1
|
Wu S, Zhao W, Yu Z. Novel Targets and Potential Mechanisms of Mizuhopecten yessoensis-Derived Tripeptide NCW as Antihypertensive Peptides. Mol Nutr Food Res 2024; 68:e2300552. [PMID: 38366946 DOI: 10.1002/mnfr.202300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/07/2023] [Indexed: 02/19/2024]
Abstract
SCOPE Mizuhopecten yessoensis-derived tripeptide Asn-Cys-Trp (NCW) exhibits a potent antihypertensive effect in vivo. However, a lack of knowledge of the antihypertensive mechanism of tripeptide NCW limits its application for functional foods industrialization. The purpose of this study is to elucidate the corresponding targets and mechanisms of tripeptide NCW in hypertension regulation. METHODS AND RESULTS Administration of tripeptide NCW for 3 weeks, the blood pressure of spontaneously hypertensive rats (SHRs) is significantly decreased. After sacrifice, the serum sample is analyzed using tandem mass tag (TMT)-based liquid chromatography with tandem mass spectrometry to identify differentially expressed proteins. The proteomic analysis indicates that tripeptide NCW administration alters serum protein profiles in SHR rats, significantly upregulating 106 proteins and downregulating 30 proteins. These proteins enhance the glycolysis, glucose, and TCA cycle, improve amino metabolism, trigger the cAMP/PKA, cGMP/PKG, PI3K/AKT, and AMPK signal pathways, and inhibit Ras-regulated JNK activation, TGF-β/MAPK, and TGF-β/ RhoA/ROCK pathways. CONCLUSION Tripeptide NCW supplementation is demonstrated to regulate signal pathways involved in the control of blood pressure and regulate the energy and amino acids metabolic processes in serum, providing important insights into the protective effects of tripeptide NCW on hypertension.
Collapse
Affiliation(s)
- Sijia Wu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, P.R. China
- College of Food Science and Engineering, Jilin University, Changchun, 130062, P.R. China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, 570228, P.R. China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, P.R. China
| |
Collapse
|
2
|
Sarg NH, Zaher DM, Abu Jayab NN, Mostafa SH, Ismail HH, Omar HA. The interplay of p38 MAPK signaling and mitochondrial metabolism, a dynamic target in cancer and pathological contexts. Biochem Pharmacol 2024; 225:116307. [PMID: 38797269 DOI: 10.1016/j.bcp.2024.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Mitochondria play a crucial role in cellular metabolism and bioenergetics, orchestrating various cellular processes, including energy production, metabolism, adaptation to stress, and redox balance. Besides, mitochondria regulate cellular metabolic homeostasis through coordination with multiple signaling pathways. Importantly, the p38 mitogen-activated protein kinase (MAPK) signaling pathway is a key player in the intricate communication with mitochondria, influencing various functions. This review explores the multifaced interaction between the mitochondria and p38 MAPK signaling and the consequent impact on metabolic alterations. Overall, the p38 MAPK pathway governs the activities of key mitochondrial proteins, which are involved in mitochondrial biogenesis, oxidative phosphorylation, thermogenesis, and iron homeostasis. Additionally, p38 MAPK contributes to the regulation of mitochondrial responses to oxidative stress and apoptosis induced by cancer therapies or natural substances by coordinating with other pathways responsible for energy homeostasis. Therefore, dysregulation of these interconnected pathways can lead to various pathologies characterized by aberrant metabolism. Consequently, gaining a deeper understanding of the interaction between mitochondria and the p38 MAPK pathway and their implications presents exciting forecasts for novel therapeutic interventions in cancer and other disorders characterized by metabolic dysregulation.
Collapse
Affiliation(s)
- Nadin H Sarg
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nour N Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Salma H Mostafa
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hussein H Ismail
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
3
|
Frańczak MA, van der Sande C, Giovannetti E, Peters GJ. Effects of nucleoside analogues, lipophilic prodrugs and elaidic acids on core signaling pathways in cancer cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-11. [PMID: 38619266 DOI: 10.1080/15257770.2024.2339952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVES Nucleoside analogs such as gemcitabine (GEM; dFdC) and cytarabine (Ara-C) require nucleoside transporters to enter cells, and deficiency in equilibrative nucleoside transporter 1 (ENT1) can lead to resistance to these drugs. To facilitate transport-independent uptake, prodrugs with a fatty acid chain attached to the 5'-position of the ribose group of gemcitabine or cytarabine were developed (CP-4126 and CP-4055, respectively). As antimetabolites can activate cellular survival pathways, we investigated whether the prodrugs or their side-chains had similar or decreased effects. METHODS Two cell lines A549 (non-small cell lung cancer) and WiDr (colon cancer cells) were exposed for 2-24hr to IC50 concentrations of GEM, Ara-C, CP-4126, CP4055 and elaidic acid (EA) concentrations corresponding to the CP-4126 and CP-4055 IC50. Cells were harvested and analyzed for proteins in cell survival pathways (p-AKT/AKT, p-ERK/ERK, p-P38/P38, GSK-3β/pGSK-3β) by using Western Blotting. RESULTS All drugs and their derivatives showed time- and cell-line-dependent effects. In A549 cells, GEM, CP-4126 and EA-4126 decreased the p-AKT/AKT ratio at 2 and 24 hr. For the p-ERK/ERK ratio, GEM, EA-4126, Ara-C, CP-4045 and EA-4055 exposure led to an increase after 6 hr in A549 cells. Interestingly, Ara-C, CP-4055 and EA-4055 decreased p-ERK/ERK ratio in WiDr cells after 4 hr. In A549 cells, the p-GSK-3β/GSK-3β ratio decreased after exposure to Ara-C and CP-4055 but in WiDr cells increased after 24 hr. In A549 cells treatment with Ara-C, CP-4055 and EA-4126 decreased the p-P38/P38 after 6 hr. CONCLUSIONS The findings suggest that both parent drugs, prodrugs, and the EA chain influence cell survival and signaling pathways.
Collapse
Affiliation(s)
- Marika A Frańczak
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Claudine van der Sande
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Zwirner S, Abu Rmilah AA, Klotz S, Pfaffenroth B, Kloevekorn P, Moschopoulou AA, Schuette S, Haag M, Selig R, Li K, Zhou W, Nelson E, Poso A, Chen H, Amiot B, Jia Y, Minshew A, Michalak G, Cui W, Rist E, Longerich T, Jung B, Felgendreff P, Trompak O, Premsrirut PK, Gries K, Muerdter TE, Heinkele G, Wuestefeld T, Shapiro D, Weissbach M, Koenigsrainer A, Sipos B, Ab E, Zacarias MO, Theisgen S, Gruenheit N, Biskup S, Schwab M, Albrecht W, Laufer S, Nyberg S, Zender L. First-in-class MKK4 inhibitors enhance liver regeneration and prevent liver failure. Cell 2024; 187:1666-1684.e26. [PMID: 38490194 PMCID: PMC11011246 DOI: 10.1016/j.cell.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Diminished hepatocyte regeneration is a key feature of acute and chronic liver diseases and after extended liver resections, resulting in the inability to maintain or restore a sufficient functional liver mass. Therapies to restore hepatocyte regeneration are lacking, making liver transplantation the only curative option for end-stage liver disease. Here, we report on the structure-based development and characterization (nuclear magnetic resonance [NMR] spectroscopy) of first-in-class small molecule inhibitors of the dual-specificity kinase MKK4 (MKK4i). MKK4i increased liver regeneration upon hepatectomy in murine and porcine models, allowed for survival of pigs in a lethal 85% hepatectomy model, and showed antisteatotic and antifibrotic effects in liver disease mouse models. A first-in-human phase I trial (European Union Drug Regulating Authorities Clinical Trials [EudraCT] 2021-000193-28) with the clinical candidate HRX215 was conducted and revealed excellent safety and pharmacokinetics. Clinical trials to probe HRX215 for prevention/treatment of liver failure after extensive oncological liver resections or after transplantation of small grafts are warranted.
Collapse
Affiliation(s)
- Stefan Zwirner
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany; HepaRegeniX GmbH, Tübingen 72072, Germany
| | - Anan A Abu Rmilah
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Sabrina Klotz
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Bent Pfaffenroth
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Philip Kloevekorn
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Athina A Moschopoulou
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Svenja Schuette
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany
| | - Roland Selig
- HepaRegeniX GmbH, Tübingen 72072, Germany; Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Kewei Li
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Zhou
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Erek Nelson
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Antti Poso
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany; School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland; iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany
| | - Harvey Chen
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Bruce Amiot
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Yao Jia
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Anna Minshew
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory Michalak
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Cui
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Elke Rist
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | | | - Philipp Felgendreff
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Omelyan Trompak
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | | | - Katharina Gries
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Thomas E Muerdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany
| | - Georg Heinkele
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany
| | - Torsten Wuestefeld
- Laboratory for In Vivo Genetics & Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University of Singapore, Singapore 637551, Singapore
| | | | | | - Alfred Koenigsrainer
- iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany; German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of General-, Visceral, and Transplant Surgery, University Hospital Tübingen, Tübingen 72076, Germany
| | - Bence Sipos
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Eiso Ab
- ZoBio B.V., Leiden 2333 CH, the Netherlands
| | | | | | | | | | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany; iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany; Department of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen, Tübingen 72076, Germany
| | | | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany; Tübingen Center for Academic Drug Discovery & Development (TüCAD(2)), Tübingen 72076, Germany.
| | - Scott Nyberg
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA.
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany; iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany; German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Tübingen Center for Academic Drug Discovery & Development (TüCAD(2)), Tübingen 72076, Germany.
| |
Collapse
|
5
|
Yu B, Zhou M, Dong Z, Zheng H, Zhao Y, Zhou J, Zhang C, Wei F, Yu G, Liu WJ, Liu H, Wang Y. Integrating network pharmacology and experimental validation to decipher the mechanism of the Chinese herbal prescription modified Shen-Yan-Fang-Shuai formula in treating diabetic nephropathy. PHARMACEUTICAL BIOLOGY 2023; 61:1222-1233. [PMID: 37565668 PMCID: PMC10424623 DOI: 10.1080/13880209.2023.2241521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023]
Abstract
CONTEXT Diabetic nephropathy (DN) is the main cause of end-stage renal disease. Modified Shen-Yan-Fang-Shuai formula (M-SYFSF) has excellent clinical efficacy in treating diabetic kidney disease. However, the potential mechanism of M-SYFSF remains unknown. OBJECTIVE To investigate the mechanism of M-SYFSF against DN by network pharmacological analysis and biological experiments. MATERIALS AND METHODS Utilizing a web-based pharmacology database, the potential mechanisms of M-SYFSF against DN were identified. In vivo experiments, male SD rats were injected with streptozotocin (50 mg/kg) and got uninephrectomy to construct a model of DN. M-SYFSF (11.34 g/kg/d) was gavaged once per day for 12 weeks after model establishment. In vitro experiments, human proximal tubular cells (HK-2) were performed with advanced glycation end-products (AGEs) (100 μg/mL), then intervened with M-SYFSF freeze-dried powder. Pathological staining, WB, IHC, ELISA were conducted to explore the mechanism of M-SYFSF against DN. RESULTS Network pharmacological analysis showed that MAPK pathway was the potential pathway. Results showed that compared with the Model group, M-SYFSF significantly reduced 24h urine albumin, UACR, and serum creatinine levels (54.90 ± 26.67 vs. 111.78 ± 4.28, 8.87 ± 1.69 vs. 53.94 ± 16.01, 11.56 ± 1.70 vs. 118.70 ± 49.57, respectively), and improved renal pathological changes. Furthermore, the intervention of M-SYFSF reduced the expression of pro-inflammatory cytokines and inhibited the activation of MAPK pathway in AGEs-treated HK-2 cells. DISCUSSION AND CONCLUSION M-SYFSF is likely to reduce inflammation in DN by inhibiting the MAPK pathway. It provides a theoretical basis for the clinical application of M-SYFSF in the treatment of DN.
