1
|
Bernaerts E, Ahmadzadeh K, De Visscher A, Malengier-Devlies B, Häuβler D, Mitera T, Martens E, Krüger A, De Somer L, Matthys P, Vandooren J. Human monocyte-derived macrophages shift subcellular metalloprotease activity depending on their activation state. iScience 2024; 27:111171. [PMID: 39569367 PMCID: PMC11576389 DOI: 10.1016/j.isci.2024.111171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Proteases are key effectors in macrophage function during the initiation and resolution of inflammation. Recent studies have shown that some proteases, traditionally considered extracellular, also exhibit enzymatic and non-enzymatic functions within the cell. This study explores the differential protease landscapes of macrophages based on their phenotype. Human monocytes were isolated from healthy volunteers and stimulated with M-CSF (resting macrophages), LPS/IFN-γ (inflammatory macrophages), or IL-4 (immunosuppressive macrophages). IL-4-stimulated macrophages secreted higher levels of MMPs and natural protease inhibitors compared to LPS/IFN-γ-stimulated macrophages. Increased extracellular proteolytic activity was detected in LPS/IFN-γ-stimulated macrophages while IL-4 stimulation increased cell-associated proteolytic activity, particularly for MMPs. Subcellular fractionation and confocal microscopy revealed the uptake of extracellular MMP-9 and its relocation to the nucleus in IL-4-stimulated, though not in LPS/IFN-γ-stimulated macrophages. Collectively, macrophages alter the subcellular location and activity of their MMPs based on the stimuli received, suggesting another mechanism for protease regulation in macrophage biology.
Collapse
Affiliation(s)
- Eline Bernaerts
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Amber De Visscher
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Centre for Reproductive Health and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Daniel Häuβler
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, D-81676 Munich, Germany
| | - Tania Mitera
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Achim Krüger
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, D-81676 Munich, Germany
| | - Lien De Somer
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- University Hospital Leuven, Laboratory of Pediatric Immunology, 3000 Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| |
Collapse
|
2
|
Mishra RR, Nielsen BE, Trudrung MA, Lee S, Bolstad LJ, Hellenbrand DJ, Hanna AS. The Effect of Tissue Inhibitor of Metalloproteinases on Scar Formation after Spinal Cord Injury. Cells 2024; 13:1547. [PMID: 39329731 PMCID: PMC11430430 DOI: 10.3390/cells13181547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Spinal cord injury (SCI) often results in permanent loss of motor and sensory function. After SCI, the blood-spinal cord barrier (BSCB) is disrupted, causing the infiltration of neutrophils and macrophages, which secrete several kinds of cytokines, as well as matrix metalloproteinases (MMPs). MMPs are proteases capable of degrading various extracellular matrix (ECM) proteins, as well as many non-matrix substrates. The tissue inhibitor of MMPs (TIMP)-1 is significantly upregulated post-SCI and operates via MMP-dependent and MMP-independent pathways. Through the MMP-dependent pathway, TIMP-1 directly reduces inflammation and destruction of the ECM by binding and blocking the catalytic domains of MMPs. Thus, TIMP-1 helps preserve the BSCB and reduces immune cell infiltration. The MMP-independent pathway involves TIMP-1's cytokine-like functions, in which it binds specific TIMP surface receptors. Through receptor binding, TIMP-1 can stimulate the proliferation of several types of cells, including keratinocytes, aortic smooth muscle cells, skin epithelial cells, corneal epithelial cells, and astrocytes. TIMP-1 induces astrocyte proliferation, modulates microglia activation, and increases myelination and neurite extension in the central nervous system (CNS). In addition, TIMP-1 also regulates apoptosis and promotes cell survival through direct signaling. This review provides a comprehensive assessment of TIMP-1, specifically regarding its contribution to inflammation, ECM remodeling, and scar formation after SCI.
Collapse
Affiliation(s)
- Raveena R. Mishra
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Brooke E. Nielsen
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Melissa A. Trudrung
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Samuel Lee
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Luke J. Bolstad
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Daniel J. Hellenbrand
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amgad S. Hanna
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Yamamoto K, Scilabra SD, Bonelli S, Jensen A, Scavenius C, Enghild JJ, Strickland DK. Novel insights into the multifaceted and tissue-specific roles of the endocytic receptor LRP1. J Biol Chem 2024; 300:107521. [PMID: 38950861 PMCID: PMC11325810 DOI: 10.1016/j.jbc.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 SNPs are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 KO mice revealed a critical, nonredundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Nudelman A, Shenoy A, Allouche-Arnon H, Fisler M, Rosenhek-Goldian I, Dayan L, Abou Karam P, Porat Z, Solomonov I, Regev-Rudzki N, Bar-Shir A, Sagi I. Proteolytic Vesicles Derived from Salmonella enterica Serovar Typhimurium-Infected Macrophages: Enhancing MMP-9-Mediated Invasion and EV Accumulation. Biomedicines 2024; 12:434. [PMID: 38398037 PMCID: PMC10886541 DOI: 10.3390/biomedicines12020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Proteolysis of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) plays a crucial role in the immune response to bacterial infections. Here we report the secretion of MMPs associated with proteolytic extracellular vesicles (EVs) released by macrophages in response to Salmonella enterica serovar Typhimurium infection. Specifically, we used global proteomics, in vitro, and in vivo approaches to investigate the composition and function of these proteolytic EVs. Using a model of S. Typhimurium infection in murine macrophages, we isolated and characterized a population of small EVs. Bulk proteomics analysis revealed significant changes in protein cargo of naïve and S. Typhimurium-infected macrophage-derived EVs, including the upregulation of MMP-9. The increased levels of MMP-9 observed in immune cells exposed to S. Typhimurium were found to be regulated by the toll-like receptor 4 (TLR-4)-mediated response to bacterial lipopolysaccharide. Macrophage-derived EV-associated MMP-9 enhanced the macrophage invasion through Matrigel as selective inhibition of MMP-9 reduced macrophage invasion. Systemic administration of fluorescently labeled EVs into immunocompromised mice demonstrated that EV-associated MMP activity facilitated increased accumulation of EVs in spleen and liver tissues. This study suggests that macrophages secrete proteolytic EVs to enhance invasion and ECM remodeling during bacterial infections, shedding light on an essential aspect of the immune response.
Collapse
Affiliation(s)
- Alon Nudelman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| | - Anjana Shenoy
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| | - Hyla Allouche-Arnon
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel; (H.A.-A.); (M.F.); (A.B.-S.)
| | - Michal Fisler
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel; (H.A.-A.); (M.F.); (A.B.-S.)
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Lior Dayan
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| | - Paula Abou Karam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (P.A.K.); (N.R.-R.)
| | - Ziv Porat
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Inna Solomonov
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (P.A.K.); (N.R.-R.)
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel; (H.A.-A.); (M.F.); (A.B.-S.)
| | - Irit Sagi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| |
Collapse
|
5
|
The Role of Obesity, Inflammation and Sphingolipids in the Development of an Abdominal Aortic Aneurysm. Nutrients 2022; 14:nu14122438. [PMID: 35745168 PMCID: PMC9229568 DOI: 10.3390/nu14122438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a local dilatation of the vessel equal to or exceeding 3 cm. It is a disease with a long preclinical period commonly without any symptoms in its initial stage. Undiagnosed for years, aneurysm often leads to death due to vessel rupture. The basis of AAA pathogenesis is inflammation, which is often associated with the excess of adipose tissue, especially perivascular adipose tissue, which synthesizes adipocytokines that exert a significant influence on the formation of aneurysms. Pro-inflammatory cytokines such as resistin, leptin, and TNFα have been shown to induce changes leading to the formation of aneurysms, while adiponectin is the only known compound that is secreted by adipose tissue and limits the development of aneurysms. However, in obesity, adiponectin levels decline. Moreover, inflammation is associated with an increase in the amount of macrophages infiltrating adipose tissue, which are the source of matrix metalloproteinases (MMP) involved in the degradation of the extracellular matrix, which are an important factor in the formation of aneurysms. In addition, an excess of body fat is associated with altered sphingolipid metabolism. It has been shown that among sphingolipids, there are compounds that play an opposite role in the cell: ceramide is a pro-apoptotic compound that mediates the development of inflammation, while sphingosine-1-phosphate exerts pro-proliferative and anti-inflammatory effects. It has been shown that the increase in the level of ceramide is associated with a decrease in the concentration of adiponectin, an increase in the concentration of TNFα, MMP-9 and reactive oxygen species (which contribute to the apoptosis of vascular smooth muscle cell). The available data indicate a potential relationship between obesity, inflammation and disturbed sphingolipid metabolism with the formation of aneurysms; therefore, the aim of this study was to systematize the current knowledge on the role of these factors in the pathogenesis of abdominal aortic aneurysm.
