes up-regulated expression of gluconeogenic genes including PEPCK. Reporter experiments with phosphomimetic PIMT mutant (PIMT(S298D)) suggested that conformational change may play an important role in PIMT-dependent PEPCK promoter activity. Overexpression of PIMT and Med1 together augmented hepatic glucose output in an additive manner. Importantly, expression of gluconeogenic genes and hepatic glucose output were suppressed in isolated liver specific PIMT knockout mouse hepatocytes. Furthermore, consistent with reporter experiments, PIMT(S298D) but not PIMT(S298A) augmented hepatic glucose output via up-regulating the expression of gluconeogenic genes. Pharmacological blockade of MAPK/ERK pathway using U0126, abolished PIMT/Med1-dependent gluconeogenic program leading to reduced hepatic glucose output. Further, systemic administration of T4 hormone to rats activated ERK1/2 resulting in enhanced PIMT ser(298) phosphorylation. Phosphorylation of PIMT led to its increased binding to the PEPCK promoter, increased PEPCK expression and induction of gluconeogenesis in liver. Thus, ERK2-mediated phosphorylation of PIMT at Ser(298) is essential in hepatic gluconeogenesis, demonstrating an important role of PIMT in the pathogenesis of hyperglycemia.
Collapse
Affiliation(s)
- Bandish Kapadia
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Navin Viswakarma
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Kishore V. L. Parsa
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Vasundhara Kain
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Soma Behera
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Sashidhara Kaimal Suraj
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Phanithi Prakash Babu
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Anand Kar
- Department of Life Sciences, Devi Ahilya University, Indore, Madhya Pradesh, India
| | - Sunanda Panda
- Department of Life Sciences, Devi Ahilya University, Indore, Madhya Pradesh, India
| | - Yi-jun Zhu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Bayar Thimmapaya
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Janardan K. Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (PM); (JKR)
| | - Parimal Misra
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
- * E-mail: (PM); (JKR)
| |
Collapse
|
6
|
Wang QE, Han C, Zhao R, Wani G, Zhu Q, Gong L, Battu A, Racoma I, Sharma N, Wani AA. p38 MAPK- and Akt-mediated p300 phosphorylation regulates its degradation to facilitate nucleotide excision repair. Nucleic Acids Res 2012; 41:1722-33. [PMID: 23275565 PMCID: PMC3561975 DOI: 10.1093/nar/gks1312] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Besides the primary histone acetyltransferase (HAT)-mediated chromatin remodeling function, co-transcriptional factor, p300, is also known to play a distinct role in DNA repair. However, the exact mechanism of p300 function in DNA repair has remained unclear and difficult to discern due to the phosphorylation and degradation of p300 in response to DNA damage. Here, we have demonstrated that p300 is only degraded in the presence of specific DNA lesions, which are the substrates of nucleotide excision repair (NER) pathway. In contrast, DNA double-strand breaks fail to degrade p300. Degradation is initiated by phosphorylation of p300 at serine 1834, which is catalyzed by the cooperative action of p38 mitogen-activated protein kinases and Akt kinases. In depth, functional analysis revealed that (i) p300 and CBP act redundantly in repairing ultraviolet (UV) lesions, (ii) the phosphorylation of p300 at S1834 is critical for efficient removal of UV-induced cyclobutane pyrimidine dimers and (iii) p300 is recruited to DNA damage sites located within heterochromatin. Taken together, we conclude that phosphorylated p300 initially acetylates histones to relax heterochromatin to allow damage recognition factors access to damage DNA. Thereupon, p300 is promptly degraded to allow the sequential recruitment of downstream repair proteins for successful execution of NER.
Collapse
Affiliation(s)
- Qi-En Wang
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kumar R, Calhoun WJ. Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation. Biologics 2011; 2:845-54. [PMID: 19707462 PMCID: PMC2727889 DOI: 10.2147/btt.s3820] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR) is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade. Taken together, site-specific phosphorylation and related kinase pathways play an important role in the action of the GR, and more precise mechanistic information will lead to fuller understanding of the complex nature of gene regulation by the GR- and related transcription factors. This review provides currently available information regarding the role of GR phosphorylation in its action, and highlights the possible underlying mechanisms of action.
Collapse
|
8
|
Wood P, Mulay V, Darabi M, Chan KC, Heeren J, Pol A, Lambert G, Rye KA, Enrich C, Grewal T. Ras/mitogen-activated protein kinase (MAPK) signaling modulates protein stability and cell surface expression of scavenger receptor SR-BI. J Biol Chem 2011; 286:23077-92. [PMID: 21525007 DOI: 10.1074/jbc.m111.236398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) Erk1/2 has been implicated to modulate the activity of nuclear receptors, including peroxisome proliferator activator receptors (PPARs) and liver X receptor, to alter the ability of cells to export cholesterol. Here, we investigated if the Ras-Raf-Mek-Erk1/2 signaling cascade could affect reverse cholesterol transport via modulation of scavenger receptor class BI (SR-BI) levels. We demonstrate that in Chinese hamster ovary (CHO) and human embryonic kidney (HEK293) cells, Mek1/2 inhibition reduces PPARα-inducible SR-BI protein expression and activity, as judged by reduced efflux onto high density lipoprotein (HDL). Ectopic expression of constitutively active H-Ras and Mek1 increases SR-BI protein levels, which correlates with elevated PPARα Ser-21 phosphorylation and increased cholesterol efflux. In contrast, SR-BI levels are insensitive to Mek1/2 inhibitors in PPARα-depleted cells. Most strikingly, Mek1/2 inhibition promotes SR-BI degradation in SR-BI-overexpressing CHO cells and human HuH7 hepatocytes, which is associated with reduced uptake of radiolabeled and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyane-labeled HDL. Loss of Mek1/2 kinase activity reduces SR-BI expression in the presence of bafilomycin, an inhibitor of lysosomal degradation, indicating down-regulation of SR-BI via proteasomal pathways. In conclusion, Mek1/2 inhibition enhances the PPARα-dependent degradation of SR-BI in hepatocytes.
Collapse
Affiliation(s)
- Peta Wood
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ritterhoff S, Farah CM, Grabitzki J, Lochnit G, Skurat AV, Schmitz ML. The WD40-repeat protein Han11 functions as a scaffold protein to control HIPK2 and MEKK1 kinase functions. EMBO J 2010; 29:3750-61. [PMID: 20940704 PMCID: PMC2989105 DOI: 10.1038/emboj.2010.251] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/17/2010] [Indexed: 12/18/2022] Open
Abstract
Protein kinases are organized in hierarchical networks that are assembled and regulated by scaffold proteins. Here, we identify the evolutionary conserved WD40-repeat protein Han11 as an interactor of the kinase homeodomain-interacting protein kinase 2 (HIPK2). In vitro experiments showed the direct binding of Han11 to HIPK2, but also to the kinases DYRK1a, DYRK1b and mitogen-activated protein kinase kinase kinase 1 (MEKK1). Han11 was required to allow coupling of MEKK1 to DYRK1 and HIPK2. Knockdown experiments in Caenorhabditis elegans showed the relevance of the Han11 orthologs Swan-1 and Swan-2 for the osmotic stress response. Downregulation of Han11 in human cells lowered the threshold and amplitude of HIPK2- and MEKK1-triggered signalling events and changed the kinetics of kinase induction. Han11 knockdown changed the amplitude and time dependence of HIPK2-driven transcription in response to DNA damage and also interfered with MEKK1-triggered gene expression and stress signalling. Impaired signal transmission also occurred upon interference with stoichiometrically assembled signalling complexes by Han11 overexpression. Collectively, these experiments identify Han11 as a novel scaffold protein regulating kinase signalling by HIPK2 and MEKK1.
