1
|
Sadeghi M, Mestivier D, Sobhani I. Contribution of pks+ Escherichia coli ( E. coli) to Colon Carcinogenesis. Microorganisms 2024; 12:1111. [PMID: 38930493 PMCID: PMC11205849 DOI: 10.3390/microorganisms12061111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health concern, ranking second in mortality and third in frequency among cancers worldwide. While only a small fraction of CRC cases can be attributed to inherited genetic mutations, the majority arise sporadically due to somatic mutations. Emerging evidence reveals gut microbiota dysbiosis to be a contributing factor, wherein polyketide synthase-positive Escherichia coli (pks+ E. coli) plays a pivotal role in CRC pathogenesis. pks+ bacteria produce colibactin, a genotoxic protein that causes deleterious effects on DNA within host colonocytes. In this review, we examine the role of the gut microbiota in colon carcinogenesis, elucidating how colibactin-producer bacteria induce DNA damage, promote genomic instability, disrupt the gut epithelial barrier, induce mucosal inflammation, modulate host immune responses, and influence cell cycle dynamics. Collectively, these actions foster a microenvironment conducive to tumor initiation and progression. Understanding the mechanisms underlying pks+ bacteria-mediated CRC development may pave the way for mass screening, early detection of tumors, and therapeutic strategies such as microbiota modulation, bacteria-targeted therapy, checkpoint inhibition of colibactin production and immunomodulatory pathways.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Denis Mestivier
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Iradj Sobhani
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Henri Mondor Hospital, 94010 Créteil, France
| |
Collapse
|
2
|
Le LHM, Elgamoudi B, Colon N, Cramond A, Poly F, Ying L, Korolik V, Ferrero RL. Campylobacter jejuni extracellular vesicles harboring cytolethal distending toxin bind host cell glycans and induce cell cycle arrest in host cells. Microbiol Spectr 2024; 12:e0323223. [PMID: 38319111 PMCID: PMC10913475 DOI: 10.1128/spectrum.03232-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
Cytolethal distending toxins (CDTs) are released by Gram-negative pathogens into the extracellular medium as free toxin or associated with extracellular vesicles (EVs), commonly known as outer membrane vesicles (OMVs). CDT production by the gastrointestinal pathogen Campylobacter jejuni has been implicated in colorectal tumorigenesis. Despite CDT being a major virulence factor for C. jejuni, little is known about the EV-associated form of this toxin. To address this point, C. jejuni mutants lacking each of the three CDT subunits (A, B, and C) were generated. C. jejuni cdtA, cdtB, and cdtC bacteria released EVs in similar numbers and sizes to wild-type bacteria, ranging from 5 to 530 nm (mean ± SEM = 118 ±6.9 nm). As the CdtAC subunits mediate toxin binding to host cells, we performed "surface shearing" experiments, in which EVs were treated with proteinase K and incubated with host cells. These experiments indicated that CDT subunits are internal to EVs and that surface proteins are probably not involved in EV-host cell interactions. Furthermore, glycan array studies demonstrated that EVs bind complex host cell glycans and share receptor binding specificities with C. jejuni bacteria for fucosyl GM1 ganglioside, P1 blood group antigen, sialyl, and sulfated Lewisx. Finally, we show that EVs from C. jejuni WT but not mutant bacteria induce cell cycle arrest in epithelial cells. In conclusion, we propose that EVs are an important mechanism for CDT release by C. jejuni and are likely to play a significant role in toxin delivery to host cells. IMPORTANCE Campylobacter jejuni is the leading cause of foodborne gastroenteritis in humans worldwide and a significant cause of childhood mortality due to diarrheal disease in developing countries. A major factor by which C. jejuni causes disease is a toxin, called cytolethal distending toxin (CDT). The biology of this toxin, however, is poorly understood. In this study, we report that C. jejuni CDT is protected within membrane blebs, known as extracellular vesicles (EVs), released by the bacterium. We showed that proteins on the surfaces of EVs are not required for EV uptake by host cells. Furthermore, we identified several sugar receptors that may be required for EV binding to host cells. By studying the EV-associated form of C. jejuni CDT, we will gain a greater understanding of how C. jejuni intoxicates host cells and how EV-associated CDT may be used in various therapeutic applications, including as anti-tumor therapies.
Collapse
Affiliation(s)
- Lena Hoang My Le
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Bassam Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Nina Colon
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - Angus Cramond
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - Frederic Poly
- Enteric Diseases Department, Naval Medical Research Centre, Silver Spring, Maryland, USA
| | - Le Ying
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Victoria, Australia
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Richard L. Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Victoria, Australia
| |
Collapse
|
3
|
Lopez Chiloeches M, Bergonzini A, Martin OCB, Bergstein N, Erttmann SF, Aung KM, Gekara NO, Avila Cariño JF, Pateras IS, Frisan T. Genotoxin-producing Salmonella enterica induces tissue-specific types of DNA damage and DNA damage response outcomes. Front Immunol 2024; 14:1270449. [PMID: 38274797 PMCID: PMC10808668 DOI: 10.3389/fimmu.2023.1270449] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Typhoid toxin-expressing Salmonella enterica causes DNA damage in the intestinal mucosa in vivo, activating the DNA damage response (DDR) in the absence of inflammation. To understand whether the tissue microenvironment constrains the infection outcome, we compared the immune response and DDR patterns in the colon and liver of mice infected with a genotoxigenic strain or its isogenic control strain. Methods In situ spatial transcriptomic and immunofluorescence have been used to assess DNA damage makers, activation of the DDR, innate immunity markers in a multiparametric analysis. Result The presence of the typhoid toxin protected from colonic bacteria-induced inflammation, despite nuclear localization of p53, enhanced co-expression of type-I interferons (IfnbI) and the inflammasome sensor Aim2, both classic features of DNA-break-induced DDR activation. These effects were not observed in the livers of either infected group. Instead, in this tissue, the inflammatory response and DDR were associated with high oxidative stress-induced DNA damage. Conclusions Our work highlights the relevance of the tissue microenvironment in enabling the typhoid toxin to suppress the host inflammatory response in vivo.
Collapse
Affiliation(s)
- Maria Lopez Chiloeches
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| | - Anna Bergonzini
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| | - Océane C. B. Martin
- Biological and Medical Sciences Department, University Bordeaux, Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et Génétique Cellulaires (IBGC), Unité Mixte de Recherche (UMR) 5095, Bordeaux, France
| | - Nicole Bergstein
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| | - Saskia F. Erttmann
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
- Infection Oncology Unit, Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Kyaw Min Aung
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Nelson O. Gekara
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Javier F. Avila Cariño
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| | - Ioannis S. Pateras
- Second Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Mao W, Wang Z, Wen S, Lin Y, Gu J, Sun J, Wang H, Cao Q, Xu Y, Xu X, Cai X. LRRC8A promotes Glaesserella parasuis cytolethal distending toxin-induced p53-dependent apoptosis in NPTr cells. Virulence 2023; 14:2287339. [PMID: 38018865 PMCID: PMC10732598 DOI: 10.1080/21505594.2023.2287339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
Glaesserella parasuis is an early colonizer of the swine upper respiratory tract and can break through the respiratory barrier for further invasion. However, the mechanisms underlying G. parasuis increases epithelial barrier permeability remain unclear. This study demonstrates that G. parasuis cytolethal distending toxin (CDT) induces p53-dependent apoptosis in new-born piglet tracheal (NPTr) cells. Moreover, we report for the first time that leucine-rich repeat-containing protein 8A (LRRC8A), an essential subunit of the volume-regulated anion channel (VRAC), involves in apoptosis of NPTr cells mediated by G. parasuis CDT. Pharmacological inhibition of VRAC with either PPQ-102 or NS3728 largely attenuated CDT-induced apoptosis in NPTr cells. Additionally, experiments with cells knocked down for LRRC8A using small interfering ribonucleic acid (siRNA) or knocked out LRRC8A using CRISPR/Cas9 technology showed a significant reduction in CDT-induced apoptosis. Conversely, re-expression of Sus scrofa LRRC8A in LRRC8A-/- NPTr cells efficiently complemented the CDT-induced apoptosis. In summary, these findings suggest that LRRC8A is pivotal for G. parasuis CDT-induced apoptosis, providing novel insights into the mechanism of apoptosis caused by CDT.
