1
|
Horn D, Salzano AD, Jenewein EC, Weise KK, Schaeffel F, Mathis U, Khanal S. Topical review: Potential mechanisms of atropine for myopia control. Optom Vis Sci 2025:00006324-990000000-00271. [PMID: 40168189 DOI: 10.1097/opx.0000000000002249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
SIGNIFICANCE Atropine is effective at slowing myopia progression in children, but the mechanism of action by which it controls myopia remains unclear. This article is an evidenced-based review of potential receptor-based mechanisms by which atropine may act to slow the progression of myopia.The rising number of individuals with myopia worldwide and the association between myopia and vision-threatening ocular pathologies have made myopia control treatments one of the fastest growing areas of ophthalmic research. High-concentration atropine (1%) is the most effective treatment for slowing myopia progression to date; low concentrations of atropine (≤0.05%) appear partially effective and are currently being used to slow myopia progression in children. While significant progress has been made in the past few decades in understanding fundamental mechanisms by which atropine may control myopia, the precise characterization of how atropine works for myopia control remains incomplete. It is plausible that atropine slows myopia via its affinity to muscarinic receptors and influence on accommodation, but animal studies suggest that this is likely not the case. Other studies have shown that, in addition to muscarinic receptors, atropine can also bind, or affect the action of, dopamine, alpha-2-adrenergic, gamma-aminobutyric acid, and cytokine receptors in slowing myopia progression. This review summarizes atropine's effects on different receptor pathways of ocular tissues and discusses how these effects may or may not contribute to slowing myopia progression. Given the relatively broad array of receptor-based mechanisms implicated in atropine control of myopia, a single mode of action of atropine is unlikely; rather atropine may be exerting its myopia control effects directly or indirectly via several mechanisms at multiple levels of ocular tissues, all of which likely trigger the response in the same direction to inhibit eye growth and myopia progression.
Collapse
Affiliation(s)
- Darryl Horn
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania
| | - Aaron D Salzano
- Department of Vision Therapy and Pediatrics, Pacific University College of Optometry, Forest Grove, Oregon
| | - Erin C Jenewein
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania
| | - Katherine K Weise
- Department of Optometry and Vision Science, University of Alabama at Birmingham School of Optometry, Birmingham, Alabama
| | - Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland
- Section Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Ute Mathis
- Section Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Safal Khanal
- Department of Optometry and Vision Science, University of Alabama at Birmingham School of Optometry, Birmingham, Alabama
| |
Collapse
|
2
|
Inderwiedenstraße L, Kienitz MC. Angiotensin receptors and α 1B-adrenergic receptors regulate native IK (ACh) and phosphorylation-deficient GIRK4 (S418A) channels through different PKC isoforms. Pflugers Arch 2024; 476:1041-1064. [PMID: 38658400 DOI: 10.1007/s00424-024-02966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Signaling of G protein-activated inwardly rectifying K+ (GIRK) channels is an important mechanism of the parasympathetic regulation of the heart rate and cardiac excitability. GIRK channels are inhibited during stimulation of Gq-coupled receptors (GqPCRs) by depletion of phosphatidyl-4,5-bisphosphate (PIP2) and/or channel phosphorylation by protein kinase C (PKC). The GqPCR-dependent modulation of GIRK currents in terms of specific PKC isoform activation was analyzed in voltage-clamp experiments in rat atrial myocytes and in CHO or HEK 293 cells. By using specific PKC inhibitors, we identified the receptor-activated PKC isoforms that contribute to phenylephrine- and angiotensin-induced GIRK channel inhibition. We demonstrate that the cPKC isoform PKCα significantly contributes to GIRK inhibition during stimulation of wildtype α1B-adrenergic receptors (α1B-ARs). Deletion of the α1B-AR serine residues S396 and S400 results in a preferential regulation of GIRK activity by PKCβ. As a novel finding, we report that the AT1-receptor-induced GIRK inhibition depends on the activation of the nPKC isoform PKCε whereas PKCα and PKCβ do not mainly participate in the angiotensin-mediated GIRK reduction. Expression of the dominant negative (DN) PKCε prolonged the onset of GIRK inhibition and significantly reduced AT1-R desensitization, indicating that PKCε regulates both GIRK channel activity and the strength of the receptor signal via a negative feedback mechanism. The serine residue S418 represents an important phosphorylation site for PKCε in the GIRK4 subunit. To analyze the functional impact of this PKC phosphorylation site for receptor-specific GIRK channel modulation, we monitored the activity of a phosphorylation-deficient (GIRK4 (S418A)) GIRK4 channel mutant during stimulation of α1B-ARs or AT1-receptors. Mutation of S418 did not impede α1B-AR-mediated GIRK inhibition, suggesting that S418 within the GIRK4 subunit is not subject to PKCα-induced phosphorylation. Furthermore, activation of angiotensin receptors induced pronounced GIRK4 (S418A) channel inhibition, excluding that this phosphorylation site contributes to the AT1-R-induced GIRK reduction. Instead, phosphorylation of S418 has a facilitative effect on GIRK activity that was abolished in the GIRK4 (S418A) mutant. To summarize, the present study shows that the receptor-dependent regulation of atrial GIRK channels is attributed to the GqPCR-specific activation of different PKC isoforms. Receptor-specific activated PKC isoforms target distinct phosphorylation sites within the GIRK4 subunit, resulting in differential regulation of GIRK channel activity with either facilitative or inhibitory effects on GIRK currents.
Collapse
Affiliation(s)
- Leonie Inderwiedenstraße
- Department for Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Marie-Cécile Kienitz
- Department for Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
3
|
Boyle CA, Kola PK, Oraegbuna CS, Lei S. Leptin excites basolateral amygdala principal neurons and reduces food intake by LepRb-JAK2-PI3K-dependent depression of GIRK channels. J Cell Physiol 2024; 239:e31117. [PMID: 37683049 PMCID: PMC10920395 DOI: 10.1002/jcp.31117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Leptin is an adipocyte-derived hormone that modulates food intake, energy balance, neuroendocrine status, thermogenesis, and cognition. Whereas a high density of leptin receptors has been detected in the basolateral amygdala (BLA) neurons, the physiological functions of leptin in the BLA have not been determined yet. We found that application of leptin excited BLA principal neurons by activation of the long form leptin receptor, LepRb. The LepRb-elicited excitation of BLA neurons was mediated by depression of the G protein-activated inwardly rectifying potassium (GIRK) channels. Janus Kinase 2 (JAK2) and phosphoinositide 3-kinase (PI3K) were required for leptin-induced excitation of BLA neurons and depression of GIRK channels. Microinjection of leptin into the BLA reduced food intake via activation of LepRb, JAK2, and PI3K. Our results may provide a cellular and molecular mechanism to explain the physiological roles of leptin in vivo.
Collapse
Affiliation(s)
- Cody A. Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Phani K. Kola
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Chidiebele S. Oraegbuna
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
4
|
Findlay I, Pasqualin C, Yu A, Maupoil V, Bredeloux P. Selective Inhibition of Pulmonary Vein Excitability by Constitutively Active GIRK Channels Blockade in Rats. Int J Mol Sci 2023; 24:13629. [PMID: 37686437 PMCID: PMC10487709 DOI: 10.3390/ijms241713629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Pulmonary veins (PV) are the main source of ectopy, triggering atrial fibrillation. This study investigated the roles of G protein-coupled inwardly rectifying potassium (GIRK) channels in the PV and the left atrium (LA) of the rat. Simultaneous intracellular microelectrode recording from the LA and the PV of the rat found that in the presence or absence of acetylcholine, the GIRK channel blocker tertiapin-Q induced AP duration elongation in the LA and the loss of over-shooting AP in the PV, suggesting the presence of constitutively active GIRK channels in these tissues. Patch-clamp recordings from isolated myocytes showed that tertiapin-Q inhibited a basal inwardly rectified background current in PV cells with little effect in LA cells. Experiments with ROMK1 and KCa1.1 channel blockers ruled out the possibility of an off-target effect. Western blot showed that GIRK4 subunit expression was greater in PV cardiomyocytes, which may explain the differences observed between PV and LA in response to tertiapin-Q. In conclusion, GIRK channels blockade abolishes AP only in the PV, providing a molecular target to induce electrical disconnection of the PV from the LA.
Collapse
Affiliation(s)
- Ian Findlay
- Laboratoire de Pharmacologie, Faculté de Pharmacie, Université de Tours, 37200 Tours, France;
| | - Côme Pasqualin
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| | - Angèle Yu
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| | - Véronique Maupoil
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| | - Pierre Bredeloux
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| |
Collapse
|
5
|
DeMars KM, Ross MR, Starr A, McIntyre JC. Neuronal primary cilia integrate peripheral signals with metabolic drives. Front Physiol 2023; 14:1150232. [PMID: 37064917 PMCID: PMC10090425 DOI: 10.3389/fphys.2023.1150232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Neuronal primary cilia have recently emerged as important contributors to the central regulation of energy homeostasis. As non-motile, microtubule-based organelles, primary cilia serve as signaling antennae for metabolic status. The impairment of ciliary structure or function can produce ciliopathies for which obesity is a hallmark phenotype and global ablation of cilia induces non-syndromic adiposity in mouse models. This organelle is not only a hub for metabolic signaling, but also for catecholamine neuromodulation that shapes neuronal circuitry in response to sensory input. The objective of this review is to highlight current research investigating the mechanisms of primary cilium-regulated metabolic drives for maintaining energy homeostasis.
Collapse
Affiliation(s)
- Kelly M. DeMars
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Madeleine R. Ross
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Summer Neuroscience Internship Program, University of Florida, Gainesville, FL, United States
| | - Alana Starr
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Yoon JY, Ho WK. Involvement of Ca2+ in Signaling Mechanisms Mediating Muscarinic Inhibition of M Currents in Sympathetic Neurons. Cell Mol Neurobiol 2022:10.1007/s10571-022-01303-7. [DOI: 10.1007/s10571-022-01303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
AbstractAcetylcholine can excite neurons by suppressing M-type (KCNQ) potassium channels. This effect is mediated by M1 muscarinic receptors coupled to the Gq protein. Although PIP2 depletion and PKC activation have been strongly suggested to contribute to muscarinic inhibition of M currents (IM), direct evidence is lacking. We investigated the mechanism involved in muscarinic inhibition of IM with Ca2+ measurement and electrophysiological studies in both neuronal (rat sympathetic neurons) and heterologous (HEK cells expressing KCNQ2/KCNQ3) preparations. We found that muscarinic inhibition of IM was not blocked either by PIP2 or by calphostin C, a PKC inhibitor. We then examined whether muscarinic inhibition of IM uses multiple signaling pathways by blocking both PIP2 depletion and PKC activation. This maneuver, however, did not block muscarinic inhibition of IM. Additionally, muscarinic inhibition of IM was not prevented either by sequestering of G-protein βγ subunits from Gα-transducin or anti-Gβγ antibody or by preventing intracellular trafficking of channel proteins with blebbistatin, a class-II myosin inhibitor. Finally, we re-examined the role of Ca2+ signals in muscarinic inhibition of IM. Ca2+ measurements showed that muscarinic stimulation increased intracellular Ca2+ and was comparable to the Ca2+ mobilizing effect of bradykinin. Accordingly, 20-mM of BAPTA significantly suppressed muscarinic inhibition of IM. In contrast, muscarinic inhibition of IM was completely insensitive to 20-mM EGTA. Taken together, these data suggest a role of Ca2+ signaling in muscarinic modulation of IM. The differential effects of EGTA and BAPTA imply that Ca2+ microdomains or spatially local Ca2+ signals contribute to inhibition of IM.