Collapse
|
6
|
Xiao L, Zou X, Liang Y, Wang Y, Zeng L, Wu J. Evaluating the Causal Effects of TIMP-3 on Ischaemic Stroke and Intracerebral Haemorrhage: A Mendelian Randomization Study. Front Genet 2022; 13:838809. [PMID: 35444693 PMCID: PMC9015162 DOI: 10.3389/fgene.2022.838809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: Since tissue inhibitors of matrix metalloproteinase 3 (TIMP-3) was reported to be a potential risk factor of atherosclerosis, aneurysm, hypertension, and post-ischaemic neuronal injury, it may also be a candidate risk factor of stress. Therefore, this study was designed to explore the causal role of TIMP-3 in the risk of ischaemic stroke (IS) and intracerebral haemorrhage (ICH), which are the two main causes of stress via this Mendelian Randomisation (MR) study. Methods: The summarised data of TIMP-3 level in circulation was acquired from the Cooperative Health Research in the Region of Augsburg public database and the outcome of IS and ICH was obtained from genome-wide association studies conducted by MEGASTROKE and the International Stroke Genetics Consortium, respectively. Five statistical methods including inverse-variance weighting, weighted-median analysis, MR-Egger regression, MR Pleiotropy RESidual Sum and Outlier test, and MR-Robust Adjusted Profile Score were applied to evaluate the causal role of TIMP-3 in the occurrence of IS and ICH. Inverse-variance weighting was applied for assessing causality. Furthermore, heterogeneity and pleiotropic tests were utilised to confirm the reliability of this study. Results: We found that TIMP-3 could be a positively causal relationship with the incidence of IS (OR = 1.026, 95% CI: 1.007-1.046, p = 0.0067), especially for the occurrence of small vessel stroke (SVS; OR = 1.045, 95% CI: 1.016-1.076, p = 0.0024). However, the causal effects of TIMP-3 on another IS subtype cardioembolic stroke (CES; OR = 1.049, 95% CI: 1.006-1.094, p = 0.024), large artery stroke (LAS; OR = 1.0027, 95% CI: 0.9755-1.0306, p = 0.849) and ICH (OR = 0.9900, 95% CI: 0.9403-1.0423, p = 0.701), as well as ICH subtypes were not observed after Bonferroni corrections (p = 0.00714). Conclusion: Our results revealed that high levels of circulating TIMP-3 causally increased the risk of developing IS and SVS, but not CES, LAS, ICH, and all ICH subtypes. Further investigation is required to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Linxiao Xiao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Xuelun Zou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Liang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yuxiang Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Lang Zeng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhuang Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Sepúlveda V, Maurelia F, González M, Aguayo J, Caprile T. SCO-spondin, a giant matricellular protein that regulates cerebrospinal fluid activity. Fluids Barriers CNS 2021; 18:45. [PMID: 34600566 PMCID: PMC8487547 DOI: 10.1186/s12987-021-00277-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/11/2021] [Indexed: 12/28/2022] Open
Abstract
Cerebrospinal fluid is a clear fluid that occupies the ventricular and subarachnoid spaces within and around the brain and spinal cord. Cerebrospinal fluid is a dynamic signaling milieu that transports nutrients, waste materials and neuroactive substances that are crucial for the development, homeostasis and functionality of the central nervous system. The mechanisms that enable cerebrospinal fluid to simultaneously exert these homeostatic/dynamic functions are not fully understood. SCO-spondin is a large glycoprotein secreted since the early stages of development into the cerebrospinal fluid. Its domain architecture resembles a combination of a matricellular protein and the ligand-binding region of LDL receptor family. The matricellular proteins are a group of extracellular proteins with the capacity to interact with different molecules, such as growth factors, cytokines and cellular receptors; enabling the integration of information to modulate various physiological and pathological processes. In the same way, the LDL receptor family interacts with many ligands, including β-amyloid peptide and different growth factors. The domains similarity suggests that SCO-spondin is a matricellular protein enabled to bind, modulate, and transport different cerebrospinal fluid molecules. SCO-spondin can be found soluble or polymerized into a dynamic threadlike structure called the Reissner fiber, which extends from the diencephalon to the caudal tip of the spinal cord. Reissner fiber continuously moves caudally as new SCO-spondin molecules are added at the cephalic end and are disaggregated at the caudal end. This movement, like a conveyor belt, allows the transport of the bound molecules, thereby increasing their lifespan and action radius. The binding of SCO-spondin to some relevant molecules has already been reported; however, in this review we suggest more than 30 possible binding partners, including peptide β-amyloid and several growth factors. This new perspective characterizes SCO-spondin as a regulator of cerebrospinal fluid activity, explaining its high evolutionary conservation, its apparent multifunctionality, and the lethality or severe malformations, such as hydrocephalus and curved body axis, of knockout embryos. Understanding the regulation and identifying binding partners of SCO-spondin are crucial for better comprehension of cerebrospinal fluid physiology.
Collapse
Affiliation(s)
- Vania Sepúlveda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Maurelia
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Maryori González
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jaime Aguayo
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
8
|
Yamamoto K, Wilkinson D, Bou-Gharios G. Targeting Dysregulation of Metalloproteinase Activity in Osteoarthritis. Calcif Tissue Int 2021; 109:277-290. [PMID: 32772139 PMCID: PMC8403128 DOI: 10.1007/s00223-020-00739-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
Metalloproteinases were first identified as collagen cleaving enzymes and are now appreciated to play important roles in a wide variety of biological processes. The aberrant activity and dysregulation of the metalloproteinase family are linked to numerous diseases including cardiovascular and pulmonary diseases, chronic wounds, cancer, fibrosis and arthritis. Osteoarthritis (OA) is the most prevalent age-related joint disorder that causes pain and disability, but there are no disease-modifying drugs available. The hallmark of OA is loss of articular cartilage and elevated activities of matrix-degrading metalloproteinases are responsible. These enzymes do not exist in isolation and their activity is tightly regulated by a number of processes, such as transcription, proteolytic activation, interaction with their inhibitors, cell surface and extracellular matrix molecules, and endocytic clearance from the extracellular milieu. Here, we describe the functions and roles of metalloproteinase family in OA pathogenesis. We highlight recent studies that have illustrated novel mechanisms regulating their extracellular activity and impairment of such regulations that lead to the development of OA. We also discuss how to stop or slow down the degenerative processes by targeting aberrant metalloproteinase activity, which may in future become therapeutic interventions for the disease.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - David Wilkinson
- Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
9
|
Lee EJ, Zheng M, Craft CM, Jeong S. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) are localized in the nucleus of retinal Müller glial cells and modulated by cytokines and oxidative stress. PLoS One 2021; 16:e0253915. [PMID: 34270579 PMCID: PMC8284794 DOI: 10.1371/journal.pone.0253915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in the pathology of numerous inflammatory retinal degenerations, including retinitis pigmentosa (RP). Our previous work revealed that intravitreal injections with tissue inhibitor of metalloproteinases 1 (TIMP-1) reduce the progression of rod cell death and inhibit cone cell remodeling that involves reactive gliosis in retinal Müller glial cells (MGCs) in rodent models. The underlying cellular and molecular mechanisms of how TIMP-1 functions in the retina remain to be resolved; however, MGCs are involved in structural homeostasis, neuronal cell survival and death. In the present study, MMP-9 and TIMP-1 expression patterns were investigated in a human MGC line (MIO-M1) under inflammatory cytokine (IL-1β and TNF-α) and oxidative stress (H2O2) conditions. First, both IL-1β and TNF-α, but not H2O2, have a mild in vitro pro-survival effect on MIO-M1 cells. Treatment with either cytokine results in the imbalanced secretion of MMP-9 and TIMP-1. H2O2 treatment has little effect on their secretion. The investigation of their intracellular expression led to interesting observations. MMP-9 and TIMP-1 are both expressed, not only in the cytoplasm, but also inside the nucleus. None of the treatments alters the MMP-9 intracellular distribution pattern. In contrast to MMP-9, TIMP-1 is detected as speckles. Intracellular TIMP-1 aggregation forms in the cytoplasmic area with IL-1β treatment. With H2O2 treatments, the cell morphology changes from cobbles to spindle shapes and the nuclei become larger with increases in TIMP-1 speckles in an H2O2 dose-dependent manner. Two TIMP-1 cell surface receptors, low density lipoprotein receptor-related protein-1 (LRP-1) and cluster of differentiation 82 (CD82), are expressed within the nucleus of MIO-M1 cells. Overall, these observations suggest that intracellular TIMP-1 is a target of proinflammatory and oxidative insults in the MGCs. Given the importance of the roles for MGCs in the retina, the functional implication of nuclear TIMP-1 and MMP-9 in MGCs is discussed.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Ophthalmology, Stanford University, Palo Alto, CA, United States of America
| | - Mengmei Zheng
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Cheryl Mae Craft
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Shinwu Jeong
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ringland C, Schweig JE, Eisenbaum M, Paris D, Ait-Ghezala G, Mullan M, Crawford F, Abdullah L, Bachmeier C. MMP9 modulation improves specific neurobehavioral deficits in a mouse model of Alzheimer's disease. BMC Neurosci 2021; 22:39. [PMID: 34034683 PMCID: PMC8152085 DOI: 10.1186/s12868-021-00643-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Matrix metallopeptidase 9 (MMP9) has been implicated in a variety of neurological disorders, including Alzheimer's disease (AD), where MMP9 levels are elevated in the brain and cerebrovasculature. Previously our group demonstrated apolipoprotein E4 (apoE4) was less efficient in regulating MMP9 activity in the brain than other apoE isoforms, and that MMP9 inhibition facilitated beta-amyloid (Aβ) elimination across the blood-brain barrier (BBB) METHODS: In the current studies, we evaluated the impact of MMP9 modulation on Aβ disposition and neurobehavior in AD using two approaches, (1) pharmacological inhibition of MMP9 with SB-3CT in apoE4 x AD (E4FAD) mice, and (2) gene deletion of MMP9 in AD mice (MMP9KO/5xFAD) RESULTS: Treatment with the MMP9 inhibitor SB-3CT in E4FAD mice led to reduced anxiety compared to placebo using the elevated plus maze. Deletion of the MMP9 gene in 5xFAD mice also reduced anxiety using the open field test, in addition to improving sociability and social recognition memory, particularly in male mice, as assessed through the three-chamber task, indicating certain behavioral alterations in AD may be mediated by MMP9. However, neither pharmacological inhibition of MMP9 or gene deletion of MMP9 affected spatial learning or memory in the AD animals, as determined through the radial arm water maze. Moreover, the effect of MMP9 modulation on AD neurobehavior was not due to changes in Aβ disposition, as both brain and plasma Aβ levels were unchanged in the SB-3CT-treated E4FAD animals and MMP9KO/AD mice compared to their respective controls. CONCLUSIONS In total, while MMP9 inhibition did improve specific neurobehavioral deficits associated with AD, such as anxiety and social recognition memory, modulation of MMP9 did not alter spatial learning and memory or Aβ tissue levels in AD animals. While targeting MMP9 may represent a therapeutic strategy to mitigate aspects of neurobehavioral decline in AD, further work is necessary to understand the nature of the relationship between MMP9 activity and neurological dysfunction.
Collapse
Affiliation(s)
- Charis Ringland
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | | | - Maxwell Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Daniel Paris
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Ghania Ait-Ghezala
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Laila Abdullah
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA.
- The Open University, Milton Keynes, UK.
- Bay Pines VA Healthcare System, Bay Pines, FL, USA.
| |
Collapse
|
11
|
Sundqvist KG. CD28 Superagonist Shock and Blockage of Motogenic T Cell Cascade. Front Immunol 2021; 12:670864. [PMID: 33968078 PMCID: PMC8098977 DOI: 10.3389/fimmu.2021.670864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karl-Gösta Sundqvist
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute and Clinical Immunology and Transfusion Medicine Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Musikant D, Higa R, Rodríguez CE, Edreira MM, Campetella O, Jawerbaum A, Leguizamón MS. Sialic acid removal by trans-sialidase modulates MMP-2 activity during Trypanosoma cruzi infection. Biochimie 2021; 186:82-93. [PMID: 33891967 PMCID: PMC8187320 DOI: 10.1016/j.biochi.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 04/14/2021] [Indexed: 01/05/2023]
Abstract
Matrix metalloproteinases (MMPs) not only play a relevant role in homeostatic processes but are also involved in several pathological mechanisms associated with infectious diseases. As their clinical relevance in Chagas disease has recently been highlighted, we studied the modulation of circulating MMPs by Trypanosoma cruzi infection. We found that virulent parasites from Discrete Typing Units (DTU) VI induced higher proMMP-2 and MMP-2 activity in blood, whereas both low (DTU I) and high virulence parasites induced a significant decrease in proMMP-9 plasma activity. Moreover, trans-sialidase, a relevant T. cruzi virulence factor, is involved in MMP-2 activity modulation both in vivo and in vitro. It removes α2,3-linked sialyl residues from cell surface glycoconjugates, which then triggers the PKC/MEK/ERK signaling pathway. Additionally, bacterial sialidases specific for this sialyl residue linkage displayed similar MMP modulation profiles and triggered the same signaling pathways. This novel pathogenic mechanism, dependent on sialic acid removal by the neuraminidase activity of trans-sialidase, can be exploited by different pathogens expressing sialidases with similar specificity. Thus, here we present a new pathogen strategy through the regulation of the MMP network.