Collapse
Affiliation(s)
- Weiting Mao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Siting Wen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yan Lin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiayun Gu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ju Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Cao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yindi Xu
- Institute of Animal Husbandry and Veterinary Research, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaojuan Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xuwang Cai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
5
|
Kato I, Minkevitch J, Sun J. Oncogenic potential of Campylobacter infection in the gastrointestinal tract: narrative review. Scand J Gastroenterol 2023; 58:1453-1465. [PMID: 37366241 DOI: 10.1080/00365521.2023.2228954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Campylobacter jejuni is the leading cause of zoonotic gastroenteritis. The other emerging group of Campylobacters spp. are part of human oral commensal, represented by C. concisus (CC), which has been recently linked to non-oral conditions. Although long-term gastrointestinal (GI) complications from these two groups of Campylobacters have been previously reviewed individually, overall impact of Campylobacter infection on GI carcinogenesis and their inflammatory precursor lesions has not been assessed collectively. AIMS To evaluate the available evidence concerning the association between Campylobacter infection/colonization and inflammatory bowel disease (IBD), reflux esophagitis/metaplasia colorectal cancer (CRC) and esophageal cancer (EC). METHODS We performed a comprehensive literature search of PubMed for relevant original publications and systematic reviews/meta-analyses of epidemiological and clinical studies. In addition, we gathered additional information concerning microbiological data, animal models and mechanistic data from in vitro studies. RESULTS Both retrospective and prospective studies on IBD showed relatively consistent increased risk associated with Campylobacter infection. Despite lack of supporting prospective studies, retrospective studies based on tissue/fecal microbiome revealed consistent enrichment of Campylobacter in CRC samples. Studies on EC precursor lesions (esophagitis and metaplasia) were generally supportive for the association with Campylobacter, while inconsistent observations on EC. Studies on both IBD and EC precursors suggested the predominant role of CC, but studies on CRC were not informative of species. CONCLUSIONS There is sufficient evidence calling for concerted effort in unveiling direct and indirect connection of this organism to colorectal and esophageal cancer in humans.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julia Minkevitch
- Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Jun Sun
- Department of Microbiology/Immunology, University of Illinois at Chicago (UIC), Chicago, IL, USA
- UIC Cancer Center, Chicago, IL, USA
| |
Collapse
|
6
|
Genotoxins: The Mechanistic Links between Escherichia coli and Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15041152. [PMID: 36831495 PMCID: PMC9954437 DOI: 10.3390/cancers15041152] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Emerging evidence indicates bacterial infections contribute to the formation of cancers. Bacterial genotoxins are effectors that cause DNA damage by introducing single- and double-strand DNA breaks in the host cells. The first bacterial genotoxin cytolethal distending toxin (CDT) was a protein identified in 1987 in a pathogenic strain in Escherichia coli (E. coli) isolated from a young patient. The peptide-polyketide genotoxin colibactin is produced by the phylogenetic group B2 of E. coli. Recently, a protein produced by attaching/effacing (A/E) pathogens, including enteropathogenic and enterohemorrhagic E. coli (EPEC and EHEC) and their murine equivalent Citrobacter rodentium (CR), has been reported as a novel protein genotoxin, being injected via the type III secretion system (T3SS) into host cells and harboring direct DNA digestion activity with a catalytic histidine-aspartic acid dyad. These E. coli-produced genotoxins impair host DNA, which results in senescence or apoptosis of the target cells if the damage is beyond repair. Conversely, host cells can survive and proliferate if the genotoxin-induced DNA damage is not severe enough to kill them. The surviving cells may accumulate genomic instability and acquire malignant traits. This review presents the cellular responses of infection with the genotoxins-producing E. coli and discusses the current knowledge of the tumorigenic potential of these toxins.
Collapse
|
7
|
Montanari M, Guescini M, Gundogdu O, Luchetti F, Lanuti P, Ciacci C, Burattini S, Campana R, Ortolani C, Papa S, Canonico B. Extracellular Vesicles from Campylobacter jejuni CDT-Treated Caco-2 Cells Inhibit Proliferation of Tumour Intestinal Caco-2 Cells and Myeloid U937 Cells: Detailing the Global Cell Response for Potential Application in Anti-Tumour Strategies. Int J Mol Sci 2022; 24:ijms24010487. [PMID: 36613943 PMCID: PMC9820799 DOI: 10.3390/ijms24010487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Cytolethal distending toxin (CDT) is produced by a range of Gram-negative pathogenic bacteria such as Campylobacter jejuni. CDT represents an important virulence factor that is a heterotrimeric complex composed of CdtA, CdtB, and CdtC. CdtA and CdtC constitute regulatory subunits whilst CdtB acts as the catalytic subunit exhibiting phosphatase and DNase activities, resulting in cell cycle arrest and cell death. Extracellular vesicle (EV) secretion is an evolutionarily conserved process that is present throughout all kingdoms. Mammalian EVs play important roles in regular cell-to-cell communications but can also spread pathogen- and host-derived molecules during infections to alter immune responses. Here, we demonstrate that CDT targets the endo-lysosomal compartment, partially evading lysosomal degradation and exploiting unconventional secretion (EV release), which is largely involved in bacterial infections. CDT-like effects are transferred by Caco-2 cells to uninfected heterologous U937 and homologous Caco-2 cells. The journey of EVs derived from CDT-treated Caco-2 cells is associated with both intestinal and myeloid tumour cells. EV release represents the primary route of CDT dissemination, revealing an active toxin as part of the cargo. We demonstrated that bacterial toxins could represent suitable tools in cancer therapy, highlighting both the benefits and limitations. The global cell response involves a moderate induction of apoptosis and autophagic features may play a protective role against toxin-induced cell death. EVs from CDT-treated Caco-2 cells represent reliable CDT carriers, potentially suitable in colorectal cancer treatments. Our data present a potential bacterial-related biotherapeutic supporting a multidrug anticancer protocol.
Collapse
Affiliation(s)
- Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
8
|
Markelova NN, Semenova EF, Sineva ON, Sadykova VS. The Role of Cyclomodulins and Some Microbial Metabolites in Bacterial Microecology and Macroorganism Carcinogenesis. Int J Mol Sci 2022; 23:ijms231911706. [PMID: 36233008 PMCID: PMC9570213 DOI: 10.3390/ijms231911706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
A number of bacteria that colonize the human body produce toxins and effectors that cause changes in the eukaryotic cell cycle—cyclomodulins and low-molecular-weight compounds such as butyrate, lactic acid, and secondary bile acids. Cyclomodulins and metabolites are necessary for bacteria as adaptation factors—which are influenced by direct selection—to the ecological niches of the host. In the process of establishing two-way communication with the macroorganism, these compounds cause limited damage to the host, despite their ability to disrupt key processes in eukaryotic cells, which can lead to pathological changes. Possible negative consequences of cyclomodulin and metabolite actions include their potential role in carcinogenesis, in particular, with the ability to cause DNA damage, increase genome instability, and interfere with cancer-associated regulatory pathways. In this review, we aim to examine cyclomodulins and bacterial metabolites as important factors in bacterial survival and interaction with the host organism to show their heterogeneous effect on oncogenesis depending on the surrounding microenvironment, pathological conditions, and host genetic background.
Collapse
Affiliation(s)
- Natalia N. Markelova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia
- Correspondence: (N.N.M.); (V.S.S.)
| | - Elena F. Semenova
- Institute of Biochemical Technology, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, 295007 Simferopol, Russia
| | - Olga N. Sineva
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia
| | - Vera S. Sadykova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia
- Correspondence: (N.N.M.); (V.S.S.)
| |
Collapse
|
9
|
Lai YR, Chang YF, Ma J, Chiu CH, Kuo ML, Lai CH. From DNA Damage to Cancer Progression: Potential Effects of Cytolethal Distending Toxin. Front Immunol 2021; 12:760451. [PMID: 34868002 PMCID: PMC8634426 DOI: 10.3389/fimmu.2021.760451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Cytolethal distending toxin (CDT), one of the most important genotoxins, is produced by several gram-negative bacteria and is involved in bacterial pathogenesis. Recent studies have shown that bacteria producing this peculiar genotoxin target host DNA, which potentially contributes to development of cancer. In this review, we highlighted the recent studies focusing on the idea that CDT leads to DNA damage, and the cells with inappropriately repaired DNA continue cycling, resulting in cancer development. Understanding the detailed mechanisms of genotoxins that cause DNA damage might be useful for targeting potential markers that drive cancer progression and help to discover new therapeutic strategies to prevent diseases caused by pathogens.
Collapse
Affiliation(s)
- Yi-Ru Lai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Fang Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jason Ma
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ming-Ling Kuo
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Chronic exposure to Cytolethal Distending Toxin (CDT) promotes a cGAS-dependent type I interferon response. Cell Mol Life Sci 2021; 78:6319-6335. [PMID: 34308492 PMCID: PMC8429409 DOI: 10.1007/s00018-021-03902-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/18/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
The Cytolethal Distending Toxin (CDT) is a bacterial genotoxin produced by pathogenic bacteria causing major foodborne diseases worldwide. CDT activates the DNA Damage Response and modulates the host immune response, but the precise relationship between these outcomes has not been addressed so far. Here, we show that chronic exposure to CDT in HeLa cells or mouse embryonic fibroblasts promotes a strong type I interferon (IFN) response that depends on the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) through the recognition of micronuclei. Indeed, despite active cell cycle checkpoints and in contrast to other DNA damaging agents, cells exposed to CDT reach mitosis where they accumulate massive DNA damage, resulting in chromosome fragmentation and micronucleus formation in daughter cells. These mitotic phenotypes are observed with CDT from various origins and in cancer or normal cell lines. Finally, we show that CDT exposure in immortalized normal colonic epithelial cells is associated to cGAS protein loss and low type I IFN response, implying that CDT immunomodulatory function may vary depending on tissue and cell type. Thus, our results establish a direct link between CDT-induced DNA damage, genetic instability and the cellular immune response that may be relevant in the context of natural infection associated to chronic inflammation or carcinogenesis.
Collapse
|
11
|
Robb Huhn G, Torres-Mangual N, Clore J, Cilenti L, Frisan T, Teter K. Endocytosis of the CdtA subunit from the Haemophilus ducreyi cytolethal distending toxin. Cell Microbiol 2021; 23:e13380. [PMID: 34292647 DOI: 10.1111/cmi.13380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022]
Abstract
Many Gram-negative pathogens produce a cytolethal distending toxin (CDT) with two cell-binding subunits (CdtA + CdtC) and a catalytic CdtB subunit. After adhesion to the plasma membrane of a target cell, CDT moves by retrograde transport to endoplasmic reticulum. CdtB then enters the nucleus where it generates DNA breaks that lead to cell cycle arrest and apoptosis or senescence. CdtA anchors the CDT holotoxin to the plasma membrane and is thought to remain on the cell surface after endocytosis of the CdtB/CdtC heterodimer. Here, we re-examined the potential endocytosis and intracellular transport of CdtA from the Haemophilus ducreyi CDT. We recorded the endocytosis of holotoxin-associated CdtA with a cell-based enzyme-linked immunoabsorbent assay (CELISA) and visualised its presence in the early endosomes by confocal microscopy 10 min after CDT binding to the cell surface. Western blot analysis documented the rapid degradation of internalised CdtA. Most of internalised CdtB and CdtC were degraded as well. The rapid rate of CDT internalisation and turnover, which could explain why CdtA endocytosis was not detected in previous studies, suggests only a minor pool of cell-associated CdtB reaches the nucleus. Our work demonstrates that CDT is internalised as an intact holotoxin and identifies the endosomes as the site of CdtA dissociation from CdtB/CdtC. TAKE AWAYS: During the endocytosis of CDT, CdtA is thought to remain at the cell surface. A cell-based ELISA documented the rapid endocytosis of CdtA. CdtA was visualised in the early endosomes by confocal microscopy. Intracellular CdtA was rapidly degraded, along with most of CdtB and CdtC.