Collapse
|
7
|
Boyle CA, Hu B, Quaintance KL, Mastrud MR, Lei S. Ionic signalling mechanisms involved in neurokinin-3 receptor-mediated augmentation of fear-potentiated startle response in the basolateral amygdala. J Physiol 2022; 600:4325-4345. [PMID: 36030507 PMCID: PMC9529888 DOI: 10.1113/jp283433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 09/10/2023] Open
Abstract
The tachykinin peptides include substance P (SP), neurokinin A and neurokinin B, which interact with three G-protein-coupled neurokinin receptors, NK1Rs, NK2Rs and NK3Rs, respectively. Whereas high densities of NK3Rs have been detected in the basolateral amygdala (BLA), the functions of NK3Rs in this brain region have not been determined. We found that activation of NK3Rs by application of the selective agonist, senktide, persistently excited BLA principal neurons. NK3R-elicited excitation of BLA neurons was mediated by activation of a non-selective cation channel and depression of the inwardly rectifying K+ (Kir) channels. With selective channel blockers and knockout mice, we further showed that NK3R activation excited BLA neurons by depressing the G protein-activated inwardly rectifying K+ (GIRK) channels and activating TRPC4 and TRPC5 channels. The effects of NK3Rs required the functions of phospholipase Cβ (PLCβ), but were independent of intracellular Ca2+ release and protein kinase C. PLCβ-mediated depletion of phosphatidylinositol 4,5-bisphosphate was involved in NK3R-induced excitation of BLA neurons. Microinjection of senktide into the BLA of rats augmented fear-potentiated startle (FPS) and this effect was blocked by prior injection of the selective NK3R antagonist SB 218795, suggesting that activation of NK3Rs in the BLA increased FPS. We further showed that TRPC4/5 and GIRK channels were involved in NK3R-elicited facilitation of FPS. Our results provide a cellular and molecular mechanism whereby NK3R activation excites BLA neurons and enhances FPS. KEY POINTS: Activation of NK3 receptors (NK3Rs) facilitates the excitability of principal neurons in rat basolateral amygdala (BLA). NK3R-induced excitation is mediated by inhibition of GIRK channels and activation of TRPC4/5 channels. Phospholipase Cβ and depletion of phosphatidylinositol 4,5-bisphosphate are necessary for NK3R-mediated excitation of BLA principal neurons. Activation of NK3Rs in the BLA facilitates fear-potentiated startle response. GIRK channels and TRPC4/5 channels are involved in NK3R-mediated augmentation of fear-potentiated startle.
Collapse
Affiliation(s)
- Cody A. Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Kati L. Quaintance
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Morgan R. Mastrud
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
8
|
Hu B, Boyle CA, Lei S. Roles of PLCβ, PIP 2 , and GIRK channels in arginine vasopressin-elicited excitation of CA1 pyramidal neurons. J Cell Physiol 2021; 237:660-674. [PMID: 34287874 DOI: 10.1002/jcp.30535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Arginine vasopressin (AVP) is a hormone exerting vasoconstrictive and antidiuretic action in the periphery and serves as a neuromodulator in the brain. Although the hippocampus receives vasopressinergic innervation and AVP has been shown to facilitate the excitability of CA1 pyramidal neurons, the involved ionic and signaling mechanisms have not been determined. Here we found that AVP excited CA1 pyramidal neurons by activation of V1a receptors. Functions of G proteins and phospholipase Cβ (PLCβ) were required for AVP-elicited excitation of CA1 pyramidal neurons, whereas intracellular Ca2+ release and protein kinase C were unnecessary. PLCβ-mediated depletion of phosphatidylinositol 4,5-bisphosphate (PIP2 ) was required for AVP-elicited excitation of CA1 pyramidal neurons. AVP augmented the input resistance and increased the time constants of CA1 pyramidal neurons. AVP induced an inward current in K+ -containing intracellular solution, whereas no inward currents were observed with Cs+ -containing intracellular solution. AVP-sensitive currents showed inward rectification with a reversal potential close to the K+ reversal potential, suggesting the involvement of inwardly rectifying K+ channels. AVP-induced currents were sensitive to the micromolar concentration of Ba2+ and tertiapin-Q, whereas application of ML 133, a selective Kir2 channel blocker had no effects, suggesting that AVP excited CA1 pyramidal neurons by depressing G protein-gated inwardly rectifying K+ channels. Activation of V1a receptors in the CA1 region facilitated glutamatergic transmission onto subicular pyramidal neurons, suggesting that AVP modulates network activity in the brain. Our results may provide one of the cellular and molecular mechanisms to explain the in vivo physiological functions of AVP.
Collapse
Affiliation(s)
- Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Cody A Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
9
|
Lei S, Hu B. Ionic and signaling mechanisms involved in neurotensin-mediated excitation of central amygdala neurons. Neuropharmacology 2021; 196:108714. [PMID: 34271017 DOI: 10.1016/j.neuropharm.2021.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Neurotensin (NT) serves as a neuromodulator in the brain where it regulates a variety of physiological functions. Whereas the central amygdala (CeA) expresses NT peptide and NTS1 receptors and application of NT has been shown to excite CeA neurons, the underlying cellular and molecular mechanisms have not been determined. We found that activation of NTS1 receptors increased the neuronal excitability of the lateral nucleus (CeL) of CeA. Both phospholipase Cβ (PLCβ) and phosphatidylinositol 4,5-bisphosphate (PIP2) depletion were required, whereas intracellular Ca2+ release and PKC were unnecessary for NT-elicited excitation of CeL neurons. NT increased the input resistance and time constants of CeL neurons, suggesting that NT excites CeL neurons by decreasing a membrane conductance. Depressions of the inwardly rectifying K+ (Kir) channels including both the Kir2 subfamily and the GIRK channels were required for NT-elicited excitation of CeL neurons. Activation of NTS1 receptors in the CeL led to GABAergic inhibition of medial nucleus of CeA neurons, suggesting that NT modulates the network activity in the amygdala. Our results may provide a cellular and molecular mechanism to explain the physiological functions of NT in vivo.
Collapse
Affiliation(s)
- Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA.
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
10
|
Boyle CA, Hu B, Quaintance KL, Lei S. Involvement of TRPC5 channels, inwardly rectifying K + channels, PLCβ and PIP 2 in vasopressin-mediated excitation of medial central amygdala neurons. J Physiol 2021; 599:3101-3119. [PMID: 33871877 DOI: 10.1113/jp281260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Activation of V1a vasopressin receptors facilitates neuronal excitability in the medial nucleus of central amygdala (CeM) V1a receptor activation excites about 80% CeM neurons by opening a cationic conductance and about 20% CeM neurons by suppressing an inwardly rectifying K+ (Kir) channel The cationic conductance activated by V1a receptors is identified as TRPC5 channels PLCβ-mediated depletion of PIP2 is involved in V1a receptor-elicited excitation of CeM neurons Intracellular Ca2+ release and PKC are unnecessary for V1a receptor-mediated excitation of CeM neurons ABSTRACT: Arginine vasopressin (AVP) serves as a hormone in the periphery to modulate water homeostasis and a neuromodulator in the brain to regulate a diverse range of functions including anxiety, social behaviour, cognitive activities and nociception. The amygdala is an essential brain region involved in modulating defensive and appetitive behaviours, pain and alcohol use disorders. Whereas activation of V1a receptors in the medial nucleus of the central amygdala (CeM) increases neuronal excitability, the involved ionic and signalling mechanisms have not been determined. We found that activation of V1a receptors in the CeM facilitated neuronal excitability predominantly by opening TRPC5 channels, although AVP excited about one fifth of the CeM neurons via suppressing an inwardly rectifying K+ (Kir) channel. G proteins and phospholipase Cβ (PLCβ) were required for AVP-elicited excitation of CeM neurons, whereas intracellular Ca2+ release and the activity of protein kinase C were unnecessary. Prevention of the depletion of phosphatidylinositol 4,5-bisphosphate (PIP2 ) blocked AVP-induced excitation of CeM neurons, suggesting that PLCβ-mediated depletion of PIP2 is involved in AVP-mediated excitation of CeM neurons. Our results may provide a cellular and molecular mechanism to explain the anxiogenic effects of AVP in the amygdala.
Collapse
Affiliation(s)
- Cody A Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Kati L Quaintance
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
11
|
Niemeyer A, Rinne A, Kienitz MC. Receptor-specific regulation of atrial GIRK channel activity by different Ca2+-dependent PKC isoforms. Cell Signal 2019; 64:109418. [DOI: 10.1016/j.cellsig.2019.109418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022]
|
12
|
Salazar-Fajardo PD, Aréchiga-Figueroa IA, López-Serrano AL, Rodriguez-Elias JC, Alamilla J, Sánchez-Chapula JA, Tristani-Firouzi M, Navarro-Polanco RA, Moreno-Galindo EG. The voltage-sensitive cardiac M 2 muscarinic receptor modulates the inward rectification of the G protein-coupled, ACh-gated K + current. Pflugers Arch 2018; 470:1765-1776. [PMID: 30155776 DOI: 10.1007/s00424-018-2196-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/28/2018] [Accepted: 08/13/2018] [Indexed: 11/25/2022]
Abstract
The acetylcholine (ACh)-gated inwardly rectifying K+ current (IKACh) plays a vital role in cardiac excitability by regulating heart rate variability and vulnerability to atrial arrhythmias. These crucial physiological contributions are determined principally by the inwardly rectifying nature of IKACh. Here, we investigated the relative contribution of two distinct mechanisms of IKACh inward rectification measured in atrial myocytes: a rapid component due to KACh channel block by intracellular Mg2+ and polyamines; and a time- and concentration-dependent mechanism. The time- and ACh concentration-dependent inward rectification component was eliminated when IKACh was activated by GTPγS, a compound that bypasses the muscarinic-2 receptor (M2R) and directly stimulates trimeric G proteins to open KACh channels. Moreover, the time-dependent component of IKACh inward rectification was also eliminated at ACh concentrations that saturate the receptor. These observations indicate that the time- and concentration-dependent rectification mechanism is an intrinsic property of the receptor, M2R; consistent with our previous work demonstrating that voltage-dependent conformational changes in the M2R alter the receptor affinity for ACh. Our analysis of the initial and time-dependent components of IKACh indicate that rapid Mg2+-polyamine block accounts for 60-70% of inward rectification, with M2R voltage sensitivity contributing 30-40% at sub-saturating ACh concentrations. Thus, while both inward rectification mechanisms are extrinsic to the KACh channel, to our knowledge, this is the first description of extrinsic inward rectification of ionic current attributable to an intrinsic voltage-sensitive property of a G protein-coupled receptor.