Collapse
Affiliation(s)
- Stefanie Ritterhoff
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Carla M Farah
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Julia Grabitzki
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Alexander V Skurat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
10
|
|
11
|
An overview of nuclear receptor coregulators involved in cerebellar development. THE CEREBELLUM 2009; 7:48-59. [PMID: 18418685 DOI: 10.1007/s12311-008-0018-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nuclear receptors (NRs) precisely control the gene regulation throughout the development of the central nervous system, including the cerebellum. Functionally, the full activity of NRs requires their cognate coregulators to be recruited by NRs and modulate the activation or repression of target gene expression. Recent progress of in vitro studies of NR coregulators has revealed that NR coregulators form large complexes in a cyclic manner and subsequently exert genetic and epigenetic influence via various intrinsic enzyme activities. Moreover, NR coregulators physiologically provide a combinatorial code for time- and gene-specific responses depending on their expression levels, relative affinities for individual receptors, and posttranslational modification. Since expression of many cerebellar genes is known to be regulated by NRs critical in a specific period for cerebellar development, their partnership with cognate coregulators may be an important factor for normal cerebellar development. This review summarizes current findings regarding the molecular structures, molecular mechanisms, temporal and spatial expression patterns, and possible biological functions of NR coregulators related to cerebellar development.
Collapse
|
12
|
Bratton MR, Frigo DE, Vigh-Conrad KA, Fan D, Wadsworth S, McLachlan JA, Burow ME. Organochlorine-mediated potentiation of the general coactivator p300 through p38 mitogen-activated protein kinase. Carcinogenesis 2008; 30:106-13. [PMID: 18791200 DOI: 10.1093/carcin/bgn213] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The activity of nuclear transcription factors is often regulated by specific kinase-signaling pathways. We have previously shown that the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) stimulates activator protein-1 activity through the p38 mitogen-activated protein kinase (MAPK). Here, we show that DDT and its metabolites also stimulate the transcriptional activity of cyclic adenosine monophosphate response element-binding protein and Elk1 and potentiate gene expression through cyclic adenosine monophosphate and hypoxia response elements. Because DDT stimulates gene expression through various transcription factors and hence multiple response elements, we hypothesized that p38 signaling targets a common shared transcriptional activator. Here, we demonstrate using both pharmacological and molecular techniques, the general coactivator p300 is phosphorylated and potentiated by the p38 MAPK signaling cascade. We further show that p38 directly phosphorylates p300 in its N-terminus. These results, together with our previous work, suggest that p38 stimulates downstream transcription factors in part by targeting the general coactivator p300.
Collapse
Affiliation(s)
- Melyssa R Bratton
- Department of Pharmacology, Tulane University Health Science Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Siu YT, Ching YP, Jin DY. Activation of TORC1 transcriptional coactivator through MEKK1-induced phosphorylation. Mol Biol Cell 2008; 19:4750-61. [PMID: 18784253 DOI: 10.1091/mbc.e08-04-0369] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CREB is a prototypic bZIP transcription factor and a master regulator of glucose metabolism, synaptic plasticity, cell growth, apoptosis, and tumorigenesis. Transducers of regulated CREB activity (TORCs) are essential transcriptional coactivators of CREB and an important point of regulation on which various signals converge. In this study, we report on the activation of TORC1 through MEKK1-mediated phosphorylation. MEKK1 potently activated TORC1, and this activation was independent of downstream effectors MEK1/MEK2, ERK2, JNK, p38, protein kinase A, and calcineurin. MEKK1 induced phosphorylation of TORC1 both in vivo and in vitro. Expression of the catalytic domain of MEKK1 alone in cultured mammalian cells sufficiently caused phosphorylation and subsequent activation of TORC1. MEKK1 physically interacted with TORC1 and stimulated its nuclear translocation. An activation domain responsive to MEKK1 stimulation was mapped to amino acids 431-650 of TORC1. As a physiological activator of CREB, interleukin 1alpha triggered MEKK1-dependent phosphorylation of TORC1 and its consequent recruitment to the cAMP response elements in the interleukin 8 promoter. Taken together, our findings suggest a new mechanism for regulated activation of TORC1 transcriptional coactivator and CREB signaling.
Collapse
Affiliation(s)
- Yeung-Tung Siu
- Department of Biochemistry and Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
14
|
Gineste R, Sirvent A, Paumelle R, Helleboid S, Aquilina A, Darteil R, Hum DW, Fruchart JC, Staels B. Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity. Mol Endocrinol 2008; 22:2433-47. [PMID: 18755856 DOI: 10.1210/me.2008-0092] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The farnesoid X receptor (FXR, NR1H4) belongs to the nuclear receptor superfamily and is activated by bile acids such as chenodeoxycholic acid, or synthetic ligands such as GW4064. FXR is implicated in the regulation of bile acid, lipid, and carbohydrate metabolism. Posttranslational modifications regulating its activity have not been investigated yet. Here, we demonstrate that calcium-dependent protein kinase C (PKC) inhibition impairs ligand-mediated regulation of FXR target genes. Moreover, in a transactivation assay, we show that FXR transcriptional activity is modulated by PKC. Furthermore, phorbol 12-myristate 13-acetate , a PKC activator, induces the phosphorylation of endogenous FXR in HepG2 cells and PKCalpha phosphorylates in vitro FXR in its DNA-binding domain on S135 and S154. Mutation of S135 and S154 to alanine residues reduces in cell FXR phosphorylation. In contrast to wild-type FXR, mutant FXRS135AS154A displays an impaired PKCalpha-induced transactivation and a decreased ligand-dependent FXR transactivation. Finally, phosphorylation of FXR by PKC promotes the recruitment of peroxisomal proliferator-activated receptor gamma coactivator 1alpha. In conclusion, these findings show that the phosphorylation of FXR induced by PKCalpha directly modulates the ability of agonists to activate FXR.
Collapse
|
15
|
Zhang H, Forman HJ. Acrolein Induces Heme Oxygenase-1 through PKC-δ and PI3K in Human Bronchial Epithelial Cells. Am J Respir Cell Mol Biol 2008; 38:483-90. [DOI: 10.1165/rcmb.2007-0260oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Rockel JS, Kudirka JC, Guzi AJ, Bernier SM. Regulation of Sox9 activity by crosstalk with nuclear factor-kappaB and retinoic acid receptors. Arthritis Res Ther 2008; 10:R3. [PMID: 18182117 PMCID: PMC2374456 DOI: 10.1186/ar2349] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/08/2007] [Accepted: 01/09/2008] [Indexed: 11/19/2022] Open
Abstract
Introduction Sox9 and p300 cooperate to induce expression of cartilage-specific matrix proteins, including type II collagen, aggrecan and link protein. Tumour necrosis factor (TNF)-α, found in arthritic joints, activates nuclear factor-κB (NF-κB), whereas retinoic acid receptors (RARs) are activated by retinoid agonists, including all-trans retinoic acid (atRA). Like Sox9, the activity of NF-κB and RARs depends upon their association with p300. Separately, both TNF-α and atRA suppress cartilage matrix gene expression. We investigated how TNF-α and atRA alter the expression of cartilage matrix genes. Methods Primary cultures of rat chondrocytes were treated with TNF-α and/or atRA for 24 hours. Levels of transcripts encoding cartilage matrix proteins were determined by Northern blot analyses and quantitative real-time PCR. Nuclear protein levels, DNA binding and functional activity of transcription factors were assessed by immunoblotting, electrophoretic mobility shift assays and reporter assays, respectively. Results Together, TNF-α and atRA diminished transcript levels of cartilage matrix proteins and Sox9 activity more than each factor alone. However, neither agent altered nuclear levels of Sox9, and TNF-α did not affect protein binding to the Col2a1 48-base-pair minimal enhancer sequence. The effect of TNF-α, but not that of atRA, on Sox9 activity was dependent on NF-κB activation. Furthermore, atRA reduced NF-κB activity and DNA binding. To address the role of p300, we over-expressed constitutively active mitogen-activated protein kinase kinase kinase (caMEKK)1 to increase p300 acetylase activity. caMEKK1 enhanced basal NF-κB activity and atRA-induced RAR activity. Over-expression of caMEKK1 also enhanced basal Sox9 activity and suppressed the inhibitory effects of TNF-α and atRA on Sox9 function. In addition, over-expression of p300 restored Sox9 activity suppressed by TNF-α and atRA to normal levels. Conclusion NF-κB and RARs converge to reduce Sox9 activity and cartilage matrix gene expression, probably by limiting the availability of p300. This process may be critical for the loss of cartilage matrix synthesis in inflammatory joint diseases. Therefore, agents that increase p300 levels or activity in chondrocytes may be useful therapeutically.