Collapse
Affiliation(s)
- G Robb Huhn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Naly Torres-Mangual
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.,Colorado State University, Fort Collins, CO, USA
| | - John Clore
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Lucia Cilenti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Teresa Frisan
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
12
|
Tremblay W, Mompart F, Lopez E, Quaranta M, Bergoglio V, Hashim S, Bonnet D, Alric L, Mas E, Trouche D, Vignard J, Ferrand A, Mirey G, Fernandez-Vidal A. Cytolethal Distending Toxin Promotes Replicative Stress Leading to Genetic Instability Transmitted to Daughter Cells. Front Cell Dev Biol 2021; 9:656795. [PMID: 34026755 PMCID: PMC8138442 DOI: 10.3389/fcell.2021.656795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/23/2021] [Indexed: 12/30/2022] Open
Abstract
The cytolethal distending toxin (CDT) is produced by several Gram-negative pathogenic bacteria. In addition to inflammation, experimental evidences are in favor of a protumoral role of CDT-harboring bacteria such as Escherichia coli, Campylobacter jejuni, or Helicobacter hepaticus. CDT may contribute to cell transformation in vitro and carcinogenesis in mice models, through the genotoxic action of CdtB catalytic subunit. Here, we investigate the mechanism of action by which CDT leads to genetic instability in human cell lines and colorectal organoids from healthy patients’ biopsies. We demonstrate that CDT holotoxin induces a replicative stress dependent on CdtB. The slowing down of DNA replication occurs mainly in late S phase, resulting in the expression of fragile sites and important chromosomic aberrations. These DNA abnormalities induced after CDT treatment are responsible for anaphase bridge formation in mitosis and interphase DNA bridge between daughter cells in G1 phase. Moreover, CDT-genotoxic potential preferentially affects human cycling cells compared to quiescent cells. Finally, the toxin induces nuclear distension associated to DNA damage in proliferating cells of human colorectal organoids, resulting in decreased growth. Our findings thus identify CDT as a bacterial virulence factor targeting proliferating cells, such as human colorectal progenitors or stem cells, inducing replicative stress and genetic instability transmitted to daughter cells that may therefore contribute to carcinogenesis. As some CDT-carrying bacterial strains were detected in patients with colorectal cancer, targeting these bacteria could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- William Tremblay
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Florence Mompart
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Elisa Lopez
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Muriel Quaranta
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Valérie Bergoglio
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Saleha Hashim
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Delphine Bonnet
- Department of Internale and Digestive Diseases, Pole Digestif, CHU Toulouse, Paul Sabatier University, Toulouse, France
| | - Laurent Alric
- Department of Internale and Digestive Diseases, Pole Digestif, CHU Toulouse, Paul Sabatier University, Toulouse, France
| | - Emmanuel Mas
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.,Unité de Gastroentérologie, Hépatologie, Nutrition, Diabétologie et Maladies Héréditaires du Métabolisme, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Didier Trouche
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Vignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Gladys Mirey
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Anne Fernandez-Vidal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.,MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
13
|
Huang G, Boesze-Battaglia K, Walker LP, Zekavat A, Schaefer ZP, Blanke SR, Shenker BJ. The Active Subunit of the Cytolethal Distending Toxin, CdtB, Derived From Both Haemophilus ducreyi and Campylobacter jejuni Exhibits Potent Phosphatidylinositol-3,4,5-Triphosphate Phosphatase Activity. Front Cell Infect Microbiol 2021; 11:664221. [PMID: 33854985 PMCID: PMC8039388 DOI: 10.3389/fcimb.2021.664221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
Human lymphocytes exposed to Aggregatibacter actinomycetemcomitans (Aa) cytolethal distending toxin (Cdt) undergo cell cycle arrest and apoptosis. In previous studies, we demonstrated that the active Cdt subunit, CdtB, is a potent phosphatidylinositol (PI) 3,4,5-triphosphate phosphatase. Moreover, AaCdt-treated cells exhibit evidence of PI-3-kinase (PI-3K) signaling blockade characterized by reduced levels of PIP3, pAkt, and pGSK3β. We have also demonstrated that PI-3K blockade is a requisite of AaCdt-induced toxicity in lymphocytes. In this study, we extended our observations to include assessment of Cdts from Haemophilus ducreyi (HdCdt) and Campylobacter jejuni (CjCdt). We now report that the CdtB subunit from HdCdt and CjCdt, similar to that of AaCdt, exhibit potent PIP3 phosphatase activity and that Jurkat cells treated with these Cdts exhibit PI-3K signaling blockade: reduced levels of pAkt and pGSK3β. Since non-phosphorylated GSK3β is the active form of this kinase, we compared Cdts for dependence on GSK3β activity. Two GSK3β inhibitors were employed, LY2090314 and CHIR99021; both inhibitors blocked the ability of Cdts to induce cell cycle arrest. We have previously demonstrated that AaCdt induces increases in the CDK inhibitor, p21CIP1/WAF1, and, further, that this was a requisite for toxin-induced cell death via apoptosis. We now demonstrate that HdCdt and CjCdt also share this requirement. It is also noteworthy that p21CIP1/WAF1 was not involved in the ability of the three Cdts to induce cell cycle arrest. Finally, we demonstrate that, like AaCdt, HdCdt is dependent upon the host cell protein, cellugyrin, for its toxicity (and presumably internalization of CdtB); CjCdt was not dependent upon this protein. The implications of these findings as they relate to Cdt’s molecular mode of action are discussed.
Collapse
Affiliation(s)
- Grace Huang
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Lisa P Walker
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Ali Zekavat
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Zachary P Schaefer
- Department of Microbiology, University of Illinois, Urbana, IL, United States
| | - Steven R Blanke
- Department of Microbiology, University of Illinois, Urbana, IL, United States.,Pathobiology Department, University of Illinois, Urbana, IL, United States.,Biomedical and Translational Sciences Department, University of Illinois, Urbana, IL, United States
| | - Bruce J Shenker
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| |
Collapse
|
14
|
Abstract
Enteric viral and bacterial infections continue to be a leading cause of mortality and morbidity in young children in low-income and middle-income countries, the elderly, and immunocompromised individuals. Vaccines are considered an effective and practical preventive approach against the predominantly fecal-to-oral transmitted gastroenteritis particularly in the resource-limited countries or regions where implementation of sanitation systems and supply of safe drinking water are not quickly achievable. While vaccines are available for a few enteric pathogens including rotavirus and cholera, there are no vaccines licensed for many other enteric viral and bacterial pathogens. Challenges in enteric vaccine development include immunological heterogeneity among pathogen strains or isolates, a lack of animal challenge models to evaluate vaccine candidacy, undefined host immune correlates to protection, and a low protective efficacy among young children in endemic regions. In this article, we briefly updated the progress and challenges in vaccines and vaccine development for the leading enteric viral and bacterial pathogens including rotavirus, human calicivirus, Shigella, enterotoxigenic Escherichia coli (ETEC), cholera, nontyphoidal Salmonella, and Campylobacter, and introduced a novel epitope- and structure-based vaccinology platform known as MEFA (multiepitope fusion antigen) and the application of MEFA for developing broadly protective multivalent vaccines against heterogenous pathogens.
Collapse
Affiliation(s)
- Hyesuk Seo
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| | - Qiangde Duan
- University of Yangzhou, Institute of Comparative Medicine, Yangzhou, PR China
| | - Weiping Zhang
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA,CONTACT Weiping Zhang, University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| |
Collapse
|
15
|
Hartl K, Sigal M. Microbe-Driven Genotoxicity in Gastrointestinal Carcinogenesis. Int J Mol Sci 2020; 21:E7439. [PMID: 33050171 PMCID: PMC7587957 DOI: 10.3390/ijms21207439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium serves as a barrier to discriminate the outside from the inside and is in constant exchange with the luminal contents, including nutrients and the microbiota. Pathogens have evolved mechanisms to overcome the multiple ways of defense in the mucosa, while several members of the microbiota can exhibit pathogenic features once the healthy barrier integrity of the epithelium is disrupted. This not only leads to symptoms accompanying the acute infection but may also contribute to long-term injuries such as genomic instability, which is linked to mutations and cancer. While for Helicobacter pylori a link between infection and cancer is well established, many other bacteria and their virulence factors have only recently been linked to gastrointestinal malignancies through epidemiological as well as mechanistic studies. This review will focus on those pathogens and members of the microbiota that have been linked to genotoxicity in the context of gastric or colorectal cancer. We will address the mechanisms by which such bacteria establish contact with the gastrointestinal epithelium-either via an existing breach in the barrier or via their own virulence factors as well as the mechanisms by which they interfere with host genomic integrity.