Collapse
Affiliation(s)
- Pedro D Salazar-Fajardo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico
| | - Iván A Aréchiga-Figueroa
- CONACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Ana Laura López-Serrano
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico
| | - Julio C Rodriguez-Elias
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico
| | - Javier Alamilla
- CONACyT, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, COL, Mexico
| | - José A Sánchez-Chapula
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Ricardo A Navarro-Polanco
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico.
| | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico.
| |
Collapse
|
13
|
Ma J, Hong K, Wang HS. Progesterone Protects Against Bisphenol A-Induced Arrhythmias in Female Rat Cardiac Myocytes via Rapid Signaling. Endocrinology 2017; 158:778-790. [PMID: 28324061 PMCID: PMC5460806 DOI: 10.1210/en.2016-1702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is an estrogenic endocrine-disrupting chemical (EDC) that has a range of potential adverse health effects. Previously we showed that acute exposure to BPA promoted arrhythmias in female rat hearts through estrogen receptor rapid signaling. Progesterone (P4) and estrogen have antagonistic or complementary actions in a number of tissues and systems. In the current study, we examined the influence and possible protective effect of P4 on the rapid cardiac actions of BPA in female rat cardiac myocytes. Preincubation with physiological concentration (1 nM) of P4 abolished BPA-induced triggered activities in female cardiac myocytes. Further, P4 abrogated BPA-induced alterations in Ca2+ handling, including elevated sarcoplasmic reticulum Ca2+ leak and Ca2+ load. Key to the inhibitory effect of P4 is its blockade of BPA-induced increase in the phosphorylation of phospholamban. At myocyte and protein levels, these inhibitory actions of P4 were blocked by pretreatment with the nuclear P4 receptor (nPR) antagonist RU486. Analysis using membrane-impermeable bovine serum albumin-conjugated P4 suggested that the actions of P4 were mediated by membrane-initiated signaling. Inhibitory G (Gi) protein and phophoinositide-3 kinase (PI3K), but not tyrosine protein kinase activation, were involved in the observed effects of P4. In conclusion, P4 exerts an acute protective effect against BPA-induced arrhythmogenesis in female cardiac myocytes through nPR and the Gi/PI3K signaling pathway. Our findings highlight the importance of considering the impact of EDCs in the context of native hormonals and may provide potential therapeutic strategies for protection against the cardiac toxicities associated with BPA exposure.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Kui Hong
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hong-Sheng Wang
- Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| |
Collapse
|
14
|
Hill-Eubanks DC, Gonzales AL, Sonkusare SK, Nelson MT. Vascular TRP channels: performing under pressure and going with the flow. Physiology (Bethesda) 2015; 29:343-60. [PMID: 25180264 DOI: 10.1152/physiol.00009.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells and smooth muscle cells of resistance arteries mediate opposing responses to mechanical forces acting on the vasculature, promoting dilation in response to flow and constriction in response to pressure, respectively. In this review, we explore the role of TRP channels, particularly endothelial TRPV4 and smooth muscle TRPC6 and TRPM4 channels, in vascular mechanosensing circuits, placing their putative mechanosensitivity in context with other proposed upstream and downstream signaling pathways.
Collapse
Affiliation(s)
| | - Albert L Gonzales
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
15
|
Dascal N, Kahanovitch U. The Roles of Gβγ and Gα in Gating and Regulation of GIRK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:27-85. [DOI: 10.1016/bs.irn.2015.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Logothetis DE, Petrou VI, Zhang M, Mahajan R, Meng XY, Adney SK, Cui M, Baki L. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Annu Rev Physiol 2014; 77:81-104. [PMID: 25293526 DOI: 10.1146/annurev-physiol-021113-170358] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anionic phospholipids are critical constituents of the inner leaflet of the plasma membrane, ensuring appropriate membrane topology of transmembrane proteins. Additionally, in eukaryotes, the negatively charged phosphoinositides serve as key signals not only through their hydrolysis products but also through direct control of transmembrane protein function. Direct phosphoinositide control of the activity of ion channels and transporters has been the most convincing case of the critical importance of phospholipid-protein interactions in the functional control of membrane proteins. Furthermore, second messengers, such as [Ca(2+)]i, or posttranslational modifications, such as phosphorylation, can directly or allosterically fine-tune phospholipid-protein interactions and modulate activity. Recent advances in structure determination of membrane proteins have allowed investigators to obtain complexes of ion channels with phosphoinositides and to use computational and experimental approaches to probe the dynamic mechanisms by which lipid-protein interactions control active and inactive protein states.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0551;
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Short-term desensitization of muscarinic K+ current in the heart. Biophys J 2014; 105:1515-25. [PMID: 24048003 DOI: 10.1016/j.bpj.2013.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/10/2023] Open
Abstract
Acetylcholine (ACh) rapidly increases cardiac K(+) currents (IKACh) by activating muscarinic K(+) (KACh) channels followed by a gradual amplitude decrease within seconds. This phenomenon is called short-term desensitization and its precise mechanism and physiological role are still unclear. We constructed a mathematical model for IKACh to examine the conditions required to reconstitute short-term desensitization. Two conditions were crucial: two distinct muscarinic receptors (m2Rs) with different affinities for ACh, which conferred an IKACh response over a wide range of ACh concentrations, and two distinct KACh channels with different affinities for the G-protein βγ subunits, which contributed to reconstitution of the temporal behavior of IKACh. Under these conditions, the model quantitatively reproduced several unique properties of short-term desensitization observed in myocytes: 1), the peak and quasi-steady states with 0.01-100 μM [ACh]; 2), effects of ACh preperfusion; and 3), recovery from short-term desensitization. In the presence of 10 μM ACh, the IKACh model conferred recurring spontaneous firing after asystole of 8.9 s and 10.7 s for the Demir and Kurata sinoatrial node models, respectively. Therefore, two different populations of KACh channels and m2Rs may participate in short-term desensitization of IKACh in native myocytes, and may be responsible for vagal escape at nodal cells.
Collapse
|
18
|
Constitutive Activity of the Acetylcholine-Activated Potassium Current IK,ACh in Cardiomyocytes. ADVANCES IN PHARMACOLOGY 2014; 70:393-409. [DOI: 10.1016/b978-0-12-417197-8.00013-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Vanheiden S, Pott L, Kienitz MC. Voltage-dependent open-channel block of G protein-gated inward-rectifying K(+) (GIRK) current in rat atrial myocytes by tamoxifen. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:1149-60. [PMID: 23096593 DOI: 10.1007/s00210-012-0801-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/09/2012] [Indexed: 01/15/2023]
Abstract
Tamoxifen (Tmx) is a nonsteroidal selective estrogen receptor antagonist and is frequently used in the treatment and prevention of breast cancer. The compound and its metabolites have been reported to inhibit functions of different classes of membrane proteins, including various ion channels. For members of the inward-rectifying K(+) (Kir) channel family, interference of Tmx with binding of phosphatidylinositol 4,5-bisphosphate (PIP(2)) has been suggested as the mechanism underlying such inhibition. We have studied the inhibition of G protein-activated K(+) (GIRK) current by Tmx in isolated myocytes from hearts of adult rats using whole-cell voltage clamp and experimental conditions for measuring K(+) currents as inward currents (E (K) -50 mV; holding potential -90 mV). Extracellular Tmx reversibly inhibited GIRK current activated by acetylcholine (I (K(ACh))) with an EC(50) of 7.4 × 10(-7) M. This inhibition was composed of two components, a basal reduction in peak current and a block that required opening of channels by ACh. The open-channel block was partially relieved by depolarizing voltage steps in a voltage- and time-dependent fashion. A voltage-dependent open-channel block was not observed when I (K(ACh)) was measured as outward current (E (K) -90 mV; holding potential -40 mV). Intracellular application of Tmx via the patch clamp pipette at a concentration (7 × 10(-6) M) that caused a rapid inhibition of I (K(ACh)) upon extracellular application did not affect the current. Intracellular application of the H(2)O-soluble PIP(2) analog diC(8)-PIP(2) reduced the voltage-independent component of inhibition but had no effect on voltage-dependent open-channel block. The effects of 4-hydroxy-Tmx, a major active metabolite, tested at 2 × 10(-6) M, had effects on I (K(ACh)) analogous to those of Tmx. Inhibition of constitutive inward-rectifying K(+) current (I (K1)) in ventricular myocytes, carried by Kir2 complexes, by Tmx was devoid of a voltage-dependent component. This study suggests the voltage-dependent open-channel block of GIRK inward current as a novel mechanism of Tmx action.
Collapse
Affiliation(s)
- Svenja Vanheiden
- Institute of Physiology, Ruhr-University Bochum, 44780, Bochum, Germany
| | | | | |
Collapse
|
20
|
Regulatory mechanisms underlying the modulation of GIRK1/GIRK4 heteromeric channels by P2Y receptors. Pflugers Arch 2012; 463:625-33. [PMID: 22362083 DOI: 10.1007/s00424-012-1082-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/05/2012] [Accepted: 02/06/2012] [Indexed: 01/10/2023]
Abstract
The muscarinic K(+) channel (I (K,ACh)) is a heterotetramer composed of GIRK1 (Kir3.1) and GIRK4 (Kir3.4) subunits of a G protein-coupled inwardly rectifying channel, and plays an important role in mediating electrical responses to the vagal stimulation in the heart. I (K,ACh) displays biphasic changes (activation followed by inhibition) through the stimulation of the purinergic P2Y receptors, but the regulatory mechanism involved in these modulation of I (K,ACh) by P2Y receptors remains to be fully elucidated. Various P2Y receptor subtypes and GIRK1/GIRK4 (I (GIRK)) were co-expressed in Chinese hamster ovary cells, and the effect of stimulation of P2Y receptor subtypes on I (GIRK) were examined using the whole-cell patch-clamp method. Extracellular application of 10 μM ATP induced a transient activation of I (GIRK) through the P2Y(1) receptor, which was completely abolished by pretreatment with pertussis toxin. ATP initially caused an additive transient increase in ACh-activated I (GIRK) (via M(2) receptor), which was followed by subsequent inhibition. This inhibition of I (GIRK) by ATP was attenuated by co-expression of regulator of G-protein signaling 2, or phosphatidylinositol-4-phosphate-5-kinase, or intracellular phosphatidylinositol 4,5-bisphosphate loading, but not by the exposure to protein kinase C inhibitors. P2Y(4) stimulation also persistently suppressed the ACh-activated I (GIRK). In addition, I (GIRK) evoked by the stimulation of the P2Y(4) receptor exhibited a transient activation, but that evoked by the stimulation of P2Y(2) or P2Y(12) receptor showed a rather persistent activation. These results reveal (1) that P2Y(1) and P2Y(4) are primarily coupled to the G(q)-phospholipase C-pathway, while being weakly linked to G(i/o), and (2) that P2Y(2) and P2Y(12) involve G(i/o) activation.