Collapse
Affiliation(s)
- Daniel Musikant
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Ciudad de Buenos Aires, Argentina
| | - Romina Higa
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Laboratorio de Reproducción y Metabolismo, CEFYBO-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 C1121ABG, Ciudad de Buenos Aires, Argentina
| | - Cristina E Rodríguez
- Departamento de Microbiología, IMPAM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 C1121ABG, Ciudad de Buenos Aires, Argentina
| | - Martin M Edreira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Ciudad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN-CONICET, Universidad de Buenos Aires, Intendente Güiraldes 2160 C1428EGA, Ciudad de Buenos Aires, Argentina
| | - Oscar Campetella
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas IIBio, Universidad Nacional de San Martín, 25 de Mayo y Francia B1650HMP, San Martín, San Martin, Argentina
| | - Alicia Jawerbaum
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Laboratorio de Reproducción y Metabolismo, CEFYBO-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 C1121ABG, Ciudad de Buenos Aires, Argentina
| | - María S Leguizamón
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas IIBio, Universidad Nacional de San Martín, 25 de Mayo y Francia B1650HMP, San Martín, San Martin, Argentina.
| |
Collapse
|
13
|
Infarct in the Heart: What's MMP-9 Got to Do with It? Biomolecules 2021; 11:biom11040491. [PMID: 33805901 PMCID: PMC8064345 DOI: 10.3390/biom11040491] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, numerous studies have shown a strong connection between matrix metalloproteinase 9 (MMP-9) levels and myocardial infarction (MI) mortality and left ventricle remodeling and dysfunction. Despite this fact, clinical trials using MMP-9 inhibitors have been disappointing. This review focuses on the roles of MMP-9 in MI wound healing. Infiltrating leukocytes, cardiomyocytes, fibroblasts, and endothelial cells secrete MMP-9 during all phases of cardiac repair. MMP-9 both exacerbates the inflammatory response and aids in inflammation resolution by stimulating the pro-inflammatory to reparative cell transition. In addition, MMP-9 has a dual effect on neovascularization and prevents an overly stiff scar. Here, we review the complex role of MMP-9 in cardiac wound healing, and highlight the importance of targeting MMP-9 only for its detrimental actions. Therefore, delineating signaling pathways downstream of MMP-9 is critical.
Collapse
|
14
|
Ciccone L, Vandooren J, Nencetti S, Orlandini E. Natural Marine and Terrestrial Compounds as Modulators of Matrix Metalloproteinases-2 (MMP-2) and MMP-9 in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:86. [PMID: 33498927 PMCID: PMC7911533 DOI: 10.3390/ph14020086] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Several studies have reported neuroprotective effects by natural products. A wide range of natural compounds have been investigated, and some of these may play a beneficial role in Alzheimer's disease (AD) progression. Matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, have been implicated in AD. In particular, MMP-2 and MMP-9 are able to trigger several neuroinflammatory and neurodegenerative pathways. In this review, we summarize and discuss existing literature on natural marine and terrestrial compounds, as well as their ability to modulate MMP-2 and MMP-9, and we evaluate their potential as therapeutic compounds for neurodegenerative and neuroinflammatory diseases, with a focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.)
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven—Herestraat 49—Box 1044, 3000 Leuven, Belgium;
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, via Santa Maria 53, 56126 Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
15
|
Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J 2021; 288:7162-7182. [PMID: 33405316 DOI: 10.1111/febs.15701] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP-2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress-induced injury. Beyond MMP-2, currently at least eleven other MMPs are known to function intracellularly including MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-23 and MMP-26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease-dependent and protease-independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors.
Collapse
Affiliation(s)
- Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mohammad A M Ali
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, State University of New York-Binghamton, NY, USA
| | - Richard Schulz
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Affiliation(s)
- Karl-Gösta Sundqvist
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute and Clinical Immunology and Transfusion Medicine Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
PCSK9: Associated with cardiac diseases and their risk factors? Arch Biochem Biophys 2020; 704:108717. [PMID: 33307067 DOI: 10.1016/j.abb.2020.108717] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022]
Abstract
PCSK9 plays a critical role in cholesterol metabolism via the PCSK9-LDLR axis. Liver-derived, circulating PCSK9 has become a novel drug target in lipid-lowering therapy. Accumulative evidence supports the possible association between PCSK9 and cardiac diseases and their risk factors. PCSK9 exerts various effects in the heart independently of LDL-cholesterol regulation. Acute myocardial infarction (AMI) induces local and systemic inflammation and reactive oxygen species generation, resulting in increased PCSK9 expression in hepatocytes and cardiomyocytes. PCSK9 upregulation promotes excessive autophagy and apoptosis in cardiomyocytes, thereby contributing to cardiac insufficiency. PCSK9 might also participate in the pathophysiology of heart failure by regulating fatty acid metabolism and cardiomyocyte contractility. It also promotes platelet activation and coagulation in patients with atrial fibrillation. PCSK9 is an independent predictor of aortic valve calcification and accelerates calcific aortic valve disease by regulating lipoprotein(a) catabolism. Accordingly, the use of PCSK9 inhibitors significantly reduced infarct sizes and arrhythmia and improves cardiac contractile function in a rat model of AMI. Circulating PCSK9 levels are positively correlated with age, diabetes mellitus, obesity, and hypertension. Here, we reviewed recent clinical and experimental studies exploring the association between PCSK9, cardiac diseases, and their related risk factors and aiming to identify possible underlying mechanisms.
Collapse
|
18
|
Arai AL, Migliorini M, Au DT, Hahn-Dantona E, Peeney D, Stetler-Stevenson WG, Muratoglu SC, Strickland DK. High-Affinity Binding of LDL Receptor-Related Protein 1 to Matrix Metalloprotease 1 Requires Protease:Inhibitor Complex Formation. Biochemistry 2020; 59:2922-2933. [PMID: 32702237 DOI: 10.1021/acs.biochem.0c00442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloprotease (MMP) activation contributes to the degradation of the extracellular matrix (ECM), resulting in a multitude of pathologies. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifaceted endocytic and signaling receptor that is responsible for internalization and lysosomal degradation of diverse proteases, protease inhibitors, and lipoproteins along with numerous other proteins. In this study, we identified MMP-1 as a novel LRP1 ligand. Binding studies employing surface plasmon resonance revealed that both proMMP-1 and active MMP-1 bind to purified LRP1 with equilibrium dissociation constants (KD) of 19 and 25 nM, respectively. We observed that human aortic smooth muscle cells readily internalize and degrade 125I-labeled proMMP-1 in an LRP1-mediated process. Our binding data also revealed that all tissue inhibitors of metalloproteases (TIMPs) bind to LRP1 with KD values ranging from 23 to 33 nM. Interestingly, the MMP-1/TIMP-1 complex bound to LRP1 with an affinity (KD = 0.6 nM) that was 30-fold higher than that of either component alone, revealing that LRP1 prefers the protease:inhibitor complex as a ligand. Of note, modification of lysine residues on either proMMP-1 or TIMP-1 ablated the ability of the MMP-1/TIMP-1 complex to bind to LRP1. LRP1's preferential binding to enzyme:inhibitor complexes was further supported by the higher binding affinity for proMMP-9/TIMP-1 complexes than for either of these two components alone. LRP1 has four clusters of ligand-binding repeats, and MMP-1, TIMP-1, and MMP-1/TIMP-1 complexes bound to cluster III most avidly. Our results reveal an important role for LRP1 in controlling ECM homeostasis by regulating MMP-1 and MMP-9 levels.
Collapse
Affiliation(s)
| | | | | | | | - David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
19
|
Turley TN, O'Byrne MM, Kosel ML, de Andrade M, Gulati R, Hayes SN, Tweet MS, Olson TM. Identification of Susceptibility Loci for Spontaneous Coronary Artery Dissection. JAMA Cardiol 2020; 5:929-938. [PMID: 32374345 DOI: 10.1001/jamacardio.2020.0872] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Importance Spontaneous coronary artery dissection (SCAD), an idiopathic disorder that predominantly affects young to middle-aged women, has emerged as an important cause of acute coronary syndrome, myocardial infarction, and sudden cardiac death. Objective To identify common single-nucleotide variants (SNVs) associated with SCAD susceptibility. Design, Setting, and Participants This single-center genome-wide association study examined approximately 5 million genotyped and imputed SNVs and subsequent SNV-targeted replication analysis results in individuals enrolled in the Mayo Clinic SCAD registry from August 30, 2011, to August 2, 2018. Data analysis was performed from June 21, 2017, to December 30, 2019. Main Outcomes and Measures Genetic loci and positional candidate genes associated with SCAD. Results This study included 484 white women with SCAD (mean [SD] age, 46.6 [9.2] years) and 1477 white female controls in the discovery cohort (mean [SD] age, 64.0 [14.5] years) and 183 white women with SCAD (mean [SD] age, 47.1 [9.9] years) and 340 white female controls in the replication cohort (mean [SD] age, 51.0 [15.3] years). Associations with SCAD risk reached genome-wide significance at 3 loci (1q21.3 [OR, 1.78; 95% CI, 1.51-2.09; P = 2.63 × 10-12], 6p24.1 [OR, 1.77; 95% CI, 1.51-2.09; P = 7.09 × 10-12], and 12q13.3 [OR, 1.67; 95% CI, 1.42-1.97; P = 3.62 × 10-10]), and 7 loci had evidence suggestive of an association (1q24.2 [OR, 2.10; 95% CI, 1.58-2.79; P = 2.88 × 10-7], 3q22.3 [OR, 1.47; 95% CI, 1.26-1.71; P = 6.65 × 10-7], 4q34.3 [OR, 1.84; 95% CI, 1.44-2.35; P = 9.80 × 10-7], 8q24.3 [OR, 2.57; 95% CI, 1.76-3.75; P = 9.65 × 10-7], 15q21.1 [OR, 1.75; 95% CI, 1.40-2.18; P = 7.23 × 10-7], 16q24.1 [OR, 1.91; 95% CI, 1.49-2.44; P = 2.56 × 10-7], and 21q22.11 [OR, 2.11; 95% CI, 1.59-2.82; P = 3.12 × 10-7]) after adjusting for the top 5 principal components. Associations were validated for 5 of the 10 risk alleles in the replication cohort. In a meta-analysis of the discovery and replication cohorts, associations for the 5 SNVs were significant, with relatively large effect sizes (1q21.3 [OR, 1.77; 95% CI, 1.54-2.03; P = 3.26 × 10-16], 6p24.1 [OR, 1.71; 95% CI, 1.49-1.97; P = 4.59 × 10-14], 12q13.3 [OR, 1.69; 95% CI, 1.47-1.94; P = 1.42 × 10-13], 15q21.1 [OR, 1.79; 95% CI, 1.48-2.17; P = 2.12 × 10-9], and 21q22.11 [OR, 2.18; 95% CI, 1.70-2.81; P = 1.09 × 10-9]). Each index SNV was within or near a gene highly expressed in arterial tissue and previously linked to SCAD (PHACTR1) and/or other vascular disorders (LRP1, LINC00310, and FBN1). Conclusions and Relevance This study revealed 5 replicated risk loci and positional candidate genes for SCAD, most of which are associated with extracoronary arteriopathies. Moreover, the alternate alleles of 3 SNVs have been previously associated with atherosclerotic coronary artery disease, further implicating allelic susceptibility to coronary artery atherosclerosis vs dissection.