Collapse
Affiliation(s)
- Kimberly Hartl
- Medical Department, Division of Gastroenterology and Hepatology, Charité-Universtitätsmedizin Berlin, 10117 Berlin, Germany;
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Michael Sigal
- Medical Department, Division of Gastroenterology and Hepatology, Charité-Universtitätsmedizin Berlin, 10117 Berlin, Germany;
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| |
Collapse
|
16
|
Silbergleit M, Vasquez AA, Miller CJ, Sun J, Kato I. Oral and intestinal bacterial exotoxins: Potential linked to carcinogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:131-193. [PMID: 32475520 DOI: 10.1016/bs.pmbts.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence suggests that imbalances in resident microbes (dysbiosis) can promote chronic inflammation, immune-subversion, and production of carcinogenic metabolites, thus leading to neoplasia. Yet, evidence to support a direct link of individual bacteria species to human sporadic cancer is still limited. This chapter focuses on several emerging bacterial toxins that have recently been characterized for their potential oncogenic properties toward human orodigestive cancer and the presence of which in human tissue samples has been documented. These include cytolethal distending toxins produced by various members of gamma and epsilon Proteobacteria, Dentilisin from mammalian oral Treponema, Pasteurella multocida toxin, two Fusobacterial toxins, FadA and Fap2, Bacteroides fragilis toxin, colibactin, cytotoxic necrotizing factors and α-hemolysin from Escherichia coli, and Salmonella enterica AvrA. It was clear that these bacterial toxins have biological activities to induce several hallmarks of cancer. Some toxins directly interact with DNA or chromosomes leading to their breakdowns, causing mutations and genome instability, and others modulate cell proliferation, replication and death and facilitate immune evasion and tumor invasion, prying specific oncogene and tumor suppressor pathways, such as p53 and β-catenin/Wnt. In addition, most bacterial toxins control tumor-promoting inflammation in complex and diverse mechanisms. Despite growing laboratory evidence to support oncogenic potential of selected bacterial toxins, we need more direct evidence from human studies and mechanistic data from physiologically relevant experimental animal models, which can reflect chronic infection in vivo, as well as take bacterial-bacterial interactions among microbiome into consideration.
Collapse
Affiliation(s)
| | - Adrian A Vasquez
- Department of Civil and Environmental Engineering, Wayne State University, Healthy Urban Waters, Detroit, MI, United States
| | - Carol J Miller
- Department of Civil and Environmental Engineering, Wayne State University, Healthy Urban Waters, Detroit, MI, United States
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
17
|
Martin OC, Frisan T. Bacterial Genotoxin-Induced DNA Damage and Modulation of the Host Immune Microenvironment. Toxins (Basel) 2020; 12:E63. [PMID: 31973033 PMCID: PMC7076804 DOI: 10.3390/toxins12020063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 01/10/2023] Open
Abstract
: Bacterial genotoxins (BTGX) induce DNA damage, which results in senescence or apoptosis of the target cells if not properly repaired. Three BTGXs have been identified: the cytolethal distending toxin (CDT) family produced by several Gram-negative bacteria, the typhoid toxin produced by several Salmonella enterica serovars, and colibactin, a peptide-polyketide, produced mainly by the phylogenetic group B2 Escherichia coli. The cellular responses induced by BTGXs resemble those of well-characterized carcinogenic agents, and several lines of evidence indicate that bacteria carrying genotoxin genes can contribute to tumor development under specific circumstances. Given their unusual mode of action, it is still enigmatic why these effectors have been acquired by microbes and what is their role in the context of the biology of the producing bacterium, since it is unlikely that their primary purpose is to induce/promote cancer in the mammalian host. In this review, we will discuss the possibility that the DNA damage induced by BTGX modulates the host immune response, acting as immunomodulator, leading to the establishment of a suitable niche for the producing bacterium. We will further highlight open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.
Collapse
Affiliation(s)
- Océane C.B. Martin
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33320 Bordeaux, France;
| | - Teresa Frisan
- Department of Cell and Molecular Biology Karolinska Institutet, 17177 Stockholm, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
18
|
The Cell-Cycle Regulatory Protein p21 CIP1/WAF1 Is Required for Cytolethal Distending Toxin (Cdt)-Induced Apoptosis. Pathogens 2020; 9:pathogens9010038. [PMID: 31906446 PMCID: PMC7168616 DOI: 10.3390/pathogens9010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 12/27/2022] Open
Abstract
The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces lymphocytes to undergo cell-cycle arrest and apoptosis; toxicity is dependent upon the active Cdt subunit, CdtB. We now demonstrate that p21CIP1/WAF1 is critical to Cdt-induced apoptosis. Cdt induces increases in the levels of p21CIP1/WAF1 in lymphoid cell lines, Jurkat and MyLa, and in primary human lymphocytes. These increases were dependent upon CdtB’s ability to function as a phosphatidylinositol (PI) 3,4,5-triphosphate (PIP3) phosphatase. It is noteworthy that Cdt-induced increases in the levels of p21CIP1/WAF1 were accompanied by a significant decline in the levels of phosphorylated p21CIP1/WAF1. The significance of Cdt-induced p21CIP1/WAF1 increase was assessed by preventing these changes with a two-pronged approach; pre-incubation with the novel p21CIP1/WAF1 inhibitor, UC2288, and development of a p21CIP1/WAF1-deficient cell line (Jurkatp21−) using clustered regularly interspaced short palindromic repeats (CRISPR)/cas9 gene editing. UC2288 blocked toxin-induced increases in p21CIP1/WAF1, and JurkatWT cells treated with this inhibitor exhibited reduced susceptibility to Cdt-induced apoptosis. Likewise, Jurkatp21− cells failed to undergo toxin-induced apoptosis. The linkage between Cdt, p21CIP1/WAF1, and apoptosis was further established by demonstrating that Cdt-induced increases in levels of the pro-apoptotic proteins Bid, Bax, and Bak were dependent upon p21CIP1/WAF1 as these changes were not observed in Jurkatp21− cells. Finally, we determined that the p21CIP1/WAF1 increases were dependent upon toxin-induced increases in the level and activity of the chaperone heat shock protein (HSP) 90. We propose that p21CIP1/WAF1 plays a key pro-apoptotic role in mediating Cdt-induced toxicity.
Collapse
|
19
|
Cytolethal Distending Toxin Subunit B: A Review of Structure-Function Relationship. Toxins (Basel) 2019; 11:toxins11100595. [PMID: 31614800 PMCID: PMC6832162 DOI: 10.3390/toxins11100595] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/27/2023] Open
Abstract
The Cytolethal Distending Toxin (CDT) is a bacterial virulence factor produced by several Gram-negative pathogenic bacteria. These bacteria, found in distinct niches, cause diverse infectious diseases and produce CDTs differing in sequence and structure. CDTs have been involved in the pathogenicity of the associated bacteria by promoting persistent infection. At the host-cell level, CDTs cause cell distension, cell cycle block and DNA damage, eventually leading to cell death. All these effects are attributable to the catalytic CdtB subunit, but its exact mode of action is only beginning to be unraveled. Sequence and 3D structure analyses revealed similarities with better characterized proteins, such as nucleases or phosphatases, and it has been hypothesized that CdtB exerts a biochemical activity close to those enzymes. Here, we review the relationships that have been established between CdtB structure and function, particularly by mutation experiments on predicted key residues in different experimental systems. We discuss the relevance of these approaches and underline the importance of further study in the molecular mechanisms of CDT toxicity, particularly in the context of different pathological conditions.
Collapse
|
20
|
Yang X, Hou X, Sun Y, Zhang G, Hu X, Xie Y, Mo X, Ding X, Xia L, Hu S. Screening a fosmid library of Xenorhabdus stockiae HN_xs01 reveals SrfABC toxin that exhibits both cytotoxicity and injectable insecticidal activity. J Invertebr Pathol 2019; 167:107247. [PMID: 31521727 DOI: 10.1016/j.jip.2019.107247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022]
Abstract
Xenorhabdus spp., entomopathogenic bacteria symbiotically associated with the nematodes of the Steinernematid family, are known to produce several toxic proteins that interfere with the cellular immune responses of insects. In order to identify novel cytotoxins from Xenorhabdus spp., a fosmid library of X. stockiae HN_xs01 strain was constructed and the cytotoxicity of fosmid clones was tested against insect midgut CF-203 cells. An FS2 clone bearing the srfABC operon, originally identified in Salmonella enterica, exhibited excellent cytotoxicity against CF-203 cells. The srfABC operon alone exhibited cytotoxic effects and all three components of SrfABC toxin were essential for full cytotoxicity. Immunofluorescence studies showed that SrfABC toxin could depolymerize microtubules and disrupt mitochrondria. Flow cytometer analysis demonstrated that SrfABC toxin significantly induced G2/M phase arrest and apoptosis in CF-203 cells. Furthermore, SrfABC toxin exhibits highly injectable insecticidal activity against Helicoverpa armigera larvae. As is often found in host-associated microorganisms, SrfABC toxin is thought to play an important role in host colonization.
Collapse
Affiliation(s)
- Xi Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xiaoqing Hou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Yawei Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Guoyong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xiaofeng Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Yali Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xiangtao Mo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xuezhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China.
| |
Collapse
|
21
|
Ganji L, Alebouyeh M, Shirazi MH, Zali MR. Comparative transcriptional analysis for Toll-like receptors, inflammatory cytokines, and apoptotic genes in response to different cytolethal-encoding and noncoding isolates of Salmonella enterica and Campylobacter jejuni from food and human stool. Microb Pathog 2019; 133:103550. [PMID: 31112773 DOI: 10.1016/j.micpath.2019.103550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022]
Abstract
Diversity of Campylobacter and Salmonella strains in interaction with epithelial cells may explain distinct modes of the pathogenesis, varying from mild watery to severe inflammatory diarrhea. We analyzed impact of this diversity, in relation to carriage and expression of cytholethal distending toxin B (cdtB), on alteration of IL-8, TNF-α, TLR2, TLR4, TLR5, CASP3 mRNA and cytokine levels in HT-29 cell line. A diversity was observed for induction of genes among different strains. Great diversity in IL-8 induction was detected between cdtB+ and cdtB- strains. Early analysis showed down-regulation of TNF-α, mostly among cdtB+ strains. Any increase or decrease in expression of TLR2 in the cdtB-C. jejuni strains was orderly correlated with increase or decrease of TLR4 and TNF-α. Up-regulation of CASP3 was followed by upregulation of TLR2, -4 and/or TNF-α, regardless to the cdtB status. In conclusion, induction of inflammatory response could mediate by distinct C. jejuni and S. enterica strains by several ways.