Collapse
Affiliation(s)
- Borui Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Mengqi Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Zhaocheng Dong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yuxue Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Beijing Dongcheng First People’s Hospital, Beijing, P.R. China
| | - Jingwei Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Chao Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Fudong Wei
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Guoyong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Hongfang Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yaoxian Wang
- Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
6
|
Lee WY, Park HJ. T-2 mycotoxin Induces male germ cell apoptosis by ROS-mediated JNK/p38 MAPK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115323. [PMID: 37541021 DOI: 10.1016/j.ecoenv.2023.115323] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
T-2 mycotoxin, a type A trichothecene toxin that, specifically, causes male and female reproductive toxicity. We evaluated T-2 toxin toxicity in testes from neonatal testes after in vitro tissue cultured. Additionally, current study focuses on the molecular mechanism of toxicity and germ cell damage in GC-1 spermatogonial cells. Mouse testicular fragments were subjected to T-2 toxin (0-20 nM) during days 5 of in vitro culture. Testicular germ cell number were reduced and downregulated the expression of corresponding markers depending on the exposure concentration of T-2 toxin; however, Sertoli cell markers and steroidogenic enzyme expression increased when treated with 20 nM T-2 toxin. The cell viability decreased, apoptosis increased, and pro-apoptotic protein expression increased in 5-20 nM T-2 toxin-exposed spermatogonia. Moreover, T-2 toxin generated reactive oxygen species (ROS) and induced mitochondrial dysfunction, indicating that activation of p38 MAPK signaling triggered by ROS is involved in the apoptotic molecular mechanism of T-2 toxin. T-2 toxin induced the phosphorylation of ERK1/2, c-Jun, JNK/SAPK, p38, and p53, and the subsequent inhibition of AKT phosphorylation. The upregulation of genes related to apoptosis and MAPK/JNK signaling was consistently observed in cells exposed to T-2 toxin. These results indicate that T-2 toxin triggers apoptotic cell death in germ cells through the triggering of ROS-mediated JNK/p38-MAPK signaling pathways.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonbuk 54874, South Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, South Korea.
| |
Collapse
|
7
|
Qu JY, Xie HT, Xiao YT, Zhang YY, Hu ZX, Wang JS, Zhang MC, Xi H. The inhibition of p38 MAPK blocked inflammation to restore the functions of rat meibomian gland epithelial cells. Exp Eye Res 2023; 231:109470. [PMID: 37059216 DOI: 10.1016/j.exer.2023.109470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023]
Abstract
Meibomian glands (MGs) are vital for ocular surface health. However, the roles of inflammation in the progression of meibomian gland dysfunction (MGD) are largely unknown. In this study, the roles of the inflammation factor interleukin-1β (IL-1β) via the p38 mitogen-activated protein kinases (MAPK) signaling pathway on rat meibomian gland epithelial cells (RMGECs) were explored. Eyelids from adult rat mice at 2 months and 2 years of age were stained with specific antibodies against IL-1β to identify inflammation levels. RMGECs were exposed to IL-1β and/or SB203580, a specific inhibitor of p38 MAPK signaling pathway, for 3 days. Cell proliferation, keratinization, lipid accumulation, and matrix metalloproteinases 9 (MMP9) expression were evaluated by MTT assay, polymerase chain reaction (PCR), immunofluorescence staining, apoptosis assay, lipid staining, and Western blot analyses. We found that IL-1β was significantly higher in the terminal ducts of MGs in rats with age-related MGD than in young rats. IL-1β inhibited cell proliferation, suppressed lipid accumulation and peroxisome proliferator activator receptor γ (PPARγ) expression, and promoted apoptosis while activating the p38 MAPK signaling pathway. Cytokeratin 1 (CK1), a marker for complete keratinization, and MMP9 in RMGECs were also up-regulated by IL-1β. SB203580 effectively diminished the effects of IL-1β on differentiation, keratinization, and MMP9 expression by blocking IL-1β-induced p38 MAPK activation, although it also inhibited cell proliferation. The inhibition of the p38 MAPK signaling pathway blocked IL-1β-induced differentiation reduction, hyperkeratinization, and MMP9 overexpression of RMGECs, which provides a potential therapy for MGD.
Collapse
Affiliation(s)
- Jing-Yu Qu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266000, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266000, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Ting Xiao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ying-Ying Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhi-Xin Hu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Song Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Han Xi
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Mourouzis I, Kounatidis D, Brozou V, Anagnostopoulos D, Katsaouni A, Lourbopoulos A, Pantos C. Effects of T3 Administration on Ex Vivo Rat Hearts Subjected to Normothermic Perfusion: Therapeutic Implications in Donor Heart Preservation and Repair. Transpl Int 2023; 36:10742. [PMID: 36824295 PMCID: PMC9941138 DOI: 10.3389/ti.2023.10742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
The present study investigated the effects of triiodothyronine (T3) administration in ex vivo model of rat heart normothermic perfusion. T3 is cardioprotective and has the potential to repair the injured myocardium. Isolated hearts were subjected to normothermic perfusion (NP) with Krebs-Henseleit for 4 h with vehicle (NP) or 60 nM T3 in the perfusate (NP + T3). Left ventricular end diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), perfusion pressure (PP) and percentage of change of these parameters from the baseline values were measured. Activation of stress induced kinase signaling was assessed in tissue samples. Baseline parameters were similar between groups. LVEDP was increased from the baseline by 13% (70) for NP + T3 vs. 139% (160) for NP group, p = 0.048. LVDP was reduced by 18.2% (5) for NP + T3 vs. 25.3% (19) for NP group, p = 0.01. PP was increased by 41% (19) for NP + T3 vs.91% (56) for NP group, p = 0.024. T3 increased activation of pro-survival Akt by 1.85 fold (p = 0.047) and AMPK by 2.25 fold (p = 0.01) and reduced activation of pro-apoptotic p38 MAPK by 3fold (p = 0.04) and p54 JNK by 4.0 fold (p = 0.04). Administration of T3 in normothermic perfusion had favorable effects on cardiac function and perfusion pressure and switched death to pro-survival kinase signaling.
Collapse
Affiliation(s)
- Iordanis Mourouzis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Kounatidis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassiliki Brozou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Anagnostopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasia Katsaouni
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Lourbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Pantos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Zhang L, Tang C, Ye C, Huang L, Wu Y. Intrahepatic cholestasis of pregnancy can increase the risk of metabolic disorders: A meta-analysis. J Med Biochem 2022; 41:549-558. [PMID: 36381082 PMCID: PMC9618343 DOI: 10.5937/jomb0-33222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/26/2022] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) and preeclampsia (PE) are common complications during pregnancy. Studies indicated that abnormal bile acid metabolism is related to its pathogenesis. Intrahepatic cholestasis of pregnancy (ICP) is the most common pregnancy-specific liver disease, which classic symptoms include generalized pruritus that commonly and biochemical evidence of elevated bile acids. Our study aimed to explore the correlation between the ICP presence and risk of GDM, PE incident in pregnant women. METHODS A meta-analysis, which included 10 eligible studies including 17,688 ICP cases and 1,386,771 controls, was performed to assess the correlation of ICP with preeclampsia (PE) and gestational diabetes mellitus (GDM). There were 7 studies investigating the relationship between ICP and PE, and 9 studies that evaluated the relationship between ICP and GDM. All eligible studies were screened from Pubmed, Web of Science and EBSCO databases. RESULTS The results of this meta-analysis indicate that ICP significantly increase the risk for both PE (pooled odds ratio OR: 2.56 95%CI: 2.27 2.88, I2 heterogeneity = 35%, p heterogeneity = 0.16) and GDM (pooled OR: 2.28 95%CI: 1.69 3.07, I2 heterogeneity = 81%, p heterogeneity < 0.001). In the sensitivity analysis of GDM, excluding the largest heterogeneity study cannot change the result (pooled OR: 2.86 95%CI: 2.59 3.16, I2 heterogeneity = 0%, p heterogeneity = 0.56). CONCLUSIONS This meta-analysis shows that ICP is closely associated with ICP increased risk of PE and GDM) during pregnancy.
Collapse
Affiliation(s)
- Leiying Zhang
- The First Affiliated Hospital of Gannan Medical University, Department of Gynecology and Obstetrics, Ganzhou City, China
| | - Chen Tang
- The First Affiliated Hospital of Gannan Medical University, Department of Gynecology and Obstetrics, Ganzhou City, China
| | - Chenlian Ye
- The First Affiliated Hospital of Gannan Medical University, Department of Gynecology and Obstetrics, Ganzhou City, China
| | - Luren Huang
- The First Affiliated Hospital of Gannan Medical University, Department of Gynecology and Obstetrics, Ganzhou City, China
| | - Yan Wu
- The First Affiliated Hospital of Gannan Medical University, Department of Gynecology and Obstetrics, Ganzhou City, China
| |
Collapse
|
10
|
Kulyar MFEA, Yao W, Mo Q, Ding Y, Zhang Y, Gao J, Li K, Pan H, Nawaz S, Shahzad M, Mehmood K, Iqbal M, Akhtar M, Bhutta ZA, Waqas M, Li J, Qi D. Regulatory Role of Apoptotic and Inflammasome Related Proteins and Their Possible Functional Aspect in Thiram Associated Tibial Dyschondroplasia of Poultry. Animals (Basel) 2022; 12:ani12162028. [PMID: 36009620 PMCID: PMC9404426 DOI: 10.3390/ani12162028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tibial dyschondroplasia debilities apoptotic and inflammasomal conditions that can further destroy chondrocytes. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, e.g., interleukin-1β (IL-1β) and IL-18. Moreover, there is mounting evidence that many of the signaling molecules that govern programmed cell death also affect inflammasome activation in a cell-intrinsic way. During the last decade, apoptotic functions have been described for signaling molecules involving inflammatory responses and cell death pathways. Considering these exceptional developments in the knowledge of processes, this review gives a glimpse of the significance of these two pathways and their connected proteins in tibial dyschondroplasia. The current review deeply elaborates on the elevated level of signaling mediators of mitochondrial-mediated apoptosis and the inflammasome. Although investigating these pathways’ mechanisms has made significant progress, this review identifies areas where more study is especially required. It might lead to developing innovative therapeutics for tibial dyschondroplasia and other associated bone disorders, e.g., osteoporosis and osteoarthritis, where apoptosis and inflammasome are the significant pathways.
Collapse
Affiliation(s)
- Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jindong Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shahzad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeeshan Ahmad Bhutta
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Muhammad Waqas
- Faculty of Veterinary & Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
- Correspondence: (J.L.); (D.Q.)