Collapse
Affiliation(s)
- Tamiel N Turley
- Molecular Pharmacology and Experimental Therapeutics Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Megan M O'Byrne
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Matthew L Kosel
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Rajiv Gulati
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sharonne N Hayes
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Marysia S Tweet
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Timothy M Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
20
|
TIMP-3 facilitates binding of target metalloproteinases to the endocytic receptor LRP-1 and promotes scavenging of MMP-1. Sci Rep 2020; 10:12067. [PMID: 32694578 PMCID: PMC7374751 DOI: 10.1038/s41598-020-69008-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and the related families of disintegrin metalloproteinases (ADAMs) and ADAMs with thrombospondin repeats (ADAMTSs) play a crucial role in extracellular matrix (ECM) turnover and shedding of cell-surface molecules. The proteolytic activity of metalloproteinases is post-translationally regulated by their endogenous inhibitors, known as tissue inhibitors of metalloproteinases (TIMPs). Several MMPs, ADAMTSs and TIMPs have been reported to be endocytosed by the low-density lipoprotein receptor-related protein-1 (LRP-1). Different binding affinities of these proteins for the endocytic receptor correlate with different turnover rates which, together with differences in their mRNA expression, determines their nett extracellular levels. In this study, we used surface plasmon resonance to evaluate the affinity between LRP-1 and a number of MMPs, ADAMs, ADAMTSs, TIMPs and metalloproteinase/TIMP complexes. This identified MMP-1 as a new LRP-1 ligand. Among the proteins analyzed, TIMP-3 bound to LRP-1 with highest affinity (KD = 1.68 nM). Additionally, we found that TIMP-3 can facilitate the clearance of its target metalloproteinases by bridging their binding to LRP-1. For example, the free form of MMP-1 was found to have a KD of 34.6 nM for LRP-1, while the MMP-1/TIMP-3 complex had a sevenfold higher affinity (KD = 4.96 nM) for the receptor. TIMP-3 similarly bridged binding of MMP-13 and MMP-14 to LRP-1. TIMP-1 and TIMP-2 were also found to increase the affinity of target metalloproteinases for LRP-1, albeit to a lesser extent. This suggests that LRP-1 scavenging of TIMP/metalloproteinase complexes may be a general mechanism by which inhibited metalloproteinases are removed from the extracellular environment.
Collapse
|
21
|
Gou X, Xue Y, Zheng H, Yang G, Chen S, Chen Z, Yuan G. Gelatinases Cleave Dentin Sialoprotein Intracellularly. Front Physiol 2020; 11:686. [PMID: 32670089 PMCID: PMC7330055 DOI: 10.3389/fphys.2020.00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Dentin sialoprotein (DSP), the NH2-terminal fragment of dentin sialophosphoprotein (DSPP), is essential for dentin formation and further processed into small fragments inside the odontoblasts. Gelatinases, including matrix metalloproteinases 9 (MMP9) and MMP2, were able to cleave DSP(P) in tooth structures. We hypothesized that gelatinases may also cleave DSP intracellularly in the odontoblasts. In this study, the co-expression and physical interaction between DSP and gelatinases were proved by double immunofluorescence and in situ proximity ligation assay (PLA). Intracellular enzymatic activity of gelatinases was verified by gelatin zymography and in situ zymography. To confirm whether DSP was cleaved by active gelatinases intracellularly, lysates of wild-type (WT) odontoblastic cells treated with a MMP2 inhibitor or a MMP9 inhibitor or a MMP general inhibitor and of Mmp9-/- odontoblastic cells were analyzed by western blotting. Compared with the WT odontoblastic cells without inhibitor treatment, all these groups exhibited significantly higher ratios of high molecular weight to low molecular weight band density. FURIN was verified to be co-localized and physically interacted with MMP9 by double immunofluorescence and in situ PLA. The ratio of proMMP9 to activated MMP9 inside the odontoblastic cells were increased when function of endogenous FURIN was inhibited. And overexpressed proMMP9 was intracellularly cleaved by FURIN in the HEK293E cells, which was completely blocked by the mutation of proMMP9 with R96TPR99 substituted by A96AAA99. Taken together, these results indicate that DSP is intracellularly processed by gelatinases, and FURIN is involved in the intracellular activation of proMMP9 through cleavage of its R96TPR99 motif.
Collapse
Affiliation(s)
- Xiaohui Gou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Xue
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiwen Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, TX, United States
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Bitanihirwe BKY, Woo TUW. A conceptualized model linking matrix metalloproteinase-9 to schizophrenia pathogenesis. Schizophr Res 2020; 218:28-35. [PMID: 32001079 DOI: 10.1016/j.schres.2019.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinase 9 (MMP-9) is an extracellularly operating zinc-dependent endopeptidase that is commonly expressed in the brain, other tissues. It is synthesized in a latent zymogen form known as pro-MMP-9 that is subsequently converted to the active MMP-9 enzyme following cleavage of the pro-domain. Within the central nervous system, MMP-9 is localized and released from neurons, astrocytes and microglia where its expression levels are modulated by cytokines and growth factors during both normal and pathological conditions as well as by reactive oxygen species generated during oxidative stress. MMP-9 is involved in a number of key neurodevelopmental processes that are thought to be affected in schizophrenia, including maturation of the inhibitory neurons that contain the calcium-binding protein parvalbumin, developmental formation of the specialized extracellular matrix structure perineuronal net, synaptic pruning, and myelination. In this context, the present article provides a narrative synthesis of the existing evidence linking MMP-9 dysregulation to schizophrenia pathogenesis. We start by providing an overview of MMP-9 involvement in brain development and physiology. We then discuss the potential mechanisms through which MMP-9 dysregulation may affect neural circuitry maturation as well as how these anomalies may contribute to the disease process of schizophrenia. We conclude by articulating a comprehensive, cogent, and experimentally testable hypothesis linking MMP-9 to the developmental pathophysiologic cascade that triggers the onset and sustains the chronicity of the illness.
Collapse
Affiliation(s)
| | - Tsung-Ung W Woo
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Program in Cellular Neuropathology, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Eckfeld C, Häußler D, Schoeps B, Hermann CD, Krüger A. Functional disparities within the TIMP family in cancer: hints from molecular divergence. Cancer Metastasis Rev 2020; 38:469-481. [PMID: 31529339 DOI: 10.1007/s10555-019-09812-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The members of the tissue inhibitor of metalloproteinase (TIMP) family (TIMP-1, 2, 3, 4) are prominently appreciated as natural inhibitors of cancer-promoting metalloproteinases. However, clinical and recent functional studies indicate that some of them correlate with bad prognosis and contribute to the progression of cancer and metastasis, pointing towards mechanisms beyond inhibition of cancer-promoting proteases. Indeed, it is increasingly recognized that TIMPs are multi-functional proteins mediating a variety of cellular effects including direct cell signaling. Our aim was to provide comprehensive information towards a better appreciation and understanding of the biological heterogeneity and complexity of the TIMPs in cancer. Comparison of all four members revealed distinct cancer-associated expression patterns and distinct prognostic impact including a clear correlation of TIMP-1 with bad prognosis for almost all cancer types. For the first time, we present the interactomes of all TIMPs regarding overlapping and non-overlapping interaction partners. Interestingly, the overlap was maximal for metalloproteinases (e.g., matrix metalloproteinase 1, 2, 3, 9) and decreased for non-protease molecules, especially cell surface receptors (e.g., CD63, overlapping only for TIMP-1 and 4; IGF-1R unique for TIMP-2; VEGFR2 unique for TIMP-3). Finally, we attempted to identify and summarize experimental evidence for common and unique structural traits of the four TIMPs on the basis of amino acid sequence and protein folding, which account for functional disparities. Altogether, the four TIMPs have to be appreciated as molecules with commonalities, but, more importantly, functional disparities, which need to be investigated further in the future, since those determine their distinct roles in cancer and metastasis.
Collapse
Affiliation(s)
- Celina Eckfeld
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Daniel Häußler
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Benjamin Schoeps
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Chris D Hermann
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Achim Krüger
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany.
| |
Collapse
|
24
|
Au DT, Arai AL, Fondrie WE, Muratoglu SC, Strickland DK. Role of the LDL Receptor-Related Protein 1 in Regulating Protease Activity and Signaling Pathways in the Vasculature. Curr Drug Targets 2019; 19:1276-1288. [PMID: 29749311 DOI: 10.2174/1389450119666180511162048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
Aortic aneurysms represent a significant clinical problem as they largely go undetected until a rupture occurs. Currently, an understanding of mechanisms leading to aneurysm formation is limited. Numerous studies clearly indicate that vascular smooth muscle cells play a major role in the development and response of the vasculature to hemodynamic changes and defects in these responses can lead to aneurysm formation. The LDL receptor-related protein 1 (LRP1) is major smooth muscle cell receptor that has the capacity to mediate the endocytosis of numerous ligands and to initiate and regulate signaling pathways. Genetic evidence in humans and mouse models reveal a critical role for LRP1 in maintaining the integrity of the vasculature. Understanding the mechanisms by which this is accomplished represents an important area of research, and likely involves LRP1's ability to regulate levels of proteases known to degrade the extracellular matrix as well as its ability to modulate signaling events.