Collapse
|
21
|
Pasteurella multocida toxin interaction with host cells: entry and cellular effects. Curr Top Microbiol Immunol 2012; 361:93-111. [PMID: 22552700 PMCID: PMC4408768 DOI: 10.1007/82_2012_219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mitogenic dermonecrotic toxin from Pasteurella multocida (PMT) is a 1285-residue multipartite protein that belongs to the A-B family of bacterial protein toxins. Through its G-protein-deamidating activity on the α subunits of heterotrimeric G(q)-, G(i)- and G(12/13)-proteins, PMT potently stimulates downstream mitogenic, calcium, and cytoskeletal signaling pathways. These activities lead to pleiotropic effects in different cell types, which ultimately result in cellular proliferation, while inhibiting cellular differentiation, and account for the myriad of physiological outcomes observed during infection with toxinogenic strains of P. multocida.
Collapse
|
22
|
Hertel F, Switalski A, Mintert-Jancke E, Karavassilidou K, Bender K, Pott L, Kienitz MC. A genetically encoded tool kit for manipulating and monitoring membrane phosphatidylinositol 4,5-bisphosphate in intact cells. PLoS One 2011; 6:e20855. [PMID: 21695261 PMCID: PMC3111442 DOI: 10.1371/journal.pone.0020855] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/10/2011] [Indexed: 12/20/2022] Open
Abstract
Background Most ion channels are regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in the cell membrane by diverse mechanisms. Important molecular tools to study ion channel regulation by PtdIns(4,5)P2 in living cells have been developed in the past. These include fluorescent PH-domains as sensors for Förster resonance energy transfer (FRET), to monitor changes in plasma membrane. For controlled and reversible depletion of PtdIns(4,5)P2, voltage-sensing phosphoinositide phosphatases (VSD) have been demonstrated as a superior tool, since they are independent of cellular signaling pathways. Combining these methods in intact cells requires multiple transfections. We used self-cleaving viral 2A-peptide sequences for adenovirus driven expression of the PH-domain of phospholipase-Cδ1 (PLCδ1) fused to ECFP and EYFP respectively and Ciona intestinalis VSP (Ci-VSP), from a single open reading frame (ORF) in adult rat cardiac myocytes. Methods and Results Expression and correct targeting of ECFP-PH-PLCδ1, EYFP-PH-PLCδ1, and Ci-VSP from a single tricistronic vector containing 2A-peptide sequences first was demonstrated in HEK293 cells by voltage-controlled FRET measurements and Western blotting. Adult rat cardiac myocytes expressed Ci-VSP and the two fluorescent PH-domains within 4 days after gene transfer using the vector integrated into an adenoviral construct. Activation of Ci-VSP by depolarization resulted in rapid changes in FRET ratio indicating depletion of PtdIns(4,5)P2 in the plasma membrane. This was paralleled by inhibition of endogenous G protein activated K+ (GIRK) current. By comparing changes in FRET and current, a component of GIRK inhibition by adrenergic receptors unrelated to depletion of PtdIns(4,5)P2 was identified. Conclusions Expression of a FRET sensor pair and Ci-VSP from a single ORF provides a useful approach to study regulation of ion channels by phosphoinositides in cell lines and transfection-resistant postmitotic cells. Generally, adenoviral constructs containing self-cleaving 2A-peptide sequences are highly suited for simultaneous transfer of multiple genes in adult cardiac myocytes.
Collapse
Affiliation(s)
- Fabian Hertel
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Agathe Switalski
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | | | - Kirsten Bender
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Lutz Pott
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| | | |
Collapse
|
23
|
Rodríguez-Martínez M, Aréchiga-Figueroa IA, Moreno-Galindo EG, Navarro-Polanco RA, Sánchez-Chapula JA. Muscarinic-activated potassium current mediates the negative chronotropic effect of pilocarpine on the rabbit sinoatrial node. Pflugers Arch 2011; 462:235-43. [PMID: 21487692 DOI: 10.1007/s00424-011-0962-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/23/2011] [Accepted: 03/28/2011] [Indexed: 11/28/2022]
Abstract
Pilocarpine is a nonspecific agonist of muscarinic receptors which was recently found to activate the M(2) receptor subtype in a voltage-dependent manner. The purpose of our study was to investigate the role of the acetylcholine (muscarinic)-activated K(+) current (I (KACh)) on the negative chronotropic effect of pilocarpine in rabbit sinoatrial node. In multicellular preparations, we studied the effect of pilocarpine on spontaneous action potentials. In isolated myocytes, using the patch clamp technique, we studied the effects of pilocarpine on I (KACh). Pilocarpine produced a decrease in spontaneous frequency, hyperpolarization of the maximum diastolic potential, and a decrease in the diastolic depolarization rate. These effects were partially antagonized by tertiapin Q. Cesium and calyculin A in the presence of tertiapin Q partially prevented the effects of pilocarpine. In isolated myocytes, pilocarpine activated the muscarinic potassium current, I (KACh) in a voltage-dependent manner. In conclusion, the negative chronotropic effects of pilocarpine on the sinatrial node could be mainly explained by activation of I (KACh).
Collapse
|
24
|
Raveh A, Cooper A, Guy-David L, Reuveny E. Nonenzymatic rapid control of GIRK channel function by a G protein-coupled receptor kinase. Cell 2010; 143:750-60. [PMID: 21111235 DOI: 10.1016/j.cell.2010.10.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/03/2010] [Accepted: 10/11/2010] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) respond to agonists to activate downstream enzymatic pathways or to gate ion channel function. Turning off GPCR signaling is known to involve phosphorylation of the GPCR by GPCR kinases (GRKs) to initiate their internalization. The process, however, is relatively slow and cannot account for the faster desensitization responses required to regulate channel gating. Here, we show that GRKs enable rapid desensitization of the G protein-coupled potassium channel (GIRK/Kir3.x) through a mechanism independent of their kinase activity. On GPCR activation, GRKs translocate to the membrane and quench channel activation by competitively binding and titrating G protein βγ subunits away from the channel. Of interest, the ability of GRKs to effect this rapid desensitization depends on the receptor type. The findings thus reveal a stimulus-specific, phosphorylation-independent mechanism for rapidly downregulating GPCR activity at the effector level.
Collapse
Affiliation(s)
- Adi Raveh
- Department Biological Chemistry Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
25
|
Ichishima K, Yamamoto S, Iwamoto T, Ehara T. alpha-Adrenoceptor-mediated depletion of phosphatidylinositol 4, 5-bisphosphate inhibits activation of volume-regulated anion channels in mouse ventricular myocytes. Br J Pharmacol 2010; 161:193-206. [PMID: 20718750 DOI: 10.1111/j.1476-5381.2010.00896.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Volume-regulated anion channels (VRACs) play an important role in cell-volume regulation. alpha(1)-Adrenoceptor stimulation by phenylephrine (PE) suppressed the hypotonic activation of VRAC current in mouse ventricular cells and regulatory volume decrease (RVD) was also absent in PE-treated cells. We examined whether the effects of alpha(1)-adrenoceptor stimuli on VRAC current were modulated by phosphatidylinositol signalling. EXPERIMENTAL APPROACH Whole-cell patch-clamp method was used to record the hypotonicity-induced VRAC current in mouse ventricular cells. RVD was analyzed by videomicroscopic measurement of cell images. KEY RESULTS The attenuation of VRAC current by PE was suppressed by alpha(1A)-adrenoceptor antagonists (prazosin and WB-4101), anti-G(q) protein antibody and a specific phosphoinositide-specific phospholipase C (PLC) inhibitor (U-73122), but not by antagonists for alpha(1B)-, alpha(1D)- or beta-adrenoceptor, or protein kinase C inhibitors. The inhibition of VRAC by PE was antagonized by intracellular excess phosphatidylinositol 4,5-bisphosphate (PIP(2)), while intracellular anti-PIP(2) antibody (PIP(2) Ab) inhibited the activation of VRAC currents. When cells were loaded with phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) with or without PIP(2) Ab, PE little affected the VRAC current. Extracellular m-3M3FBS (an activator of PLC) suppressed VRAC in the absence of PE, and this effect was reversed by intracellular excess PIP(2). CONCLUSIONS AND IMPLICATIONS Our results indicate that the stimulation of alpha(1A)-adrenoceptors by PE inhibited the activation of cardiac VRAC current via PIP(3) depletion brought about by PLC-dependent reduction of membrane PIP(2) level.
Collapse
Affiliation(s)
- K Ichishima
- Department of Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | | |
Collapse
|
26
|
Cui S, Ho WK, Kim ST, Cho H. Agonist-induced localization of Gq-coupled receptors and G protein-gated inwardly rectifying K+ (GIRK) channels to caveolae determines receptor specificity of phosphatidylinositol 4,5-bisphosphate signaling. J Biol Chem 2010; 285:41732-9. [PMID: 21041306 DOI: 10.1074/jbc.m110.153312] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-gated inwardly rectifying K(+) (GIRK) channels are parasympathetic effectors in cardiac myocytes that act as points of integration of signals from diverse pathways. Neurotransmitters and hormones acting on the Gq protein regulate GIRK channels by phosphatidylinositol 4,5-bisphosphate (PIP(2)) depletion. In previous studies, we found that endothelin-1, but not bradykinin, inhibited GIRK channels, even though both of them hydrolyze PIP(2) in cardiac myocytes, showing receptor specificity. The present study assessed whether the spatial organization of the PIP(2) signal into caveolar microdomains underlies the specificity of PIP(2)-mediated signaling. Using biochemical analysis, we examined the localization of GIRK and Gq protein-coupled receptors (GqPCRs) in mouse atrial myocytes. Agonist stimulation induced a transient co-localization of GIRK channels with endothelin receptors in the caveolae, excluding bradykinin receptors. Such redistribution was eliminated by caveolar disruption with methyl-β-cyclodextrin (MβCD). Patch clamp studies showed that the specific response of GIRK channels to GqPCR agonists was abolished by MβCD, indicating the functional significance of the caveolae-dependent spatial organization. To assess whether low PIP(2) mobility is essential for PIP(2)-mediated signaling, we blocked the cytoskeletal restriction of PIP(2) diffusion by latrunculin B. This abolished the GIRK channel regulation by GqPCRs without affecting their targeting to caveolae. These data suggest that without the hindered diffusion of PIP(2) from microdomains, PIP(2) loses its signaling efficacy. Taken together, these data suggest that specific targeting combined with restricted diffusion of PIP(2) allows the PIP(2) signal to be compartmentalized to the targets localized closely to the GqPCRs, enabling cells to discriminate between identical PIP(2) signaling that is triggered by different receptors.