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (J.L.); (D.Q.)
| |
Collapse
|
11
|
Luxen M, van Meurs M, Molema G. Unlocking the Untapped Potential of Endothelial Kinase and Phosphatase Involvement in Sepsis for Drug Treatment Design. Front Immunol 2022; 13:867625. [PMID: 35634305 PMCID: PMC9136877 DOI: 10.3389/fimmu.2022.867625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a devastating clinical condition that can lead to multiple organ failure and death. Despite advancements in our understanding of molecular mechanisms underlying sepsis and sepsis-associated multiple organ failure, no effective therapeutic treatment to directly counteract it has yet been established. The endothelium is considered to play an important role in sepsis. This review highlights a number of signal transduction pathways involved in endothelial inflammatory activation and dysregulated endothelial barrier function in response to sepsis conditions. Within these pathways – NF-κB, Rac1/RhoA GTPases, AP-1, APC/S1P, Angpt/Tie2, and VEGF/VEGFR2 – we focus on the role of kinases and phosphatases as potential druggable targets for therapeutic intervention. Animal studies and clinical trials that have been conducted for this purpose are discussed, highlighting reasons why they might not have resulted in the expected outcomes, and which lessons can be learned from this. Lastly, opportunities and challenges that sepsis and sepsis-associated multiple organ failure research are currently facing are presented, including recommendations on improved experimental design to increase the translational power of preclinical research to the clinic.
Collapse
Affiliation(s)
- Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Matthijs Luxen,
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
12
|
Lin X, Ouyang S, Zhi C, Li P, Tan X, Ma W, Yu J, Peng T, Chen X, Li L, Xie W. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Arch Biochem Biophys 2022; 715:109098. [PMID: 34856194 DOI: 10.1016/j.abb.2021.109098] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
Vascular endothelial cells (VECs), which are lined up in the inner surface of blood vessels, are in direct contact with the metabolite-related endogenous danger signals in the circulatory system. Moreover, VECs death impairs vasodilation and increases endothelium-dependent permeability, which is strongly correlated with the development of atherosclerosis (AS). Among several forms of cell death, regulatory death of endothelial cells frequently occurs in AS, mainly including ferroptosis, pyroptosis, apoptosis and autophagy. In this review, we summarize regulatory factors and signaling mechanisms of regulatory death in endothelial cells, discussing their effects in the context of the atherosclerotic procession.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Chenxi Zhi
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- 2019 Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Liang Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China; School of Public Health, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
13
|
Andrade MJ, Van Lonkhuyzen DR, Upton Z, Satyamoorthy K. RPA facilitates rescue of keratinocytes from UVB radiation damage through insulin-like growth factor-I signalling. J Cell Sci 2021; 134:jcs255786. [PMID: 34137442 DOI: 10.1242/jcs.255786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/10/2021] [Indexed: 01/19/2023] Open
Abstract
UVBR-induced photolesions in genomic DNA of keratinocytes impair cellular functions and potentially determine the cell fate post-irradiation. The ability of insulin-like growth factor-I (IGF-I) to rescue epidermal keratinocytes after photodamage via apoptosis prevention and photolesion removal was recently demonstrated using in vitro two-dimensional and three-dimensional skin models. Given the limited knowledge of specific signalling cascades contributing to post-UVBR IGF-I effects, we used inhibitors to investigate the impact of blockade of various signalling mediators on IGF-I photoprotection. IGF-I treatment, in the presence of signalling inhibitors, particularly TDRL-505, which targets replication protein A (RPA), impaired activation of IGF-1R downstream signalling, diminished cyclobutane pyrimidine dimer removal, arrested growth, reduced cell survival and increased apoptosis. Further, the transient partial knockdown of RPA was found to abrogate IGF-I-mediated responses in keratinocytes, ultimately affecting photoprotection and, thereby, establishing that RPA is required for IGF-I function. Our findings thus elucidate the importance of RPA in linking the damage response activation, cell cycle regulation, repair and survival pathways, separately initiated by IGF-I upon UVBR-induced damage. This information is potentially imperative for the development of effective sunburn and photodamage repair strategies. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Melisa J Andrade
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Derek R Van Lonkhuyzen
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Zee Upton
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore138648
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
14
|
Bayes-Genis A, Iborra-Egea O, Spitaleri G, Domingo M, Revuelta-López E, Codina P, Cediel G, Santiago-Vacas E, Cserkóová A, Pascual-Figal D, Núñez J, Lupón J. Decoding empagliflozin's molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence. Sci Rep 2021; 11:12025. [PMID: 34103605 PMCID: PMC8187349 DOI: 10.1038/s41598-021-91546-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
The use of sodium-glucose co-transporter 2 inhibitors to treat heart failure with preserved ejection fraction (HFpEF) is under investigation in ongoing clinical trials, but the exact mechanism of action is unclear. Here we aimed to use artificial intelligence (AI) to characterize the mechanism of action of empagliflozin in HFpEF at the molecular level. We retrieved information regarding HFpEF pathophysiological motifs and differentially expressed genes/proteins, together with empagliflozin target information and bioflags, from specialized publicly available databases. Artificial neural networks and deep learning AI were used to model the molecular effects of empagliflozin in HFpEF. The model predicted that empagliflozin could reverse 59% of the protein alterations found in HFpEF. The effects of empagliflozin in HFpEF appeared to be predominantly mediated by inhibition of NHE1 (Na+/H+ exchanger 1), with SGLT2 playing a less prominent role. The elucidated molecular mechanism of action had an accuracy of 94%. Empagliflozin’s pharmacological action mainly affected cardiomyocyte oxidative stress modulation, and greatly influenced cardiomyocyte stiffness, myocardial extracellular matrix remodelling, heart concentric hypertrophy, and systemic inflammation. Validation of these in silico data was performed in vivo in patients with HFpEF by measuring the declining plasma concentrations of NOS2, the NLPR3 inflammasome, and TGF-β1 during 12 months of empagliflozin treatment. Using AI modelling, we identified that the main effect of empagliflozin in HFpEF treatment is exerted via NHE1 and is focused on cardiomyocyte oxidative stress modulation. These results support the potential use of empagliflozin in HFpEF.
Collapse
Affiliation(s)
- Antoni Bayes-Genis
- Heart Institute, Hospital Universitari Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain. .,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, (CIBERCV), Madrid, Spain.
| | - Oriol Iborra-Egea
- Heart Institute, Hospital Universitari Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain
| | - Giosafat Spitaleri
- Heart Institute, Hospital Universitari Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Domingo
- Heart Institute, Hospital Universitari Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, (CIBERCV), Madrid, Spain
| | - Elena Revuelta-López
- Heart Institute, Hospital Universitari Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, (CIBERCV), Madrid, Spain
| | - Pau Codina
- Heart Institute, Hospital Universitari Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, (CIBERCV), Madrid, Spain
| | - Germán Cediel
- Heart Institute, Hospital Universitari Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, (CIBERCV), Madrid, Spain
| | - Evelyn Santiago-Vacas
- Heart Institute, Hospital Universitari Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, (CIBERCV), Madrid, Spain
| | - Adriana Cserkóová
- Heart Institute, Hospital Universitari Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Domingo Pascual-Figal
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, (CIBERCV), Madrid, Spain.,Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca and University of Murcia, Murcia, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Julio Núñez
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, (CIBERCV), Madrid, Spain.,Cardiology Department, Hospital Clínico Universitario de Valencia, INCLIVA, Departamento de Medicina, Universitat de València, Valencia, Spain
| | - Josep Lupón
- Heart Institute, Hospital Universitari Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, (CIBERCV), Madrid, Spain
| |
Collapse
|
15
|
Anthrax lethal factor cleaves regulatory subunits of phosphoinositide-3 kinase to contribute to toxin lethality. Nat Microbiol 2020; 5:1464-1471. [PMID: 32895527 DOI: 10.1038/s41564-020-0782-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/28/2020] [Indexed: 11/08/2022]
Abstract
Anthrax lethal toxin (LT), produced by Bacillus anthracis, comprises a receptor-binding moiety, protective antigen and the lethal factor (LF) protease1,2. Although LF is known to cleave mitogen-activated protein kinase kinases (MEKs/MKKs) and some variants of the NLRP1 inflammasome sensor, targeting of these pathways does not explain the lethality of anthrax toxin1,2. Here we report that the regulatory subunits of phosphoinositide-3 kinase (PI3K)-p85α (PIK3R1) and p85β (PIK3R2)3,4-are substrates of LF. Cleavage of these proteins in a proline-rich region between their N-terminal Src homology and Bcr homology domains disrupts homodimer formation and impacts PI3K signalling. Mice carrying a mutated p85α that cannot be cleaved by LF show a greater resistance to anthrax toxin challenge. The LF(W271A) mutant cleaves p85α with lower efficiency and is non-toxic to mice but can regain lethality when combined with PI3K pathway inhibitors. We provide evidence that LF targets two signalling pathways that are essential for growth and metabolism and that the disabling of both pathways is likely necessary for lethal anthrax infection.
Collapse
|
16
|
Xu J, Shi J, Tang W, Jiang P, Guo M, Zhang B, Ma G. ROR2 promotes the epithelial-mesenchymal transition by regulating MAPK/p38 signaling pathway in breast cancer. J Cell Biochem 2020; 121:4142-4153. [PMID: 32048761 DOI: 10.1002/jcb.29666] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 12/09/2019] [Indexed: 01/06/2023]
Abstract
Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a tyrosine-protein kinase receptor highly implicated in the growth plate and cartilage development, which may be involved in epithelial-mesenchymal transition (EMT) in breast cancer (BC) cells. Although ROR2 is known to promote the migration of BC cells, the detailed mechanism of this event is still not clear. Here, we found that ROR2 expression was significantly increased in BC lymphatic metastatic tissue as well as BC samples compared to normal adjacent breast tissues. A higher expression of ROR2 in MDA-MB-231 and a lower expression of ROR2 in MCF-7 cells were observed. MDA-MB-231-siROR2 cells with ROR2 knockdown inhibited MDA-MB-231 cell invasion, migration, and clonal formation, while MCF-7-OvROR2 cells with overexpression showed the opposite results. The underlying mechanisms involved in ROR2-induced EMT in MDA-MB-231 and MCF-7 cells were further investigated. ROR2 may activate EMT progression in BC cells by altering MAPK kinase 3/6 (MKK3/6) expression. The expressions of transforming growth factor-β, matrix metalloproteinase-2 (MMP-2), and MMP-9, which were related to tumor cell invasion activities, were notably increased in MCF-7-OvROR2 cells. The EMT markers, including snail, N-cadherin, tissue inhibitor of metalloproteinases-1, and vimentin, were significantly upregulated in MCF-7-OvROR2 cells. On the contrary, E-cadherin was obviously reduced expressed in MCF-7-OvROR2 cells. ROR2 may regulate the malignant phenotype of BC cells possibly via activation of mitogen-activated protein kinase (MAPK)/p38 signaling pathway. Collectively, ROR2 promotes BC carcinogenesis by mediating the MAPK/p38 pathway, which is independent of Wnt5α.