Collapse
Affiliation(s)
- Jason S Rockel
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada.
| | | | | | | |
Collapse
|
17
|
Oetjen E, Blume R, Cierny I, Schlag C, Kutschenko A, Krätzner R, Stein R, Knepel W. Inhibition of MafA transcriptional activity and human insulin gene transcription by interleukin-1beta and mitogen-activated protein kinase kinase kinase in pancreatic islet beta cells. Diabetologia 2007; 50:1678-87. [PMID: 17583797 DOI: 10.1007/s00125-007-0712-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 04/17/2007] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS Inappropriate insulin secretion and biosynthesis are hallmarks of beta cell dysfunction and contribute to the progression from a prediabetic state to overt diabetes mellitus. During the prediabetic state, beta cells are exposed to elevated levels of proinflammatory cytokines. In the present study the effect of these cytokines and mitogen-activated protein kinase kinase kinase 1 (MEKK1), which is known to be activated by these cytokines, on human insulin gene (INS) transcription was investigated. METHODS Biochemical methods and reporter gene assays were used in a beta cell line and in primary pancreatic islets from transgenic mice. RESULTS IL-1beta and MEKK1 specifically inhibited basal and membrane depolarisation and cAMP-induced INS transcription in the beta cell line. Also, in primary islets of reporter gene mice, IL-1beta reduced glucose-stimulated INS transcription. A 5'- and 3'-deletion and internal mutation analysis revealed the rat insulin promoter element 3b (RIPE3b) to be a decisive MEKK1-responsive element of the INS. RIPE3b conferred strong transcriptional activity to a heterologous promoter, and this activity was markedly inhibited by MEKK1 and IL-1beta. RIPE3b is also known to recruit the transcription factor MafA. We found here that MafA transcription activity is markedly inhibited by MEKK1 and IL-1beta. CONCLUSIONS/INTERPRETATION These data suggest that IL-1beta through MEKK1 inhibits INS transcription and does so, at least in part, by decreasing MafA transcriptional activity at the RIPE3b control element. Since inappropriate insulin biosynthesis contributes to beta cell dysfunction, inhibition of MEKK1 might decelerate or prevent progression from a prediabetic state to diabetes mellitus.
Collapse
Affiliation(s)
- E Oetjen
- Department of Molecular Pharmacology, University of Göttingen, Robert-Koch-Strasse 40, 37099 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ibarz G, Oiry C, Carnazzi E, Crespy P, Escrieut C, Fourmy D, Galleyrand JC, Gagne D, Martinez J. Cholecystokinin 1 receptor modulates the MEKK1-induced c-Jun trans-activation: structural requirements of the receptor. Br J Pharmacol 2007; 147:951-8. [PMID: 16491099 PMCID: PMC1760718 DOI: 10.1038/sj.bjp.0706690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In cells overexpressing active MEKK1 to enhance c-Jun trans-activation, expression of rat cholecystokinin 1 receptor increased the activity of c-Jun while in the same experimental conditions overexpression of mouse cholecystokinin 1 receptor repressed it. This differential trans-activation is specific, since it was not observed for either the other overexpressed kinases (MEK, PKA) or for other transcription factors (ATF2, ELK-1, CREB). This differential behaviour was also detected in a human colon adenocarcinoma cell-line naturally producing high levels of endogenous MEKK1. This differential behaviour between the two receptors on the MEKK1-induced c-Jun trans-activation was independent of the activation state of JNK, of the phosphorylation level of c-Jun and of its ability to bind its specific DNA responsive elements. Two amino acids (Val43 and Phe50 in the mouse cholecystokinin 1 receptor, replaced by Leu43 and Ileu50 in the rat cholecystokinin 1 receptor) localized in the first transmembrane domain were found to play a crucial role in this differential behaviour. MEKK1 probably activates a transcriptional partner of c-Jun whose activity is maintained or increased in the presence of the rat cholecystokinin 1 receptor but repressed in the presence of the mouse cholecystokinin 1 receptor.
Collapse
Affiliation(s)
- Géraldine Ibarz
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR 5810, UMI et UMII, UFR Pharmacie, 15, avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Catherine Oiry
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR 5810, UMI et UMII, UFR Pharmacie, 15, avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Eric Carnazzi
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR 5810, UMI et UMII, UFR Pharmacie, 15, avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Philippe Crespy
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR 5810, UMI et UMII, UFR Pharmacie, 15, avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Chantal Escrieut
- INSERM U151, Institut Louis Bugnard, Centre Hospitalier Universitaire, Rangueil, Bat L3, 31403 Toulouse Cedex 4, France
| | - Daniel Fourmy
- INSERM U151, Institut Louis Bugnard, Centre Hospitalier Universitaire, Rangueil, Bat L3, 31403 Toulouse Cedex 4, France
| | - Jean Claude Galleyrand
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR 5810, UMI et UMII, UFR Pharmacie, 15, avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Didier Gagne
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR 5810, UMI et UMII, UFR Pharmacie, 15, avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Jean Martinez
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR 5810, UMI et UMII, UFR Pharmacie, 15, avenue Charles Flahault, 34093 Montpellier Cedex 5, France
- Author for correspondence:
| |
Collapse
|
19
|
Nandiwada SL, Li W, Zhang R, Mueller DL. p300/Cyclic AMP-responsive element binding-binding protein mediates transcriptional coactivation by the CD28 T cell costimulatory receptor. THE JOURNAL OF IMMUNOLOGY 2006; 177:401-13. [PMID: 16785536 DOI: 10.4049/jimmunol.177.1.401] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During Ag stimulation of T cells, the recognition of B7 molecules by the CD28 costimulatory receptor increases the level of c-Fos, a component of the AP-1 transactivator known to bind the 5' Il2 gene enhancer. In this study, we show that the costimulation of Fos transcription by CD28 is associated with increased binding of p300/CREB-binding protein (CBP) molecules at the Fos promoter, and is blocked by an adenoviral E1A molecular antagonist of p300/CBP. Furthermore, transcriptional activation by a C-terminal domain of CBP is strengthened when CD28 molecules are actively signaling. This increased amount and activity of p300/CBP molecules at the Fos gene correlated with higher histone H4 acetylation and RNA polymerase II association with the promoter. These data suggest a global mechanism whereby CD28 signaling influences the rate and intensity of new gene expression during Ag recognition via direct control over the coactivator function of p300/CBP.