Collapse
Affiliation(s)
- Shanyu Cui
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | | | | | |
Collapse
|
27
|
Logothetis DE, Petrou VI, Adney SK, Mahajan R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 2010; 460:321-41. [PMID: 20396900 PMCID: PMC4040125 DOI: 10.1007/s00424-010-0828-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 02/07/2023]
Abstract
The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
28
|
Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 2010; 11:301-15. [PMID: 20389305 DOI: 10.1038/nrn2834] [Citation(s) in RCA: 470] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels hyperpolarize neurons in response to activation of many different G protein-coupled receptors and thus control the excitability of neurons through GIRK-mediated self-inhibition, slow synaptic potentials and volume transmission. GIRK channel function and trafficking are highly dependent on the channel subunit composition. Pharmacological investigations of GIRK channels and studies in animal models suggest that GIRK activity has an important role in physiological responses, including pain perception and memory modulation. Moreover, abnormal GIRK function has been implicated in altering neuronal excitability and cell death, which may be important in the pathophysiology of diseases such as epilepsy, Down's syndrome, Parkinson's disease and drug addiction. GIRK channels may therefore prove to be a valuable new therapeutic target.
Collapse
|
29
|
Abstract
Phosphoinositides are an important component of the cell as they have a variety of roles that include cytoskeleton regulation, generation of second messengers, endosome trafficking, membrane transport and regulation of ion channels. The direct interaction between phosphatidylinositol-4,5-bisphosphate (PIP(2)) and various inwardly rectifying potassium channels has been shown in recent years. Most of these studies have used existing electrophysiological methods. In this review, we describe a rapid and convenient biochemical assay that can be used to show direct binding of potassium channel subunits to anionic phospholipids. This method has been used to demonstrate the differences in affinity between members of the Kir3.0 family, where only the cytoplasmic C-terminal Kir3.1 domain and the N- and C-terminal domains of Kir3.4 have the ability to bind to anionic phospholipids.
Collapse
|
30
|
Klose A, Huth T, Alzheimer C. 1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) selectively inhibits Kir3 and BK channels in a phospholipase C-independent fashion. Mol Pharmacol 2008; 74:1203-14. [PMID: 18682550 DOI: 10.1124/mol.108.047837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) is widely used to inhibit phospholipase C (PLC)-mediated signaling, but we and others have also reported a PLC-independent block of Kir3 channels in native cells. To elaborate on this major side effect, we examined the action of U73122 and 1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-2,5-pyrollidinedione (U73343), a structurally related but not PLC-inhibiting analog, on Kir1.1, Kir2.1, or Kir3.1/3.2 channels expressed in HEK293 cells. Both compounds (10 microM) displayed an unusual degree of selectivity for Kir3, superior even to that of tertiapin, which discriminates between Kir3 and Kir2 but also inhibits Kir1.1. Recordings from mutant Kir2 and Kir3 channels showed that U73122 is unlikely to block Kir3 by interfering with binding of phosphatidylinositol 4,5-bisphosphate, and U73122 did not seem to act like a pore blocker. U73122 and U73343 also unexpectedly suppressed Ca(2+)-activated K(+) channels of the large-conductance type (MaxiK, BK) in a PLC-independent fashion. In single-channel recordings, both compounds significantly decreased open probability of BK channels and slowed their ultrafast gating ("flickering") at very depolarized potentials. Alignment of the amino acid sequences of Kir3 and BK channels suggested that the highly selective effect of U73122/U73343 is mediated by a homologous domain within the long C-terminal ends. In fact, mutations in the C-terminal region of Kir2 and Kir3 channels significantly altered their sensitivity to the two compounds. Our data strongly caution against the use of U73122 when exploring signaling pathways involving Kir3 and BK channels. However, the apparent binding of U73122/U73343 to a common structural motif might be exploited to develop drugs selectively targeting Kir3 and BK channels.
Collapse
Affiliation(s)
- Angelika Klose
- Department of Physiology, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | | | | |
Collapse
|
31
|
The detection of the non-M2 muscarinic receptor subtype in the rat heart atria and ventricles. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:103-16. [PMID: 18443764 DOI: 10.1007/s00210-008-0285-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
Mammal heart tissue has long been assumed to be the exclusive domain of the M(2) subtype of muscarinic receptor, but data supporting the presence of other subtypes also exist. We have tested the hypothesis that muscarinic receptors other than the M(2) subtype are present in the heart as minor populations. We used several approaches: a set of competition binding experiments with pirenzepine, AFDX-116, 4-DAMP, PD 102807, p-F-HHSiD, AQ-RA 741, DAU 5884, methoctramine and tripinamide, blockage of M(1) muscarinic receptors using MT7 toxin, subtype-specific immunoprecipitation experiments and determination of phospholipase C activity. We also attempted to block M(1)-M(4) receptors using co-treatment with MT7 and AQ-RA 741. Our results show that only the M(2) subtype is present in the atria. In the ventricles, however, we were able to determine that 20% (on average) of the muscarinic receptors were subtypes other than M(2), with the majority of these belonging to the M(1) subtype. We were also able to detect a marginal fraction (6 +/- 2%) of receptors that, based on other findings, belong mainly to the M(5) muscarinic receptors. Co-treatment with MT7 and AQ-RA 741 was not a suitable tool for blocking of M(1)-M(4) receptors and can not therefore be used as a method for M(5) muscarinic receptor detection in substitution to crude venom. These results provide further evidence of the expression of the M(1) muscarinic receptor subtype in the rat heart and also show that the heart contains at least one other, albeit minor, muscarinic receptor population, which most likely belongs to the M(5) muscarinic receptors but not to that of the M(3) receptors.
Collapse
|
32
|
Sickmann T, Klose A, Huth T, Alzheimer C. Unexpected suppression of neuronal G protein-activated, inwardly rectifying K+ current by common phospholipase C inhibitor. Neurosci Lett 2008; 436:102-6. [PMID: 18358607 DOI: 10.1016/j.neulet.2008.02.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/25/2008] [Accepted: 02/29/2008] [Indexed: 11/25/2022]
Abstract
Stabilization of the binding of phosphatidylinositol bisphosphate (PIP(2)) to G protein-coupled inward rectifier K+ (GIRK) channels is essential for their activation, whereas hydrolysis of PIP(2) by phospholipase C (PLC) inhibits channel activity. Apparently inconsistent with this mechanism, we found that the commonly used PLC inhibitor, U73122 (1 microM), produced a significant reduction in the amplitude of baclofen (20 microM)-evoked GIRK currents in whole-cell recordings from acutely isolated rat neocortical pyramidal cells. Also, U73122 reduced the percentage of baclofen-responsive neurons from 100% (n=40) to 56% (n=25). Since NCDC (100 microM), a PLC inhibitor of another molecular class, displayed no effect on GIRK current amplitude or responsiveness (100%, n=6), inhibition of PLC is unlikely to account for the effects of U73122 in our preparation. Lending further support to this notion, the structurally closely related compound, U73343, which does not inhibit PLC, proved to be even more efficient in suppressing GIRK current as compared to U73122. In neurons, in which GIRK channels were irreversibly activated by GTPgammaS (n=10), the depressant action of U71322 was fully preserved. These findings hint at a direct interaction of U73122 with the GIRK channel or a closely associated protein. Caution is therefore warranted when employing this compound to examine the role of PLC and PIP(2) in the regulation of GIRK channel activity.
Collapse
Affiliation(s)
- Thomas Sickmann
- Institute of Physiology, University of Munich, 80336 Munich, Germany
| | | | | | | |
Collapse
|
33
|
Gamper N, Shapiro MS. Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 2007; 8:921-34. [DOI: 10.1038/nrn2257] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Mintert E, Bösche LI, Rinne A, Timpert M, Kienitz MC, Pott L, Bender K. Generation of a constitutive Na+-dependent inward-rectifier current in rat adult atrial myocytes by overexpression of Kir3.4. J Physiol 2007; 585:3-13. [PMID: 17884923 PMCID: PMC2375455 DOI: 10.1113/jphysiol.2007.140772] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apart from gating by interaction with betagamma subunits from heterotrimeric G proteins upon stimulation of appropriate receptors, Kir.3 channels have been shown to be gated by intracellular Na+. However, no information is available on how Na+-dependent gating affects endogenous Kir3.1/Kir3.4 channels in mammalian atrial myocytes. We therefore studied how loading of adult atrial myocytes from rat hearts via the patch pipette filling solution with different concentrations of Na+ ([Na+]pip) affects Kir3 current. Surprisingly, in a range between 0 and 60 mm, Na+ neither had an effect on basal inward-rectifier current nor on the current activated by acetylcholine. Overexpression of Kir3.4 in adult atrial myocytes forced by adenoviral gene transfer results in formation of functional homomeric channels that interact with betagamma subunits upon activation of endogenous muscarinic receptors. These channels are activated at [Na+]pip >or= 15 mm, resulting in a receptor-independent basal inward rectifier current (I bir). I bir was neither affected by pertussis toxin nor by GDP-beta-S, suggesting G-protein-independent activation. PIP(2) depletion via endogenous PLC-coupled alpha1 adrenergic receptors causes inhibition of endogenous Kir3.1/3.4 channel currents by about 75%. In contrast, inhibition of Na+-activated I bir amounts to < 20%. The effect of the Kir3 channel blocker tertiapin-Q can be described using an IC50 of 12 nm (endogenous I K(ACh)) and 0.61 nm (I bir). These data clearly identify I bir as a homotetrameric Kir3.4 channel current with novel properties of regulation and pharmacology. Ibir shares some properties with a basal current recently described in atrial myocytes from an animal model of atrial fibrillation (AF) and AF patients.
Collapse
Affiliation(s)
- Elisa Mintert
- Institute of Physiology, Ruhr-University Bochum, D 44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Nikolov EN, Ivanova-Nikolova TT. Dynamic Integration of α-Adrenergic and Cholinergic Signals in the Atria. J Biol Chem 2007; 282:28669-28682. [PMID: 17684011 DOI: 10.1074/jbc.m703677200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous heptahelical receptors use activation of heterotrimeric G proteins to convey a multitude of extracellular signals to appropriate effector molecules in the cell. Both high specificity and correct integration of these signals are required for reliable cell function. Yet the molecular machineries that allow each cell to merge information flowing across different receptors are not well understood. Here we demonstrate that G protein-regulated inwardly rectifying K(+) (GIRK) channels can operate as dynamic integrators of alpha-adrenergic and cholinergic signals in atrial myocytes. Acting at the last step of the cholinergic signaling cascade, these channels are activated by direct interactions with betagamma subunits of the inhibitory G proteins (G betagamma), and efficiently translate M(2) muscarinic acetylcholine receptor (M2R) activation into membrane hyperpolarization. The parallel activation of alpha-adrenergic receptors imposed a distinctive "signature" on the function of M2R-activated GIRK1/4 channels, affecting both the probability of G betagamma binding to the channel and its desensitization. This modulation of channel function was correlated with a parallel depletion of G beta and protein phosphatase 1 from the oligomeric GIRK1 complexes. Such plasticity of the immediate GIRK signaling environment suggests that multireceptor integration involves large protein networks undergoing dynamic changes upon receptor activation.