Collapse
Affiliation(s)
- Leila Ganji
- Department of Pathobiology, School of Public Health, University of Medical Sciences, Tehran, Iran; Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research Center of Health Reference Laboratory, Ministry of Health and Medical Education, Tehran, Iran
| | - Masoud Alebouyeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hassan Shirazi
- Department of Pathobiology, School of Public Health, University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
22
|
Druzhinin VG, Matskova LV, Fucic A. Induction and modulation of genotoxicity by the bacteriome in mammals. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:70-77. [PMID: 29807578 DOI: 10.1016/j.mrrev.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023]
Abstract
The living environment is a multilevel physical and chemical xenobiotic complex with potentially mutagenic effects and health risks. In addition to inorganic exposures, all terrestrial and aquatic living forms interact with microbiota as selectively established communities of bacteria, viruses and fungi. Along these lines, the human organism should then be considered a "meta-organism" with complex dynamics of interaction between the environment and microbiome. Bacterial communities within the microbiome, bacteriome, by its mass, symbiotic or competitive position and composition are in a fragile balance with the host organisms and have a crucial impact on their homeostasis. Bacteriome taxonomic composition is modulated by age, sex and host genetic profile and may be changed by adverse environmental exposures and life style factors such as diet or drug intake. A changed and/or misbalanced bacteriome has genotoxic potential with significant impact on the pathogenesis of acute, chronic and neoplastic diseases in the host organism. Bacteria may produce genotoxins, express a variety of pathways in which they generate free radicals or affect DNA repair causing genome damage, cell cycle arrest and apoptosis, modulate immune response and launch carcinogenesis in the host organism. Future investigations should focus on the interplay between exposure to xenobiotics and bacteriome composition, immunomodulation caused by misbalanced bacteriome, impact of the environment on bacteriome composition in children and its lifelong effect on health risks.
Collapse
Affiliation(s)
- V G Druzhinin
- Department of Genetics, Kemerovo State University, Kemerovo. Russia; Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia
| | - L V Matskova
- Department of Microbiology and Tumor Biology, Karolinska Institute, Stockholm. Sweden
| | - A Fucic
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
23
|
The Typhoid Toxin Produced by the Nontyphoidal Salmonella enterica Serotype Javiana Is Required for Induction of a DNA Damage Response In Vitro and Systemic Spread In Vivo. mBio 2018; 9:mBio.00467-18. [PMID: 29588404 PMCID: PMC5874915 DOI: 10.1128/mbio.00467-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Salmonella cytolethal distending toxin (S-CDT), first described as the “typhoid toxin” in Salmonella enterica subsp. enterica serotype Typhi, induces DNA damage in eukaryotic cells. Recent studies have shown that more than 40 nontyphoidal Salmonella (NTS) serotypes carry genes that encode S-CDT, yet very little is known about the activity, function, and role of S-CDT in NTS. Here we show that deletion of genes encoding the binding subunit (pltB) and a bacteriophage muramidase predicted to play a role in toxin export (ttsA) does not abolish toxin activity in the S-CDT-positive NTS Salmonella enterica subsp. enterica serotype Javiana. However, S. Javiana strains harboring deletions of both pltB and its homolog artB, had a complete loss of S-CDT activity, suggesting that S. Javiana carries genes encoding two variants of the binding subunit. S-CDT-mediated DNA damage, as determined by phosphorylation of histone 2AX (H2AX), producing phosphorylated H2AX (γH2AX), was restricted to epithelial cells in S and G2/M phases of the cell cycle and did not result in apoptosis or cell death. Compared to mice infected with a ΔcdtB strain, mice infected with wild-type S. Javiana had significantly higher levels of S. Javiana in the liver, but not in the spleen, ileum, or cecum. Overall, we show that production of active S-CDT by NTS serotype S. Javiana requires different genes (cdtB, pltA, and either pltB or artB) for expression of biologically active toxin than those reported for S-CDT production by S. Typhi (cdtB, pltA, pltB, and ttsA). However, as in S. Typhi, NTS S-CDT influences the outcome of infection both in vitro and in vivo. Nontyphoidal Salmonella (NTS) are a major cause of bacterial food-borne illness worldwide; however, our understanding of virulence mechanisms that determine the outcome and severity of nontyphoidal salmonellosis is incompletely understood. Here we show that S-CDT produced by NTS plays a significant role in the outcome of infection both in vitro and in vivo, highlighting S-CDT as an important virulence factor for nontyphoidal Salmonella serotypes. Our data also contribute novel information about the function of S-CDT, as S-CDT-mediated DNA damage occurs only during certain phases of the cell cycle, and the resulting damage does not induce cell death as assessed using a propidium iodide exclusion assay. Importantly, our data support that, despite having genetically similar S-CDT operons, NTS serotype S. Javiana has different genetic requirements than S. Typhi, for the production and export of active S-CDT.
Collapse
|
24
|
Di Domenico EG, Cavallo I, Pontone M, Toma L, Ensoli F. Biofilm Producing Salmonella Typhi: Chronic Colonization and Development of Gallbladder Cancer. Int J Mol Sci 2017; 18:ijms18091887. [PMID: 28858232 PMCID: PMC5618536 DOI: 10.3390/ijms18091887] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica subspecies enterica serovar Typhi is the aetiological agent of typhoid or enteric fever. In a subset of individuals, S. Typhi colonizes the gallbladder causing an asymptomatic chronic infection. Nonetheless, these asymptomatic carriers provide a reservoir for further spreading of the disease. Epidemiological studies performed in regions where S. Typhi is endemic, revealed that the majority of chronically infected carriers also harbour gallstones, which in turn, have been indicated as a primary predisposing factor for the onset of gallbladder cancer (GC). It is now well recognised, that S. Typhi produces a typhoid toxin with a carcinogenic potential, that induces DNA damage and cell cycle alterations in intoxicated cells. In addition, biofilm production by S. Typhi may represent a key factor for the promotion of a persistent infection in the gallbladder, thus sustaining a chronic local inflammatory response and exposing the epithelium to repeated damage caused by carcinogenic toxins. This review aims to highlight the putative connection between the chronic colonization by highly pathogenic strains of S. Typhi capable of combining biofilm and toxin production and the onset of GC. Considering the high risk of GC associated with the asymptomatic carrier status, the rapid identification and profiling of biofilm production by S. Typhi strains would be key for effective therapeutic management and cancer prevention.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Martina Pontone
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Luigi Toma
- Infectious Disease Consultant, Regina Elena National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| |
Collapse
|
25
|
AKT2 suppresses pro-survival autophagy triggered by DNA double-strand breaks in colorectal cancer cells. Cell Death Dis 2017; 8:e3019. [PMID: 28837154 PMCID: PMC5596597 DOI: 10.1038/cddis.2017.418] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022]
Abstract
DNA double-strand breaks (DSBs) are critical DNA lesions, which threaten genome stability and cell survival. DSBs are directly induced by ionizing radiation (IR) and radiomimetic agents, including the cytolethal distending toxin (CDT). This bacterial genotoxin harbors a unique DNase-I-like endonuclease activity. Here we studied the role of DSBs induced by CDT and IR as a trigger of autophagy, which is a cellular degradation process involved in cell homeostasis, genome protection and cancer. The regulatory mechanisms of DSB-induced autophagy were analyzed, focusing on the ATM-p53-mediated DNA damage response and AKT signaling in colorectal cancer cells. We show that treatment of cells with CDT or IR increased the levels of the autophagy marker LC3B-II. Consistently, an enhanced formation of autophagosomes and a decrease of the autophagy substrate p62 were observed. Both CDT and IR concomitantly suppressed mTOR signaling and stimulated the autophagic flux. DSBs were demonstrated as the primary trigger of autophagy using a DNase I-defective CDT mutant, which neither induced DSBs nor autophagy. Genetic abrogation of p53 and inhibition of ATM signaling impaired the autophagic flux as revealed by LC3B-II accumulation and reduced formation of autophagic vesicles. Blocking of DSB-induced apoptotic cell death by the pan-caspase inhibitor Z-VAD stimulated autophagy. In line with this, pharmacological inhibition of autophagy increased cell death, while ATG5 knockdown did not affect cell death after DSB induction. Interestingly, both IR and CDT caused AKT activation, which repressed DSB-triggered autophagy independent of the cellular DNA-PK status. Further knockdown and pharmacological inhibitor experiments provided evidence that the negative autophagy regulation was largely attributable to AKT2. Finally, we show that upregulation of CDT-induced autophagy upon AKT inhibition resulted in lower apoptosis and increased cell viability. Collectively, the findings demonstrate that DSBs trigger pro-survival autophagy in an ATM- and p53-dependent manner, which is curtailed by AKT2 signaling.
Collapse
|
26
|
El-Aouar Filho RA, Nicolas A, De Paula Castro TL, Deplanche M, De Carvalho Azevedo VA, Goossens PL, Taieb F, Lina G, Le Loir Y, Berkova N. Heterogeneous Family of Cyclomodulins: Smart Weapons That Allow Bacteria to Hijack the Eukaryotic Cell Cycle and Promote Infections. Front Cell Infect Microbiol 2017; 7:208. [PMID: 28589102 PMCID: PMC5440457 DOI: 10.3389/fcimb.2017.00208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host.