Collapse
Affiliation(s)
- Jin Xu
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Jiang
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Muhong Guo
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Chen CY, Tsai HY, Tsai SH, Chu PH, Huang PH, Chen JW, Lin SJ. Deletion of the FHL2 gene attenuates intima-media thickening in a partially ligated carotid artery ligated mouse model. J Cell Mol Med 2019; 24:160-173. [PMID: 31714683 PMCID: PMC6933399 DOI: 10.1111/jcmm.14687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022] Open
Abstract
The four and a half LIM domain protein 2 (FHL2) is a member of the four and a half LIM domain (FHL) gene family, and it is associated with cholesterol‐enriched diet‐promoted atherosclerosis. However, the effect of FHL2 protein on vascular remodelling in response to hemodynamic alterations remains unclear. Here, we investigated the role of FHL2 in a model of restricted blood flow‐induced atherosclerosis. To promote neointimal hyperplasia in vivo, we subjected FHL2+/+ and FHL2−/− mice to partial ligation of the left carotid artery (LCA). The expression of p‐ERK and p‐AKT was decreased in FHL2−/− mice. FHL2 bound to AKT regulated AKT phosphorylation and led to Rac1‐GTP inactivation. FHL2 silencing in human aortic smooth muscle cells down‐regulated the PDGF‐induced phosphorylation of ERK and AKT. Furthermore, FHL2 silencing reduced cytoskeleton conformational changes and caused cell cycle arrest. We concluded that FHL2 is essential for the regulation of arterial smooth muscle cell function. FHL2 modulates proliferation and migration via mitogen‐activated protein kinase (MAPK) and PI3K‐AKT signalling, leading to arterial wall thickening and thus neointimal hyperplasia.
Collapse
Affiliation(s)
- Chi-Yu Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Ya Tsai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Hsien Chu
- First Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute and Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
18
|
Gholinejad Z, Khadem Ansari MH, Rasmi Y. Titanium dioxide nanoparticles induce endothelial cell apoptosis via cell membrane oxidative damage and p38, PI3K/Akt, NF-κB signaling pathways modulation. J Trace Elem Med Biol 2019; 54:27-35. [PMID: 31109618 DOI: 10.1016/j.jtemb.2019.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/27/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Titanium dioxide nanoparticles (TiO2 NPs) are widely used nanoparticles. Despite, several studies investigated the toxic effects of TiO2 NPs on HUVECs, the results are contradictory and the possible underlying mechanisms remain unclear. METHODS In the present study, we conducted an in vitro study to re-evaluate the possible toxic effects of TiO2 NPs on HUVECs including cell viability, lipids peroxidation, intracellular signaling pathways and nitric oxide syntheses enzymes. RESULTS Our results demonstrated that, TiO2 NPs were internalized to HUVECs and induce intracellular reactive oxygen species production and cell membrane oxidative damage at the higher concentration. TiO2 NPs induce IKKα/β and Akt phosphorylation and p38 dephosphorylation. After 24 h treatment, pro-inflammatory cytokines, adhesion molecules and chemokine upregulated significantly. TiO2 NPs have no significant effects on eNOS enzymatic activation and iNOS gene expression. At cellular level, apoptosis is the main process that occur in response to TiO2 NPs treatment. HUVECs pretreatment with N-acetyl-l-cysteine (NAC) ameliorate the toxic effects of TiO2 NPs that indicate the oxidative stress is essential in TiO2 NPs -induced toxicity. Total antioxidant capacity show a trend to increase in response to TiO2 NPs exposure. CONCLUSIONS Taken together, this study confirmed the effects of TiO2 NPs on endothelial cells and proposed multiple underlying mechanisms including cell membrane oxidative damage and intracellular processes.
Collapse
Affiliation(s)
- Zafar Gholinejad
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Scienc, Urmia, Iran
| | | | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Scienc, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
19
|
Song H, Fu Y, Wan D, Xia W, Lyu F, Liu L, Shen L. Mytoxin B and Myrothecine A Induce Apoptosis in Human Hepatocarcinoma Cell Line SMMC-7721 via PI3K/Akt Signaling Pathway. Molecules 2019; 24:E2291. [PMID: 31226773 PMCID: PMC6630475 DOI: 10.3390/molecules24122291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/20/2022] Open
Abstract
Trichothecene macrolides comprise a class of valuable leading compounds in developing anticancer drugs, however, there are few reports concerning their anticancer mechanisms, especially the anticancer mechanism of the 10,13-cyclotrichothecane derivatives that are found mainly in symbiotic fungi. In vitro anticancer activity of two trichothecene macrolides mytoxin B and myrothecine A against the human hepatocarcinoma cell line SMMC-7721 was investigated in the present study. MTT assay showed that mytoxin B and myrothecine A inhibited the proliferation of SMMC-7721 cells in dose- and time-dependent manners. Annexin V-FITC/PI dual staining assay revealed that mytoxin B and myrothecine A both could induce SMMC-7721 cells apoptosis in a dose-dependent manner. The decreased expression level of anti-apoptotic protein Bcl-2 and the increased expression level of pro-apoptotic protein Bax were observed apparently in Western blot analysis. The reduced ratio of Bcl-2/Bax further confirmed the apoptosis-inducing effect of mytoxin B and myrothecine A on SMMC-7721 cells. Moreover, the expression levels of caspases-3, -8, and -9, and cleaved caspases-3, -8, and -9 were all upregulated in both mytoxin B and myrothecine A-treated cells in Western blot analysis, which indicated that both compounds might induce SMMC-7721 cells apoptosis through not only the death receptor pathway but also the mitochondrial pathway. Finally, mytoxin B and myrothecine A were found to reduce the activity of PI3K/Akt signaling pathway that was similar to the effect of LY294002 (a potent and specific PI3K inhibitor), suggesting that both mytoxin B and myrothecine A might induce SMMC-7721 cells apoptosis via PI3K/Akt pathway.
Collapse
Affiliation(s)
- Huiliang Song
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| | - Yi Fu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Dan Wan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Wenjing Xia
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Fengwei Lyu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Lijun Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Li Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
20
|
Sur S, Nakanishi H, Steele R, Ray RB. Depletion of PCAT-1 in head and neck cancer cells inhibits tumor growth and induces apoptosis by modulating c-Myc-AKT1-p38 MAPK signalling pathways. BMC Cancer 2019; 19:354. [PMID: 30987615 PMCID: PMC6466688 DOI: 10.1186/s12885-019-5562-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/31/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) represents one of the most common malignancies worldwide with a high mortality rate mainly due to lack of early detection markers, frequent association with metastasis and aggressive phenotype. Recently, long non-coding RNAs (lncRNAs) have been shown to have important regulatory roles in human cancers. The lncRNA prostate cancer-associated transcript 1 (PCAT-1) showed potential oncogenic roles in different cancers, however its role in HNSCC is not known. In this study, we evaluated the role of the PCAT-1 in HNSCC. METHODS The expression of PCAT-1 was measured by quantitative real-time PCR in 23 paired human HNSCC tissues and adjacent non-tumor tissue specimens. Cell proliferation after depleting PCAT-1 was determined. Effect of PCAT-1 depletion in HNSCC cell lines was determined by qRT-PCR and Western blot analyses. Finally, JHU029 HNSCC cells was implanted subcutaneously into athymic nude mice and therapeutic potential of PCAT-1 was investigated. RESULTS Up-regulation of PCAT-1 in TCGA dataset of HNSCC was noted. We also observed increased expression of PCAT-1 in archived HNSCC patient samples as compared to adjacent non-tumor tissues. Knockdown of PCAT-1 significantly reduced cell proliferation in HNSCC cell lines. Mechanistic study revealed significant down regulation of c-Myc and AKT1 gene in both RNA and protein levels upon knockdown of PCAT-1. We observed that c-Myc and AKT1 positively correlate with PCAT-1 expression in HNSCC. Further, we observed activation of p38 MAPK and apoptosis signal-regulating kinase 1 upon knockdown of PCAT-1 which induces Caspase 9 and PARP mediated apoptosis. Targeted inhibition of PCAT-1 regresses tumor growth in nude mice. CONCLUSION Together our data demonstrated an important role of the PCAT-1 in HNSCC and might serve as a target for HNSCC therapy.
Collapse
Affiliation(s)
- Subhayan Sur
- 0000 0004 1936 9342grid.262962.bDepartment of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO 63104 USA
| | - Hiroshi Nakanishi
- 0000 0004 1936 9342grid.262962.bDepartment of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO 63104 USA
| | - Robert Steele
- 0000 0004 1936 9342grid.262962.bDepartment of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO 63104 USA
| | - Ratna B. Ray
- 0000 0004 1936 9342grid.262962.bDepartment of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO 63104 USA
| |
Collapse
|
21
|
Hu SCS, Lai YC, Lin CL, Tzeng WS, Yen FL. Inclusion complex of saikosaponin-d with hydroxypropyl-β-cyclodextrin: Improved physicochemical properties and anti-skin cancer activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:174-182. [PMID: 30776588 DOI: 10.1016/j.phymed.2018.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Saikosaponin-d (SSD) is a triterpene saponin isolated from Bupleurum plants. It has been shown to exhibit antioxidant, anti-inflammatory, and anticancer activities. However, its biomedical applications are limited by its poor water solubility. Cyclodextrins are highly water soluble oligosaccharide compounds which can form inclusion complexes with lipophilic drugs. PURPOSE We complexed SSD with hydroxypropyl-β-cyclodextrin (HPBCD) in various ratios to form SSD-HPBCD inclusion complexes. The inclusion complexes were evaluated for their solubility, physicochemical properties and cytotoxic effects in cutaneous squamous cell carcinoma cells. METHODS Surface morphology of pure SSD and SSD-HPBCD inclusion complexes was evaluated by scanning electron microscopy. Crystalline structure was determined by X-ray diffractometry. Intermolecular hydrogen bond formation between SSD and HPBCD was investigated by Fourier transform infrared spectroscopy. Human cutaneous squamous cell carcinoma HSC-1 cell viability was determined by the MTS assay, and cell apoptosis by the caspase 3/7 assay. Signal transduction pathways were investigated by Western blotting. RESULTS SSD-HPBCD inclusion complexes showed greatly increased water solubility. This was associated with an improvement in physicochemical properties, including transformation of crystalline structure to amorphous form, and formation of hydrogen bonds between SSD and HPBCD. In addition, SSD-HPBCD inclusion complexes induced apoptosis in HSC-1 cells, and this was mediated through activation of MAPK and suppression of Akt-mTOR signaling pathways. CONCLUSION SSD-HPBCD inclusion complex shows improvement in water solubility and physicochemical properties, and exhibits anticancer effects against cutaneous squamous cell carcinoma cells. Therefore, it may be a potential drug formulation for the treatment of skin cancer.
Collapse
Affiliation(s)
- Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chien Lai
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Ling Lin
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Wen-Sheng Tzeng
- Department of Radiology, Pingtung Christian Hospital, Pingtung, Taiwan.
| | - Feng-Lin Yen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
22
|
Song J, Wang Y, Yuan X, Ji Q, Fan C, Zhao H, Hao W, Ren D. Stretching magnitude-dependent inactivation of AKT by ROS led to enhanced p53 mitochondrial translocation and myoblast apoptosis. Mol Biol Cell 2019; 30:1182-1197. [PMID: 30865562 PMCID: PMC6724521 DOI: 10.1091/mbc.e18-12-0770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Previously, we had shown that high magnitude stretch (HMS), rather than low magnitude stretch (LMS), induced significant apoptosis of skeletal muscle C2C12 myoblasts. However, the molecular mechanism remains obscure. In this study, we found that p53 protein accumulated in the nucleus of LMS-loaded cells, whereas it translocated into mitochondria of HMS-loaded cells. Knocking down endogenous p53 by shRNA abrogated HMS-induced apoptosis. Furthermore, we demonstrated that overaccumulation of reactive oxygen species (ROS) during HMS-inactivated AKT that was activated in LMS-treated cells, which accounted for the distinct p53 subcellular localizations under HMS and LMS. Blocking ROS generation by N-acetylcysteine (NAC) or overexpressing constitutively active AKT vector (CA-AKT) inhibited HMS-incurred p53 mitochondrial translocation and promoted its nuclear targeting. Moreover, both NAC and CA-AKT significantly attenuated HMS-induced C2C12 apoptosis. Finally, we found that Ser389 phosphorylation of p53 was a downstream event of ROS-inactivated AKT pathway, which was critical to p53 mitochondrial trafficking during HMS stimuli. Transfecting p53-shRNA C2C12s with the mutant p53 (S389A) that was unable to target p53 to mitochondria underwent significantly lower apoptosis than transfection with wild-type p53. Altogether, our study uncovered that mitochondrial localization of p53, resulting from p53 Ser389 phosphorylation through ROS-inactivated AKT pathway, prompted C2C12 myoblast apoptosis during HMS stimulation.