Collapse
Affiliation(s)
- Emil N Nikolov
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Tatyana T Ivanova-Nikolova
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.
| |
Collapse
|
36
|
Sohn JW, Lim A, Lee SH, Ho WK. Decrease in PIP(2) channel interactions is the final common mechanism involved in PKC- and arachidonic acid-mediated inhibitions of GABA(B)-activated K+ current. J Physiol 2007; 582:1037-46. [PMID: 17584838 PMCID: PMC2075246 DOI: 10.1113/jphysiol.2007.137265] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We showed in our previous study that in hippocampal CA1 neurons the stimulation of muscarinic receptors inhibited the GIRK current (I(GIRK)) via a PLC/PKC pathway, whereas group I metabotropic glutamate receptors (mGluR) inhibited I(GIRK) via a PLA(2)/arachidonic acid pathway. In this study, we present evidence that receptor-mediated signalling pathways activated by the two G(q)-coupled receptors (G(q)PCRs) converge on the inhibition of GIRK channel-PIP(2) interaction. I(GIRK) was activated in acutely isolated hippocampal CA1 neurons by repetitive application of baclofen, a GABA(B) receptor agonist, with a 2-3 min interval. When both CCh and DHPG were pretreated before the second I(GIRK) activation, the magnitude of the second I(GIRK) was 52.2 +/- 2.5% of the first I(GIRK), which was not significantly different from the magnitude of inhibition by CCh or DHPG alone. This result shows that the effects of muscarinic receptor and group I mGluR stimulation on I(GIRK) are not additive but occlusive, suggesting that each pathway may converge to a common mechanism that finally regulates I(GIRK). To test the involvement of PIP(2) in this mechanism, the effect of CCh and DHPG on I(GIRK) was tested in cells loaded with exogenous PIP(2). The inhibition of I(GIRK) by CCh or DHPG was almost completely abolished in PIP(2)-loaded cells. We confirmed that the inhibition of I(GIRK) by direct application of phorbol ester or arachidonic acid was also completely reversed in PIP(2)-loaded cells. These results indicate that the decrease in PIP(2)-channel interactions is the final common mechanism responsible for G(q)PCR-induced inhibitions of I(GIRK) mediated by PKC and arachidonic acid.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- National Research Laboratory for Cell Physiology and Department of Physiology, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Korea
| | | | | | | |
Collapse
|
37
|
Sohn JW, Lee D, Cho H, Lim W, Shin HS, Lee SH, Ho WK. Receptor-specific inhibition of GABAB-activated K+ currents by muscarinic and metabotropic glutamate receptors in immature rat hippocampus. J Physiol 2007; 580:411-22. [PMID: 17255165 PMCID: PMC2075565 DOI: 10.1113/jphysiol.2006.125914] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
It has been shown that the activation of G(q)-coupled receptors (G(q)PCRs) in cardiac myocytes inhibits the G protein-gated inwardly rectifying K(+) current (I(GIRK)) via receptor-specific depletion of phosphatidylinositol 4,5-bisphosphate (PIP(2)). In this study, we investigated the mechanism of the receptor-mediated regulation of I(GIRK) in acutely isolated hippocampal CA1 neurons by the muscarinic receptor agonist, carbachol (CCh), and the group I metabotropic glutamate receptor (mGluR) agonist, 3,5-dihydroxyphenylglycine (DHPG). I(GIRK) was activated by the GABA(B) receptor agonist, baclofen. When baclofen was repetitively applied at intervals of 2-3 min, the amplitude of the second I(GIRK) was 92.3 +/- 1.7% of the first I(GIRK) in control. Pretreatment of neurons with CCh or DHPG prior to the second application of baclofen caused a reduction in the amplitude of the second I(GIRK) to 54.8 +/- 1.3% and 51.4 +/- 0.6%, respectively. In PLCbeta1 knockout mice, the effect of CCh on I(GIRK) was significantly reduced, whereas the effect of DHPG remained unchanged. The CCh-mediated inhibition of I(GIRK) was almost completely abolished by PKC inhibitors and pipette solutions containing BAPTA. The DHPG-mediated inhibition of I(GIRK) was attenuated by the inhibition of phospholipase A(2) (PLA(2)), or the sequestration of arachidonic acid. We confirmed that DHPG eliminated the inhibition of I(GIRK) by arachidonic acid. These results indicate that muscarinic inhibition of I(GIRK) is mediated by the PLC/PKC signalling pathway, while group I mGluR inhibition of I(GIRK) occurs via the PLA(2)-dependent production of arachidonic acid. These results present a novel receptor-specific mechanism for crosstalk between G(q)PCRs and GABA(B) receptors.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- Department of Physiology, Seoul National University College of Medicine, 28 Yonkeun-Dong, Jongno-gu, Seoul 110-799, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Thomas AM, Brown SG, Leaney JL, Tinker A. Differential phosphoinositide binding to components of the G protein-gated K+ channel. J Membr Biol 2006; 211:43-53. [PMID: 16988861 DOI: 10.1007/s00232-006-0014-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/30/2006] [Indexed: 10/24/2022]
Abstract
The regulation of ion channels and transporters by anionic phospholipids is currently very topical. G protein-gated K(+) channels from the Kir3.0 family are involved in slowing the heart rate, generating late inhibitory postsynaptic potentials and controlling hormone release from neuroendocrine cells. There is considerable functional precedent for the control of these channels by phosphatidylinositol 4,5-bisphosphate. In this study, we used a biochemical assay to investigate the lipid binding properties of Kir3.0 channel domains. We reveal a differential binding affinity to a range of phosphoinositides between the C termini of the Kir3.0 isoforms. Furthermore, the N terminus in addition to the C terminus of Kir3.4 is necessary to observe binding and is decreased by the mutations R72A, K195A and R196A but not K194A. Protein kinase C phosphorylation of the Kir3.1 C-terminal fusion protein decreases anionic phospholipid binding. The differential binding affinity has functional consequences as the inhibition of homomeric Kir3.1, occurring after M3 receptor activation, recovers over minutes while homomeric Kir3.2 does not.
Collapse
Affiliation(s)
- Alison M Thomas
- Department of Medicine and BHF Laboratories, University College London, 5 University Street, London, WC1E 6JJ, United Kingdom.
| | | | | | | |
Collapse
|
39
|
Perez MF, White FJ, Hu XT. Dopamine D(2) receptor modulation of K(+) channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials. J Neurophysiol 2006; 96:2217-28. [PMID: 16885524 DOI: 10.1152/jn.00254.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus accumbens (NAc) is a forebrain area in the mesocorticolimbic dopamine (DA) system that regulates many aspects of drug addiction. Neuronal activity in the NAc is modulated by different subtypes of DA receptors. Although DA signaling has received considerable attention, the mechanisms underlying D(2)-class receptor (D(2)R) modulation of firing in medium spiny neurons (MSNs) localized within the NAc remain ambiguous. In the present study, we performed whole cell current-clamp recordings in rat brain slices to determine whether and how D(2)R modulation of K(+) channel activity regulates the intrinsic excitability of NAc neurons in the core region. D(2)R stimulation by quinpirole or DA significantly and dose-dependently decreased evoked Na(+) spikes. This D(2)R effect on inhibiting evoked firing was abolished by antagonism of D(2)Rs, reversed by blockade of voltage-sensitive, slowly inactivating A-type K(+) currents (I(As)), or eliminated by holding membrane potentials at levels in which I(As) was inactivated. It was also mimicked by inhibition of cAMP-dependent protein kinase (PKA) activity, but not phosphatidylinositol-specific phospholipase C (PI-PLC) activity. Moreover, D(2)R stimulation also reduced the inward rectification and depolarized the resting membrane potentials (RMPs) by decreasing "leak" K(+) currents. However, the D(2)R effects on inward rectification and RMP were blocked by inhibition of PI-PLC, but not PKA activity. These findings indicate that, with facilitated intracellular Ca(2+) release and activation of the D(2)R/G(q)/PLC/PIP(2) pathway, the D(2)R-modulated changes in the NAc excitability are dynamically regulated and integrated by multiple K(+) currents, including but are not limited to I(As), inwardly rectifying K(+) currents (I(Kir)), and "leak" currents (I(K-2P)).
Collapse
Affiliation(s)
- Mariela F Perez
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3095, USA
| | | | | |
Collapse
|
40
|
Yang B, Lin H, Xu C, Liu Y, Wang H, Han H, Wang Z. Choline produces cytoprotective effects against ischemic myocardial injuries: evidence for the role of cardiac m3 subtype muscarinic acetylcholine receptors. Cell Physiol Biochem 2006; 16:163-74. [PMID: 16301817 DOI: 10.1159/000089842] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Accumulating evidence indicates the presence of functional M3 subtype of acetylcholine muscarinic receptors (M(3)-mAChR), in addition to the well-recognized M(2)-mAChR, in the heart of various species including man. However, the pathophysiological role of the cardiac M(3)-mAChR remain undefined. This study was designed to explore the possible role of M(3)-mAChR in cytoprotection of myocardial infarction and several related signaling pathways as potential mechanisms. METHODS Studies were performed in a rat model of myocardial infarction and in isolated myocytes. RESULTS We found that choline relieved myocardial injuries during ischemia or under oxidative stress, which was achieved by correcting hemodynamic impairment, diminishing ventricular arrhythmias and protecting cardiomyocytes from apoptotic death. The beneficial effects of choline were reversed by the M(3)-selective antagonists but not by the M(2)-selective antagonist. Choline/M(3)-mAChR activated several survival signaling molecules (antiapoptotic proteins Bcl-2 and ERKs), increased endogenous antioxidant reserve (SOD), and reduced apoptotic mediators (proapoptotic proteins Fas and p38 MAPK) and intracellular Ca2+ overload. CONCLUSION Choline improves cardiac function and reduces ischemic myocardial injuries via stimulating the cardiac M(3)-mAChRs which in turn result in alterations of multiple signaling pathways leading to cytoprotection. The findings suggest M(3)-mAChR as a new target for drug development for improving cardiac function and preventing cardiac injuries during ischemia/reperfusion.