Collapse
Affiliation(s)
- Rachid A El-Aouar Filho
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France.,Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Aurélie Nicolas
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| | - Thiago L De Paula Castro
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Martine Deplanche
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| | - Vasco A De Carvalho Azevedo
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Pierre L Goossens
- HistoPathologie et Modèles Animaux/Pathogénie des Toxi-Infections Bactériennes, Institut PasteurParis, France
| | - Frédéric Taieb
- CHU Purpan USC INRA 1360-CPTP, U1043 Institut National de la Santé et de la Recherche Médicale, Pathogénie Moléculaire et Cellulaire des Infections à Escherichia coliToulouse, France
| | - Gerard Lina
- International Center for Infectiology ResearchLyon, France.,Centre National de la Recherche Scientifique, UMR5308, Institut National de la Santé et de la Recherche Médicale U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1Lyon, France.,Département de Biologie, Institut des Agents Infectieux, Hospices Civils de LyonLyon, France
| | - Yves Le Loir
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| | - Nadia Berkova
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| |
Collapse
|
27
|
Li G, Niu H, Zhang Y, Li Y, Xie F, Langford PR, Liu S, Wang C. Haemophilus parasuis cytolethal distending toxin induces cell cycle arrest and p53-dependent apoptosis. PLoS One 2017; 12:e0177199. [PMID: 28545143 PMCID: PMC5436662 DOI: 10.1371/journal.pone.0177199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 01/20/2023] Open
Abstract
Haemophilus parasuis is the causative agent of Glasser’s disease in pigs. Cytolethal distending toxin (CDT) is an important virulence factor of H. parasuis. It is composed of three subunits: CdtA, CdtB and CdtC and all were successfully expressed in soluble form in Escherichia coli when the signal peptides were removed. Purified CdtB had DNase activity, i.e. caused DNA double strand damage, in vitro and in vivo prior to cell arrest and apoptosis. Flow cytometry analysis showed CdtB alone could induce cell cycle arrest and apoptosis in PK-15 porcine kidney and pulmonary alveolar macrophage (PAM) cells, which could be enhanced by CdtA or/and CdtC. CDT holotoxin could lead to significant cell distension, G2 arrest and apoptotic death in PK-15 and PAM cells. The apoptosis induced by CDT holotoxin was significantly inhibited by pifithrin-α, which indicates that it is p53-dependent. The results suggest that H. parasuis CDT holotoxin is a major virulence factor.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Niu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanling Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Paul R. Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail:
| |
Collapse
|
28
|
Gagnaire A, Nadel B, Raoult D, Neefjes J, Gorvel JP. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat Rev Microbiol 2017; 15:109-128. [DOI: 10.1038/nrmicro.2016.171] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Scuron MD, Boesze-Battaglia K, Dlakić M, Shenker BJ. The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting As a Tri-Perditious Toxin. Front Cell Infect Microbiol 2016; 6:168. [PMID: 27995094 PMCID: PMC5136569 DOI: 10.3389/fcimb.2016.00168] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
This review summarizes the current status and recent advances in our understanding of the role that the cytolethal distending toxin (Cdt) plays as a virulence factor in promoting disease by toxin-producing pathogens. A major focus of this review is on the relationship between structure and function of the individual subunits that comprise the AB2 Cdt holotoxin. In particular, we concentrate on the molecular mechanisms that characterize this toxin and which account for the ability of Cdt to intoxicate multiple cell types by utilizing a ubiquitous binding partner on the cell membrane. Furthermore, we propose a paradigm shift for the molecular mode of action by which the active Cdt subunit, CdtB, is able to block a key signaling cascade and thereby lead to outcomes based upon programming and the role of the phosphatidylinositol 3-kinase (PI-3K) in a variety of cells. Based upon the collective Cdt literature, we now propose that Cdt is a unique and potent virulence factor capable of acting as a tri-perditious toxin that impairs host defenses by: (1) disrupting epithelial barriers; (2) suppressing acquired immunity; (3) promoting pro-inflammatory responses. Thus, Cdt plays a key role in facilitating the early stages of infection and the later stages of disease progression by contributing to persistence and impairing host elimination.
Collapse
Affiliation(s)
- Monika D Scuron
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Bruce J Shenker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
30
|
Cell resistance to the Cytolethal Distending Toxin involves an association of DNA repair mechanisms. Sci Rep 2016; 6:36022. [PMID: 27775089 PMCID: PMC5075911 DOI: 10.1038/srep36022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023] Open
Abstract
The Cytolethal Distending Toxin (CDT), produced by many bacteria, has been associated with various diseases including cancer. CDT induces DNA double-strand breaks (DSBs), leading to cell death or mutagenesis if misrepaired. At low doses of CDT, other DNA lesions precede replication-dependent DSB formation, implying that non-DSB repair mechanisms may contribute to CDT cell resistance. To address this question, we developed a proliferation assay using human cell lines specifically depleted in each of the main DNA repair pathways. Here, we validate the involvement of the two major DSB repair mechanisms, Homologous Recombination and Non Homologous End Joining, in the management of CDT-induced lesions. We show that impairment of single-strand break repair (SSBR), but not nucleotide excision repair, sensitizes cells to CDT, and we explore the interplay of SSBR with the DSB repair mechanisms. Finally, we document the role of the replicative stress response and demonstrate the involvement of the Fanconi Anemia repair pathway in response to CDT. In conclusion, our work indicates that cellular survival to CDT-induced DNA damage involves different repair pathways, in particular SSBR. This reinforces a model where CDT-related genotoxicity primarily involves SSBs rather than DSBs, underlining the importance of cell proliferation during CDT intoxication and pathogenicity.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW This article provides an overview of the biology, epidemiology, clinical features, diagnostic tests, and treatment of Haemophilus ducreyi infection, with special reference to the decline of chancroid and the recent emergence of H. ducreyi as a pathogen responsible for chronic limb ulceration clinically similar to yaws. RECENT FINDINGS Chancroid has declined in importance as a sexually transmitted infection in most countries where it was previously endemic. Chancroid may be caused by either class I or class II H. ducreyi isolates; these two classes diverged from each other approximately 1.95 million years ago. H. ducreyi has recently emerged as a cause of chronic skin ulceration in the Pacific region and Africa. Based on sequencing of whole genomes and defined genetic loci, it appears that the cutaneous H. ducreyi strains diverged from the class I genital strains relatively recently. SUMMARY H. ducreyi should be considered as a major cause of chronic limb ulceration in both adults and children and appropriate molecular diagnostic assays are required to determine ulcer aetiology. The high prevalence of H. ducreyi-related cutaneous ulceration in yaws-endemic countries has challenged the validity of observational surveys to monitor the effectiveness of the WHO's yaws eradication campaign.
Collapse
|
32
|
|
33
|
Boesze-Battaglia K, Alexander D, Dlakić M, Shenker BJ. A Journey of Cytolethal Distending Toxins through Cell Membranes. Front Cell Infect Microbiol 2016; 6:81. [PMID: 27559534 PMCID: PMC4978709 DOI: 10.3389/fcimb.2016.00081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
The multifunctional role of lipids as structural components of membranes, signaling molecules, and metabolic substrates makes them an ideal partner for pathogens to hijack host cell processes for their own survival. The properties and composition of unique membrane micro-domains such as membrane rafts make these regions a natural target for pathogens as it affords them an opportunity to hijack cell signaling and intracellular trafficking pathways. Cytolethal distending toxins (Cdts), members of the AB2 family of toxins are comprised of three subunits, the active, CdtB unit, and the binding, CdtA-CdtC unit. Cdts are cyclomodulins leading to cell cycle arrest and apoptosis in a wide variety of cell types. Cdts from several species share a requirement for membrane rafts, and often cholesterol specifically for cell binding and CdtB mediated cytotoxicity. In this review we focus on how host–cell membrane bilayer organization contributes to the cell surface association, internalization, and action of bacteria derived cytolethal distending toxins (Cdts), with an emphasis on Aggregatibacter actinomycetemcomitans Cdt.
Collapse
Affiliation(s)
| | - Desiree Alexander
- Department of Biochemistry, SDM, University of Pennsylvania Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Bruce J Shenker
- Department of Pathology, SDM, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
34
|
Impact of CDT Toxin on Human Diseases. Toxins (Basel) 2016; 8:toxins8070220. [PMID: 27429000 PMCID: PMC4963852 DOI: 10.3390/toxins8070220] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/18/2022] Open
Abstract
Cytolethal distending toxin (CDT) is found in Gram-negative bacteria, especially in certain Proteobacteria such as the Pasteurellaceae family, including Haemophilus ducreyi and Aggregatibacter (Actinobacillus) actinomycetemcomitans, in the Enterobacteriaceae family and the Campylobacterales order, including the Campylobacter and Helicobacter species. In vitro and in vivo studies have clearly shown that this toxin has a strong effect on cellular physiology (inflammation, immune response modulation, tissue damage). Some works even suggest a potential involvement of CDT in cancers. In this review, we will discuss these different aspects.
Collapse
|
35
|
Taieb F, Petit C, Nougayrède JP, Oswald E. The Enterobacterial Genotoxins: Cytolethal Distending Toxin and Colibactin. EcoSal Plus 2016; 7. [PMID: 27419387 PMCID: PMC11575708 DOI: 10.1128/ecosalplus.esp-0008-2016] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 06/06/2023]
Abstract
While the DNA damage induced by ionizing radiation and by many chemical compounds and drugs is well characterized, the genotoxic insults inflicted by bacteria are only scarcely documented. However, accumulating evidence indicates that we are exposed to bacterial genotoxins. The prototypes of such bacterial genotoxins are the Cytolethal Distending Toxins (CDTs) produced by Escherichia coli and Salmonella enterica serovar Typhi. CDTs display the DNase structure fold and activity, and induce DNA strand breaks in the intoxicated host cell nuclei. E. coli and certain other Enterobacteriaceae species synthesize another genotoxin, colibactin. Colibactin is a secondary metabolite, a hybrid polyketide/nonribosomal peptide compound synthesized by a complex biosynthetic machinery. In this review, we summarize the current knowledge on CDT and colibactin produced by E. coli and/or Salmonella Typhi. We describe their prevalence, genetic determinants, modes of action, and impact in infectious diseases or gut colonization, and discuss the possible involvement of these genotoxigenic bacteria in cancer.