Collapse
Affiliation(s)
- Sarada L Nandiwada
- Rheumatic and Autoimmune Diseases Division, and Center for Immunology, University of Minnesota Medical School, 312 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
20
|
Tanaka T, Nishimura D, Wu RC, Amano M, Iso T, Kedes L, Nishida H, Kaibuchi K, Hamamori Y. Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase. J Biol Chem 2006; 281:15320-9. [PMID: 16574662 DOI: 10.1074/jbc.m510954200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Rho-associated coiled-coil protein kinase (ROCK) is an effector for the small GTPase Rho and plays a pivotal role in diverse cellular activities, including cell adhesion, cytokinesis, and gene expression, primarily through an alteration of actin cytoskeleton dynamics. Here, we show that ROCK2 is localized in the nucleus and associates with p300 acetyltransferase both in vitro and in cells. Nuclear ROCK2 is present in a large protein complex and partially cofractionates with p300 by gel filtration analysis. By immunofluorescence, ROCK2 partially colocalizes with p300 in distinct insoluble nuclear structures. ROCK2 phosphorylates p300 in vitro, and nuclear-restricted expression of constitutively active ROCK2 induces p300 phosphorylation in cells. p300 acetyltransferase activity is dependent on its phosphorylation status in cells, and p300 phosphorylation by ROCK2 results in an increase in its acetyltransferase activity in vitro. These observations suggest that nucleus-localized ROCK2 targets p300 for phosphorylation to regulate its acetyltransferase activity.
Collapse
Affiliation(s)
- Toru Tanaka
- Department of Medicine and Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kasper LH, Fukuyama T, Biesen MA, Boussouar F, Tong C, de Pauw A, Murray PJ, van Deursen JMA, Brindle PK. Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol 2006; 26:789-809. [PMID: 16428436 PMCID: PMC1347027 DOI: 10.1128/mcb.26.3.789-809.2006] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The global transcriptional coactivators CREB-binding protein (CBP) and the closely related p300 interact with over 312 proteins, making them among the most heavily connected hubs in the known mammalian protein-protein interactome. It is largely uncertain, however, if these interactions are important in specific cell lineages of adult animals, as homozygous null mutations in either CBP or p300 result in early embryonic lethality in mice. Here we describe a Cre/LoxP conditional p300 null allele (p300flox) that allows for the temporal and tissue-specific inactivation of p300. We used mice carrying p300flox and a CBP conditional knockout allele (CBPflox) in conjunction with an Lck-Cre transgene to delete CBP and p300 starting at the CD4- CD8- double-negative thymocyte stage of T-cell development. Loss of either p300 or CBP led to a decrease in CD4+ CD8+ double-positive thymocytes, but an increase in the percentage of CD8+ single-positive thymocytes seen in CBP mutant mice was not observed in p300 mutants. T cells completely lacking both CBP and p300 did not develop normally and were nonexistent or very rare in the periphery, however. T cells lacking CBP or p300 had reduced tumor necrosis factor alpha gene expression in response to phorbol ester and ionophore, while signal-responsive gene expression in CBP- or p300-deficient macrophages was largely intact. Thus, CBP and p300 each supply a surprising degree of redundant coactivation capacity in T cells and macrophages, although each gene has also unique properties in thymocyte development.
Collapse
Affiliation(s)
- Lawryn H Kasper
- Department of Biochemistry, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Oetjen E, Lechleiter A, Blume R, Nihalani D, Holzman L, Knepel W. Inhibition of membrane depolarisation-induced transcriptional activity of cyclic AMP response element binding protein (CREB) by the dual-leucine-zipper-bearing kinase in a pancreatic islet beta cell line. Diabetologia 2006; 49:332-42. [PMID: 16369771 DOI: 10.1007/s00125-005-0087-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 09/07/2005] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS The activation of the transcription factor cyclic AMP response element binding protein (CREB) by protein kinase A is inhibited by the human orthologue of the mitogen-activated protein kinase, dual-leucine-zipper-bearing kinase (DLK) in teratocarcinoma cells. However, pancreatic beta cells are electrically excitable and a major pathway regulating CREB in these cells is membrane depolarisation, leading to calcium influx and activation of the calcium/calmodulin-dependent protein phosphatase calcineurin. Therefore, the effect of DLK on CREB activity induced by membrane depolarisation was investigated in the beta cell line HIT. MATERIALS AND METHODS Reporter gene assays and biochemical techniques were used. RESULTS RT-PCR, Western blot analysis and immunohistochemistry demonstrated the expression of DLK in HIT cells and primary mouse islets. In transient transfection experiments, DLK inhibited both GAL4-CREB activity induced by membrane depolarisation, and transcription directed by the CREB binding site, the cyclic AMP response element. Furthermore, DLK inhibited the transcriptional activity conferred by the CREB coactivator, CREB binding protein, both under basal conditions and after membrane depolarisation. DLK was also effective in response to glucose, the most potent physiological stimulus and known to cause membrane depolarisation of beta cells. Inhibition of calcineurin enhanced DLK activity, whereas overexpression of calcineurin reduced the inhibition by DLK of transcription directed by cyclic AMP response element after membrane depolarisation. CONCLUSIONS/INTERPRETATION These results demonstrate a calcineurin-sensitive inhibition by DLK of CREB activity after membrane depolarisation in pancreatic islet beta cells. This inhibition may, at least partially, be mediated at the coactivator level. The results thus suggest that DLK plays a role in the regulation of beta cell function, including insulin gene transcription and beta cell apoptosis.
Collapse
Affiliation(s)
- E Oetjen
- Molecular Pharmacology, University of Göttingen, Robert-Koch Strasse 40, 37099 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Kaida A, Ariumi Y, Baba K, Matsubae M, Takao T, Shimotohno K. Identification of a novel p300-specific-associating protein, PRS1 (phosphoribosylpyrophosphate synthetase subunit 1). Biochem J 2005; 391:239-47. [PMID: 15943588 PMCID: PMC1276921 DOI: 10.1042/bj20041308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 05/27/2005] [Accepted: 06/03/2005] [Indexed: 11/17/2022]
Abstract
CBP [CREB (cAMP-response-element-binding protein)-binding protein] and p300 play critical roles in transcriptional co-activation, cell differentiation, proliferation and apoptosis. Multiple transcription factors associate with CBP/p300. With the exception of the SYT oncoprotein, no proteins have been identified that specifically associate with p300, but not CBP. In the present study, we isolated a novel p300-associated protein for which no interaction with CBP was observed by GST (glutathione S-transferase) pull-down assay using Jurkat cell lysates metabolically labelled with [35S]methionine. This protein bound the KIX (kinase-inducible) domain of p300. Following resolution by two-dimensional acrylamide gel electrophoresis, we identified the KIX-domain-bound protein by MS analysis as PRS1 (phosphoribosylpyrophosphate synthetase subunit 1), a protein essential for nucleoside biosynthesis. This is the first report to demonstrate the existence of a p300 KIX-domain-specific-interacting protein that does not interact with CBP. Thus p300 may play a role in the regulation of DNA synthesis through interactions with PRS1.
Collapse
Key Words
- cbp [creb (camp-response-element-binding protein)-binding protein]
- kix (kinase-inducible) domain
- p300
- prs1 (phosphoribosylpyrophosphate synthetase subunit 1)
- c/h, cysteine/histidine-rich
- cbp, creb (camp-response-element-binding protein)-binding protein
- d188e etc., asp188→glu etc.