Collapse
Affiliation(s)
- Dianaly T Au
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - Allison L Arai
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - William E Fondrie
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - Selen C Muratoglu
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States
| |
Collapse
|
25
|
Influence of Matrix Metallopeptidase 9 on Beta-Amyloid Elimination Across the Blood-Brain Barrier. Mol Neurobiol 2019; 56:8296-8305. [PMID: 31209784 DOI: 10.1007/s12035-019-01672-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Lipoprotein receptor transport across the blood-brain barrier (BBB) mediates beta-amyloid (Aβ) accumulation in the brain and may be a contributing factor in Alzheimer's disease (AD) pathogenesis. Lipoprotein receptors are susceptible to proteolytic shedding at the cell surface, which precludes the endocytic transport of ligands. A ligand that closely interacts with the lipoprotein receptors is apolipoprotein E (apoE), which exists as three isoforms (apoE2, apoE3, apoE4). Our prior work showed an inverse relationship between lipoprotein receptor shedding and Aβ transport across the BBB, which was apoE-isoform dependent. To interrogate this further, the current studies investigated an enzyme implicated in lipoprotein receptor shedding, matrix metalloproteinase 9 (MMP9). Treatment with MMP9 dose-dependently elevated lipoprotein receptor shedding in brain endothelial cells and freshly isolated mouse cerebrovessels. Furthermore, treatment with a MMP9 inhibitor (SB-3CT) mitigated Aβ-induced lipoprotein receptor shedding in brain endothelial cells and the brains of apoE4 animals. In terms of BBB transit, SB-3CT treatment increased the transport of Aβ across an in vitro model of the BBB. In vivo, administration of SB-3CT to apoE4 animals significantly enhanced Aβ clearance from the brain to the periphery following intracranial administration of Aβ. The current studies show that MMP9 impacts lipoprotein receptor shedding and Aβ transit across the BBB, in an apoE isoform-specific manner. In total, MMP9 inhibition can facilitate Aβ clearance across the BBB, which could be an effective approach to lowering Aβ levels in the brain and mitigating the AD phenotype, particularly in subjects carrying the apoE4 allele.
Collapse
|
26
|
Bres EE, Faissner A. Low Density Receptor-Related Protein 1 Interactions With the Extracellular Matrix: More Than Meets the Eye. Front Cell Dev Biol 2019; 7:31. [PMID: 30931303 PMCID: PMC6428713 DOI: 10.3389/fcell.2019.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal and glial development and the establishment of adequate synaptic signaling. Hence, disturbances in ECM functioning are often present in neurodegenerative diseases like Alzheimer’s disease. Moreover, mutations in ECM molecules are found in some forms of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in, for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein 1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport—functions shared by low density lipoprotein receptor family members—but also regulates cell surface protease activity, controls cellular entry and binding of toxins and viruses, protects against atherosclerosis and acts on many cell signaling pathways. Given the plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue plasminogen activator are described in more detail.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
27
|
Grünwald B, Schoeps B, Krüger A. Recognizing the Molecular Multifunctionality and Interactome of TIMP-1. Trends Cell Biol 2019; 29:6-19. [DOI: 10.1016/j.tcb.2018.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 01/31/2023]
|
28
|
Salama Y, Lin SY, Dhahri D, Hattori K, Heissig B. The fibrinolytic factor tPA drives LRP1-mediated melanoma growth and metastasis. FASEB J 2018; 33:3465-3480. [PMID: 30458112 DOI: 10.1096/fj.201801339rrr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The multifunctional endocytic receptor low-density lipoprotein receptor-related protein (LRP)1 has recently been identified as a hub within a biomarker network for multicancer clinical outcome prediction. The mechanism how LRP1 modulates cancer progression is poorly understood. In this study we found that LRP1 and one of its ligands, tissue plasminogen activator (tPA), are expressed in melanoma cells and control melanoma growth and lung metastasis in vivo. Mechanistic studies were performed on 2 melanoma cancer cell lines, B16F10 and the B16F1 cells, both of which form primary melanoma tumors, but only B16F10 cells metastasize to the lungs. Tumor-, but not niche cell-derived tPA, enhanced melanoma cell proliferation in tPA-/- mice. Gain-of-function experiments revealed that melanoma LRP1 is critical for tumor growth, recruitment of mesenchymal stem cells into the tumor bed, and metastasis. Melanoma LRP1 was found to enhance ERK activation, resulting in increased matrix metalloproteinase (MMP)-9 RNA, protein, and secreted activity, a well-known modulator of melanoma metastasis. Restoration of LRP1 and tPA in the less aggressive, poorly metastatic B16F1 tumor cells enhanced tumor cell proliferation and led to massive lung metastasis in murine tumor models. Antimelanoma drug treatment induced tPA and LRP1 expression. tPA or LRP1 knockdown enhanced chemosensitivity in melanoma cells. Our results identify the tPA-LRP1 pathway as a key switch that drives melanoma progression, in part by modulating the cellular composition and proteolytic makeup of the tumor niche. Targeting this pathway may be a novel treatment strategy in combination treatments for melanoma.-Salama, Y., Lin, S.-Y., Dhahri, D., Hattori, K., Heissig, B. The fibrinolytic factor tPA drives LRP1-mediated melanoma growth and metastasis.
Collapse
Affiliation(s)
- Yousef Salama
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Shiou-Yuh Lin
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Douaa Dhahri
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine Juntendo University School of Medicine, Tokyo, Japan; and
| | - Beate Heissig
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Atopy (Allergy) Center, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Qorri B, Kalaydina RV, Velickovic A, Kaplya Y, Decarlo A, Szewczuk MR. Agonist-Biased Signaling via Matrix Metalloproteinase-9 Promotes Extracellular Matrix Remodeling. Cells 2018; 7:cells7090117. [PMID: 30149671 PMCID: PMC6162445 DOI: 10.3390/cells7090117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/12/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic noncellular structure that is crucial for maintaining tissue architecture and homeostasis. The dynamic nature of the ECM undergoes constant remodeling in response to stressors, tissue needs, and biochemical signals that are mediated primarily by matrix metalloproteinases (MMPs), which work to degrade and build up the ECM. Research on MMP-9 has demonstrated that this proteinase exists on the cell surface of many cell types in complex with G protein-coupled receptors (GPCRs), and receptor tyrosine kinases (RTKs) or Toll-like receptors (TLRs). Through a novel yet ubiquitous signaling platform, MMP-9 is found to play a crucial role not only in the direct remodeling of the ECM but also in the transactivation of associated receptors to mediate and recruit additional remodeling proteins. Here, we summarize the role of MMP-9 as it exists in a tripartite complex on the cell surface and discuss how its association with each of the TrkA receptor, Toll-like receptors, epidermal growth factor receptor, and the insulin receptor contributes to various aspects of ECM remodeling.
Collapse
Affiliation(s)
- Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | | | - Aleksandra Velickovic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Yekatrina Kaplya
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Alexandria Decarlo
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
30
|
Dawood RM, El-Meguid MA, Ibrahim MK, Bader El Din NG, Barakat A, El-Wakeel K, Alla MDAA, Wu GY, El Awady MK. Dysregulation of fibrosis related genes in HCV induced liver disease. Gene 2018; 664:58-69. [PMID: 29684485 DOI: 10.1016/j.gene.2018.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/20/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Liver fibrosis results from a wound healing response to chronic injury, which leads to excessive matrix deposition. Genome wide association studies have showen transcriptional dysregulation in mild and severe liver fibrosis. Recent studies suggested that genetic markers may be able to define the exact stage of liver fibrosis. AIM To define genes or genetic pathways that could serve as markers for staging or as therapeutic targets to halt progression of liver fibrosis. METHODS The study was performed on 105 treatment naïve HCV genotype 4 infected patients [F0-F2, n = 56; F3-F4, n = 49] and 16 healthy subjects. The study included PCR array on 84 fibrosis related genes followed by customization of a smaller array consisting of 11 genes that were designed on the bases of results obtained from the larger array. Genes that displayed significant dysregulation at mRNA levels were validated at protein levels. RESULTS AND DISCUSSION Two major pathways exhibited high dysregulation in early fibrosis as compared with controls or when compared with late fibrosis, these were the TGFβ - related pathway genes and Matrix - deposition associated genes. Hepatic stellate cell (HSC) activators i.e. TGFβ pathway genes [TGFβ1, 2 and 3, their receptors TGFβR1 and 2, signaling molecules SMAD genes and PDGF growth factors] were considerably over-expressed at transcriptional levels as early as F0, whereas expression of their inhibitor TGIF1 was simultaneously down regulated. Matrix proteins including collagen and MMPs were upregulated in early fibrosis whereas tissue inhibitors TIMPs 1 and 2 began over expression in late fibrosis. Expression at protein levels was concordant with RNA data excluding dysregulation at post transcriptional levels. CONCLUSION Since these 2 gene sets are closely interrelated regarding HSC activation and proliferation, we assume that the current findings suggest that they are favorable targets to further search for stage specific markers.
Collapse
Affiliation(s)
- Reham M Dawood
- Micrbial Biotechnology Department, National Research Center, Dokki, Cairo, 12622, Egypt.
| | - Mai Abd El-Meguid
- Micrbial Biotechnology Department, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Marwa K Ibrahim
- Micrbial Biotechnology Department, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Noha G Bader El Din
- Micrbial Biotechnology Department, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Ahmed Barakat
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Khaled El-Wakeel
- Medical Research Division, Biological Anthropology Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed Darwish Ahmed Abd Alla
- Tropical Medicine Department, Faculty of Medicine, Al-Azhar University, Gouhar Al-KaedStreet, El-Hussein University Hospital, Al-Darasah, Cairo, 11675, Egypt
| | - George Y Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Hartford, USA
| | - Mostafa K El Awady
- Micrbial Biotechnology Department, National Research Center, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
31
|
Theret L, Jeanne A, Langlois B, Hachet C, David M, Khrestchatisky M, Devy J, Hervé E, Almagro S, Dedieu S. Identification of LRP-1 as an endocytosis and recycling receptor for β1-integrin in thyroid cancer cells. Oncotarget 2017; 8:78614-78632. [PMID: 29108253 PMCID: PMC5667986 DOI: 10.18632/oncotarget.20201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
LRP-1 is a large endocytic receptor mediating the clearance of various molecules from the extracellular matrix. LRP-1 was reported to control focal adhesion turnover to optimize the adhesion-deadhesion balance to support invasion. To better understand how LRP-1 coordinates cell-extracellular matrix interface, we explored its ability to regulate cell surface integrins in thyroid carcinomas. Using an antibody approach, we demonstrated that β1-integrin levels were increased at the plasma membrane under LRP1 silencing or upon RAP treatment, used as LRP-1 antagonist. Our data revealed that LRP-1 binds with both inactive and active β1-integrin conformations and identified the extracellular ligand-binding domains II or IV of LRP-1 as sufficient to bind β1-integrin. Using a recombinant β1-integrin, we demonstrated that LRP-1 acts as a regulator of β1-integrin intracellular traffic. Moreover, RAP or LRP-1 blocking antibodies decreased up to 36% the number of β1-integrin-containing endosomes. LRP-1 blockade did not significantly affect the levels of β1-integrin-containing lysosomes while decreasing localization of β1-integrin within Rab-11 positive vesicles. Overall, we identified an original molecular process in which LRP-1 acts as a main regulator of β1-integrin internalization and recycling in thyroid cancer cells.