Collapse
Affiliation(s)
- Frederic Taieb
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Claude Petit
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Jean-Philippe Nougayrède
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Eric Oswald
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| |
Collapse
|
36
|
Miller R, Wiedmann M. Dynamic Duo-The Salmonella Cytolethal Distending Toxin Combines ADP-Ribosyltransferase and Nuclease Activities in a Novel Form of the Cytolethal Distending Toxin. Toxins (Basel) 2016; 8:E121. [PMID: 27120620 PMCID: PMC4885037 DOI: 10.3390/toxins8050121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/30/2016] [Accepted: 04/15/2016] [Indexed: 01/02/2023] Open
Abstract
The cytolethal distending toxin (CDT) is a well characterized bacterial genotoxin encoded by several Gram-negative bacteria, including Salmonella enterica (S. enterica). The CDT produced by Salmonella (S-CDT) differs from the CDT produced by other bacteria, as it utilizes subunits with homology to the pertussis and subtilase toxins, in place of the traditional CdtA and CdtC subunits. Previously, S-CDT was thought to be a unique virulence factor of S. enterica subspecies enterica serotype Typhi, lending to its classification as the "typhoid toxin." Recently, this important virulence factor has been identified and characterized in multiple nontyphoidal Salmonella (NTS) serotypes as well. The significance of S-CDT in salmonellosis with regards to the: (i) distribution of S-CDT encoding genes among NTS serotypes, (ii) contributions to pathogenicity, (iii) regulation of S-CDT expression, and (iv) the public health implication of S-CDT as it relates to disease severity, are reviewed here.
Collapse
Affiliation(s)
- Rachel Miller
- Department of Food Science, Cornell University, Ithaca, NY 14850 USA.
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14850 USA.
| |
Collapse
|
37
|
Del Bel Belluz L, Guidi R, Pateras IS, Levi L, Mihaljevic B, Rouf SF, Wrande M, Candela M, Turroni S, Nastasi C, Consolandi C, Peano C, Tebaldi T, Viero G, Gorgoulis VG, Krejsgaard T, Rhen M, Frisan T. The Typhoid Toxin Promotes Host Survival and the Establishment of a Persistent Asymptomatic Infection. PLoS Pathog 2016; 12:e1005528. [PMID: 27055274 PMCID: PMC4824513 DOI: 10.1371/journal.ppat.1005528] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Bacterial genotoxins, produced by several Gram-negative bacteria, induce DNA damage in the target cells. While the responses induced in the host cells have been extensively studied in vitro, the role of these effectors during the course of infection remains poorly characterized. To address this issue, we assessed the effects of the Salmonella enterica genotoxin, known as typhoid toxin, in in vivo models of murine infection. Immunocompetent mice were infected with isogenic S. enterica, serovar Typhimurium (S. Typhimurium) strains, encoding either a functional or an inactive typhoid toxin. The presence of the genotoxic subunit was detected 10 days post-infection in the liver of infected mice. Unexpectedly, its expression promoted the survival of the host, and was associated with a significant reduction of severe enteritis in the early phases of infection. Immunohistochemical and transcriptomic analysis confirmed the toxin-mediated suppression of the intestinal inflammatory response. The presence of a functional typhoid toxin further induced an increased frequency of asymptomatic carriers. Our data indicate that the typhoid toxin DNA damaging activity increases host survival and favours long-term colonization, highlighting a complex cross-talk between infection, DNA damage response and host immune response. These findings may contribute to understand why such effectors have been evolutionary conserved and horizontally transferred among Gram-negative bacteria.
Collapse
Affiliation(s)
- Lisa Del Bel Belluz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo Guidi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis S. Pateras
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Laura Levi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Boris Mihaljevic
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Syed Fazle Rouf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Wrande
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudia Nastasi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, Italian National Research Council, Segrate, Milan, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, Italian National Research Council, Segrate, Milan, Italy
| | - Toma Tebaldi
- Centre for Integrative Biology University of Trento, Trento, Italy
| | | | - Vassilis G. Gorgoulis
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
38
|
Bacterial genotoxins: The long journey to the nucleus of mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:567-75. [DOI: 10.1016/j.bbamem.2015.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/17/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023]
|
39
|
Rosadi F, Fiorentini C, Fabbri A. Bacterial protein toxins in human cancers. Pathog Dis 2015; 74:ftv105. [DOI: 10.1093/femspd/ftv105] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 12/16/2022] Open
|
40
|
Shenker BJ, Walker LP, Zekavat A, Boesze-Battaglia K. Lymphoid susceptibility to the Aggregatibacter actinomycetemcomitans cytolethal distending toxin is dependent upon baseline levels of the signaling lipid, phosphatidylinositol-3,4,5-triphosphate. Mol Oral Microbiol 2015; 31:33-42. [PMID: 26299277 DOI: 10.1111/omi.12127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 01/31/2023]
Abstract
The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes and other cell types. We have shown that the active subunit, CdtB, exhibits phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity and depletes lymphoid cells of PIP3. Hence we propose that Cdt toxicity results from depletion of this signaling lipid and perturbation of phosphatidylinositol-3-kinase (PI-3K)/PIP3/Akt signaling. We have now focused on the relationship between cell susceptibility to CdtB and differences in the status of baseline PIP3 levels. Our studies demonstrate that the baseline level of PIP3, and likely the dependence of cells on steady-state activity of the PI-3K signaling pathway for growth and survival, influence cell susceptibility to the toxic effects of Cdt. Jurkat cells with known defects in both PIP3 degradative enzymes, PTEN and SHIP1, not only contain high baseline levels of PIP3, pAkt, and pGSK3β, but also exhibit high sensitivity to Cdt. In contrast, HUT78 cells, with no known defects in this pathway, contain low levels of PIP3, pAkt, and pGSK3β and likely minimal dependence on the PI-3K signaling pathway for growth and survival, and exhibit reduced susceptibility to Cdt. These differences in susceptibility to Cdt cannot be explained by differential toxin binding or internalization of the active subunit. Indeed, we now demonstrate that Jurkat and HUT78 cells bind toxin at comparable levels and internalize relatively equal amounts of CdtB. The relevance of these observations to the mode of action of Cdt and its potential role as a virulence factor is discussed.
Collapse
Affiliation(s)
- B J Shenker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - L P Walker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - A Zekavat
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - K Boesze-Battaglia
- Department of Biochemistry, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
41
|
Shenker BJ, Boesze-Battaglia K, Scuron MD, Walker LP, Zekavat A, Dlakić M. The toxicity of the Aggregatibacter actinomycetemcomitans cytolethal distending toxin correlates with its phosphatidylinositol-3,4,5-triphosphate phosphatase activity. Cell Microbiol 2015; 18:223-43. [PMID: 26247396 DOI: 10.1111/cmi.12497] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 12/22/2022]
Abstract
The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes and other cell types. We have shown that the active subunit, CdtB, exhibits phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity, leading us to propose that Cdt toxicity is the result of PIP3 depletion and perturbation of phosphatidylinositol-3-kinase (PI-3K)/PIP3/Akt signalling. To further explore this relationship, we have focused our analysis on identifying residues that comprise the catalytic pocket and are critical to substrate binding rather than catalysis. In this context, we have generated several CdtB mutants and demonstrate that, in each instance, the ability of the toxin to induce cell cycle arrest correlates with retention of phosphatase activity. We have also assessed the effect of Cdt on downstream components of the PI-3K signalling pathway. In addition to depletion of intracellular concentrations of PIP3, toxin-treated lymphocytes exhibit decreases in pAkt and pGSK3β. Further analysis indicates that toxin-treated cells exhibit a concomitant loss in Akt activity and increase in GSK3β kinase activity consistent with observed changes in their phosphorylation status. We demonstrate that cell susceptibility to Cdt is dependent upon dephosphorylation and concomitant activation of GSK3β. Finally, we demonstrate that, in addition to lymphocytes, HeLa cells exposed to a CdtB mutant that retains phosphatase activity and not DNase activity undergo G2 arrest in the absence of H2AX phosphorylation. Our results provide further insight into the mode of action by which Cdt may function as an immunotoxin and induce cell cycle arrest in target cells such as lymphocytes.
Collapse
Affiliation(s)
- Bruce J Shenker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Monika Damek Scuron
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Lisa P Walker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Ali Zekavat
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
42
|
Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology. Biomolecules 2015; 5:1762-82. [PMID: 26270677 PMCID: PMC4598774 DOI: 10.3390/biom5031762] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial genotoxins are unique among bacterial toxins as their molecular target is DNA. The consequence of intoxication or infection is induction of DNA breaks that, if not properly repaired, results in irreversible cell cycle arrest (senescence) or death of the target cells. At present, only three bacterial genotoxins have been identified. Two are protein toxins: the cytolethal distending toxin (CDT) family produced by a number of Gram-negative bacteria and the typhoid toxin produced by Salmonella enterica serovar Typhi. The third member, colibactin, is a peptide-polyketide genotoxin, produced by strains belonging to the phylogenetic group B2 of Escherichia coli. This review will present the cellular effects of acute and chronic intoxication or infection with the genotoxins-producing bacteria. The carcinogenic properties and the role of these effectors in the context of the host-microbe interaction will be discussed. We will further highlight the open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.