Collapse
Affiliation(s)
- Jing Song
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Yaqi Wang
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Qiuxia Ji
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Cunhui Fan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hongmei Zhao
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjing Hao
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dapeng Ren
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Suraj R, Al-Rawi J, Bradley C. Inhibition of AKT signalling by benzoxazine derivative LTUR6 through the modulation of downstream kinases. Invest New Drugs 2019; 37:779-783. [PMID: 30627877 DOI: 10.1007/s10637-019-00726-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
Many compounds structurally similar to chromones have been developed to enhance the sensitizing effect of cancer cells to chemotherapeutic agents. Most of these compounds have been shown to promote this sensitization by targeting the repair pathways. One such compound is LTUR6, which enhances the sensitization of doxorubicin to colon cancer cells HT29, by inhibiting the phosphorylation of the double stranded break (DSB) repair enzyme AKT. The downstream regulatory targets of AKT that enhance doxorubicin mediated cytotoxicity in the presence of LTUR6 remains elusive. In this study, we performed comparative analyses of 43 kinase phosphorylation sites using the human phospho-kinase array proteome profiler. Results revealed altered expression levels of multiple proteins that regulated apoptotic signalling pathways. Increased activation of mTOR, RSK1/2/3, p38α and PRAS40 after combination treatment with LTUR6 and doxorubicin over doxorubicin alone was observed. This study provides a deeper insight into the key proteins involved and presents a novel molecular pathway.
Collapse
Affiliation(s)
- Rejitha Suraj
- Faculty of Science Technology and Engineering, School of Pharmacy and Applied Science, Latrobe Institute of Molecular Sciences, La Trobe University, Bendigo, Australia. .,Hotchkiss Brain Institute and Libin Cardiovascular Institute of Alberta, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Jasim Al-Rawi
- College of Science, Health and Engineering, La Trobe University, Bendigo, Australia
| | - Christopher Bradley
- Faculty of Science Technology and Engineering, School of Pharmacy and Applied Science, Latrobe Institute of Molecular Sciences, La Trobe University, Bendigo, Australia
| |
Collapse
|
24
|
Insights into Endothelial Progenitor Cells: Origin, Classification, Potentials, and Prospects. Stem Cells Int 2018; 2018:9847015. [PMID: 30581475 PMCID: PMC6276490 DOI: 10.1155/2018/9847015] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
With the discovery of endothelial progenitor cells (EPCs) in the late 1990s, a paradigm shift in the concept of neoangiogenesis occurred. The identification of circulating EPCs in peripheral blood marked the beginning of a new era with enormous potential in the rapidly transforming regenerative field. Overwhelmed with the revelation, researchers across the globe focused on isolating, defining, and interpreting the role of EPCs in various physiological and pathological conditions. Consequently, controversies emerged regarding the isolation techniques and classification of EPCs. Nevertheless, the potential of using EPCs in tissue engineering as an angiogenic source has been extensively explored. Concomitantly, the impact of EPCs on various diseases, such as diabetes, cancer, and cardiovascular diseases, has been studied. Within the limitations of the current knowledge, this review attempts to delineate the concept of EPCs in a sequential manner from the speculative history to a definitive presence (origin, sources of EPCs, isolation, and identification) and significance of these EPCs. Additionally, this review is aimed at serving as a guide for investigators, identifying potential research gaps, and summarizing our current and future prospects regarding EPCs.
Collapse
|
25
|
Cao FJ, Xu MX, Zhou BH, Du YS, Yao JH, Zhou L. Effects of 2-aryl-1-cyano-1,2,3,4-tetrohydroisoquinolines on apoptosis induction mechanism in NB4 and MKN-45 cells. Toxicol In Vitro 2018; 54:295-303. [PMID: 30342220 DOI: 10.1016/j.tiv.2018.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
Our previous study found that 2-aryl-1-cyano-1,2,3,4-tetrahydroisoquinolines (CATHIQs) have excellent anti-cancer activity and obvious apoptosis induction phenomenon. As our continuing research, this study further explored their underlying molecular mechanism of apoptosis induction in cancer cells. Flow cytometry analysis showed that the NB4 cells treated by 1-cyano-2-(2-fluorophenyl)-1,2,3,4-tetrahydroisoquinoline or the MKN-45 cells treated by 1-cyano-2-(4-trifluoromethylphenyl)-1,2,3,4-tetrahydroisoquinoline for 48 h were at early stage of apoptosis, and the cell cycle arrest was only slightly affected. Apoptosis rates of the cells significantly increase with the treatment concentration of the compounds. The compounds could significantly decrease the activities of SOD, raise the MDA level and promote the LDH leakage, suggesting that the excessive formation of ROS should be involved in the cell apoptosis. Western blot analysis showed that the compounds improved both Bax/Bcl-2 ratio and cleavages of procaspase-3, promoted efflux of cytochrome c to cytosol and phosphorylation of p38 and JNK, and attenuated phosphorylations of Akt and ERK. Together, inhibitions of PI3K/Akt and ERK and activation of p38 mediated the compounds-induced apoptosis through modulating the mitochondrial pathway and/or ROS production.
Collapse
Affiliation(s)
- Fang-Jun Cao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming-Xuan Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo-Hang Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi-Si Du
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun-Hu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
26
|
Elshaer SL, Lemtalsi T, El-Remessy AB. High Glucose-Mediated Tyrosine Nitration of PI3-Kinase: A Molecular Switch of Survival and Apoptosis in Endothelial Cells. Antioxidants (Basel) 2018; 7:antiox7040047. [PMID: 29587384 PMCID: PMC5946113 DOI: 10.3390/antiox7040047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022] Open
Abstract
Diabetes and hyperglycemia are associated with increased retinal oxidative and nitrative stress and vascular cell death. Paradoxically, high glucose stimulates expression of survival and angiogenic growth factors. Therefore, we examined the hypothesis that high glucose-mediated tyrosine nitration causes inhibition of the survival protein PI3-kinase, and in particular, its regulatory p85 subunit in retinal endothelial cell (EC) cultures. Retinal EC were cultured in high glucose (HG, 25 mM) for 3 days or peroxynitrite (PN, 100 µM) overnight in the presence or absence of a peroxynitrite decomposition catalyst (FeTPPs, 2.5 µM), or the selective nitration inhibitor epicatechin (100 µM). Apoptosis of ECs was assessed using TUNEL assay and caspase-3 activity. Immunoprecipitation and Western blot were used to assess protein expression and tyrosine nitration of p85 subunit and its interaction with the p110 subunit. HG or PN accelerated apoptosis of retinal ECs compared to normal glucose (NG, 5 mM) controls. HG- or PN-treated cells also showed significant increases in tyrosine nitration on the p85 subunit of PI3-kinase that inhibited its association with the catalytic p110 subunit and impaired PI3-kinase/Akt kinase activity. Decomposing peroxynitrite or blocking tyrosine nitration of p85 restored the activity of PI3-kinase, and prevented apoptosis and activation of p38 MAPK. Inhibiting p38 MAPK or overexpression of the constitutively activated Myr-Akt construct prevented HG- or peroxynitrite-mediated apoptosis. In conclusion, HG impairs pro-survival signals and causes accelerated EC apoptosis, at least in part via tyrosine nitration and inhibition of PI3-kinase. Inhibitors of nitration can be used in adjuvant therapy to delay diabetic retinopathy and microvascular complication.
Collapse
Affiliation(s)
- Sally L Elshaer
- Retinopathy Research, Augusta Biomedical Research Corporation Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.
| | - Tahira Lemtalsi
- Retinopathy Research, Augusta Biomedical Research Corporation Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.
| | - Azza B El-Remessy
- Retinopathy Research, Augusta Biomedical Research Corporation Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.
| |
Collapse
|
27
|
Xian X, Gong Q, Li C, Guo B, Jiang H. Exosomes with Highly Angiogenic Potential for Possible Use in Pulp Regeneration. J Endod 2018; 44:751-758. [PMID: 29426641 DOI: 10.1016/j.joen.2017.12.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Angiogenesis is critical for pulp regeneration. Exosomes, a key component of paracrine secretion, have emerged as important players in the modulation of angiogenesis. The role of dental pulp cell-derived exosomes (DPC-Exos) in angiogenesis has rarely been reported. The proangiogenic properties of DPC-Exos in human umbilical vein endothelial cells (HUVECs) are investigated in the current study. METHODS Exosomes were isolated from dental pulp cell (DPC) culture supernatants by ultracentrifugation and were characterized by transmission electron microscopy, Western blotting, and nanoparticle tracking analysis. Their roles in HUVEC proliferation, proangiogenic factor expression, and tube formation were examined in vitro. RESULTS We isolated and characterized exosomes from DPCs and showed that DPC-Exos promoted HUVEC proliferation, proangiogenic factor expression, and tube formation. Furthermore, we found that p38 mitogen-activated protein kinase (MAPK) signaling inhibition enhances DPC-Exos-induced tube formation. CONCLUSIONS Taken together, these results suggest that DPC-Exos have vital roles in angiogenesis, and p38 MAPK signaling inhibition enhances tubular morphogenesis.
Collapse
Affiliation(s)
- Xuehong Xian
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qimei Gong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chen Li
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bing Guo
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hongwei Jiang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
28
|
Chang M, Guo F, Zhou Z, Huang X, Yi L, Dou Y, Huan J. HBP induces the expression of monocyte chemoattractant protein-1 via the FAK/PI3K/AKT and p38 MAPK/NF-κB pathways in vascular endothelial cells. Cell Signal 2017; 43:85-94. [PMID: 29288710 DOI: 10.1016/j.cellsig.2017.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/24/2017] [Indexed: 02/07/2023]
Abstract
Inflammation is characterized by early influx of polymorphonuclear neutrophils (PMNs), followed by a second wave of monocyte recruitment. PMNs mediate monocyte recruitment via their release of heparin binding protein (HBP), which activates CCR2 (CC-chemokine receptor 2) on monocytes. However, the pathways for such signal transmission remain unknown. Accumulating evidences have highlighted the importance of leukocyte-endothelial cell interactions in the initiation of inflammation. In this study, an interesting finding is that HBP enhances the secretion of monocyte chemotactic protein 1(MCP-1), ligand of CCR2, from a third party, the endothelial cells (ECs). HBP-induced increase in MCP-1 production was demonstrated at the protein, mRNA and secretion levels. Exposure of ECs to HBP elicited rapid phosphorylation of FAK/PI3K/AKT and p38 MAPK/NF-κB signaling. MCP-1 levels were attenuated during the response to HBP stimulation by pretreatment with a FAK inhibitor (or siRNA), a PI3K inhibitor, an AKT inhibitor, a p38 inhibitor (or siRNA) and two NF-κB inhibitors. Additionally, pretreatment with inhibitors to FAK, PI3K and AKT led to a decrease in HBP-induced phosphorylation of p38/NF-κB axis. These results showed that HBP induced MCP-1 expression via a sequential activation of the FAK/PI3K/AKT pathway and p38 MAPK/NF-κB axis. Interestingly, the patterns of HBP regulation of the expression of the adhesion molecular VCAM-1 were similar to those seen in MCP-1 after pretreatment with inhibitors (or not). These findings may help to determine key pharmacological points of intervention, thus slowing the progress of inflammatory-mediated responses in certain diseases where inflammation is detrimental to the host.