Collapse
Affiliation(s)
- Louis Theret
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Albin Jeanne
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France.,SATT Nord, Lille, France
| | - Benoit Langlois
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Cathy Hachet
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Marion David
- VECT-HORUS SAS, Faculté de Médecine Secteur Nord, Marseille, France
| | | | - Jérôme Devy
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Emonard Hervé
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Sébastien Almagro
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| |
Collapse
|
32
|
MacLauchlan SC, Calabro NE, Huang Y, Krishna M, Bancroft T, Sharma T, Yu J, Sessa WC, Giordano F, Kyriakides TR. HIF-1α represses the expression of the angiogenesis inhibitor thrombospondin-2. Matrix Biol 2017; 65:45-58. [PMID: 28789925 DOI: 10.1016/j.matbio.2017.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 12/22/2022]
Abstract
Thrombospondin-2 (TSP2) is a potent inhibitor of angiogenesis whose expression is dynamically regulated following injury. In the present study, it is shown that HIF-1α represses TSP2 transcription. Specifically, in vitro studies demonstrate that the prolyl hydroxylase inhibitor DMOG or hypoxia decrease TSP2 expression in fibroblasts. This effect is shown to be via a transcriptional mechanism as hypoxia does not alter TSP2 mRNA stability and this effect requires the TSP2 promoter. In addition, the documented repressive effect of nitric oxide (NO) on TSP2 is shown to be non-canonical and involves stabilization of hypoxia inducible factor-1a (HIF-1α). The regulation of TSP2 by hypoxia is supported by the in vivo observation that TSP2 has spatiotemporal expression distinct from regions of hypoxia in gastrocnemius muscle following murine hindlimb ischemia (HLI). A role for TSP2 regulation by HIF-1α is supported by the dysregulation of TSP2 expression in SM22α-cre HIF-1α KO mice following HLI. Indeed, there is a reduction in blood flow recovery in the SM22a-cre HIF-1α KO mice compared to littermate controls following HLI surgery, associated with impaired recovery and increased TSP2 levels. Moreover, SM22α-cre HIF-1α KO smooth muscle cells mice have increased TSP2 mRNA levels that persist in hypoxia. These findings identify a novel, ischemia-induced pro-angiogenic mechanism involving the transcriptional repression of TSP2 by HIF-1α.
Collapse
Affiliation(s)
- Susan C MacLauchlan
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nicole E Calabro
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yan Huang
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Cardiovascular Medicine, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Meenakshi Krishna
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tara Bancroft
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tanuj Sharma
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Jun Yu
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Cardiovascular Medicine, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - William C Sessa
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pharmacology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Frank Giordano
- Section of Cardiovascular Medicine, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Themis R Kyriakides
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
33
|
Abstract
Myeloid cells have diverse roles in regulating immunity, inflammation, and extracellular matrix turnover. To accomplish these tasks, myeloid cells carry an arsenal of metalloproteinases, which include the matrix metalloproteinases and the adamalysins. These enzymes have diverse substrate repertoires, and are thus involved in mediating proteolytic cascades, cell migration, and cell signaling. Dysregulation of metalloproteinases contributes to pathogenic processes, including inflammation, fibrosis, and cancer. Metalloproteinases also have important nonproteolytic functions in controlling cytoskeletal dynamics during macrophage fusion and enhancing transcription to promote antiviral immunity. This review highlights the diverse contributions of metalloproteinases to myeloid cell functions.
Collapse
|
34
|
Jobin PG, Butler GS, Overall CM. New intracellular activities of matrix metalloproteinases shine in the moonlight. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2043-2055. [PMID: 28526562 DOI: 10.1016/j.bbamcr.2017.05.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Parker G Jobin
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgina S Butler
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M Overall
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
35
|
Revuelta-López E, Soler-Botija C, Nasarre L, Benitez-Amaro A, de Gonzalo-Calvo D, Bayes-Genis A, Llorente-Cortés V. Relationship among LRP1 expression, Pyk2 phosphorylation and MMP-9 activation in left ventricular remodelling after myocardial infarction. J Cell Mol Med 2017; 21:1915-1928. [PMID: 28378397 PMCID: PMC5571517 DOI: 10.1111/jcmm.13113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/30/2016] [Indexed: 01/09/2023] Open
Abstract
Left ventricular (LV) remodelling after myocardial infarction (MI) is a crucial determinant of the clinical course of heart failure. Matrix metalloproteinase (MMP) activation is strongly associated with LV remodelling after MI. Elucidation of plasma membrane receptors related to the activation of specific MMPs is fundamental for treating adverse cardiac remodelling after MI. The aim of current investigation was to explore the potential association between the low‐density lipoprotein receptor‐related protein 1 (LRP1) and MMP‐9 and MMP‐2 spatiotemporal expression after MI. Real‐time PCR and Western blot analyses showed that LRP1 mRNA and protein expression levels, respectively, were significantly increased in peri‐infarct and infarct zones at 10 and 21 days after MI. Confocal microscopy demonstrated high colocalization between LRP1 and the fibroblast marker vimentin, indicating that LRP1 is mostly expressed by cardiac fibroblasts in peri‐infarct and infarct areas. LRP1 also colocalized with proline‐rich tyrosine kinase 2 (pPyk2) and MMP‐9 in cardiac fibroblasts in ischaemic areas at 10 and 21 days after MI. Cell culture experiments revealed that hypoxia increases LRP1, pPyk2 protein levels and MMP‐9 activity in fibroblasts, without significant changes in MMP‐2 activity. MMP‐9 activation by hypoxia requires LRP1 and Pyk2 phosphorylation in fibroblasts. Collectively, our in vivo and in vitro data support a major role of cardiac fibroblast LRP1 levels on MMP‐9 up‐regulation associated with ventricular remodelling after MI.
Collapse
Affiliation(s)
- Elena Revuelta-López
- Cardiovascular Research Center, CSIC-ICCC, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Sciences Research Institute Germans Tries i Pujol, Badalona (Barcelona), Spain
| | - Carol Soler-Botija
- ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Sciences Research Institute Germans Tries i Pujol, Badalona (Barcelona), Spain
| | - Laura Nasarre
- Cardiovascular Research Center, CSIC-ICCC, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Aleyda Benitez-Amaro
- Cardiovascular Research Center, CSIC-ICCC, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - David de Gonzalo-Calvo
- Cardiovascular Research Center, CSIC-ICCC, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Antoni Bayes-Genis
- ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Sciences Research Institute Germans Tries i Pujol, Badalona (Barcelona), Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenta Llorente-Cortés
- Cardiovascular Research Center, CSIC-ICCC, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
36
|
Chan CYT, Chan YC, Cheuk BLY, Cheng SWK. Clearance of matrix metalloproteinase-9 is dependent on low-density lipoprotein receptor-related protein-1 expression downregulated by microRNA-205 in human abdominal aortic aneurysm. J Vasc Surg 2017; 65:509-520. [DOI: 10.1016/j.jvs.2015.10.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/03/2015] [Indexed: 01/07/2023]
|
37
|
Gilardoni MB, Remedi MM, Oviedo M, Dellavedova T, Sarría JP, Racca L, Dominguez M, Pellizas CG, Donadio AC. Differential expression of Low density lipoprotein Receptor-related Protein 1 (LRP-1) and matrix metalloproteinase-9 (MMP-9) in prostate gland: From normal to malignant lesions. Pathol Res Pract 2016; 213:66-71. [PMID: 27931798 DOI: 10.1016/j.prp.2016.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Metalloproteinases (MMPs) are relevant modulators of inflammation, tumor microenvironment, cancer invasion and metastasis. They can be regulated by the Low density lipoprotein Receptor-related Protein 1 (LRP-1), a receptor reported to mediate the clearance of lipoproteins, extracellular matrix (ECM) macromolecules and proteinases. The aim of this study was to evaluate the expression of LRP-1, MMP-2 and MMP-9 across various grades of prostatic diseases as benign prostatic hyperplasia (BPH), BPH plus prostatitis (BPH+P), high grade prostatic intraepithelial neoplasia (HGPIN) and prostate cancer (PCa). METHODS LRP-1 was analyzed using immunohistochemistry and MMPs proteolytic activity by zymography in prostate tissues with different prostatic diseases. RESULTS LRP-1 was detected in epithelial cells in BPH (16/18), BPH+P (21/21) and HGPIN (6/6), with a staining intensity of 1+, 1+/2+ and 3+, respectively. In PCa, LRP-1 was absent in 19/27 samples while a low expression was observed in 8/27 biopsies. MMP-9 activity was higher and statistically significant in PCa than in BPH (p≤0.01). CONCLUSION Considering that LRP-1, by mediating the clearance of MMPs, is involved in the regulation of ECM remodeling and cell migration, we conclude that a decreased expression of LRP-1 could be involved with the increasing activity of MMPs shown in cancers.