- dapi, 4,6-diamidino-2-phenylindole
- dbd, dna binding domain
- dtt, dithiothreitol
- fbs, fetal bovine serum
- gst, glutathione s-transferase
- hat, histone acetyltransferase
- kix, kinase-inducible
- maldi, matrix-assisted laser desorption/ionization
- mekk1, mapk (mitogen-activated protein kinase)/erk (extracellular-signal-regulated kinase) kinase kinase 1
- prpp, phosphoribosylpyrophosphate
- prs1, prpp synthetase subunit 1
- ra, retinoic acid
- 2d, two-dimensional
Collapse
Affiliation(s)
- Atsushi Kaida
- *Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuo Ariumi
- *Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Keiko Baba
- *Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masami Matsubae
- †Research Center of Structural and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshifumi Takao
- †Research Center of Structural and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunitada Shimotohno
- *Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
24
|
Zhang H, Liu H, Iles KE, Liu RM, Postlethwait EM, Laperche Y, Forman HJ. 4-Hydroxynonenal induces rat gamma-glutamyl transpeptidase through mitogen-activated protein kinase-mediated electrophile response element/nuclear factor erythroid 2-related factor 2 signaling. Am J Respir Cell Mol Biol 2005; 34:174-81. [PMID: 16195535 PMCID: PMC2696200 DOI: 10.1165/rcmb.2005-0280oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) plays critical roles in glutathione homeostasis and metabolism. Rat GGT is a single-copy gene from which seven types of GGT mRNA with a common protein encoding sequence, but different 5'-untranslated regions, may be transcribed. We previously showed that type V-2 was the predominant form of GGT mRNA in rat L2 epithelial cells, and that it could be induced by 4-hydroxynonenal (HNE) through the electrophile response element (EpRE) located in GGT promoter 5 (GP5). Here, we report transcription factors binding to GP5 EpRE and the involved signaling pathways. Immunodepletion gel shift assays demonstrated that GP5 EpRE bound JunB, c-Jun, FosB, and Fra2 from unstimulated cells, and that after exposure to HNE, EpRE binding complexes contained nuclear factor erythroid 2-related factor (Nrf) 1, Nrf2, JunB, c-Jun, FosB, c-Fos, Fra1, and Fra2. HNE-induced binding of Nrf2 and c-Jun in GP5 EpRE was confirmed by chromatin immunoprecipitation assays. Using reporter assays and specific inhibitors, we found that HNE induction of rat GGT mRNA V-2 was dependent on activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), but not protein kinase C or phosphatidylinositol 3-kinase. Pretreatment with ERK and p38MAPK inhibitors also blocked HNE-increased EpRE binding. HNE-increased nuclear content of Nrf1, Nrf2, and c-Jun in L2 cells was partially blocked by inhibition of either ERK1/2 or p38MAPK and completely blocked by simultaneous inhibition of both MAPKs. In conclusion, HNE induces GGT mRNA V-2 through altered EpRE transcription factor binding mediated by both ERK and p38MAPK.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Department of Environmental Health Science, School of Public Health, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Huang WC, Chen CC. Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol Cell Biol 2005; 25:6592-602. [PMID: 16024795 PMCID: PMC1190347 DOI: 10.1128/mcb.25.15.6592-6602.2005] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PI3K/Akt pathway plays a critical role in the regulation of gene expression induced by numerous stimuli. p300, a transcriptional coactivator, acts in concert with transcription factors to facilitate gene expression. Here, we show that Akt is activated and translocated to the nucleus in response to tumor necrosis factor alpha. Nuclear Akt associates with p300 and phosphorylates its Ser-1834 both in vivo and in vitro. The phosphorylation induces recruitment of p300 to the ICAM-1 promoter, leading to the acetylation of histones in chromatin and association with the basal transcriptional machinery RNA polymerase II. These two events facilitate ICAM-1 gene expression and are abolished by the p300 S1834A mutant, inhibitors of PI3K/Akt, or small interfering RNA of Akt. Histone acetylation is attributed to the Akt-enhanced intrinsic histone acetyltransferase (HAT) activity of p300 and its association with another HAT, p/CAF. Our study provides a new insight into the molecular mechanism by which Akt promotes the transcriptional potential of p300.
Collapse
Affiliation(s)
- Wei-Chien Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road, 1st Section, Taipei 10018, Taiwan
| | | |
Collapse
|
26
|
Abstract
The basic mechanisms underlying ligand-dependent transcriptional activation by nuclear receptors (NRs) require the sequential recruitment of various coactivators. Increasing numbers of coactivators have been identified in recent years, and both biochemical and genetic studies demonstrate that these coactivators are differentially used by transcription factors, including NRs, in a cell/tissue type- and promoter-specific manner. However, the molecular basis underlying this specificity remains largely unknown. Recently, NRs and coregulators were shown to be targets of posttranslational modifications activated by diverse cellular signaling pathways. It is argued that posttranslational modifications of these proteins provide the basis for a combinatorial code required for specific gene activation by NRs and coactivators, and that this code also enables coactivators to efficiently stimulate the activity of other classes of transcription factors. In this review, we will focus on coactivators and discuss the recent progress in understanding the role of phosphorylation of the steroid receptor coactivator family and the potential ramifications of this posttranslational modification for regulation of gene expression.
Collapse
Affiliation(s)
- Ray-Chang Wu
- Molecular and Cellular Biology, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
27
|
Chen J, St-Germain JR, Li Q. B56 regulatory subunit of protein phosphatase 2A mediates valproic acid-induced p300 degradation. Mol Cell Biol 2005; 25:525-32. [PMID: 15632055 PMCID: PMC543421 DOI: 10.1128/mcb.25.2.525-532.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional coactivator p300 is required for embryonic development and cell proliferation. Valproic acid, a histone deacetylase inhibitor, is widely used in the therapy of epilepsy and bipolar disorder. However, it has intrinsic teratogenic activity through unidentified mechanisms. We report that valproic acid stimulates proteasome-dependent p300 degradation through augmentation of gene expression of the B56gamma regulatory subunits of protein phosphatase 2A. The B56gamma3 regulatory and catalytic subunits of protein phosphatase 2A interact with p300. Overexpression of the B56gamma3 subunit leads to proteasome-mediated p300 degradation and represses p300-dependent transcriptional activation, which requires the B56gamma3 interaction domain of p300. Conversely, silencing of the B56gamma subunit expression by RNA interference increases the stability and transcriptional activity of the coactivator. Our study establishes the functional interaction between protein phosphatase 2A and p300 activity and provides direct evidence for signal-dependent control of p300 function.
Collapse
Affiliation(s)
- Jihong Chen
- Ottawa Health Research Institute, 725 Parkdale Ave., Ottawa, Ontario, Canada K1Y 4E9
| | | | | |
Collapse
|
28
|
Shen G, Hebbar V, Nair S, Xu C, Li W, Lin W, Keum YS, Han J, Gallo MA, Kong ANT. Regulation of Nrf2 transactivation domain activity. The differential effects of mitogen-activated protein kinase cascades and synergistic stimulatory effect of Raf and CREB-binding protein. J Biol Chem 2004; 279:23052-60. [PMID: 15020583 DOI: 10.1074/jbc.m401368200] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcription factor NF-E2-related factor 2 (Nrf2) regulates the induction of Phase II detoxifying enzymes as well as anti-oxidative enzymes. In this study, we investigated the transactivation potential of different Nrf2 transactivation domain regions by using the Gal4-Nrf2 chimeras and Gal4-Luc reporter co-transfection assay system in HepG2 cells. The results indicated that chimera Gal4-Nrf2-(1-370), which contains the full transactivation domain showed very potent transactivation activity. The high transactivation activity of Gal4-Nrf2-(113-251) and the diminished transactivation activities of chimera Gal4-Nrf2-(1-126) and Gal4-Nrf2-(230-370) suggested that the Nrf2 N-terminal 113-251 amino acids region is critical in maintaining its transactivation activity. Overexpression of upstream MAPKs such as Raf, MEKK1, TAK1-DeltaN, and ASK1 up-regulated the transactivation activities of Gal4-Nrf2-(1-370) and Gal4-Nrf2-(113-251) in a dose-dependent manner. Further investigation on the effects of the three MAPK pathways on Nrf2 transactivation domain activity demonstrated that both ERK and JNK signaling pathways stimulated the Gal4-Nrf2-(1-370) transactivation activity while the p38 pathway played a negative role. Site-directed mutagenesis studies on potential MAPK phosphorylation sites of Gal4-Nrf2-(113-251) showed no significant effect on its basal transactivation activity or the fold of induction by Raf. Interestingly, the nuclear transcription coactivator CREB-binding protein (CBP), which can bind to Nrf2 transactivation domain and can be activated by ERK cascade, showed synergistic stimulation with Raf on the transactivation activities of both the chimera Gal4-Nrf2-(1-370) and the full-length Nrf2. Taken together, this study clearly demonstrated that different segments of Nrf2 transactivation domain have different transactivation potential and different MAPKs have differential effects on Nrf2 transcriptional activity. It also suggested that the up-regulation of Nrf2 transactivation domain activity by upstream MAPKs such as Raf may not be mediated by direct phosphorylation of the Nrf2 transactivation domain, but rather by regulation of the transcriptional activity of coactivator CBP.