Collapse
Affiliation(s)
- Baofeng Yang
- Department of Pharmacology, State-Province Key Laboratory, Harbin Medical University, Harbin, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Yasuda Y, Matsuura H, Ito M, Matsumoto T, Ding WG, Horie M. Regulation of the muscarinic K+ channel by extracellular ATP through membrane phosphatidylinositol 4,5-bisphosphate in guinea-pig atrial myocytes. Br J Pharmacol 2005; 145:156-65. [PMID: 15765102 PMCID: PMC1576138 DOI: 10.1038/sj.bjp.0706191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 The present study was designed to examine the functional role of membrane phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) in the regulation of the muscarinic K(+) channel (I(K,ACh)) by extracellular ATP and adenosine in guinea-pig atrial myocytes, using the whole-cell patch-clamp method. 2 Bath application of ATP in micromolar concentrations typically evoked a transient activation of I(K,ACh); a rapid activation phase was consistently followed by a progressive decline even to the baseline level despite the continued presence of ATP. This progressive decline of I(K,ACh) was significantly attenuated either by blockade of phospholipase C (PLC) with compound 48/80 (100 microM) or by addition of PtdIns(4,5)P(2) (50 microM) to the cell inside, suggesting that depletion of membrane PtdIns(4,5)P(2) via PLC activation is mainly, if not totally, responsible for the progressive decline of I(K,ACh) during the presence of ATP. 3 When atrial myocytes were exposed to wortmannin (50 microM) following ATP (50 microM) application to impair the resynthesis of PtdIns(4,5)P(2), the activation of I(K,ACh) evoked by subsequently applied ATP (50 microM) was greatly reduced. Activation of I(K,ACh) by adenosine (100 microM) was partially reduced by pretreatment of atrial myocytes with ATP (100 microM) and was largely abolished by a further addition of wortmannin (50 microM) in the presence of ATP (100 microM). These results support the view that the activation of I(K,ACh) by ATP and adenosine depends on membrane PtdIns(4,5)P(2) that is subject to reduction by extracellular ATP. 4 The present study thus provides functional evidence to suggest that extracellular ATP activates PLC and thereby depletes membrane PtdIns(4,5)P(2) that is critically involved in the activation process of I(K,ACh) by its agonists ATP and adenosine in guinea-pig atrial myocytes.
Collapse
Affiliation(s)
- Yoh Yasuda
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta-tsukinowacho, Otsu, Shiga 520-2192, Japan
- Department of Physiology, Shiga University of Medical Science, Seta-tsukinowacho, Otsu, Shiga 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Seta-tsukinowacho, Otsu, Shiga 520-2192, Japan
- Author for correspondence:
| | - Makoto Ito
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta-tsukinowacho, Otsu, Shiga 520-2192, Japan
| | - Tetsuya Matsumoto
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta-tsukinowacho, Otsu, Shiga 520-2192, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Seta-tsukinowacho, Otsu, Shiga 520-2192, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta-tsukinowacho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
42
|
Woo SH, Lee BH, Kwon KI, Lee CO. Excitatory effect of M1 muscarinic acetylcholine receptor on automaticity of mouse heart. Arch Pharm Res 2005; 28:930-5. [PMID: 16178419 DOI: 10.1007/bf02973879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have investigated the effects of relatively high concentration of carbachol (CCh), an agonist of muscarinic acetylcholine receptor (mAChR), on cardiac automaticity in mouse heart. Action potentials from automatically beating right atria of mice were measured with conventional microelectrodes. When atria were treated with 100 microM CCh, atrial beating was immediately arrested and diastolic membrane potential (DMP) was depolarized. After exposure of the atria to CCh for approximately 4 min, action potentials were regenerated. The regenerated action potentials had lower frequency and shorter duration when compared with the control. When atria were pre-exposed to pirenzepine (1 microM), an M1 mAChR antagonist, there was complete inhibition of CCh-induced depolarization of DMP and regeneration of action potentials. Pre-exposure to AFDX-116 (11 ({2-[(diethylamino)-methyl]-1 -piperidyl}acetyl)-5,11 -dihydro-6H-pyridol[2,3-b][1,4] benzodiazepine-6-one base, 1 microM), an M2 mAChR antagonist, failed to block CCh-induced arrest of the beating. However, prolonged exposure to CCh elicited gradual depolarization of DMP and slight acceleration in beating rate. Our data indicate that high concentration of CCh depolarizes membrane potential and recovers right atrial automaticity via M1 mAChR, providing functional evidence for the role of M1 mAChR in the atrial myocytes.
Collapse
Affiliation(s)
- Sun-Hee Woo
- College of Pharmacy, Chungnam National University, 220 Gung-Dong, Yuseong-Ku, Daejeon 305-764, Korea.
| | | | | | | |
Collapse
|
43
|
Brown SG, Thomas A, Dekker LV, Tinker A, Leaney JL. PKC-delta sensitizes Kir3.1/3.2 channels to changes in membrane phospholipid levels after M3 receptor activation in HEK-293 cells. Am J Physiol Cell Physiol 2005; 289:C543-56. [PMID: 15857907 DOI: 10.1152/ajpcell.00025.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
G protein-gated inward rectifier (Kir3) channels are inhibited by activation of G(q/11)-coupled receptors and this has been postulated to involve the signaling molecules protein kinase C (PKC) and/or phosphatidylinositol 4,5-bisphosphate (PIP(2)). Their precise roles in mediating the inhibition of this family of channels remain controversial. We examine here their relative roles in causing inhibition of Kir3.1/3.2 channels stably expressed in human embryonic kidney (HEK)-293 cells after muscarinic M(3) receptor activation. In perforated patch mode, staurosporine prevented the G(q/11)-mediated, M(3) receptor, inhibition of channel activity. Recovery from M(3)-mediated inhibition was wortmannin sensitive. Whole cell currents, where the patch pipette was supplemented with PIP(2), were still irreversibly inhibited by M(3) receptor stimulation. When adenosine A(1) receptors were co-expressed, inclusion of PIP(2) rescued the A(1)-mediated response. Recordings from inside-out patches showed that catalytically active PKC applied directly to the intracellular membrane face inhibited the channels: a reversible effect modulated by okadaic acid. Generation of mutant heteromeric channel Kir3.1S185A/Kir3.2C-S178A, still left the channel susceptible to receptor, pharmacological, and direct kinase-mediated inhibition. Biochemically, labeled phosphate is incorporated into the channel. We suggest that PKC-delta mediates channel inhibition because recombinant PKC-delta inhibited channel activity, M(3)-mediated inhibition of the channel, was counteracted by overexpression of two types of dominant negative PKC-delta constructs, and, by using confocal microscopy, we have demonstrated translocation of green fluorescent protein-tagged PKC-delta to the plasma membrane on M(3) receptor stimulation. Thus Kir3.1/3.2 channels are sensitive to changes in membrane phospholipid levels but this is contingent on the activity of PKC-delta after M(3) receptor activation in HEK-293 cells.
Collapse
Affiliation(s)
- Sean G Brown
- Dept. of Medicine, University College of London, London WC1E 6JJ, UK.
| | | | | | | | | |
Collapse
|
44
|
Federici M, Geracitano R, Tozzi A, Longone P, Di Angelantonio S, Bengtson CP, Bernardi G, Mercuri NB. Trace amines depress GABA B response in dopaminergic neurons by inhibiting G-betagamma-gated inwardly rectifying potassium channels. Mol Pharmacol 2005; 67:1283-90. [PMID: 15644497 DOI: 10.1124/mol.104.007427] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trace amines (TAs) are present in the central nervous system in which they up-regulate catecholamine release and are implicated in the pathogenesis of addiction, attention-deficit/hyper-activity disorder, Parkinson's disease, and schizophrenia. By using intracellular and patch-clamp recordings from dopaminergic cells in the rat midbrain slices, we report a depressant postsynaptic action of two TAs, beta-phenylethylamine (beta-PEA) and tyramine (TYR) on the GABA(B)-mediated slow inhibitory postsynaptic potential and baclofen-activated outward currents. beta-PEA and TYR activated G-proteins, interfering with the coupling between GABA(B) receptors and G-betagamma-gated inwardly rectifying potassium channels. This is the first demonstration that beta-PEA and TYR depress inhibitory synaptic potentials in neurons of the central nervous system, supporting their emerging role as neuromodulators.
Collapse
Affiliation(s)
- Mauro Federici
- Department of Experimental Neurology, S. Lucia Foundation I.R.C.C.S., Via Ardeatina 306, 00179 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Winks JS, Hughes S, Filippov AK, Tatulian L, Abogadie FC, Brown DA, Marsh SJ. Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J Neurosci 2005; 25:3400-13. [PMID: 15800195 PMCID: PMC6724893 DOI: 10.1523/jneurosci.3231-04.2005] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 02/11/2005] [Accepted: 02/11/2005] [Indexed: 10/25/2022] Open
Abstract
The relationship between receptor-induced membrane phosphatidylinositol-4'5'-bisphosphate (PIP2) hydrolysis and M-current inhibition was assessed in single-dissociated rat sympathetic neurons by simultaneous or parallel recording of membrane current and membrane-to-cytosol translocation of the fluorescent PIP2/inositol 1,4,5-trisphosphate (IP3)-binding peptide green fluorescent protein-tagged pleckstrin homology domain of phospholipase C (GFP-PLCdelta-PH). The muscarinic receptor agonist oxotremorine-M produced parallel time- and concentration-dependent M-current inhibition and GFP-PLCdelta-PH translocation; bradykinin also produced parallel time-dependent inhibition and translocation. Phosphatidylinositol-4-phosphate-5-kinase (PI5-K) overexpression reduced both M-current inhibition and GFP-PLCdelta-PH translocation by both oxotremorine-M and bradykinin. These effects were partly reversed by wortmannin, which inhibits phosphatidylinositol-4-kinase (PI4-K). PI5-K overexpression also reduced the inhibitory action of oxotremorine-M on PIP2-gated G-protein-gated inward rectifier (Kir3.1/3.2) channels; bradykinin did not inhibit these channels. Overexpression of neuronal calcium sensor-1 protein (NCS-1), which increases PI4-K activity, did not affect responses to oxotremorine-M but reduced both fluorescence translocation and M-current inhibition by bradykinin. Using an intracellular IP3 membrane fluorescence-displacement assay, initial mean concentrations of membrane [PIP2] were estimated at 261 microm (95% confidence limit; 192-381 microm), rising to 693 microm (417-1153 microm) in neurons overexpressing PI5-K. Changes in membrane [PIP2] during application of oxotremorine-M were calculated from fluorescence data. The results, taken in conjunction with previous data for KCNQ2/3 (Kv7.2/Kv7.3) channel gating by PIP2 (Zhang et al., 2003), accorded with the hypothesis that the inhibitory action of oxotremorine-M on M current resulted from depletion of PIP2. The effects of bradykinin require additional components of action, which might involve IP3-induced Ca2+ release and consequent M-channel inhibition (as proposed previously) and stimulation of PIP2 synthesis by Ca2+-dependent activation of NCS-1.