Collapse
Affiliation(s)
- Mónica B Gilardoni
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Departamento de Bioquímica Clínica, FCQ-UNC, Córdoba, Argentina.
| | - María M Remedi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Departamento de Bioquímica Clínica, FCQ-UNC, Córdoba, Argentina
| | - Mabel Oviedo
- Histología y Patología, Facultad de Ciencias Médicas, UNC, Córdoba, Argentina
| | - Tristán Dellavedova
- Fundación Urológica Córdoba para la Docencia e Investigación Médica, FUCDIM, Córdoba, Argentina
| | - Juan P Sarría
- Fundación Urológica Córdoba para la Docencia e Investigación Médica, FUCDIM, Córdoba, Argentina
| | - Laura Racca
- Fundación Urológica Córdoba para la Docencia e Investigación Médica, FUCDIM, Córdoba, Argentina
| | - Mariana Dominguez
- Fundación Urológica Córdoba para la Docencia e Investigación Médica, FUCDIM, Córdoba, Argentina
| | - Claudia G Pellizas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Departamento de Bioquímica Clínica, FCQ-UNC, Córdoba, Argentina
| | - Ana C Donadio
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Departamento de Bioquímica Clínica, FCQ-UNC, Córdoba, Argentina
| |
Collapse
|
38
|
Meffert P, Tscheuschler A, Beyersdorf F, Heilmann C, Kocher N, Uffelmann X, Discher P, Rylski B, Siepe M, Kari FA. Characterization of serum matrix metalloproteinase 2/9 levels in patients with ascending aortic aneurysms. Interact Cardiovasc Thorac Surg 2016; 24:20-26. [DOI: 10.1093/icvts/ivw309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 01/05/2023] Open
|
39
|
Zhao Y, Li D, Zhao J, Song J, Zhao Y. The role of the low-density lipoprotein receptor–related protein 1 (LRP-1) in regulating blood-brain barrier integrity. Rev Neurosci 2016; 27:623-34. [PMID: 27206317 DOI: 10.1515/revneuro-2015-0069] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/25/2016] [Indexed: 12/18/2022]
Abstract
AbstractThe blood-brain barrier (BBB) is a protective structure that helps maintaining the homeostasis in cerebral microenvironment by limiting the passage of molecules into the brain. BBB is formed by closely conjugated endothelial cells, with astrocytic endfeet surrounded and extracellular matrix (ECM) consolidated. Numerous neurological diseases can cause disturbance of BBB, leading to brain edema and neurological dysfunctions. The low-density lipoprotein (LDL) receptor–related protein 1 (LRP-1), a member of the LDL receptor gene family, is involved in a lot of important processes in the brain under both physiological and pathological conditions. As a membrane receptor, LRP-1 interacts with a variety of ligands and mediates the internalization of several important substances. LRP-1 is found responsible for inducing the opening of BBB following ischemic attack. It has also been reported that LRP-1 regulates several tight junction proteins and mediates the clearance of major ECM-degrading proteinases. In this review, we briefly discussed the role of LRP-1 in regulating BBB integrity by modulating tight junction proteins, endothelial cells and the remodeling of ECM.
Collapse
Affiliation(s)
- Yahui Zhao
- 1Department of Neurosurgery, the First Affiliated Hospital of Xi’, and Jiaotong University College of Medicine, Xi’an 710061, Shaanxi Province, China
| | - Dandong Li
- 2Department of Neurosurgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Junjie Zhao
- 1Department of Neurosurgery, the First Affiliated Hospital of Xi’, and Jiaotong University College of Medicine, Xi’an 710061, Shaanxi Province, China
| | - Jinning Song
- 1Department of Neurosurgery, the First Affiliated Hospital of Xi’, and Jiaotong University College of Medicine, Xi’an 710061, Shaanxi Province, China
| | - Yonglin Zhao
- 1Department of Neurosurgery, the First Affiliated Hospital of Xi’, and Jiaotong University College of Medicine, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
40
|
Dissecting the interaction between tissue inhibitor of metalloproteinases-3 (TIMP-3) and low density lipoprotein receptor-related protein-1 (LRP-1): Development of a "TRAP" to increase levels of TIMP-3 in the tissue. Matrix Biol 2016; 59:69-79. [PMID: 27476612 DOI: 10.1016/j.matbio.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 11/21/2022]
Abstract
Tissue inhibitor of metalloproteinases 3 (TIMP-3) is a key regulator of extracellular matrix turnover for its ability to inhibit matrix metalloproteinases (MMPs), adamalysin-like metalloproteinases (ADAMs) and ADAMs with thrombospondin motifs (ADAMTSs). TIMP-3 is a secreted protein whose extracellular levels are regulated by endocytosis via the low-density-lipoprotein receptor-related protein-1 (LRP-1). In this study we developed a molecule able to "trap" TIMP-3 extracellularly, thereby increasing its tissue bioavailability. LRP-1 contains four ligand-binding clusters. In order to investigate the TIMP-3 binding site on LRP-1, we generated soluble minireceptors (sLRPs) containing the four distinct binding clusters or part of each cluster. We used an array of biochemical methods to investigate the binding of TIMP-3 to different sLRPs. We found that TIMP-3 binds to the ligand-binding cluster II of the receptor with the highest affinity and a soluble minireceptor containing the N-terminal half of cluster II specifically blocked TIMP-3 internalization, without affecting the turnover of metalloproteinases. Mass spectrometry-based secretome analysis showed that this minireceptor, named T3TRAP, selectively increased TIMP-3 levels in the extracellular space and inhibited constitutive shedding of a number of cell surface proteins. In conclusion, T3TRAP represents a biological tool that can be used to modulate TIMP-3 levels in the tissue and could be potentially developed as a therapy for diseases characterized by a deficit of TIMP-3, including arthritis.
Collapse
|
41
|
Appert-Collin A, Bennasroune A, Jeannesson P, Terryn C, Fuhrmann G, Morjani H, Dedieu S. Role of LRP-1 in cancer cell migration in 3-dimensional collagen matrix. Cell Adh Migr 2016; 11:316-326. [PMID: 27463962 DOI: 10.1080/19336918.2016.1215788] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The low-density lipoprotein receptor-related protein-1 (LRP-1) is a member of Low Density Lipoprotein Receptor (LDLR) family, which is ubiquitously expressed and which is described as a multifunctional endocytic receptor which mediates the clearance of various extracellular matrix molecules including serine proteinases, proteinase-inhibitor complexes, and matricellular proteins. Several studies showed that high LRP-1 expression promotes breast cancer cell invasiveness, and LRP-1 invalidation leads to cell motility abrogation in both tumor and non-tumor cells. Furthermore, our group has reported that LRP-1 silencing prevents the invasion of a follicular thyroid carcinoma despite increased pericellular proteolytic activities from MMP2 and uPA using a 2D-cell culture model. As the use of 3D culture systems is becoming more and more popular due to their promise as enhanced models of tissue physiology, the aim of the present work is to characterize for the first time how the 3D collagen type I matrix may impact the ability of LRP-1 to regulate the migratory properties of thyroid carcinoma using as a model FTC-133 cells. Our results show that inhibition of LRP-1 activity or expression leads to morphological changes affecting cell-matrix interactions, reorganizations of the actin-cytoskeleton especially by inhibiting FAK activation and increasing RhoA activity and MLC-2 phosphorylation, thus preventing cell migration. Taken together, our results suggest that LRP-1 silencing leads to a decrease of cell migratory capacity in a 3D configuration.
Collapse
Affiliation(s)
- Aline Appert-Collin
- a Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims , France
| | - Amar Bennasroune
- a Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims , France.,b UMR CNRS 7360, LIEC, Université de Lorraine , Metz , France
| | - Pierre Jeannesson
- c Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Faculté de Pharmacie , Reims , France
| | - Christine Terryn
- d Plateforme d'Imagerie Cellulaire et Tissulaire, URCA , Reims , France
| | - Guy Fuhrmann
- e UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie , Illkirch , France
| | - Hamid Morjani
- c Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Faculté de Pharmacie , Reims , France
| | - Stéphane Dedieu
- a Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims , France
| |
Collapse
|
42
|
Prasad JM, Young PA, Strickland DK. High Affinity Binding of the Receptor-associated Protein D1D2 Domains with the Low Density Lipoprotein Receptor-related Protein (LRP1) Involves Bivalent Complex Formation: CRITICAL ROLES OF LYSINES 60 AND 191. J Biol Chem 2016; 291:18430-9. [PMID: 27402839 DOI: 10.1074/jbc.m116.744904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 11/06/2022] Open
Abstract
The LDL receptor-related protein 1 (LRP1) is a large endocytic receptor that binds and mediates the endocytosis of numerous structurally diverse ligands. Currently, the basis for ligand recognition by LRP1 is not well understood. LRP1 requires a molecular chaperone, termed the receptor-associated protein (RAP), to escort the newly synthesized receptor from the endoplasmic reticulum to the Golgi. RAP is a three-domain protein that contains the following two high affinity binding sites for LRP1: one is located within domains 1 and 2, and one is located in its third domain. Studies on the interaction of the RAP third domain with LRP1 reveal critical contributions by lysine 256 and lysine 270 for this interaction. From these studies, a model for ligand recognition by this class of receptors has been proposed. Here, we employed surface plasmon resonance to investigate the binding of RAP D1D2 to LRP1. Our results reveal that the high affinity of D1D2 for LRP1 results from avidity effects mediated by the simultaneous interactions of lysine 60 in D1 and lysine 191 in D2 with sites on LRP1 to form a bivalent D1D2-LRP1 complex. When lysine 60 and 191 are both mutated to alanine, the binding of D1D2 to LRP1 is ablated. Our data also reveal that D1D2 is able to bind to a second distinct site on LRP1 to form a monovalent complex. The studies confirm the canonical model for ligand recognition by this class of receptors, which is initiated by pairs of lysine residues that dock into acidic pockets on the receptor.
Collapse
Affiliation(s)
- Joni M Prasad
- From the Center for Vascular and Inflammatory Disease and the Departments of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patricia A Young
- From the Center for Vascular and Inflammatory Disease and the Departments of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Dudley K Strickland
- From the Center for Vascular and Inflammatory Disease and the Departments of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
43
|
Zhang W, Zhang H, Mu H, Zhu W, Jiang X, Hu X, Shi Y, Leak RK, Dong Q, Chen J, Gao Y. Omega-3 polyunsaturated fatty acids mitigate blood-brain barrier disruption after hypoxic-ischemic brain injury. Neurobiol Dis 2016; 91:37-46. [PMID: 26921472 DOI: 10.1016/j.nbd.2016.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/04/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to protect the neonatal brain against hypoxic/ischemic (H/I) injury. However, the mechanism of n-3 PUFA-afforded neuroprotection is not well understood. One major determinant of H/I vulnerability is the permeability of the blood-brain barrier (BBB). Therefore, we examined the effects of n-3 PUFAs on BBB integrity after neonatal H/I. Female rats were fed a diet with or without n-3 PUFA enrichment from day 2 of pregnancy to 14days after parturition. H/I was introduced in 7day-old offspring. We observed relatively rapid BBB penetration of the small molecule cadaverine (640Da) at 4h post-H/I and a delayed penetration of larger dextrans (3kD-40kD) 24-48h after injury. Surprisingly, the neonatal BBB was impermeable to Evans Blue or 70kD dextran leakage for up to 48h post-H/I, despite evidence of IgG extravasation at this time. As expected, n-3 PUFAs ameliorated H/I-induced BBB damage, as shown by reductions in tracer efflux and IgG extravasation, preservation of BBB ultrastructure, and enhanced tight junction protein expression. Furthermore, n-3 PUFAs prevented the elevation in matrix metalloproteinase (MMP) activity in the brain and blood after H/I. Thus, n-3 PUFAs may protect neonates against BBB damage by blunting MMPs activation after H/I.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hui Zhang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Hongfeng Mu
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Wen Zhu
- Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoyan Jiang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Qiang Dong
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA.