Collapse
Affiliation(s)
- Guoxiang Shen
- Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Smith CL, O'Malley BW. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 2004; 25:45-71. [PMID: 14769827 DOI: 10.1210/er.2003-0023] [Citation(s) in RCA: 640] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ligands for the nuclear receptor superfamily control many aspects of biology, including development, reproduction, and homeostasis, through regulation of the transcriptional activity of their cognate receptors. Selective receptor modulators (SRMs) are receptor ligands that exhibit agonistic or antagonistic biocharacter in a cell- and tissue context-dependent manner. The prototypical SRM is tamoxifen, which as a selective estrogen receptor modulator, can activate or inhibit estrogen receptor action. SRM-induced alterations in the conformation of the ligand-binding domains of nuclear receptors influence their abilities to interact with other proteins, such as coactivators and corepressors. It has been postulated, therefore, that the relative balance of coactivator and corepressor expression within a given target cell determines the relative agonist vs. antagonist activity of SRMs. However, recent evidence reveals that the cellular environment also plays a critical role in determining SRM biocharacter. Cellular signaling influences the activity and subcellular localization of coactivators and corepressors as well as nuclear receptors, and this contributes to gene-, cell-, and tissue-specific responses to SRM ligands. Increased understanding of the effect of cellular environment on nuclear receptors and their coregulators has the potential to open the field of SRM discovery and research to many members of the nuclear receptor superfamily.
Collapse
Affiliation(s)
- Carolyn L Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
30
|
Abstract
A major function of the mitogen-activated protein kinase (MAPK) pathways is to control eukaryotic gene expression programmes in response to extracellular signals. MAPKs directly control gene expression by phosphorylating transcription factors. However, it is becoming clear that transcriptional regulation in response to MAPK signaling is more complex. MAPKs can also target coactivators and corepressors and affect nucleosomal structure by inducing histone modifications. Furthermore, multiple inputs into individual promoters can be elicited by MAPKs by targeting different components of the same coregulatory complex or by triggering different events on the same transcription factor. "Postgenomic approaches" are beginning to impact on our understanding of these gene regulatory networks. In this review, we summarise the current knowledge of MAPK-mediated gene regulation, and focus on how complexities in signaling outcomes are achieved and how this relates to physiological processes.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
31
|
Dutertre M, Smith CL. Ligand-independent interactions of p160/steroid receptor coactivators and CREB-binding protein (CBP) with estrogen receptor-alpha: regulation by phosphorylation sites in the A/B region depends on other receptor domains. Mol Endocrinol 2003; 17:1296-314. [PMID: 12714702 DOI: 10.1210/me.2001-0316] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogen receptor (ER)alpha and ERbeta are transcription factors that can be activated by both ligand binding and growth factor signaling. Estradiol increases ER activity in part by enhancing interactions between its carboxy-terminal, ligand-binding domain (LBD) and the p160/SRC (steroid receptor coactivator) and p300/CBP (cAMP response element binding protein (CREB) binding protein) families of coactivators. In the absence of ligand and the LBD, these cofactors can also interact with the amino-terminal (A/B) domain of ERs in vitro. SRC-1 also enhances the ligand-independent activity of the full-length receptor. Both ligand-independent and estradiol-induced ER activity are increased by phosphorylation at specific serine (Ser) residues in the A/B domain (Ser104/106 and Ser118 in ERalpha). In the case of ERbeta, phosphorylation enhances the ligand-independent recruitment and action of SRC-1. We show here that unliganded ERalpha can activate endogenous gene expression in MCF-7 cells, and that this activation is mediated in part by a p160 coactivator. In transfected HeLa cells, we show that the full-length ERalpha can interact physically and functionally with p160/SRCs and CBP in the absence of ligand and that mutation of Ser104/106/118 affects these interactions. Accordingly, ERalpha dephosphorylation decreases its ligand-independent interaction with SRC-1 and CBP in vitro. In HeLa cells, both Ser104/106 and Ser118 impinge on SRC-1 action by two mechanisms: 1) a seemingly indirect effect on SRC-1 recruitment that requires other receptor domains in addition to the A/B, consistent with our finding that the ligand-independent interaction between the A/B and the LBD and its enhancement by SRC-1 depend in part on Ser104/106/118; and 2) an effect on SRC-1 coactivation that can be observed in the absence of the LBD. Ser104/106/118 can also affect coactivation by a subset of coactivators in the presence of hormone, albeit to a lesser extent than in its absence. Altogether, our observations suggest that the enhancement of ERalpha activity by p160/SRCs and CBP can be regulated by phosphorylation and stress the importance of using full-length receptors to assess the role of the activation function-1 in cofactor recruitment.
Collapse
Affiliation(s)
- Martin Dutertre
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
32
|
Mayo MW, Denlinger CE, Broad RM, Yeung F, Reilly ET, Shi Y, Jones DR. Ineffectiveness of histone deacetylase inhibitors to induce apoptosis involves the transcriptional activation of NF-kappa B through the Akt pathway. J Biol Chem 2003; 278:18980-9. [PMID: 12649266 DOI: 10.1074/jbc.m211695200] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors are emerging as a new class of anticancer agents for the treatment of solid and hematological malignancies. Although HDAC inhibitors induce cell death through an apoptotic process, little is known about the molecular events that control their effectiveness. In this study, we demonstrate that HDAC inhibitors are limited in their ability to induce apoptosis in non-small cell lung cancer (NSCLC) cell lines despite their ability to effectively inhibit deacetylase activity. Because the anti-apoptotic transcription factor NF-kappa B has been shown to be under the control of HDAC-mediated repression, we analyzed whether HDAC inhibitors activated NF-kappa B in NSCLC cells. HDAC inhibitors effectively stimulated endogenous NF-kappa B-dependent gene expression by up-regulating IL-8, Bcl-XL, and MMP-9 transcripts. The ability of HDAC inhibitors to increase NF-kappa B transcriptional activity was not associated with signaling events that stimulated nuclear translocation, but rather modulated the transactivation potential of the RelA/p65 subunit of NF-kappa B. The inhibition of HDAC activity was associated with the recruitment of the p300 transcriptional co-activator to chromatin in an Akt-dependent manner. Moreover, Akt directly phosphorylated p300 in vitro and was required for stimulating the transactivation potential of the co-activator following the addition of HDAC inhibitors. Selective inhibition of either the phosphoinositide 3-kinase/Akt pathway, or NF-kappa B itself blocked the ability of HDAC inhibitors to activate NF-kappa B and dramatically sensitized NSCLC cells to apoptosis following of the addition of HDAC inhibitors. Our study indicates that the ineffectiveness of HDAC inhibitors to induce apoptosis in NSCLC cancer cells is associated with the ability of these molecules to stimulate NF-kappa B-dependent transcription and cell survival.
Collapse
Affiliation(s)
- Marty W Mayo
- Department of Surgery, The University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V, Caro J. MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem 2003; 278:14013-9. [PMID: 12588875 PMCID: PMC4518846 DOI: 10.1074/jbc.m209702200] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hypoxia-inducible factors (HIF) are a family of heterodimeric transcriptional regulators that play pivotal roles in the regulation of cellular utilization of oxygen and glucose and are essential transcriptional regulators of angiogenesis in solid tumor and ischemic disorders. The transactivation activity of HIF complexes requires the recruitment of p300/CREB-binding protein (CBP) by HIF-1 alpha and HIF-2 alpha that undergo oxygen-dependent degradation. HIF activation in tumors is caused by several factors including mitogen-activated protein kinase (MAPK) signaling. Here we investigated the molecular basis for HIF activation by MAPK. We show that MAPK is required for the transactivation activity of HIF-1 alpha. Furthermore, inhibition of MAPK disrupts the HIF-p300 interaction and suppresses the transactivation activity of p300. Overexpression of MEK1, an upstream MAPK activator, stimulates the transactivation of both p300 and HIF-1 alpha. Interestingly, the C-terminal transactivation domain of HIF-1 alpha is not a direct substrate of MAPK, and HIF-1 alpha phosphorylation is not required for HIF-CAD/p300 interaction. Taken together, our data suggest that MAPK signaling facilitates HIF activation through p300/CBP.