Collapse
Affiliation(s)
- Mengling Chang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Feng Guo
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Zengding Zhou
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Xiaoqin Huang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Lei Yi
- Department of Orthopaedic Surgery, Fudan University, School of Medicine, Zhongshan Hospital, Shanghai, China
| | - Yi Dou
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Jingning Huan
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China.
| |
Collapse
|
29
|
Korde A, Jin L, Zhang JG, Ramaswamy A, Hu B, Kolahian S, Guardela BJ, Herazo-Maya J, Siegfried JM, Stabile L, Pisani MA, Herbst RS, Kaminski N, Elias JA, Puchalski JT, Takyar SS. Lung Endothelial MicroRNA-1 Regulates Tumor Growth and Angiogenesis. Am J Respir Crit Care Med 2017; 196:1443-1455. [PMID: 28853613 DOI: 10.1164/rccm.201610-2157oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Vascular endothelial growth factor down-regulates microRNA-1 (miR-1) in the lung endothelium, and endothelial cells play a critical role in tumor progression and angiogenesis. OBJECTIVES To examine the clinical significance of miR-1 in non-small cell lung cancer (NSCLC) and its specific role in tumor endothelium. METHODS miR-1 levels were measured by Taqman assay. Endothelial cells were isolated by magnetic sorting. We used vascular endothelial cadherin promoter to create a vascular-specific miR-1 lentiviral vector and an inducible transgenic mouse. KRASG12D mut/Trp53-/- (KP) mice, lung-specific vascular endothelial growth factor transgenic mice, Lewis lung carcinoma xenografts, and primary endothelial cells were used to test the effects of miR-1. MEASUREMENTS AND MAIN RESULTS In two cohorts of patients with NSCLC, miR-1 levels were lower in tumors than the cancer-free tissue. Tumor miR-1 levels correlated with the overall survival of patients with NSCLC. miR-1 levels were also lower in endothelial cells isolated from NSCLC tumors and tumor-bearing lungs of KP mouse model. We examined the significance of lower miR-1 levels by testing the effects of vascular-specific miR-1 overexpression. Vector-mediated delivery or transgenic overexpression of miR-1 in endothelial cells decreased tumor burden in KP mice, reduced the growth and vascularity of Lewis lung carcinoma xenografts, and decreased tracheal angiogenesis in vascular endothelial growth factor transgenic mice. In endothelial cells, miR-1 level was regulated through phosphoinositide 3-kinase and specifically controlled proliferation, de novo DNA synthesis, and ERK1/2 activation. Myeloproliferative leukemia oncogene was targeted by miR-1 in the lung endothelium and regulated tumor growth and angiogenesis. CONCLUSIONS Endothelial miR-1 is down-regulated in NSCLC tumors and controls tumor progression and angiogenesis.
Collapse
Affiliation(s)
- Asawari Korde
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and
| | - Lei Jin
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and.,2 Cleveland Clinic Cole Eye Institute and Lerner Research Institute, Cleveland, Ohio
| | - Jian-Ge Zhang
- 3 Department of Medicinal Chemistry, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Buqu Hu
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and
| | - Saeed Kolahian
- 4 Department of Pharmacology and Experimental Therapy, University of Tübingen, Tübingen, Germany
| | | | | | - Jill M Siegfried
- 5 Department of Pharmacology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Laura Stabile
- 6 Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania; and
| | | | - Roy S Herbst
- 7 Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | | | - Jack A Elias
- 8 Division of Biology and Medicine, Warren Alpert School of Medicine at Brown University, Providence, Rhode Island
| | | | | |
Collapse
|
30
|
Watson EC, Grant ZL, Coultas L. Endothelial cell apoptosis in angiogenesis and vessel regression. Cell Mol Life Sci 2017; 74:4387-4403. [PMID: 28646366 PMCID: PMC11107683 DOI: 10.1007/s00018-017-2577-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022]
Abstract
Blood vessel regression is an essential process for ensuring blood vessel networks function at optimal efficiency and for matching blood supply to the metabolic needs of tissues as they change over time. Angiogenesis is the major mechanism by which new blood vessels are produced, but the vessel growth associated with angiogenesis must be complemented by remodeling and maturation events including the removal of redundant vessel segments and cells to fashion the newly forming vasculature into an efficient, hierarchical network. This review will summarize recent findings on the role that endothelial cell apoptosis plays in vascular remodeling during angiogenesis and in vessel regression more generally.
Collapse
Affiliation(s)
- Emma C Watson
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Faculty of Medicine, University of Münster, 48149, Münster, Germany
| | - Zoe L Grant
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Leigh Coultas
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
31
|
Smolensky D, Rathore K, Bourn J, Cekanova M. Inhibition of the PI3K/AKT Pathway Sensitizes Oral Squamous Cell Carcinoma Cells to Anthracycline-Based Chemotherapy In Vitro. J Cell Biochem 2017; 118:2615-2624. [PMID: 27649518 DOI: 10.1002/jcb.25747] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/19/2016] [Indexed: 01/21/2023]
Abstract
Anthracycline-based chemotherapy, such as doxorubicin (Dox), while effective against many solid tumors, is not widely used for head and neck cancers. In this study, we evaluated the efficacy of Dox, and its derivative AD198 in human, canine, and feline oral squamous cell carcinomas cells (OSCC) in vitro. Dox and AD198 had significant an anti-proliferative effect on human, canine, and feline OSCC cells in dose-dependent manner. AD198 inhibited cell proliferation more effectively than Dox in tested OSCC cells. In the human oral squamous cell carcinoma SCC25 cells, Dox and AD198 increased the production of reactive oxygen species and subsequently increased apoptosis through activation of caspase signaling pathway. Dox and AD198 increased activation of AKT, ERK1/2, and p38 MAPK signaling pathways in tested OSCC cells by dose-dependent manner. The efficacy of Dox and AD198 treatments in inhibition of cell proliferation was increased in tested OSCC when combined with PI3K/AKT inhibitor, LY294002 treatment. Inhibition of PI3K/AKT reduced Dox- and AD198-induced activation of ERK1/2 and further increased Dox- and AD198-induced phosphorylation of p38 MAPK in OSCC. Our results suggest that the anthracycline therapies, such as Dox or AD198, can be more effective for treatment of OSCC when combined with inhibitors of the PI3K/AKT pathway. J. Cell. Biochem. 118: 2615-2624, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dmitriy Smolensky
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, 37996, Tennessee.,Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, 37996, Tennessee
| | - Kusum Rathore
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, 37996, Tennessee
| | - Jennifer Bourn
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, 37996, Tennessee.,Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, 37996, Tennessee
| | - Maria Cekanova
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, 37996, Tennessee.,Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, 37996, Tennessee
| |
Collapse
|
32
|
Flow signaling and atherosclerosis. Cell Mol Life Sci 2016; 74:1835-1858. [PMID: 28039525 PMCID: PMC5391278 DOI: 10.1007/s00018-016-2442-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022]
Abstract
Atherosclerosis rarely develops in the region of arteries exposed to undisturbed flow (u-flow, unidirectional flow). Instead, atherogenesis occurs in the area exposed to disturbed flow (d-flow, multidirectional flow). Based on these general pathohistological observations, u-flow is considered to be athero-protective, while d-flow is atherogenic. The fact that u-flow and d-flow induce such clearly different biological responses in the wall of large arteries indicates that these two types of flow activate each distinct intracellular signaling cascade in vascular endothelial cells (ECs), which are directly exposed to blood flow. The ability of ECs to differentially respond to the two types of flow provides an opportunity to identify molecular events that lead to endothelial dysfunction and atherosclerosis. In this review, we will focus on various molecular events, which are differentially regulated by these two flow types. We will discuss how various kinases, ER stress, inflammasome, SUMOylation, and DNA methylation play roles in the differential flow response, endothelial dysfunction, and atherosclerosis. We will also discuss the interplay among the molecular events and how they coordinately regulate flow-dependent signaling and cellular responses. It is hoped that clear understanding of the way how the two flow types beget each unique phenotype in ECs will lead us to possible points of intervention against endothelial dysfunction and cardiovascular diseases.
Collapse
|
33
|
Abstract
Activation of the PI3K pathway is central to a variety of physiological and pathological processes. In these contexts, AKT is classically considered the de facto mediator of PI3K-dependent signaling. However, in recent years, accumulating data point to the existence of additional effectors of PI3K activity, parallel to and independent of AKT, that play critical and unique roles in mediating different developmental, homeostatic, and pathological processes. In this review, I summarize and discuss our current understanding of the function of the serine/threonine kinase SGK1 as a downstream effector of PI3K, and try to separate targets and pathways validated as uniquely SGK1-dependent from those shared with AKT.
Collapse
|
34
|
Comparative analysis of regulatory roles of P38 signaling pathway in 8 types liver cell during liver regeneration. Gene 2016; 594:66-73. [DOI: 10.1016/j.gene.2016.08.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/05/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022]
|
35
|
Bai JA, jie H, wei S, Wang S, Guo H, Tang Q. GART mediates the renewal of intestinal epithelial barrier via p38/p53/PUMA cascade in colitis. Apoptosis 2016; 21:1386-1397. [DOI: 10.1007/s10495-016-1301-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Thomas GW, Rael LT, Hausburg M, Frederick ED, Brody E, Bar-Or D. The low molecular weight fraction of commercial human serum albumin induces acetylation of α-tubulin and reduces transcytosis in retinal endothelial cells. Biochem Biophys Res Commun 2016; 478:1780-5. [DOI: 10.1016/j.bbrc.2016.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/05/2016] [Indexed: 02/08/2023]
|
37
|
Gama Sosa MA, De Gasperi R, Hof PR, Elder GA. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation. Sci Rep 2016; 6:30267. [PMID: 27443835 PMCID: PMC4957214 DOI: 10.1038/srep30267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/20/2016] [Indexed: 12/05/2022] Open
Abstract
Presenilin 1 (Psen1) is important for vascular brain development and is known to influence cellular stress responses. To understand the role of Psen1 in endothelial stress responses, we investigated the effects of serum withdrawal on wild type (wt) and Psen1−/− embryonic brain endothelial cells. Serum starvation induced apoptosis in Psen1−/− cells but did not affect wt cells. PI3K/AKT signaling was reduced in serum-starved Psen1−/− cells, and this was associated with elevated levels of phospho-p38 consistent with decreased pro-survival AKT signaling in the absence of Psen1. Fibroblast growth factor (FGF1 and FGF2), but not vascular endothelial growth factor (VEGF) rescued Psen1−/− cells from serum starvation induced apoptosis. Inhibition of FGF signaling induced apoptosis in wt cells under serum withdrawal, while blocking γ-secretase activity had no effect. In the absence of serum, FGF2 immunoreactivity was distributed diffusely in cytoplasmic and nuclear vesicles of wt and Psen1−/− cells, as levels of FGF2 in nuclear and cytosolic fractions were not significantly different. Thus, sensitivity of Psen1−/− cells to serum starvation is not due to lack of FGF synthesis but likely to effects of Psen1 on FGF release onto the cell surface and impaired activation of the PI3K/AKT survival pathway.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
38
|
Roh J, Rhee J, Chaudhari V, Rosenzweig A. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms. Circ Res 2016; 118:279-95. [PMID: 26838314 DOI: 10.1161/circresaha.115.305250] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population.