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
44
|
Oral biosciences: The annual review 2015. J Oral Biosci 2016. [DOI: 10.1016/j.job.2015.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Rabiej VK, Pflanzner T, Wagner T, Goetze K, Storck SE, Eble JA, Weggen S, Mueller-Klieser W, Pietrzik CU. Low density lipoprotein receptor-related protein 1 mediated endocytosis of β1-integrin influences cell adhesion and cell migration. Exp Cell Res 2015; 340:102-15. [PMID: 26610862 DOI: 10.1016/j.yexcr.2015.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/29/2022]
Abstract
The low density lipoprotein receptor-related protein 1 (LRP1) has been shown to interact with β1-integrin and regulate its surface expression. LRP1 knock-out cells exhibit altered cytoskeleton organization and decreased cell migration. Here we demonstrate coupled endocytosis of LRP1 and β1-integrin and the involvement of the intracellular NPxY2 motif of LRP1 in this process. Mouse embryonic fibroblasts harboring a knock in replacement of the NPxY2 motif of LRP1 by a multiple alanine cassette (AAxA) showed elevated surface expression of β1-integrin and decreased β1-integrin internalization rates. As a consequence, cell spreading was altered and adhesion rates were increased in our cell model. Cells formed more focal adhesion complexes, whereby in vitro cell migration rates were decreased. Similar results could be observed in a corresponding mouse model, the C57Bl6 LRP1 NPxYxxL knock in mice, therefore, the biochemistry of cellular adhesion was altered in primary cortical neurons. In vivo cell migration experiments demonstrated a disturbance of neuroblast cell migration along the rostral migratory stream. In summary, our results indicate that LRP1 interacts with β1-integrin mediating integrin internalization and thus correlates with downstream signaling of β1-integrin such as focal adhesion dynamics. Consequently, the disturbance of this interaction resulted in a dysfunction in in vivo and in vitro cell adhesion and cell migration.
Collapse
Affiliation(s)
- Verena K Rabiej
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Thorsten Pflanzner
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Timo Wagner
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Kristina Goetze
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Steffen E Storck
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, Westfälische Wilhelms-University Muenster, Waldeyerstraße 15, 48149 Muenster, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich-Heine-University, Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Wolfgang Mueller-Klieser
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany.
| |
Collapse
|
46
|
Duellman T, Burnett J, Yang J. Functional Roles of N-Linked Glycosylation of Human Matrix Metalloproteinase 9. Traffic 2015. [PMID: 26207422 DOI: 10.1111/tra.12312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a secreted endoproteinase with a critical role in the regulation of the extracellular matrix and proteolytic activation of signaling molecules. Human (h)MMP-9 has two well-defined N-glycosylation sites at residues N38 and N120; however, their role has remained mostly unexplored partly because expression of the N-glycosylation-deficient N38S has been difficult due to a recently discovered single nucleotide polymorphism-dependent miRNA-mediated inhibitory mechanism. hMMP-9 cDNA encoding amino acid substitutions at residues 38 (modified-S38, mS38) or 120 (N120S) were created in the background of a miRNA-binding site disrupted template and expressed by transient transfection. hMMP-9 harboring a single mS38 replacement secreted well, whereas N120S, or a double mS38/N120S hMMP-9 demonstrated much reduced secretion. Imaging indicated endoplasmic reticulum (ER) retention of the non-secreted variants and co-immunoprecipitation confirmed an enhanced strong interaction between the non-secreted hMMP-9 and the ER-resident protein calreticulin (CALR). Removal of N-glycosylation at residue 38 revealed an amino acid-dependent strong interaction with CALR likely preventing unloading of the misfolded protein from the ER chaperone down the normal secretory pathway. As with other glycoproteins, N-glycosylation strongly regulates hMMP-9 secretion. This is mediated, however, through a novel mechanism of cloaking an N-glycosylation-independent strong interaction with the ER-resident CALR.
Collapse
Affiliation(s)
- Tyler Duellman
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53705, USA.,Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - John Burnett
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jay Yang
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53705, USA.,Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
47
|
Conant K, Allen M, Lim ST. Activity dependent CAM cleavage and neurotransmission. Front Cell Neurosci 2015; 9:305. [PMID: 26321910 PMCID: PMC4531370 DOI: 10.3389/fncel.2015.00305] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022] Open
Abstract
Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surface, and emerging evidence suggests that increased peri-synaptic expression, release and/or activation of these proteinases occurs with enhanced excitatory neurotransmission. Synaptically expressed cell adhesion molecules (CAMs) could therefore represent important targets for neuronal activity-dependent proteolysis. Several CAM subtypes are expressed at the synapse, and their cleavage can influence the efficacy of synaptic transmission through a variety of non-mutually exclusive mechanisms. In the following review, we discuss mechanisms that regulate neuronal activity-dependent synaptic CAM shedding, including those that may be calcium dependent. We also highlight CAM targets of activity-dependent proteolysis including neuroligin and intercellular adhesion molecule-5 (ICAM-5). We include discussion focused on potential consequences of synaptic CAM shedding, with an emphasis on interactions between soluble CAM cleavage products and specific pre- and post-synaptic receptors.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | - Megan Allen
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | - Seung T Lim
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| |
Collapse
|
48
|
Moxon JV, Behl-Gilhotra R, Morton SK, Krishna SM, Seto SW, Biros E, Nataatmadja M, West M, Walker PJ, Norman PE, Golledge J. Plasma Low-density Lipoprotein Receptor-related Protein 1 Concentration is not Associated with Human Abdominal Aortic Aneurysm Presence. Eur J Vasc Endovasc Surg 2015; 50:466-73. [PMID: 26188720 DOI: 10.1016/j.ejvs.2015.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/06/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVE/BACKGROUND Recent genetic data suggest that a polymorphism of LRP1 is an independent risk factor for abdominal aortic aneurysm (AAA). The aims of this study were to assess whether plasma and aortic concentrations of low-density lipoprotein receptor-related protein 1 (LRP1) are associated with AAA, and to investigate the possible relevance of LRP1 to AAA pathophysiology. METHODS Three analyses were conducted. First, plasma LRP1 concentrations were measured in community-dwelling men with and without AAA (n = 189 and n = 309, respectively) using enzyme-linked immunosorbent assay. Second, Western blotting analyses were employed to compare the expression of LRP1 protein in aortic biopsies collected from patients with AAA and nonaneurysmal postmortem donors (n = 6/group). Finally, the effect of in vitro LRP1 blockade on matrix metalloprotease 9 (MMP9) clearance by vascular smooth muscle cells was assessed by zymography. RESULTS Plasma LRP1 concentrations did not differ between groups of men with and without AAA (median concentration 4.56 μg/mL [interquartile range {IQR} (3.39-5.96)] and 4.43 μg/mL [IQR 3.44-5.84], respectively; p = .48), and were not associated with AAA after adjusting for other risk factors (odds ratio 1.10 [95% confidence interval: 0.91-1.32]; p = 0.35). In contrast, LRP1 expression was approximately 3.4-fold lower in aortic biopsies recovered from patients with AAA compared with controls (median [IQR] expression 1.72 [0.94-3.14] and 5.91 [4.63-6.94] relative density units, respectively; p < .01). In vitro LRP1 blockade significantly reduced the ability of vascular smooth muscle cells to internalize extracellular MMP9. CONCLUSIONS These data suggest that aortic but not circulating LRP1 is downregulated in patients with AAA and indicates a possible role for this protein in clearing an aneurysm-relevant ligand.
Collapse
Affiliation(s)
- J V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - R Behl-Gilhotra
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - S K Morton
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - S M Krishna
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - S W Seto
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; National Institute of Complementary Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia
| | - E Biros
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - M Nataatmadja
- The Cardiovascular Research Group, Department of Medicine, University of Queensland, The Prince Charles Hospital, Brisbane, QLD 4032, Australia
| | - M West
- The Cardiovascular Research Group, Department of Medicine, University of Queensland, The Prince Charles Hospital, Brisbane, QLD 4032, Australia
| | - P J Walker
- School of Medicine, Discipline of Surgery and Centre for Clinical Research, University of Queensland, Herston, QLD 4072, Australia
| | - P E Norman
- School of Surgery, University of Western Australia, Perth, WA 6009, Australia
| | - J Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; School of Medicine, Discipline of Surgery and Centre for Clinical Research, University of Queensland, Herston, QLD 4072, Australia; Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD 4814, Australia.
| |
Collapse
|
49
|
Muromachi K, Kamio N, Matsuki-Fukushima M, Nishimura H, Tani-Ishii N, Sugiya H, Matsushima K. CCN2/CTGF expression via cellular uptake of BMP-1 is associated with reparative dentinogenesis. Oral Dis 2015; 21:778-84. [PMID: 25944709 DOI: 10.1111/odi.12347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVE CCN family member 2/connective tissue growth factor (CCN2/CTGF) is known as an osteogenesis-related molecule and is thought to be implicated in tooth growth. Bone morphogenetic protein-1 (BMP-1) contributes to tooth development by the degradation of dentin-specific substrates as a metalloprotease. In this study, we demonstrated the correlations between CCN2/CTGF and BMP-1 in human carious teeth and the subcellular dynamics of BMP-1 in human dental pulp cells. MATERIALS AND METHODS Expression of CCN2/CTGF and BMP-1 in human carious teeth was analyzed by immunohistochemistry. BMP-1-induced CCN2/CTGF protein expression in primary cultures of human dental pulp cells was observed by immunoblotting. Intracellular dynamics of exogenously administered fluorescence-labeled BMP-1 were observed using confocal microscope. RESULTS Immunoreactivities for CCN2/CTGF and BMP-1 were increased in odontoblast-like cells and reparative dentin-subjacent dental caries. BMP-1 induced the expression of CCN2/CTGF independently of protease activity in the cells but not that of dentin sialophosphoprotein (DSPP) or dentin matrix protein-1 (DMP-1). Exogenously added BMP-1 was internalized into the cytoplasm, and the potent dynamin inhibitor dynasore clearly suppressed the BMP-1-induced CCN2/CTGF expression in the cells. CONCLUSION CCN2/CTGF and BMP-1 coexist beneath caries lesion and CCN2/CTGF expression is regulated by dynamin-related cellular uptake of BMP-1, which suggests a novel property of metalloprotease in reparative dentinogenesis.
Collapse
Affiliation(s)
- K Muromachi
- Department of Pulp Biology and Endodontics, Kanagawa Dental University, Yokosuka, Kanagawa, Japan.,Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - N Kamio
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - M Matsuki-Fukushima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
| | - H Nishimura
- Department of Oral Surgery, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - N Tani-Ishii
- Department of Pulp Biology and Endodontics, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - H Sugiya
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - K Matsushima
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| |
Collapse
|
50
|
Muromachi K, Kamio N, Matsuki-Fukushima M, Narita T, Nishimura H, Tani-Ishii N, Sugiya H, Matsushima K. Metalloproteases and CCN2/CTGF in dentin–pulp complex repair. J Oral Biosci 2015. [DOI: 10.1016/j.job.2014.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|