Collapse
Affiliation(s)
| | | | | | | | | | - Jaime Caro
- To whom correspondence may be addressed: Cardeza Foundation and Dept. of Medicine, Thomas Jefferson University, 1015 Walnut St., Curtis Bldg., Rm. 809, Philadelphia, PA 19107. Tel.: 215-955-5118; Fax: 215-923-3836;
| |
Collapse
|
34
|
Vanden Berghe W, De Bosscher K, Vermeulen L, De Wilde G, Haegeman G. Induction and repression of NF-kappa B-driven inflammatory genes. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2003:233-78. [PMID: 12355719 DOI: 10.1007/978-3-662-04660-9_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- W Vanden Berghe
- Unit of Eukaryotic Gene Expression and Signal Transduction, Department of Molecular Biology, University of Gent-VIB, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|
35
|
Lemercier C, Legube G, Caron C, Louwagie M, Garin J, Trouche D, Khochbin S. Tip60 acetyltransferase activity is controlled by phosphorylation. J Biol Chem 2003; 278:4713-8. [PMID: 12468530 DOI: 10.1074/jbc.m211811200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we show that the phosphorylation of histone acetyltransferase Tip60, a target of human immunodeficiency virus, type 1-encoded transactivator Tat, plays a crucial role in the control of its catalytic activity. Baculovirus-based expression and purification of Tip60 combined with mass spectrometry allowed the identification of serines 86 and 90 as two major sites of phosphorylation in vivo. The phosphorylation of Tip60 was found to modulate its histone acetyltransferase activity. One of the identified phosphorylated serines, Ser-90, was within a consensus cyclin B/Cdc2 site. Ser-90 was specifically phosphorylated in vitro by the cyclin B/Cdc2 complex. Accordingly, the phosphorylation of Tip60 was enhanced after drug-induced arrest of cells in G(2)/M. This G(2)/M-dependent phosphorylation of Tip60 was abolished by treating cells with a specific inhibitor of the cyclin-dependent kinase, roscovitin. All together, these results strongly suggest a G(2)/M-dependent control of Tip60 activity.
Collapse
Affiliation(s)
- Claudie Lemercier
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation, INSERM U309, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, 38706 La Tronche Cedex, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Hecht A, Stemmler MP. Identification of a promoter-specific transcriptional activation domain at the C terminus of the Wnt effector protein T-cell factor 4. J Biol Chem 2003; 278:3776-85. [PMID: 12446687 DOI: 10.1074/jbc.m210081200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt growth factors control numerous cell fate decisions in development by altering specific gene expression patterns through the activity of heterodimeric transcriptional activators. These consist of beta-catenin and one of the four members of the T-cell factor (TCF) family of DNA-binding proteins. How can the Wnt/beta-catenin pathway control various sets of target genes in distinct cellular settings with such a limited number of nuclear effectors? Here we asked whether different TCF proteins could perform specific, nonredundant functions at natural beta-catenin/TCF-regulated promoters. We found that TCF4E but not LEF1 supported beta-catenin-dependent activation of the Cdx1 promoter, whereas LEF1 specifically activated the Siamois promoter. Deletion of a C-terminal domain of TCF4E prevented Cdx1 promoter induction. A chimeric protein consisting of LEF1 and the C terminus of TCF4E was fully functional. Therefore, the TCF4E C terminus harbors a promoter-specific transactivation domain. This domain influences the DNA binding properties of TCF4 and additionally mediates an interaction with the transcriptional coactivator p300. Apparently, the C terminus of TCF4E cooperates with beta-catenin and p300 to form a specialized transcription factor complex that specifically supports the activation of the Cdx1 promoter.
Collapse
Affiliation(s)
- Andreas Hecht
- Max-Planck-Institut für Immunbiologie, Stübeweg 51, D-79108 Freiburg, Germany.
| | | |
Collapse
|
37
|
Misra P, Owuor ED, Li W, Yu S, Qi C, Meyer K, Zhu YJ, Rao MS, Kong ANT, Reddy JK. Phosphorylation of transcriptional coactivator peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP). Stimulation of transcriptional regulation by mitogen-activated protein kinase. J Biol Chem 2002; 277:48745-54. [PMID: 12356758 DOI: 10.1074/jbc.m208829200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) is an important coactivator for PPARgamma and other transcription factors. PBP is an integral component of a multiprotein thyroid hormone receptor-associated protein (TRAP)/vitamin D(3) receptor-interacting protein (DRIP)/activator-recruited cofactor (ARC) complex required for transcriptional activity. To study the regulation of PBP by cellular signaling pathways, we identified the phosphorylation sites of PBP. Using a combination of in vitro and in vivo approaches and mutagenesis of PBP phosphorylation sites, we identified six phosphorylation sites on PBP: one exclusive protein kinase A (PKA) phosphorylation site at serine 656, two protein kinase C (PKC) sites at serine 796 and serine 1345, a common PKA/PKC site at serine 756, and two extracellular signal-regulated kinase 2 sites of the mitogen-activated protein kinase (MAPK) family at threonine 1017 and threonine 1444. Binding of PBP to PPARgamma1 or retinoid-X-receptor for 9-cis-retinoic acid (RXR) is independent of their phosphorylation states, implying no changes in protein-protein interaction after modification by phosphorylation. Overexpression of RafBXB, an activated upstream kinase of the MAPK signal transduction pathway, exerts a significant additive inductive effect on PBP coactivator function. This effect is significantly diminished by overexpression of RafBXB301, a dominant negative mutant of RafBXB. These results identify phosphorylation as a regulatory modification event of PBP and demonstrate that PBP phosphorylation by Raf/MEK/MAPK cascade exerts a positive effect on PBP coactivator function. The functional role of PKA and PKC phosphorylation sites in PBP remains to be elucidated.
Collapse
Affiliation(s)
- Parimal Misra
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611-3008, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Donovan N, Becker EBE, Konishi Y, Bonni A. JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem 2002; 277:40944-9. [PMID: 12189144 DOI: 10.1074/jbc.m206113200] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in mediating apoptosis in the developing and mature organism. The JNK signaling pathway is thought to induce apoptosis via transcription-dependent and transcription-independent mechanisms that remain to be elucidated. In this study, we report a novel mechanism by which the JNK signaling pathway directly activates a component of the cell death machinery. We have found that JNK catalyzes the phosphorylation of the BH3-only protein BAD at the distinct site of serine 128 in vitro. Activation of the JNK signaling pathway induces the BAD serine 128 phosphorylation in vivo, including in primary granule neurons of the developing rat cerebellum. The JNK-induced BAD serine 128 phosphorylation promotes the apoptotic effect of BAD in primary neurons by antagonizing the ability of growth factors to inhibit BAD-mediated apoptosis. These findings indicate that BAD is a novel substrate of JNK that links the stress-activated signaling pathway to the cell death machinery.