Collapse
Affiliation(s)
- Jason Roh
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - James Rhee
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Vinita Chaudhari
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Anthony Rosenzweig
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston.
| |
Collapse
|
39
|
MiR-101 targets DUSP1 to regulate the TGF-β secretion in sorafenib inhibits macrophage-induced growth of hepatocarcinoma. Oncotarget 2016; 6:18389-405. [PMID: 26158762 PMCID: PMC4621898 DOI: 10.18632/oncotarget.4089] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC)-associated macrophages accelerate tumor progression via growth factor release. Therefore, tumor-associated macrophages (TAMs)-initiated signaling cascades are potential therapeutic targets. To better understand anticancer effects of systemic HCC therapy, we studied sorafenib's effect on macrophage function, focusing on macrophage-related growth factor secretion. We found that dual specificity phosphatase 1 (DUSP1) is a direct target of miR-101. Transfection of miR-101 reduced DUSP1 induction in M2 macrophages and prolonged ERK1/2, p38 and JNK activation, whereas inhibition of miR-101 enhanced DUSP1 expression and decreased ERK1/2, p38 and JNK activation. miR-101 expression was decreased by sorafenib, and inhibition of PI3K/AKT blocked induction of miR-101 by LPS in M2 cells. M2 cells with greater TGF-β and CD206 mRNA expression compared to M1 cells had increased hepatoma growth, metastases and EMT. Sorafenib inhibited miR-101 expression and enhanced DUSP1 expression and lowered TGF-β and CD206 release in M2 cells, slowing macrophage-driven HCC. Our studies demonstrate miR-101 regulates macrophage innate immune responses to LPS via targeting DUSP1. Sorafenib alters macrophage polarization, reduces TGF-β driven cancer growth, metastases and EMT in vitro, and partially inhibits macrophage activation in vivo. Thus, macrophage modulation might explain the anticancer effects of sorafenib.
Collapse
|
40
|
Cui Y, Lu P, Song G, Liu Q, Zhu D, Liu X. Involvement of PI3K/Akt, ERK and p38 signaling pathways in emodin-mediated extrinsic and intrinsic human hepatoblastoma cell apoptosis. Food Chem Toxicol 2016; 92:26-37. [PMID: 27032576 DOI: 10.1016/j.fct.2016.03.013] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 01/05/2023]
Abstract
As a natural anthraquinone derivative, 1,3,8-trihydroxy-6-methylanthraquinone, known as emodin, has recently been reported to possess potential chemopreventive capacity, but the underlying molecular mechanism of its hepatocyte toxicity remains poorly clarified. The present research indicated that emodin targeted HepG2 cells without being cytotoxic to primary human hepatocyte cells in comparison with chrysophanol and rhein. The anti-proliferative effect of emodin was ascribed to occurrence of apoptosis, which characterized by higher ethidium bromide signal, brighter DAPI fluorescence, cleavages of procaspase-3 and poly (ADP-ribose) polymerase as well as quantitative result from Annexin V-FITC/PI double staining. Furthermore, emodin improved Bax/Bcl-2 ratio, elicited disruption of mitochondrial membrane potential and promoted efflux of cytochrome c to cytosol, indicative of features of mitochondria-dependent apoptotic signals. Emodin concurrently led to activations of Fas, Fas-L, caspase-8 and tBid, which provoked death receptor apoptotic signals. Notably, activated tBid relayed the Fas apoptotic signal to the mitochondrial pathway. Besides, emodin effectively attenuated phosphorylations of Akt and ERK and promoted phosphorylation of p38. Inhibitions of PI3K/Akt and ERK and activation of p38 mediated emodin-induced apoptosis through modulating the mitochondrial pathway and/or death receptor pathway. Additionally, there was a cross-talk between PI3K/Akt and MAPKs pathways in emodin-induced apoptosis.
Collapse
Affiliation(s)
- Yuting Cui
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Peiran Lu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ge Song
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qian Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Di Zhu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
41
|
Huang W, Tian SS, Hang PZ, Sun C, Guo J, Du ZM. Combination of microRNA-21 and microRNA-146a Attenuates Cardiac Dysfunction and Apoptosis During Acute Myocardial Infarction in Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e296. [PMID: 26978580 PMCID: PMC5014454 DOI: 10.1038/mtna.2016.12] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/28/2016] [Indexed: 11/28/2022]
Abstract
Recent studies have revealed the cytoprotective roles of microRNAs (miRNAs) miR-21 and miR-146a against ischemic cardiac injuries. While these studies investigated each of these miRNAs as an independent individual factor, our previous study has suggested the possible interaction between these two miRNAs. The present study was designed to investigate this possibility by evaluating the effects of miR-21 and miR-146a combination on cardiac ischemic injuries and the underlying mechanisms. MiR-21 and miR-146a synergistically decreased apoptosis under ischemia/hypoxic conditions in cardiomyocytes compared with either miR-21 or miR-146a alone. Mice coinjected with agomiR-21 and agomiR-146a had decreased infarct size, increased ejection fraction (EF), and fractional shortening (FS). These effects were greater than those induced by either of the two agomiRs. Furthermore, greater decreases in p38 mitogen-associated protein kinase phosphorylation (p-p38 MAPK) were observed with miR-21: miR-146a combination as compared to application of either of the miRNAs. These data suggest that combination of miR-21 and miR-146a has a greater protective effect against cardiac ischemia/hypoxia-induced apoptosis as compared to these miRNAs applied individually. This synergistic action is mediated by enhanced potency of inhibition of cardiomyocyte apoptosis by the miR-21—PTEN/AKT—p-p38—caspase-3 and miR-146a—TRAF6—p-p38—caspase-3 signal pathways.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Clinical Pharmacology of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shan-Shan Tian
- Institute of Clinical Pharmacology of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Peng-Zhou Hang
- Institute of Clinical Pharmacology of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chuan Sun
- Institute of Clinical Pharmacology of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing Guo
- Institute of Clinical Pharmacology of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhi-Min Du
- Institute of Clinical Pharmacology of the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,The University Key Laboratory of Drug Research, Heilongjiang Province, Harbin, China
| |
Collapse
|
42
|
Abeyrathna P, Su Y. The critical role of Akt in cardiovascular function. Vascul Pharmacol 2015; 74:38-48. [PMID: 26025205 PMCID: PMC4659756 DOI: 10.1016/j.vph.2015.05.008] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/07/2015] [Accepted: 05/16/2015] [Indexed: 12/30/2022]
Abstract
Akt kinase, a member of AGC kinases, is important in many cellular functions including proliferation, migration, cell growth and metabolism. There are three known Akt isoforms which play critical and diverse roles in the cardiovascular system. Akt activity is regulated by its upstream regulatory pathways at transcriptional and post-translational levels. Beta-catenin/Tcf-4, GLI1 and Stat-3 are some of few known transcriptional regulators of AKT gene. Threonine 308 and serine 473 are the two critical phosphorylation sites of Akt1. Translocation of Akt to the cell membrane facilitates PDK1 phosphorylation of the threonine site. The serine site is phosphorylated by mTORC2. Ack1, Src, PTK6, TBK1, IKBKE and IKKε are some of the non-canonical pathways which affect the Akt activity. Protein-protein interactions of Akt to actin and Hsp90 increase the Akt activity while Akt binding to other proteins such as CTMP and TRB3 reduces the Akt activity. The action of Akt on its downstream targets determines its function in cardiovascular processes such as cell survival, growth, proliferation, angiogenesis, vasorelaxation, and cell metabolism. Akt promotes cell survival via caspase-9, YAP, Bcl-2, and Bcl-x activities. Inhibition of FoxO proteins by Akt also increases cell survival by transcriptional mechanisms. Akt stimulates cell growth and proliferation through mTORC1. Akt also increases VEGF secretion and mediates eNOS phosphorylation, vasorelaxation and angiogenesis. Akt can increase cellular metabolism through its downstream targets GSK3 and GLUT4. The alterations of Akt signaling play an important role in many cardiovascular pathological processes such as atherosclerosis, cardiac hypertrophy, and vascular remodeling. Several Akt inhibitors have been developed and tested as anti-tumor agents. They could be potential novel therapeutics for the cardiovascular diseases.
Collapse
Affiliation(s)
- Prasanna Abeyrathna
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
43
|
Li CJ, Madhu V, Balian G, Dighe AS, Cui Q. Cross-Talk Between VEGF and BMP-6 Pathways Accelerates Osteogenic Differentiation of Human Adipose-Derived Stem Cells. J Cell Physiol 2015; 230:2671-82. [PMID: 25753222 DOI: 10.1002/jcp.24983] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/03/2015] [Indexed: 12/29/2022]
Abstract
Deficiency in vascular endothelial growth factor (VEGF) or bone morphogenetic proteins (BMPs) results in fracture non-unions. Therefore, it is indispensable to comprehend the combined effect of VEGF and BMPs on the osteogenic differentiation of osteoprogenitor mesenchymal stem cells (MSCs) that are either naturally occurring at the fracture repair site or exogenously added to enhance the bone repair. We found that the combination of VEGF and BMP-6 enhanced COL1A2 expression, which correlated with upregulated expression of osterix, Dlx5, and Msx2 in human adipose-derived stem cells (hADSCs). Cross-talk between VEGF and BMP-6 pathways upregulated activation of p38 mitogen-activated kinase (p38 MAPK) and inhibited activation of protein kinase B (PKB, also known as Akt), whereas phosphorylation of "mothers against decapentaplegic" homologs 1/5/8 (Smads 1/5/8) and extracellular signal-regulated kinases 1 and 2 (ERK 1/2) was not affected. Consistent with these findings, p38 inhibitor SB203580, or siRNA knockdown of osterix, abrogated crosstalk between the VEGF and BMP-6 pathways and significantly reduced the observed upregulation of COL1A2. Nuclear translocation of the phosphorylated form of osterix was also inhibited by SB203580. Although crosstalk between the VEGF-BMP-6 pathways did not show an effect on the extent of mineralization, inhibition of any one of the three components that were upregulated through the cross-talk, i.e., osterix, Dlx5, and p38 activation, led to a complete inhibition of mineralization. Inhibition of PKB/Akt activation, which is attenuated through the cross-talk, significantly enhanced ALP gene expression. These observations imply that crosstalk between the VEGF and BMP-6 signaling pathways enhances osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Ching-Ju Li
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| | - Vedavathi Madhu
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| | - Gary Balian
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| | - Abhijit S Dighe
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| | - Quanjun Cui
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
44
|
Li S, Pinard M, Wang Y, Yang L, Lin R, Hiscott J, Su B, Brodt P. Crosstalk between the TNF and IGF pathways enhances NF-κB activation and signaling in cancer cells. Growth Horm IGF Res 2015; 25:253-261. [PMID: 26239406 DOI: 10.1016/j.ghir.2015.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND The receptor for type I insulin like growth factor (IGF-IR) and NFκB signaling both play essential roles in cancer initiation and progression but relatively little is known about possible crosstalk between these pathways. We have shown that the IGF-IR could rescue lung and colon carcinoma cells from Tumor necrosis factor -α (ΤΝF-α)-induced apoptosis by activating autocrine, pro-survival IL-6/gp130/STAT3 signaling, suggesting that IGF-IR expression could alter NF-κB signaling that is required for transcriptional activation of IL-6. OBJECTIVE Here we sought to determine if and how IGF-IR signaling promotes TNF-α-induced NFκB activation. DESIGN We used lung carcinoma M-27 and colon carcinoma MC-38 cells to investigate IGF-IR-induced changes to the IKK/IκBα/NFκB pathway by a combination of qPCR, Western blotting, electrophoretic mobility shift assay, a reporter assay and gene silencing. RESULTS We show that in the presence of increased IGF-IR expression or activation levels, nuclear translocation of NFκB in response to TNF-α was enhanced in lung and colon carcinoma cells and this was due to accelerated phosphorylation and degradation of IκBα. This effect was AKT-dependent and mediated via mitogen-activated protein kinase kinase kinase 3(MEKK3) activation. CONCLUSION The results suggest that ligand-mediated activation of IGF-IR alters NF-κB signaling in cancer cells in an AKT/MEKK3-dependent manner and that temporal aspects of NF-κB activation can regulate the cytokine profile of the tumor cells and thereby, their interaction with the microenvironment.