Collapse
|
43
|
Lemercier C. When our genome is targeted by pathogenic bacteria. Cell Mol Life Sci 2015; 72:2665-76. [PMID: 25877988 PMCID: PMC11114081 DOI: 10.1007/s00018-015-1900-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/20/2015] [Accepted: 04/02/2015] [Indexed: 01/19/2023]
Abstract
Eukaryotic cells repair thousands of lesions arising in the genome at each cell cycle. The most hazardous damage is likely DNA double-strand breaks (DSB) that cleave the double helix backbone. DSBs occur naturally during T cell receptor and immunoglobulin gene recombination in lymphocytes. DSBs can also arise as a consequence of exogenous stresses (e.g., ionizing irradiation, chemotherapeutic drugs, viruses) or oxidative processes. An increasing number of studies have reported that infection with pathogenic bacteria also alters the host genome, producing DSB and other modifications on DNA. This review focuses on recent data on bacteria-induced DNA damage and the known strategies used by these pathogens to maintain a physiological niche in the host. Even after DNA repair in infected cells, "scars" often remain on chromosomes and might generate genomic instability at the next cell division. Chronic inflammation in tissue, combined with infection and DNA damage, can give rise to genomic instability and eventually cancer. A functional link between the DNA damage response and the innate immune response has been recently established. Pathogenic bacteria also highjack the host cell cycle, often acting on the stability of the master regulator p53, or dampen the DNA damage response to support bacterial replication in an appropriate reservoir. Except in a few cases, the molecular mechanisms responsible for DNA lesions are poorly understood, although ROS release during infection is a serious candidate for generating DNA breaks. Thus, chronic or repetitive infections with genotoxic bacteria represent a common source of DNA lesions that compromise host genome integrity.
Collapse
Affiliation(s)
- Claudie Lemercier
- INSERM, UMR_S 1038, BGE (Large Scale Biology), 38054, Grenoble, France,
| |
Collapse
|
44
|
Levi L, Toyooka T, Patarroyo M, Frisan T. Bacterial genotoxins promote inside-out integrin β1 activation, formation of focal adhesion complexes and cell spreading. PLoS One 2015; 10:e0124119. [PMID: 25874996 PMCID: PMC4395369 DOI: 10.1371/journal.pone.0124119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/02/2015] [Indexed: 01/03/2023] Open
Abstract
Integrins are membrane bound receptors that regulate several cellular processes, such as cell adhesion, migration, survival and proliferation, and may contribute to tumor initiation/progression in cells exposed to genotoxic stress. The extent of integrin activation and its role in cell survival upon intoxication with bacterial genotoxins are still poorly characterized. These toxins induce DNA strand breaks in the target cells and activate the DNA damage response (DDR), coordinated by the Ataxia Telangectasia Mutated (ATM) kinase. In the present study, we demonstrate that induction of DNA damage by two bacterial genotoxins promotes activation of integrin β1, leading to enhanced assembly of focal adhesions and cell spreading on fibronectin, but not on vitronectin. This phenotype is mediated by an ATM-dependent inside-out integrin signaling, and requires the actin cytoskeleton remodeler NET1. The toxin-mediated cell spreading and anchorage-independent survival further relies on ALIX and TSG101, two components of the endosomal sorting complex required for transport (ESCRT), known to regulate integrin intracellular trafficking. These data reveal a novel aspect of the cellular response to bacterial genotoxins, and provide new tools to understand the carcinogenic potential of these effectors in the context of chronic intoxication and infection.
Collapse
Affiliation(s)
- Laura Levi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tatsushi Toyooka
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Patarroyo
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
45
|
Biology of the cell cycle inhibitor p21CDKN1A: molecular mechanisms and relevance in chemical toxicology. Arch Toxicol 2014; 89:155-78. [DOI: 10.1007/s00204-014-1430-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
|
46
|
Abstract
Some of the most potent toxins produced by plants and bacteria are members of a large family known as the AB toxins. AB toxins are generally characterized by a heterogenous complex consisting of two protein chains arranged in various monomeric or polymeric configurations. The newest class within this superfamily is the cytolethal distending toxin (Cdt). The Cdt is represented by a subfamily of toxins produced by a group of taxonomically distinct Gram negative bacteria. Members of this subfamily have a related AB-type chain or subunit configuration and properties distinctive to the AB paradigm. In this review, the unique structural and cytotoxic properties of the Cdt subfamily, target cell specificities, intoxication pathway, modes of action, and relationship to the AB toxin superfamily are compared and contrasted.
Collapse
|
47
|
Bezine E, Vignard J, Mirey G. The cytolethal distending toxin effects on Mammalian cells: a DNA damage perspective. Cells 2014; 3:592-615. [PMID: 24921185 PMCID: PMC4092857 DOI: 10.3390/cells3020592] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/27/2022] Open
Abstract
The cytolethal distending toxin (CDT) is produced by many pathogenic Gram-negative bacteria and is considered as a virulence factor. In human cells, CDT exposure leads to a unique cytotoxicity associated with a characteristic cell distension and induces a cell cycle arrest dependent on the DNA damage response (DDR) triggered by DNA double-strand breaks (DSBs). CDT has thus been classified as a cyclomodulin and a genotoxin. Whereas unrepaired damage can lead to cell death, effective, but improper repair may be detrimental. Indeed, improper repair of DNA damage may allow cells to resume the cell cycle and induce genetic instability, a hallmark in cancer. In vivo, CDT has been shown to induce the development of dysplastic nodules and to lead to genetic instability, defining CDT as a potential carcinogen. It is therefore important to characterize the outcome of the CDT-induced DNA damage and the consequences for intoxicated cells and organisms. Here, we review the latest results regarding the host cell response to CDT intoxication and focus on DNA damage characteristics, cell cycle modulation and cell outcomes.
Collapse
Affiliation(s)
- Elisabeth Bezine
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France.
| | - Julien Vignard
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France.
| | - Gladys Mirey
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France.
| |
Collapse
|
48
|
Canonico B, Campana R, Luchetti F, Arcangeletti M, Betti M, Cesarini E, Ciacci C, Vittoria E, Galli L, Papa S, Baffone W. Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells. Apoptosis 2014; 19:1225-42. [DOI: 10.1007/s10495-014-1005-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Shenker BJ, Walker LP, Zekavat A, Dlakić M, Boesze-Battaglia K. Blockade of the PI-3K signalling pathway by the Aggregatibacter actinomycetemcomitans cytolethal distending toxin induces macrophages to synthesize and secrete pro-inflammatory cytokines. Cell Microbiol 2014; 16:1391-404. [PMID: 24697951 DOI: 10.1111/cmi.12299] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/24/2014] [Accepted: 03/28/2014] [Indexed: 01/08/2023]
Abstract
The Aggregatibactor actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes; these toxic effects are due to the active subunit, CdtB, which functions as a phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase. We now extend our investigation and demonstrate that Cdt is able to perturb human macrophage function. THP-1- and monocyte-derived macrophages were found not to be susceptible to Cdt-induced apoptosis. Nonetheless, the toxin was capable of binding to macrophages and perturbing PI-3K signalling resulting in decreased PIP3 levels and reduced phosphorylation of Akt and GSK3β; these changes were accompanied by concomitant alterations in kinase activity. Exposure of monocytes and macrophages to Cdt resulted in pro-inflammatory cytokine production including increased expression and release of IL-1β, TNFα and IL-6. Furthermore, treatment of cells with either TLR-2, -3 or -4 agonists in the presence of Cdt resulted in an augmented pro-inflammatory response relative to agonist alone. GSK3β inhibitors blocked the Cdt-induced pro-inflammatory cytokine response suggesting a pivotal role for PI-3K blockade, concomitant decrease in GSK3β phosphorylation and increased kinase activity. Collectively, these studies provide new insight into the virulence potential of Cdt in mediating the pathogenesis of disease caused by Cdt-producing organisms.
Collapse
Affiliation(s)
- Bruce J Shenker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104-6030, USA
| | | | | | | | | |
Collapse
|
50
|
Cytolethal distending toxin (CDT) is a radiomimetic agent and induces persistent levels of DNA double-strand breaks in human fibroblasts. DNA Repair (Amst) 2014; 18:31-43. [PMID: 24680221 DOI: 10.1016/j.dnarep.2014.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/07/2014] [Accepted: 03/03/2014] [Indexed: 11/22/2022]
Abstract
Cytolethal distending toxin (CDT) is a unique genotoxin produced by several pathogenic bacteria. The tripartite protein toxin is internalized into mammalian cells via endocytosis followed by retrograde transport to the ER. Upon translocation into the nucleus, CDT catalyzes the formation of DNA double-strand breaks (DSBs) due to its intrinsic endonuclease activity. In the present study, we compared the DNA damage response (DDR) in human fibroblasts triggered by recombinant CDT to that of ionizing radiation (IR), a well-known DSB inducer. Furthermore, we dissected the pathways involved in the detection and repair of CDT-induced DNA lesions. qRT-PCR array-based mRNA and western blot analyses showed a partial overlap in the DDR pattern elicited by CDT and IR, with strong activation of both the ATM-Chk2 and the ATR-Chk1 axis. In line with its in vitro DNase I-like activity on plasmid DNA, neutral and alkaline Comet assay revealed predominant induction of DSBs in CDT-treated fibroblasts, whereas irradiation of cells generated higher amounts of SSBs and alkali-labile sites. Using confocal microscopy, the dynamics of the DSB surrogate marker γ-H2AX was monitored after pulse treatment with CDT or IR. In contrast to the fast induction and disappearance of γ-H2AX-foci observed in irradiated cells, the number of γ-H2AX-foci induced by CDT were formed with a delay and persisted. 53BP1 foci were also generated following CDT treatment and co-localized with γ-H2AX foci. We further demonstrated that ATM-deficient cells are very sensitive to CDT-induced DNA damage as reflected by increased cell death rates with concomitant cleavage of caspase-3 and PARP-1. Finally, we provided novel evidence that both homologous recombination (HR) and non-homologous end joining (NHEJ) protect against CDT-elicited DSBs. In conclusion, the findings suggest that CDT functions as a radiomimetic agent and, therefore, is an attractive tool for selectively inducing persistent levels of DSBs and unveiling the associated cellular responses.
Collapse
|