Collapse
Affiliation(s)
- Joanna S Winks
- 1Ion Channel Pharmacology Group, IPC 388, Pfizer Global Research and Development, Sandwich Laboratories, Sandwich, Kent CT13 9NJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
46
|
Koike-Tani M, Collins JM, Kawano T, Zhao P, Zhao Q, Kozasa T, Nakajima S, Nakajima Y. Signal transduction pathway for the substance P-induced inhibition of rat Kir3 (GIRK) channel. J Physiol 2005; 564:489-500. [PMID: 15731196 PMCID: PMC1464441 DOI: 10.1113/jphysiol.2004.079285] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Certain transmitters inhibit Kir3 (GIRK) channels, resulting in neuronal excitation. We analysed signalling mechanisms for substance P (SP)-induced Kir3 inhibition in relation to the role of phosphatidylinositol 4,5-bisphosphate (PIP(2)). SP rapidly - with a half-time of approximately 10 s with intracellular GTPgammaS and approximately 14 s with intracellular GTP - inhibits a robustly activated Kir3.1/Kir3.2 current. A mutant Kir3 channel, Kir3.1(M223L)/Kir3.2(I234L), which has a stronger binding to PIP(2) than does the wild type Kir3.1/Kir3.2, is inhibited by SP as rapidly as the wild type Kir3.1/Kir3.2. This result contradicts the idea that Kir3 inhibition originates from the depletion of PIP(2). A Kir2.1 (IRK1) mutant, Kir2.1(R218Q), despite having a weaker binding to PIP(2) than wild type Kir3.1/Kir3.2, shows a SP-induced inhibition slower than the wild type Kir3.1/Kir3.2 channel, again conflicting with the PIP(2) theory of channel inhibition. Co-immunoprecipitation reveals that Galpha(q) binds with Kir3.2, but not with Kir2.2 or Kir2.1. These functional results and co-immunoprecipitation data suggest that G(q) activation rapidly inhibits Kir3 (but not Kir2), possibly by direct binding of Galpha(q) to the channel.
Collapse
Affiliation(s)
- Maki Koike-Tani
- Department of Anatomy and Cell Biology, 808 South Wood St, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Rishal I, Porozov Y, Yakubovich D, Varon D, Dascal N. Gbetagamma-dependent and Gbetagamma-independent basal activity of G protein-activated K+ channels. J Biol Chem 2005; 280:16685-94. [PMID: 15728579 DOI: 10.1074/jbc.m412196200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cardiac and neuronal G protein-activated K+ channels (GIRK; Kir3) open following the binding of Gbetagamma subunits, released from Gi/o proteins activated by neurotransmitters. GIRKs also possess basal activity contributing to the resting potential in neurons. It appears to depend largely on free Gbetagamma, but a Gbetagamma-independent component has also been envisaged. We investigated Gbetagamma dependence of the basal GIRK activity (A(GIRK,basal)) quantitatively, by titrated expression of Gbetagamma scavengers, in Xenopus oocytes expressing GIRK1/2 channels and muscarinic m2 receptors. The widely used Gbetagamma scavenger, myristoylated C terminus of beta-adrenergic kinase (m-cbetaARK), reduced A(GIRK,basal) by 70-80% and eliminated the acetylcholine-evoked current (I(ACh)). However, we found that m-cbetaARK directly binds to GIRK, complicating the interpretation of physiological data. Among several newly constructed Gbetagamma scavengers, phosducin with an added myristoylation signal (m-phosducin) was most efficient in reducing GIRK currents. m-phosducin relocated to the membrane fraction and did not bind GIRK. Titrated expression of m-phosducin caused a reduction of A(GIRK,basal) by up to 90%. Expression of GIRK was accompanied by an increase in the level of Gbetagamma and Galpha in the plasma membrane, supporting the existence of preformed complexes of GIRK with G protein subunits. Increased expression of Gbetagamma and its constitutive association with GIRK may underlie the excessively high A(GIRK,basal) observed at high expression levels of GIRK. Only 10-15% of A(GIRK,basal) persisted upon expression of both m-phosducin and cbetaARK. These results demonstrate that a major part of Ibasal is Gbetagamma-dependent at all levels of channel expression, and only a small fraction (<10%) may be Gbetagamma-independent.
Collapse
Affiliation(s)
- Ida Rishal
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
48
|
Ishii M, Fujita S, Yamada M, Hosaka Y, Kurachi Y. Phosphatidylinositol 3,4,5-trisphosphate and Ca2+/calmodulin competitively bind to the regulators of G-protein-signalling (RGS) domain of RGS4 and reciprocally regulate its action. Biochem J 2005; 385:65-73. [PMID: 15324308 PMCID: PMC1134674 DOI: 10.1042/bj20040404] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 07/26/2004] [Accepted: 08/23/2004] [Indexed: 11/17/2022]
Abstract
RGS (regulators of G-protein signalling) are a diverse group of proteins, which accelerate intrinsic GTP hydrolysis on heterotrimeric G-protein a subunits. They are involved in the control of a physiological behaviour known as 'relaxation' of G-protein-gated K+ channels in cardiac myocytes. The GTPase-accelerating activity of cardiac RGS proteins, such as RGS4, is inhibited by PtdIns(3,4,5)P3 (phosphatidylinositol 3,4,5-trisphosphate) and this inhibition is cancelled by Ca2+/calmodulin (CaM) formed during membrane depolarization. G-protein-gated K+ channel activity decreases on depolarization owing to the facilitation of GTPase-activating protein activity by RGS proteins and vice versa on hyperpolarization. The molecular mechanism responsible for this reciprocal control of RGS action by PtdIns(3,4,5)P3 and Ca2+/CaM, however, has not been fully elucidated. Using lipid-protein co-sedimentation assay and surface plasmon resonance measurements, we show in the present study that the control of the GTPase-accelerating activity of the RGS4 protein is achieved through the competitive binding of PtdIns(3,4,5)P3 and Ca2+/CaM within its RGS domain. Competitive binding occurs exclusively within the RGS domain and involves a cluster of positively charged residues located on the surface opposite to the Ga interaction site. In the RGS proteins conserving these residues, the reciprocal regulation by PtdIns(3,4,5)P3 and Ca2+/CaM may be important for their physiological regulation of G-protein signalling.
Collapse
Key Words
- calmodulin
- g-protein
- phosphoinositide
- reciprocal regulation
- regulators of g-protein signalling (rgs)
- ach, acetylcholine
- cbb, coomassie brilliant blue
- cam, calmodulin
- dic16, dihexadecanoyl
- gap, gtpase-activating protein
- gst, glutathione s-transferase
- kg, g-protein-gated k+
- kir, inward rectifier k+
- pc, l-α-phosphaphatidylcholine
- pe, l-α-phosphatidylethanolamine
- ptdins(4,5)p2, phosphatidylinositol 4,5-bisphosphate
- ptdins(3,4,5)p3, phosphatidylinositol 3,4,5-trisphosphate
- ptdins(5)p, phosphatidylinositol 5-phosphate
- rgs, regulators of g-protein signalling
- ru, resonance unit
- spr, surface plasmon resonance for brevity, the single-letter system for amino acids has been used, e.g. k99 means lys99
Collapse
Affiliation(s)
- Masaru Ishii
- Department of Pharmacology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Satoru Fujita
- Department of Pharmacology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mitsuhiko Yamada
- Department of Pharmacology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yukio Hosaka
- Department of Pharmacology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshihisa Kurachi
- Department of Pharmacology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Bender K, Wellner-Kienitz MC, Bösche LI, Rinne A, Beckmann C, Pott L. Acute desensitization of GIRK current in rat atrial myocytes is related to K+ current flow. J Physiol 2004; 561:471-83. [PMID: 15459243 PMCID: PMC1665358 DOI: 10.1113/jphysiol.2004.072462] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have investigated the acute desensitization of acetylcholine-activated GIRK current (I(K(ACh))) in cultured adult rat atrial myocytes. Acute desensitization of I(K(ACh)) is observed as a partial relaxation of current with a half-time of < 5 s when muscarinic M2 receptors are stimulated by a high concentration (> 2 micromol l(-1)) of ACh. Under this condition experimental manoeuvres that cause a decrease in the amplitude of I(K(ACh)), such as partial block of M2 receptors by atropine, intracellular loading with GDP-beta-S, or exposure to Ba2+, caused a reduction in desensitization. Acute desensitization was also identified as a decrease in current amplitude and a blunting of the response to saturating [ACh] (20 micromol l(-1)) when the current had been partially activated by a low concentration of ACh or by stimulation of adenosine A1 receptors. A reduction in current analogous to acute desensitization was observed when ATP-dependent K+ current (I(K(ATP))) was activated either by mitochondrial uncoupling using 2,4-dinitrophenole (DNP) or by the channel opener rilmakalim. Adenovirus-driven overexpression of Kir2.1, a subunit of constitutively active inwardly rectifying K+ channels, resulted in a large Ba2+-sensitive background K+ current and a dramatic reduction of ACh-activated current. Adenovirus-driven overexpression of GIRK4 (Kir3.4) subunits resulted in an increased agonist-independent GIRK current paralleled by a reduction in I(K(ACh)) and removal of the desensitizing component. These data indicate that acute desensitization depends on K+ current flow, independent of the K+ channel species, suggesting that it reflects a reduction in electrochemical driving force rather than a bona fide signalling mechanism. This is supported by the observation that desensitization is paralleled by a significant negative shift in reversal potential of I(K(ACh)). Since the ACh-induced hyperpolarization shows comparable desensitization properties as I(K(ACh)), this novel current-dependent desensitization is a physiologically relevant process, shaping the time course of parasympathetic bradycardia.
Collapse
Affiliation(s)
- Kirsten Bender
- Department of Physiology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Ding WG, Toyoda F, Matsuura H. Regulation of cardiac IKs potassium current by membrane phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2004; 279:50726-34. [PMID: 15364935 DOI: 10.1074/jbc.m409374200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of the slowly activating component of delayed rectifier K+ current (IKs) by membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns-(4,5)P2) was examined in guinea pig atrial myocytes using the whole-cell patch clamp method. IKs was elicited by depolarizing voltage steps given from a holding potential of -50 mV, and the effect of various test reagents on IKs was assessed by measuring the amplitude of tail current elicited upon return to the holding potential following a 2-s depolarization to +30 mV. Intracellular application of 50 microM wortmannin through a recording pipette evoked a progressive increase in IKs over a 10-15-min period to 208.5 +/- 14.6% (n = 9) of initial magnitude obtained shortly after rupture of the patch membrane. Intracellular application of anti-PtdIns(4,5)P2 monoclonal antibody also increased the amplitude of IKs to 198.4 +/- 19.9% (n = 5). In contrast, intracellular loading with exogenous PtdIns(4,5)P2 at 10 and 100 mum produced a marked decrease in the amplitude of IKs to 54.3 +/- 3.8% (n = 5) and 44.8 +/- 8.2% (n = 5), respectively. Intracellular application of neomycin (50 microM) or aluminum (50 microM) evoked an increase in the amplitude of IKs to 161.0 +/- 13.5% (n = 4) and 150.0 +/- 8.2% (n = 4), respectively. These results strongly suggest that IKs channel is inhibited by endogenous membrane PtdIns(4,5)P2 through the electrostatic interaction with the negatively charged head group on PtdIns(4,5)P2. Potentiation of IKs by P2Y receptor stimulation with 50 microM ATP was almost totally abolished when PtdIns(4,5)P2 was included in the pipette solution, suggesting that depletion of membrane PtdIns(4,5)P2 is involved in the potentiation of IKs by P2Y receptor stimulation. Thus, membrane PtdIns(4,5)P2 may act as an important physiological regulator of IKs in guinea pig atrial myocytes.
Collapse
Affiliation(s)
- Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | | | | |
Collapse
|