Collapse
Affiliation(s)
- Nicole Donovan
- Department of Pathology, Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
39
|
Lafont J, Laurent M, Thibout H, Lallemand F, Le Bouc Y, Atfi A, Martinerie C. The expression of novH in adrenocortical cells is down-regulated by TGFbeta 1 through c-Jun in a Smad-independent manner. J Biol Chem 2002; 277:41220-9. [PMID: 12149257 DOI: 10.1074/jbc.m204405200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human NOV secreted glycoprotein (NOVH) is abundant in the fetal and adult adrenal cortex. The amount of NOVH increases in benign adrenocortical tumors and decreases in malignant adrenocortical tumors, suggesting that NOVH plays a role in tumorigenesis in the adrenal cortex. Transforming growth factor beta1 (TGFbeta1), fibroblast growth factor 2 (FGF2), and insulin growth factors (IGFs) play crucial roles in the physiology of the adrenal cortex. We investigated the effects of these factors on the expression of novH in the NCI H295R adrenocortical cell line. The amounts of NOVH protein and novH transcripts were down-regulated by TGFbeta1 and up-regulated by FGF2, whereas IGFs had no effect. Furthermore, the TGFbeta1-dependent inhibition of novH promoter activity was completely abrogated following site-directed mutation of two activating protein (AP-1) sequences (positions -473 and -447), whereas the stimulatory effect of FGF2 was not affected. Co-transfection with dominant negative forms of c-Jun and MEKK1 also abrogated novH-targeted regulation by TGFbeta1, whereas the overproduction of Smad proteins or dominant negative forms of Smad had no effect. Taken together, these results suggest that c-Jun and MEKK1 signaling but not Smad signaling are involved in the TGFbeta1-dependent decrease in NOVH in NCI H295R cells. In conclusion, our data provide evidence that novH is a new target of TGFbeta1; unlike other members of the CCN (cyr61, ctgf, nov) family, however, its expression is repressed rather than induced.
Collapse
Affiliation(s)
- Jérôme Lafont
- INSERM U515 and INSERM U482, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Sánchez-Pérez I, Benitah SA, Martínez-Gomariz M, Lacal JC, Perona R. Cell stress and MEKK1-mediated c-Jun activation modulate NFkappaB activity and cell viability. Mol Biol Cell 2002; 13:2933-45. [PMID: 12181357 PMCID: PMC117953 DOI: 10.1091/mbc.e02-01-0022] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemotherapeutic agents such as cisplatin induce persistent activation of N-terminal c-Jun Kinase, which in turn mediates induction of apoptosis. By using a common MAPK Kinase, MEKK1, cisplatin also activates the survival transcription factor NFkappaB. We have found a cross-talk between c-Jun expression and NFkappaB transcriptional activation in response to cisplatin. Fibroblast derived from c-jun knock out mice are more resistant to cisplatin-induced cell death, and this survival advantage is mediated by upregulation of NFkappaB-dependent transcription and expression of MIAP3. This process can be reverted by ectopic expression of c-Jun in c-jun(-/-) fibroblasts, which decreases p65 transcriptional activity back to normal levels. Negative regulation of NFkappaB-dependent transcription by c-jun contributes to cisplatin-induced cell death, which suggests that inhibition of NFkappaB may potentiate the antineoplastic effect of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Isabel Sánchez-Pérez
- Instituto de Investigaciones Biomédicas Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
41
|
Fu M, Wang C, Wang J, Zafonte BT, Lisanti MP, Pestell RG. Acetylation in hormone signaling and the cell cycle. Cytokine Growth Factor Rev 2002; 13:259-76. [PMID: 12486878 DOI: 10.1016/s1359-6101(02)00003-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last decade has seen a substantial change in thinking about the role of acetylation in regulating diverse cellular processes. The correlation between histone acetylation and gene transcription has been known for many years. The cloning and biochemical characterization of the enzymes that regulate this post-translational modification has led to an understanding of the diverse role histone acetyltransferases (HATs) play in cellular function. Histone acetylases modify histones, transcription factors, co-activators, nuclear transport proteins, structural proteins and components of the cell cycle. This review focuses on the role of histone acetylases in coordinating hormone signaling and the cell cycle. Transition through the cell cycle is regulated by a family of protein kinase holoenzymes, the cyclin-dependent kinases (Cdks) and their heterodimeric cyclin partners. Recent studies have identified important cross-talk between the cell cycle regulatory apparatus and proteins regulating histone acetylation. The evidence for a dynamic interplay between components regulating the cell cycle and acetylation of target substrates provides an important new level of complexity in the mechanisms governing hormone signaling.
Collapse
Affiliation(s)
- Maofu Fu
- Division of Hormone-Dependent Tumor Biology, Albert Einstein Comprehensive Cancer Center, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Chanin 302, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
42
|
Schlesinger TK, Bonvin C, Jarpe MB, Fanger GR, Cardinaux JR, Johnson GL, Widmann C. Apoptosis stimulated by the 91-kDa caspase cleavage MEKK1 fragment requires translocation to soluble cellular compartments. J Biol Chem 2002; 277:10283-91. [PMID: 11782455 DOI: 10.1074/jbc.m106885200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MEKK1, a 196-kDa mitogen-activated protein kinase (MAPK) kinase kinase, generates anti-apoptotic signaling as a full-length protein but induces apoptosis when cleaved by caspases. Here, we show that caspase-dependent cleavage of MEKK1 relocalizes the protease-generated 91-kDa kinase fragment from a particulate fraction to a soluble cytoplasmic fraction. Relocalization of MEKK1 catalytic activity is necessary for the pro-apoptotic function of MEKK1. The addition of a membrane-targeting signal to the 91-kDa fragment inhibits caspase activation and the induction of apoptosis but does not change the activation of JNK, ERK, NFkappaB, or p300. These results identify the caspase cleavage of MEKK1 as a dynamic regulatory mechanism that alters the subcellular distribution of MEKK1, changing its function to pro-apoptotic signaling, which does not depend on the currently described MEKK1 effectors.
Collapse
Affiliation(s)
- Thomas K Schlesinger
- Institute of Cellular Biology and Morphology, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
43
|
Calvo D, Victor M, Gay F, Sui G, Luke MPS, Dufourcq P, Wen G, Maduro M, Rothman J, Shi Y. A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis. EMBO J 2001; 20:7197-208. [PMID: 11742996 PMCID: PMC125335 DOI: 10.1093/emboj/20.24.7197] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Caenorhabditis elegans, histone acetyltransferase CBP-1 counteracts the repressive activity of the histone deacetylase HDA-1 to allow endoderm differentiation, which is specified by the E cell. In the sister MS cell, the endoderm fate is prevented by the action of an HMG box-containing protein, POP-1, through an unknown mechanism. In this study, we show that CBP-1, HDA-1 and POP-1 converge on end-1, an initial endoderm-determining gene. In the E lineage, an essential function of CBP-1 appears to be the activation of end-1 transcription. We further identify a molecular mechanism for the endoderm-suppressive effect of POP-1 in the MS lineage by demonstrating that POP-1 functions as a transcriptional repressor that inhibits inappropriate end-1 transcription. We provide evidence that POP-1 represses transcription via the recruitment of HDA-1 and UNC-37, the C.elegans homolog of the co-repressor Groucho. These findings demonstrate the importance of the interplay between acetyltransferases and deacetylases in the regulation of a critical cell fate-determining gene during development. Furthermore, they identify a strategy by which concerted actions of histone deacetylases and other co-repressors ensure maximal repression of inappropriate cell type-specific gene transcription.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Morris Maduro
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and
Department of MCD Biology, University of California, Santa Barbara, CA 93106, USA Corresponding author e-mail: D.Calvo and M.Victor contributed equally to this work
| | - Joel Rothman
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and
Department of MCD Biology, University of California, Santa Barbara, CA 93106, USA Corresponding author e-mail: D.Calvo and M.Victor contributed equally to this work
| | - Yang Shi
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and
Department of MCD Biology, University of California, Santa Barbara, CA 93106, USA Corresponding author e-mail: D.Calvo and M.Victor contributed equally to this work
| |
Collapse
|