Collapse
Affiliation(s)
- Shun Li
- Dept of Medicine, McGill University and the McGill University Health Center, Canada
| | - Maxime Pinard
- Dept of Surgery, McGill University and the McGill University Health Center, Canada
| | - Yunling Wang
- Dept of Surgery, McGill University and the McGill University Health Center, Canada
| | - Long Yang
- Dept of Medicine, McGill University and the McGill University Health Center, Canada
| | - Rongtuan Lin
- Dept of Medicine, McGill University and the McGill University Health Center, Canada; The Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Montreal QC, Canada
| | - John Hiscott
- Dept of Medicine, McGill University and the McGill University Health Center, Canada; Dept of Microbiology and Immunology, McGill University, Canada; The Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Montreal QC, Canada
| | - Bing Su
- Dept of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Pnina Brodt
- Dept of Medicine, McGill University and the McGill University Health Center, Canada; Dept of Surgery, McGill University and the McGill University Health Center, Canada.
| |
Collapse
|
45
|
Prakash Muyal J, Kumar D, Kotnala S, Muyal V, Tyagi AK. Recombinant Human Keratinocyte Growth Factor Induces Akt Mediated Cell Survival Progression in Emphysematous Mice. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.arbr.2015.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Gaumann AKA, Kiefer F, Alfer J, Lang SA, Geissler EK, Breier G. Receptor tyrosine kinase inhibitors: Are they real tumor killers? Int J Cancer 2015; 138:540-54. [PMID: 25716346 DOI: 10.1002/ijc.29499] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/13/2015] [Indexed: 12/11/2022]
Abstract
Inhibiting tumor growth by targeting the tumor vasculature was first proposed by Judah Folkman almost 40 years ago. Since then, different approaches and numerous drugs and agents have been developed to achieve this goal, either with the aim of inhibiting tumor neoangiogenesis or normalizing the tumor vasculature. Among the most promising therapeutic targets are receptor tyrosine kinases (RTKs), some of which are predominantly expressed on tumor endothelial cells, although they are sometimes also present on tumor cells. The majority of RTK inhibitors investigated over the past two decades competes with ATP at the active site of the kinase and therefore block the phosphorylation of intracellular targets. Some of these drugs have been approved for therapy, whereas others are still in clinical trials. Here, we discuss the scientific basis, current status, problems and future prospects of RTK inhibition in anti-tumor therapy.
Collapse
Affiliation(s)
- Andreas K A Gaumann
- Institute of Pathology Kaufbeuren-Ravensburg, Kaufbeuren, Germany
- Institute of Pathology, University of Regensburg, Medical Center, Regensburg, Germany
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine-Westphalia, Germany
| | - Joachim Alfer
- Institute of Pathology Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| | - Sven A Lang
- Department of Surgery, University of Regensburg, Medical Center, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, University of Regensburg, Medical Center, Regensburg, Germany
| | - Georg Breier
- Institute of Pathology, Technical University Dresden, Dresden, Germany
| |
Collapse
|
47
|
Carnagarin R, Dharmarajan AM, Dass CR. PEDF-induced alteration of metabolism leading to insulin resistance. Mol Cell Endocrinol 2015; 401:98-104. [PMID: 25462587 DOI: 10.1016/j.mce.2014.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/21/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023]
Abstract
Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Curtin Biosciences Research Precinct, Bentley 6102, Australia; School of Pharmacy, Curtin University, Bentley 6102, Australia
| | - Arunasalam M Dharmarajan
- Curtin Biosciences Research Precinct, Bentley 6102, Australia; School of Biomedical Science, Curtin University, Bentley 6102, Australia
| | - Crispin R Dass
- Curtin Biosciences Research Precinct, Bentley 6102, Australia; School of Pharmacy, Curtin University, Bentley 6102, Australia.
| |
Collapse
|
48
|
Yeo JC, Wall AA, Luo L, Stow JL. Rab31 and APPL2 enhance FcγR-mediated phagocytosis through PI3K/Akt signaling in macrophages. Mol Biol Cell 2015; 26:952-65. [PMID: 25568335 PMCID: PMC4342030 DOI: 10.1091/mbc.e14-10-1457] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rab31 recruits APPL2 to regulate phagocytic cup closure and FcγR signaling pathways via production of PI(3,4,5)P3 in macrophages. APPL2 is poised to activate macrophages and act as a counterpoint to APPL1 in FcγR-mediated PI3K/Akt signaling. New locations and roles are found for Rab31 and APPL2 by which they contribute to innate immune functions. Membrane remodeling in the early stages of phagocytosis enables the engulfment of particles or pathogens and receptor signaling to activate innate immune responses. Members of the Rab GTPase family and their disparate effectors are recruited sequentially to regulate steps throughout phagocytosis. Rab31 (Rab22b) is known for regulating post-Golgi trafficking, and here we show in macrophages that Rab31-GTP is additionally and specifically recruited to early-stage phagosomes. At phagocytic cups, Rab31 is first recruited during the phosphoinositide transition from PI(4,5)P2 to PI(3,4,5)P3, and it persists on PI(3)P-enriched phagosomes. During early phagocytosis, we find that Rab31 recruits the signaling adaptor APPL2. siRNA depletion of either Rab31 or APPL2 reduces FcγR-mediated phagocytosis. Mechanistically, this corresponds with a delay in the transition to PI(3,4,5)P3 and phagocytic cup closure. APPL2 depletion also reduced PI3K/Akt signaling and enhanced p38 signaling from FcγR. We thus conclude that Rab31/APPL2 is required for key roles in phagocytosis and prosurvival responses of macrophages. Of interest, in terms of localization and function, this Rab31/APPL2 complex is distinct from the Rab5/APPL1 complex, which is also involved in phagocytosis and signaling.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | - Adam A Wall
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | - Lin Luo
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
49
|
Elevated levels of plasma TNF-α are associated with microvascular endothelial dysfunction in patients with sepsis through activating the NF-κB and p38 mitogen-activated protein kinase in endothelial cells. Shock 2014; 41:275-81. [PMID: 24430552 DOI: 10.1097/shk.0000000000000116] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inflammatory responses can induce microvascular and endothelial dysfunction, which is associated with the development of sepsis. This study is aimed at examining the concentrations of plasma tissue factor (TF), von Willebrand factor (vWF), and tumor necrosis factor-α (TNF-α) in patients with sepsis and at determining how septic plasma (SP) regulates TF and vWF expression and p38 mitogen activated protein kinase (p38 MAPK)/nuclear factor-κB (NF-κB) pathways in human endothelial cells. The concentrations of plasma TF, vWF, and TNF-α in 22 septic patients and eight healthy controls (HCs) were examined by enzyme-linked immunosorbent assay, and their potential association with disease severity was analyzed. Human umbilical vein endothelial cells (HUVECs) were treated with SP from patients or normal plasma (NP) from the HCs, and the levels of TF and vWF were measured. The SP-induced ERK, p38 MAPK, and NF-κB activation was characterized by Western blot and immunofluorescent assays. The SP-induced HUVEC apoptosis was detected by flow cytometry. The concentrations of plasma TF, vWF, and TNF-α in the patients were significantly higher than that in the HCs and were positively correlated with the Acute Physiology and Chronic Health Evaluation II scores in the patients. Furthermore, treatment with SP, but not NP, induced TF and vWF production in HUVECs in a dose- and time-dependent manner, which was associated with sequential activation of the p38 MAPK and NF-κB pathways. Septic plasma induced HUVEC apoptosis, which was inhibited by activating the NF-κB pathway. The sepsis-related inflammatory factors promoted endothelial cell activation, dysfunction, and apoptosis through activation of the p38 MAPK pathway that was regulated by NF-κB signaling.
Collapse
|
50
|
Lam GC, Sefton MV. Tuning graft- and host-derived vascularization in modular tissue constructs: a potential role of HIF1 activation. Tissue Eng Part A 2014; 21:803-16. [PMID: 25379774 DOI: 10.1089/ten.tea.2014.0315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A better understanding of the factors governing the vascularization of engineered tissues is crucial for their advancement as therapeutic platforms. Here, we studied the effect of implant volume and cell densities on the in vivo vascularization of modular engineered tissue constructs. Sub-millimeter collagen modules containing adipose-derived mesenchymal stromal cells (adMSC) and enveloped by human umbilical vein endothelial cells (HUVEC) were subcutaneously implanted in severe-combined immunodeficient mice with a beige-mutation (SCID-bg) mice. Implant volume and cell density was varied relative to a base case, defined as a 0.01 mL implant containing 1.5×10(7) adMSC/mL and 3.9×10(6) HUVEC/mL. At 7 and 14 days post-transplantation, the constructs were harvested for immunohistochemical analysis of total (CD31(+)) and graft-derived (UEA1(+)) vessel formation, hypoxia-inducible factor 1-alpha (HIF1α) expression, infiltration of host-derived leukocytes (CD45), and macrophages (F4/80). Implant volume and cell density affected the relative contributions of host- versus graft-derived vascularization, highlighting that different mechanisms underlie the two processes. Graft-derived vessel formation was most rapid and robust in implants with high HIF1α expression, namely large volume implants and implants with high adMSC and HUVEC density (p<0.01 compared to base case at day 7). Many HIF1α(+) cells were vessel-lining HUVEC, suggesting that HIF1 activation may be key to vessel assembly in the graft. Host vessel ingrowth, however, dominated the vascularization of small volume implants (of high and low adMSC density alike), which showed low HIF1α expression at day 7. Host vessels were sustained to day 14 when adMSC density alone was increased, presumably due to increased paracrine secretions. This study points to a potential role of HIF1 activation in the vascularization of tissue constructs, which may be harnessed to engineer robust vessels for therapeutic applications.
Collapse
Affiliation(s)
- Gabrielle C Lam
- 1 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | | |
Collapse
|